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Abstract
The purpose of this paper is to present a procedure for the estimation of the smallest
eigenvalues and their associated eigenfunctions of nth order linear boundary value
problems with homogeneous boundary conditions defined in terms of
quasi-derivatives. The procedure is based on the iterative application of the
equivalent integral operator to functions of a cone and the calculation of the
Collatz–Wielandt numbers of such functions. Some results on the sign of the Green
functions of the boundary value problems are also provided.
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1 Introduction
Let L be a disconjugate linear differential operator of nth order on an interval [a, b] which,
according to a well-known theorem of Pólya [1], can be factored as a product of operators
of first order as

L0y = ρ0y,

Liy = ρi(Li–1y)′, i = 1, . . . , n,

Ly = Lny,

(1)

where ρi > 0, ρ0ρ1 · · ·ρn = 1, and ρi ∈ Cn–i[a, b]. Following Elias notation we will call
L0y, L1y, . . . , Lny the quasi-derivatives of y.

In this paper we will tackle the eigenvalue problem

Ly + q(x)y = λ

m∑

l=0

pl(x)Lly,

Liy(a) = 0, i ∈ α, Ljy(b) = 0, j ∈ β ,

(2)

where 0 ≤ m ≤ n – 1, α is the ordered set {α1,α2, . . . ,αk}, β is the ordered set {β1,β2, . . . ,
βn–k}, 1 ≤ k ≤ n – 1, both αk ,βn–k < n and pl , q ∈ C[a, b] such that (–1)n–kq ≤ 0 a.e. on
[a, b] and pl have signs to be determined.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-021-01561-2
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-021-01561-2&domain=pdf
https://orcid.org/0000-0002-5448-8924
mailto:pedro.almenar1@vodafone.com


Almenar and Jódar Boundary Value Problems         (2021) 2021:84 Page 2 of 16

A special case of these homogeneous boundary conditions, which will be very relevant in
what follows, is that in which the number of boundary conditions at a and b set on quasi-
derivatives of order lower than t is greater or equal than t for t = 1, . . . , n. Elias denoted
these conditions by poised in [2], term that we will use in the rest of the manuscript. Poised
boundary conditions imply that λ = 0 is not an eigenvalue of (2) as per [2, Lemma 10.3].

The purpose of this paper is to provide an iterative procedure to:
1. Calculate the smallest or principal eigenvalue of problem (2) when the boundary

conditions are poised (note that the principal label refers to the positivity of the
associated eigenfunction).

2. Calculate the second smallest eigenvalue of problem (2) when the boundary
conditions are not poised and q(x) ≡ 0.

3. Estimate the eigenfunction y of problem (2) associated with such eigenvalues.
We will work on the equivalent integral eigenvalue problem

λMy = y, (3)

where M is the operator C[a, b] → Cn[a, b] defined by

My =
∫ b

a
G(x, t)

m∑

l=0

pl(t)Lly(t) dt, x ∈ [a, b], (4)

and G(x, t) is the Green function of the problem

Ly + q(x)y = 0; Liy(a) = 0, i ∈ α; Liy(b) = 0, i ∈ β , (5)

which exists as long as the boundary conditions are poised and problem (5) does not have
an extremal point in [a, b] (see [2, Theorem 4.16]).

The eigenvalue problem (2) has been studied thoroughly in the literature, references [3–
6] being excellent examples. A good summary can also be found in [2, Chap. 10]. However,
there do not seem to exist many algorithms for the calculation of the eigenvalues, as far as
the authors are aware.

As for practical applications, in [7, Appendix D] one can find multiple examples of dif-
ferential problems in the theory of fluid dynamics which lead to representations like (2). In
particular, the pluriharmonic equation �N y + λpy = 0, x ∈ R

q, � =
∑q

i=1
∂2

∂x2 , if p(x) = p(t)
with t = (

∑q
i=1 x2

i ) 1
2 , can be represented as (t1–q d

dt tq–1 d
dt )N y + λp(t)y = 0.

The calculation of the smallest eigenvalue of (2) is also relevant to proving the existence
of solutions of nonlinear boundary value problems of the type Ly + p(x)g(y) = 0, in particu-
lar by comparing that eigenvalue with the quotient g(y)

y for different values of y, especially
when y → 0+ and when y → +∞. This approach was started by Erbe [8] for symmetric
kernels and extended by Webb and Lan [9–11] and many others, [12] being a recent ex-
ample.

The procedure is based on the iterative calculation of Mj (that is, the composition of M
with itself j – 1 times, M ◦ M ◦ · · · ◦ M︸ ︷︷ ︸

j times M

) on functions u of a cone and the determination of

the so-called Collatz–Wielandt numbers of the resulting functions.
For self-completeness, let us recall that, given a Banach space B, a cone P ⊂ B is a

nonempty closed set defined by the conditions:
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1. If u ∈ P and –u ∈ P, then u = 0.
2. If u, v ∈ P, then cu + dv ∈ P for any real numbers c, d ≥ 0.

A cone in a Banach space B allows defining a partial ordering in the Banach space by
setting u ≤ v if and only if v – u ∈ P. We will say that the operator M is u0-positive if there
exists u0 ∈ P such that for any u ∈ P\{0} one can find positive constants ε1, ε2 such that
ε1u0 ≤ Mu ≤ ε2u0. A cone P is reproducing if B = P – P and total if B = P – P. We will
denote by int{P} the interior of the cone P, if it exists.

Following Forster–Nagy definition [13], if u ∈ P\{0}, the upper and lower Collatz–
Wielandt numbers are defined, respectively, as

r(M, u) = inf{w ∈R : Mu ≤ wu}, r(M, u) = sup{w ∈R : wu ≤ Mu}. (6)

They are called upper and lower Collatz–Wielandt numbers as they extend the estimates
for the spectral radius of a nonnegative matrix given by L. Collatz [14] and H. Wielandt
[15].

The properties of r(M, u) and r(M, u) and their relationship with the spectral radius of
the operator M have been studied by several authors, starting with Marek [16, 17], Forster
and Nagy [13], who corrected some previous mistakes from Marek, and Marek again [18].
The concept has been extended to multiple types of operators, Banach spaces and cones.
The references [19–22] include a good account of recent results.

Although Chang [20] already proposed the use of iterative Collatz–Wielandt numbers
(what he called the power method) to obtain converging upper and lower bounds of the
principal eigenvalue of some boundary value problems, it was Webb [23, Sect. 6] who
first applied to a boundary value problem of type (3)–(4) by taking into consideration the
following result by Marek [18, Theorem 5.2].

Theorem 1 Let P be a normal cone in a Banach space. Let M be a compact linear opera-
tor u0-positive in P. Then, for any u ∈ P\{0}, the sequences of Collatz–Wielandt numbers
r(M, Mju) and r(M, Mju) converge to r(M).

Webb’s paper [23] left open the question of how to determine the u0-positivity of M in
the general case. His article included another iterative method to bound and calculate the
principal eigenvalue which had a slower convergence rate and was based on the existence
of certain bounds for the Green function used as a kernel in (4).

In [24] the authors proposed an iterative approach to estimate the principal eigenvalue
and associated eigenfunction of an nth order linear boundary value problem, which in
essence coincides with that of Webb. The u0-positivity of the associated operator M was
proved by using sign results of the derivatives of the corresponding Green function. This
paper follows a similar modus operandi.

The organization of the paper is as follows. Section 2 elaborates on the sign properties of
the quasi-derivatives of the Green functions of (5). Section 3 uses them to show that, when
the boundary conditions are poised, there is a cone P for which M fulfils the conditions for
the Collatz–Wielandt numbers to converge, yielding a procedure for the estimation of the
principal eigenvalue and eigenfunction of (2). It also shows how to adapt the process to
cope with non-poised boundary conditions. In Sect. 4 some practical considerations for
the calculation of the Collatz–Wielandt numbers of this problem are presented. Section 5
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gives an example of how to apply the previous theory to calculate the principal eigenvalue
of a boundary value problem. Finally, Sect. 6 discusses some conclusions.

2 The sign of the quasi-derivatives of the Green function
In this section we study the signs of the quasi-derivatives of the Green function of the
problem

Ly + q(x)y = 0, Liy(a) = 0, i ∈ α; Liy(b) = 0, i ∈ β ; (7)

with q ∈ C[a, b] such that either q ≡ 0 or (–1)n–kq < 0 a.e. on [a, b], provided that the
boundary conditions are poised and such a problem does not have an extremal point in
[a, b]. From nomenclature perspective we will assume that the quasi-derivative LiG(x, t)
applies only to the variable x of G(x, t).

We will also need the following definitions.

Definition 1 Fixed t ∈ [a, b],
• A zero component is a closed subinterval I ⊂ [a, b] where a quasi-derivative of G(x, t)

is identically zero. If a quasi-derivative has several zero components, there must be
subintervals of [a, b] of positive measure separating them. Otherwise they will be
considered the same zero component.

• zi[a, b] is the number of isolated zeroes or zero components of the ith quasi-derivative
of G(x, t) on [a, b] for i = 0, . . . , n – 2.

• zi(a, b) is the number of isolated zeroes or zero components of the ith quasi-derivative
of G(x, t) entirely lying on (a, b) for i = 0, . . . , n – 2.

• Zi{α,β} is the number of homogeneous boundary conditions defined in {α,β} which
are lower than or equal to i.

• Ei[a, b] is the excess of isolated zeroes or zero components of the ith quasi-derivative
of G(x, t) on [a, b] not due to the boundary conditions and Rolle’s theorem which, for
reasons that will become clear later, we will define as

Ei[a, b] = zi[a, b] – Zi{α,β} + i, i = 0, . . . , n – 2. (8)

• m(α, i) is the number of quasi-derivatives of order equal to or higher than i which the
boundary conditions α do not specify to vanish at a.

• n(β , i) is the number of quasi-derivatives of order higher than i which the boundary
conditions β do specify to vanish at b.

• imax is the lowest quasi-derivative such that either {imax, . . . , n – 1} ⊂ α or
{imax, . . . , n – 1} ⊂ β , with imax = n if there are no boundary conditions on the (n – 1)th
quasi-derivative.

• i(α, j) is the lowest quasi-derivative higher than or equal to j such that in all
quasi-derivatives between the jth and the (i(α, j) – 1)th one there are boundary
conditions set at a. If there is no boundary condition set on the jth quasi-derivative at
a, we will say i(α, j) = j.

• i(β , j) is the lowest quasi-derivative higher than or equal to j such that in all
quasi-derivatives between the jth and the (i(β , j) – 1)th one there are boundary
conditions set at b. If there is no boundary condition set on the jth quasi-derivative at
b, we will say i(β , j) = j.



Almenar and Jódar Boundary Value Problems         (2021) 2021:84 Page 5 of 16

Lemma 1 Ei[a, b] satisfies Ei[a, b] ≥ Ei–1[a, b] ≥ 0 for i = 1, . . . , n – 2.

Proof From the definition of Ei[a, b] it is clear that

zi[a, b] = Ei[a, b] + Zi{α,β} – i, i = 0, . . . , n – 2. (9)

G(x, t) cannot be identically zero on [a, b] as otherwise Ln–1G(x, t) cannot have a disconti-
nuity jump at x = t. Therefore, it cannot have a single zero component covering [a, b]. This
implies z0[a, b] = E0[a, b] + Z0{α,β} ≥ Z0{α,β}, so E0[a, b] ≥ 0. Next, by Rolle’s theorem

zi(a, b) ≥ zi–1[a, b] – 1,

and

zi[a, b] ≥ Zi{α,β} – Zi–1{α,β} + zi–1[a, b] – 1.

From here and (9) one has

zi(a, b) ≥ Ei–1[a, b] + Zi–1{α,β} – i (10)

and

zi[a, b] ≥ Zi{α,β} – Zi–1{α,β} + Ei–1[a, b] + Zi–1{α,β} – i + 1 – 1

= Ei–1[a, b] + Zi{α,β} – i,
(11)

which together with (9) prove the statement. �

Remark 1 Note that Lemma 1 refers to quasi-derivatives and boundary conditions, not
requiring any particular condition on q(x) of (7). This could take any values as long as the
associated Green function exists.

Theorem 2 Fixed t ∈ [a, b], if the boundary conditions {α,β} are poised, then Ei[a, b] = 0
and zi[a, b] ≥ 1 for i = 0, . . . , n – 2. In addition,

(–1)m(α,i)LiG(a, t) > 0, i /∈ α; (–1)n(β ,i)LiG(b, t) > 0, i /∈ β ; (12)

and if Zi–1{α,β} = i, then

(–1)m(α,i)LiG(x, t) > 0, x ∈ (a, b). (13)

Proof If the boundary conditions are poised, then Zi{α,β} ≥ i + 1 for i = 0, . . . , n – 1. This
and (9) lead to zi[a, b] ≥ Ei[a, b] + 1 ≥ 1, i = 0, . . . , n – 2.

Next, from [2, Theorem 4.16] one knows that

(–1)n–kG(x, t) > 0, x ∈ (a, b), (14)
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which, given that (–1)n–kq(x) < 0 a.e. on [a, b] by hypothesis, implies

LnG(x, t) = LG(x, t) = –q(x)G(x, t) > 0, a.e. for x ∈ (a, b). (15)

This means that Ln–1G(x, t) is increasing on [a, b], including at the discontinuity point
x = t.

Let us assume that any Ei[a, b] �= 0 with 0 ≤ i ≤ n – 2. By Lemma 1, En–2[a, b] ≥ 1 and
there can be two cases:

• Either there is no boundary condition at Ln–1G(x, t), which, given that the total
number of boundary conditions is n, implies that Zn–2{α,β} = n and therefore
zn–2[a, b] = En–2[a, b] + 2 ≥ 3. This is impossible since by Rolle’s theorem Ln–1G(x, t)
must have at least two change of signs, which is not compatible with Ln–1G(x, t) being
increasing on [a, b].

• Or there is one boundary condition at Ln–1G(x, t). This implies in turn that
Zn–2{α,β} = n – 1 and therefore zn–2[a, b] = En–2[a, b] + 1 ≥ 2. By Rolle’s theorem
Ln–1G(x, t) must have at least one change of sign, but this is also impossible since
Ln–1G(x, t) is increasing on [a, b] and is set to 0 at one of the extremes.

The previous monotonicity argument can be applied to show that Ln–1G(x, t) can only
have either one zero at a or b, set by the boundary conditions, or a single zero on (a, b), or
one change of sign at x = t, the last two cases as a result of Rolle’s theorem.

As for the sign of LiG(x, t), if LiG(a, t) = 0, then obviously LiG(x, t)Li+1G(x, t) > 0 for x ∈
(a, a + δ). Else, since zi[a, b] ≥ 1 and Ei+1[a, b] = 0, there cannot be a zero of Li+1G(x, t) on
(a, xi), where xi is the smallest zero of LiG(x, t). Accordingly,

–LiG(x, t) = LiG(xi, t) – LiG(x, t) =
∫ xi

x

Li+1G(s, t)
ρi+1(s)

ds,

so LiG(x, t)Li+1G(x, t) < 0 for x ∈ (a, a + δ). From here and (14) one gets

(–1)m(α,i)LiG(x, t) > 0, x ∈ (a, a + δ), i = 0, . . . , n – 1. (16)

In a similar way it is possible to prove that

(–1)n(β ,i)LiG(x, t) > 0, x ∈ (b – δ, b], i /∈ β , (17)

and

(–1)n(β ,i)LiG(x, t) < 0, x ∈ (b – δ, b), i ∈ β . (18)

Inequalities (12) are a consequence of (16) and (17).
Last, if Zi–1{α,β} = i, then zi[a, b] = Zi{α,β} – Zi–1{α,β}, that is, the only zeroes of

LiG(x, t) happen at a or b and LiG(x, t) does not change sign on (a, b). This and (16) yield
(13). �

Let us turn our attention to the Green function of (7) for the case q ≡ 0, that is,

Ly = 0; Liy(a) = 0, i ∈ α; Liy(b) = 0, i ∈ β . (19)

For this problem we can obtain a result similar to Theorem 2.
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Theorem 3 Fixed t ∈ [a, b], if the boundary conditions {α,β} are poised, then zi[a, b] ≥ 1
and Ei[a, b] = 0 for i = 0, . . . , n – 2.

In addition

(–1)m(α,i)LiG(a, t) > 0, i /∈ α; (–1)n(β ,i)LiG(b, t) > 0, i /∈ β ; (20)

and if Zi–1{α,β} = i with i < imax, then

(–1)m(α,i)LiG(x, t) > 0, x ∈ (a, b). (21)

Proof If the boundary conditions {α,β} are poised, then the Green function exists and
one can reason as in Theorem 2 to obtain zi[a, b] ≥ 1 for i = 0, . . . , n – 2.

Next, let us assume that imax < n and imax ∈ α. From the boundary conditions and (19)
one has LiG(x, t) = 0 for x ∈ [a, t), i = imax, . . . , n – 1. It cannot happen that there is xi ∈ (t, b]
such that LiG(xi, t) = 0 for any i ≥ imax since otherwise, by Rolle’s theorem, there should
be a zero of Ln–1G(x, t) on (t, b), which is impossible since LnG = 0 on that subinterval and
Ln–1G(x, t) has a discontinuity at x = t. That implies that (–1)n(β ,i)LiG(x, t) = LiG(x, t) > 0
for i = imax, . . . , n – 1 and x ∈ (t, b], En–2[a, b] = 0 and, according to Lemma 1, Ei[a, b] = 0
for i = 0, . . . , n – 2. In addition, Limax–1G(x, t) must be constant on [a, t] and monotonic
increasing on (t, b].

If the zero of Limax–1G(x, t) (there must be at least one!) is at b and is due to the bound-
ary conditions, then Limax–1G(x, t) < 0 for x ∈ [a, b) or, in other words, –(–1)n(β ,imax–1) ×
Limax–1G(x, t) = (–1)m(α,imax–1)Limax–1G(x, t) > 0 for x ∈ [a, b). Otherwise, as the definition of
imax prevents that a boundary condition on Limax–1G(x, t) is set at a, and the boundary con-
ditions are poised, from Lemma 1, in particular (10), the number of isolated zeroes or zero
components of Limax–1G(x, t) entirely lying on (a, b) is

zimax–1(a, b) = Eimax–1[a, b] + imax – (imax – 1) = 1.

The subinterval [a, t] cannot be that one, since it is not entirely within (a, b), so that zero
must be in (t, b) and therefore Limax–1G(x, t) �= 0 for x ∈ [a, t]. In particular (–1)n(β ,imax–1) ×
Limax–1G(b, t) = Limax–1G(b, t) > 0 and (–1)m(α,imax–1) Limax–1G(x, t) = –Limax–1G(x, t) > 0 for
x ∈ [a, a + δ]. In both cases, since zi[a, b] ≥ 1 for i = 0, . . . , n – 2, one can reason as in The-
orem 2 to get to (20) and (21).

A similar result is obtained if imax < n and imax ∈ β .
Last, let us assume imax = n, that is, no boundary condition set at a or b for Ln–1G.

From (9), zn–2[a, b] = En–2[a, b] + n – (n – 2) ≥ 2. From Rolle’s theorem there must be at
least a change of sign of Ln–1G(x, t) in (a, b). As LnG = LG = 0 in each subinterval, that
change of sign is only possible if (–1)m(α,n–1)Ln–1G(x, t) = –Ln–1G(x, t) > 0 on [a, t) and
(–1)n(β ,n–1)Ln–1G(x, t) = Ln–1G(x, t) > 0 on (t, b]. There cannot be any other zero or change
of sign, so En–2[a, b] = 0 and, from Lemma 1, Ei[a, b] = 0 for i = 0, . . . , n – 2. As before, one
can reason as in Theorem 2 to get to (20) and (21). �

3 The calculation of the principal eigenvalue
Let us first consider the eigenvalue problem

Ly + q(x)y = λ

m∑

l=0

pl(x)Lly; Liy(a) = 0, i ∈ α; Liy(b) = 0, i ∈ β , (22)



Almenar and Jódar Boundary Value Problems         (2021) 2021:84 Page 8 of 16

with {α,β} being poised boundary conditions, (–1)n–kq < 0 a.e. on [a, b] and q, pl ∈
C[a, b].

Problem (22) is equivalent to the integral eigenvalue problem λMy = y, with M defined
as

My =
∫ b

a
G(x, t)

m∑

l=0

pl(t)Lly(t) dt, x ∈ [a, b], (23)

and G(x, t) being the Green function of problem (7). We will show that the problem is
compliant with the conditions presented in [24] for certain Banach spaces and cones.
Thus, let S be the set of the indices l such that Zl–1{α,β} = l, 0 ≤ l ≤ m, where we assume
Z–1{α,β} = 0. If m = 0, we will define the Banach space B as

B =
{

y ∈ PC[a, b]
}

, (24)

and if m > 0 as

B =
{

Lm–1y ∈ C[a, b] : Lmy ∈ PC[a, b],

Liy(a) = Ljy(b) = 0, i ∈ α, j ∈ β , i, j < m
}

,
(25)

in all cases the associated norm being

‖y‖ = max
{
sup

{∣∣Liy(x)
∣∣, x ∈ [a, b]

}
, i = 0, . . . , m

}
. (26)

We will define the cone P by

P =
{

y ∈ B : (–1)m(α,l)Lly(x) ≥ 0, x ∈ [a, b], l ∈ S
}

. (27)

In a similar manner, we will define the Banach space B as

B =
{

Ln–1y ∈ C[a, b] : Lny ∈ PC[a, b], Liy(a) = Ljy(b) = 0, i ∈ α, j ∈ β
}

, (28)

with the associated norm

‖y‖ = max
{
sup

{∣∣Liy(x)
∣∣, x ∈ [a, b]

}
, i = 0, . . . , n

}
, (29)

and the cone P as

P =
{

y ∈ B : (–1)m(α,l)Lly(x) ≥ 0, x ∈ [a, b], l ∈ S
}

. (30)

The cone P is solid and its interior is defined by

int{P} =
{

y ∈ B : (–1)m(α,l)Lly(x) > 0, x ∈ (a, b), l ∈ S;

(–1)m(α,l)Li(α,l)y(a) > 0, (–1)m(α,l)–i(β ,l)+lLi(β ,l)y(b) > 0, l ∈ S
}

.
(31)

These cones are the tools for proving the next theorem.
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Theorem 4 Let us suppose that both i(α, m), i(β , m) < n. Let us also suppose that {α,β} are
poised,

(–1)m(α,l)pl(x) ≥ 0, x ∈ [a, b], l ∈ S; pl(x) ≡ 0, l /∈ S, (32)

and that there exists an index s ∈ S such that (–1)m(α,s)ps(x) > 0 a.e. on [a, b].
Then there exists a principal eigenvalue λ0 of problem (22) which satisfies

r
(
M, Mju

) ≤ 1
λ0

≤ r
(
M, Mju

)
, j = 0, 1, . . . , (33)

and

lim
j→∞ r

(
M, Mju

)
= lim

j→∞ r
(
M, Mju

)
=

1
λ0

, (34)

and its associated eigenfunction v satisfies v ∈ P\{0} and

lim
j→∞λ

j
0Mju = f (u)v (35)

for any u ∈ P\{0}, where f (u) is a nonzero linear functional dependent on u.

Proof The assertions are a consequence of [24, Theorems 6 and 7], which in turn re-
quire that P is reproducing (this is a consequence of the cone being solid and [25,
Lemma 1.1]), M is compact (this can be easily proved using Arzelà–Ascoli theorem), and
that M{P\{0}} ⊂ int{P}. To prove the last assertion, let us assume that f ∈ P\{0} and let
us check if Mf satisfies (31). From the definition of M one has

LiMf (x) =
∫ b

a
LiG(x, t)

m∑

l=0

pl(t)Llf (t) dt, x ∈ [a, b], 0 ≤ i ≤ n – 1. (36)

The definition of P implies, using Rolle’s theorem as in Lemma 1 and Theorem 2, that all
quasi-derivatives of f of order l ∈ S have at least a zero in [a, b], but perhaps the quasi-
derivative of mth order. Therefore, if any of them was identically zero, all of them would
vanish identically. From here, the fact that Zl–1{α,β} = l for l ∈ S, (13), (30), (32), and (36)
it follows that

(–1)m(α,l)LlMf (x) > 0, x ∈ (a, b), l ∈ S. (37)

In a similar manner, according to (12) and (13), n(β , l) = m(α, l) for l ∈ S\(S ∩ β). From
this, (12), (30), (32), and (36), one has

(–1)m(α,l)LlMf (a) > 0, l /∈ α, l ∈ S, (38)

and

(–1)m(α,l)LlMf (b) > 0, l /∈ β , l ∈ S. (39)



Almenar and Jódar Boundary Value Problems         (2021) 2021:84 Page 10 of 16

Next, from the definitions of m(α, l), i(α, l), n(β , l), and i(β , l) it follows

m
(
α, i(α, l)

)
= m(α, l), n

(
β , i(β , l)

)
= n(β , l) – i(β , l) + l + 1,

which in combination with the hypothesis i(α, m), i(β , m) < n, (12), (30), (32), (36), and
(–1)n(β ,j)+1 = (–1)m(α,j) for j ∈ β , yields

(–1)m(α,l)Li(α,l)Mf (a) > 0, (–1)m(α,l)–i(β ,l)+lLi(β ,l)Mf (b) > 0 (40)

for l ∈ S. This completes the proof. �

Remark 2 Theorem 4 shows that, selecting any u ∈ P\{0}, the calculation of r(M, Mju)
and r(M, Mju) yields lower and upper bounds for the eigenvalue 1

λ0
which converge to this

as the iteration index j grows, and that Mju also converges in norm to the corresponding
eigenfunction v. Such a calculation requires the comparison of ∂ lMju

∂xl and ∂ lMj+1u
∂xl for all

l ∈ S. This is an aspect different from [24], where the comparison was restricted to the
partial derivative of a certain order, but it is the price to pay for allowing a wider amount
of different quasi-derivatives in the right-hand side of (2).

For the case q(x) ≡ 0, namely for the problem

Ly = λ

m∑

l=0

pl(x)Lly; Liy(a) = 0, i ∈ α; Liy(b) = 0, i ∈ β , (41)

with {α,β} being poised boundary conditions and pj ∈ C[a, b], it is possible to obtain a
result like Theorem 4.

Theorem 5 Let us suppose that both i(α, m), i(β , m) ≤ imax – 1. Let us also suppose that
{α,β} are poised,

(–1)m(α,l)pl(x) ≥ 0, x ∈ [a, b], l ∈ S; pl(x) ≡ 0, l /∈ S, (42)

and there exists an index s ∈ S such that (–1)m(α,s)ps(x) > 0 a.e. on [a, b]. Then there exists
a principal eigenvalue λ0 of problem (41) which satisfies

r
(
M, Mju

) ≤ 1
λ0

≤ r
(
M, Mju

)
, j = 0, 1, . . . , (43)

and

lim
j→∞ r

(
M, Mju

)
= lim

j→∞ r
(
M, Mju

)
=

1
λ0

, (44)

and its associated eigenfunction v satisfies v ∈ P\{0} and

lim
j→∞λ

j
0Mju = f (u)v (45)

for any u ∈ P\{0}, where f (u) is a nonzero linear functional dependent on u.
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Proof The proof is exactly the same as that of Theorem 4 by considering inequalities (20)–
(21) instead of (12)–(13). �

When q(x) ≡ 0 and m = 0, problem (22) becomes

Ly = λpy; Liy(a) = 0, i ∈ α; Liy(b) = 0, i ∈ β , (46)

with p ∈ C[a, b] such that (–1)n–kp > 0 on [a, b]. If, in addition, the boundary conditions
{α,β} are not poised, the principal eigenvalue is exactly 0 due to [2, Lemma 10.3]). How-
ever, it is possible to bound and estimate the next smallest eigenvalue (and associated
eigenfunction) following a similar procedure as that of Theorem 5 and taking into consid-
eration the next theorem.

Theorem 6 Any problem of type (46) with non-poised boundary conditions and a nonzero
eigenvalue is equivalent to another problem of type (46) with poised boundary conditions.

Proof According to [2, Lemma 4.13], for any boundary conditions {α,β} there exists an in-
dex s such that the boundary conditions are s-poised, that is, there are at least i conditions
imposed on the first i quasi-derivatives in the sequence

Lsy, Ls+1y, . . . , Ln–1y, L0y, . . . , Ls–1y,

for i = 1, . . . , n. Such an index s, according to [2, Equation (4.10)] and the definition of
Zi{α,β}, satisfies

Zs–1{α,β} – s = min
j

(
Zj{α,β} – j – 1

)
(47)

for j = 0, . . . , n – 1.
Let us assume that the eigenvalue λ is not zero. As in [2, Theorem 5.5] we can permute

the quasi-derivatives of y in a cyclic order. Thus let z = Lsy and

N0z = r0z, Niz = ri(Ni–1z)′, i = 1, . . . , n,

with

ri =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, i = 0, n,

ρi+s, i = 1, . . . , n – s – 1,

ρ0ρn/|p|, i = n – s,

ρi+s–n, i = n – s + 1, . . . , n – 1.

As |p| = (–1)n–kp, this means in practice

Niz =

⎧
⎪⎪⎨

⎪⎪⎩

Li+sy, i = 0, . . . , n – s – 1,

(–1)n–kλLi+s–ny, i = n – s, . . . , n – 1,

(–1)n–kλρ–1
s Lsy, i = n.
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This implies that problem (46) can be transformed into the problem

Nnz = λ(–1)n–kρ–1
s z,

Niy(a) = 0, i ∈ {
α1 – s, . . . ,αk – s (mod n)

}
,

Niy(b) = 0, i ∈ {
β1 – s, . . . ,βn–k – s (mod n)

}
,

whose boundary conditions are poised, thus being compliant with the hypotheses of The-
orem 5. We can apply Theorem 5, calculate z and λ, and obtain y from Nn–sz, ρ0 and λ. �

Remark 3 It is worth highlighting that [24] did not focus on r(M, Mju) and r(M, Mju) as the
only lower and upper bounds of the principal eigenvalue, but it extended those properties
to r(Mj, Miu) and r(Mj, Miu) for different values of i and j, including i = 0.

4 Practical considerations for calculating Collatz–Wielandt numbers
The determination of the Collatz–Wielandt numbers r(M, Mju) and r(M, Mju) requires
the comparison of several quasi-derivatives of Mju and Mj+1u (those of order l ∈ S) across
the interval [a, b]. When Mju is calculated numerically, this is not really possible. However,
in [24, Sect. 2.4] several mechanisms were shared which allow reducing the comparison
of functions to one point (in some cases) or to a finite set of points. These mechanisms
[24, Theorems 14 and 15] are also applicable to this case.

For the concrete case m = 0, if the number of boundary conditions set on the quasi-
derivative L0 is one and, in the case q ≡ 0, imax > 1, it is straightforward to show that one
can reduce the comparison of Mju and u to a single point (a or b, since Mju is monotonic
and u can be picked up so that it is monotonic), as proposed in [24, Theorem 14]. However,
this is not possible if there are two boundary conditions on the quasi-derivative L0.

For this latter case, nevertheless, it is worth considering the following theorem.

Theorem 7 Let u be a solution of Lu = f with L as in (1), poised homogeneous boundary
conditions {α,β} and f ∈ PC[a, b] such that f ≥ 0 on [a, b] and f > 0 on a subset of [a, b]
of positive measure. Then the number of zeroes of Liu on (a, b) is exactly Zi–1{α,β} – i for
i < imax.

Proof Extending the definitions of Ei[a, b], Zi{α,β}, and zi(a, b) from G(x, t) to u, and fol-
lowing the same steps of Lemma 1, one gets to En–1[a, b] ≥ Ei[a, b] ≥ 0 for i = 0, . . . , n – 2.
If En–1[a, b] > 0, by Rolle’s theorem there must be a change of sign of Lu = Lnu = f
in (a, b), which contradicts the hypothesis f ≥ 0. Therefore En–1[a, b] = Ei[a, b] = 0 and
zi(a, b) = Zi–1{α,β} – i. �

As a result, if (–1)n–kz(x) ≥ 0, x ∈ [a, b] with (–1)n–kz(x) > 0 in a subset of [a, b] of positive
measure, and Z0{α,β} = 2, given that (–1)n–kp(x) > 0 a.e. on [a, b] and imax > 1 (the total
number of boundary conditions is n and two of them are set on L0z), the previous theorem
shows that the number of zeroes of L1Mz on (a, b) is exactly one, so that (–1)n–kL0Mz has
only one maximum on that interval. This allows extending [24, Theorem 14] to the case
Z0{α,β} = 2 by means of the following theorems.
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Theorem 8 Let z(x) = (–1)n–k , x ∈ [a, b]. If m = 0 and Z0{α,β} = 2, then the calculation of
r(Mj, z) for j ≥ 1, can be restricted to a single point, and these numbers satisfy r(Mj, z) ≥ 1

λ
j
0

and limj→∞(r(Mj, z))
1
j = 1

λ0
.

Proof Since z is constant, in order to calculate r(Mj, z) it suffices to determine sup{Mjz(x),
x ∈ [a, b]}. The latter assertions are a result of [24, Theorems 7 and 8] and Theorem 5. �

Theorem 9 Let c1, c2 be such that a < c1 < c2 < b, and let z be defined by

z(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x ∈ [a, c1),

(–1)n–k , x ∈ [c1, c2],

0, x ∈ (c2, b].

If m = 0 and Z0{α,β} = 2, then the calculation of r(Mj, z) for j ≥ 1 can be restricted to the
points c1 and c2. In addition, r(Mj, z) ≤ 1

λ
j
0

and limj→∞(r(Mj, z))
1
j = 1

λ0
.

Proof According to Theorem 7, (–1)n–kMjz(x) must have a single maximum on (a, b).
Therefore, if (–1)n–kMjz(c1) ≥ rj and (–1)n–kMjz(c2) ≥ rj, then Mjz ≥ rjz. The latter as-
sertions are also a result of [24, Theorems 7 and 8] and Theorem 5. �

5 Example
Let us consider the problem

Ly + λ
1
x

y = 0, x ∈ [1, 2], L1y(1) = L2y(1) = L3y(1) = L3y(2) = 0, (48)

with n = 4 and

ρ0 =
1
x

, ρ1 = ρ2 = ρ4 = 1, ρ3 = x.

The boundary conditions of (48) are not poised, so the smallest eigenvalue is λ = 0. We
can apply Theorem 6 to transform the problem into a poised one and use the method of
Theorem 5 to estimate the second smallest eigenvalue λ0. To do so we must first identify
the index s for which the problem is s-poised by means of equation (47).

Table 1 shows that the problem is 1, 2, and 3-poised, and we can select any of these
indexes for our purposes. A close examination shows that s = 3 provides a problem whose
Green function is easy to calculate, namely

Nz + λ0
1
x

z = 0, x ∈ [1, 2], N0z(1) = N2z(1) = N3z(1) = N0z(2) = 0, (49)

Table 1 Calculation of index s in the example

i Zi{α,β} Zi{α,β} – i – 1
0 0 –1
1 1 –1
2 2 –1
3 4 0



Almenar and Jódar Boundary Value Problems         (2021) 2021:84 Page 14 of 16

Table 2 Collatz–Wielandt numbers for Mjz in the example

r(M,Mjz) r(M,Mjz)

j = 0 0.0000004 0.016373
j = 1 0.0059443 0.0074423
j = 2 0.0061166 0.0062013
j = 3 0.0061211 0.0061245
j = 4 0.0061213 0.0061214
j = 5 0.0061213 0.0061213

with

r0 = r1 = r2 = r3 = r4 = 1.

Therefore we have to determine the Green function of the problem

∂4G(x, t)
∂x4 = 0, x ∈ [1, 2], G(1, t) =

∂2G(1, t)
∂x2 =

∂3G(1, t)
∂x3 = G(2, t) = 0, (50)

which is

G(x, t) =

⎧
⎨

⎩
– (2–t)3(x–1)

6 , x ∈ [1, t),

– (2–t)3(x–1)
6 + (x–t)3

6 , x ∈ (t, 2].
(51)

Accordingly, the operator M can be calculated as

Mz =
x – 1

6

∫ x

1

(2 – t)3

t
z(t) dt –

x3

6

∫ x

1

z(t)
t

dt +
x2

2

∫ x

1
z(t) dt

–
x
2

∫ x

1
tz(t) dt +

1
6

∫ x

1
t2z(t) dt +

x – 1
6

∫ 2

x

(2 – t)3

t
z(t) dt, x ∈ [1, 2]. (52)

Note that the representation of Mz in (52), with the variable x outside of the integrals,
reduces the memory usage of the algorithm in the case that Mz has to be calculated nu-
merically, e.g., with Simpson’s rule for the integrals, as it allows dealing only with vectors
instead of matrices.

Starting with the function z(x) = 1, x ∈ [1, 2], it is possible to calculate Mjz for differ-
ent indexes j, in this case from j = 1 to j = 5, and determine the corresponding Collatz–
Wielandt numbers, which are bounds of the inverse of the nonzero smallest eigenvalue of
(48). These bounds can be seen in Table 2 and yield the estimation λ0 = 163.364.

6 Conclusions
The procedure presented in this paper allows estimating the principal eigenvalue and as-
sociated eigenfunction of problems of type (2) as long as p and q satisfy some sign condi-
tions and the boundary conditions are poised. It also allows estimating the second smallest
eigenvalue and associated eigenfunction of that type of problems when m = 0 and q ≡ 0,
regardless of the boundary conditions.

The main limitations it presents are related to the sign requirements of p and q, and
also to the possible difficulties of finding the Green function G(x, t). This mainly depends
on the complexity of the differential operator L, but it is worth highlighting that in the
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case q ≡ 0 this calculation can be done numerically in a quite straightforward manner as
the Green function is just a solution of LnG(x, t) = 0 subject to the boundary conditions
{α,β} and with a discontinuity jump at x = t, and such a differential equation can be solved
recursively by taking (1) into account.

The calculation of the Collatz–Wielandt numbers can be complex in some cases as
they require comparing several quasi-derivatives of two functions throughout the interval
[a, b]. Nevertheless, as Sect. 4 points out, there exist mechanisms to reduce the compari-
son to a finite set of points.
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