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Abstract: The role of agriculture in society is vital due to factors such as providing food for the
population, is a major source of employment worldwide, and one of the most important sources
of revenue for countries. Furthermore, in recent years, the interest in optimizing the use of water
resources has increased due to aspects such as climate change. This has led to the introduction of
technology in the fields by means of sensor networks that allow remote monitoring and control of
cultivated lands. In this paper, we present a system for flood irrigation in agriculture comprised of a
sensor network based on WiFi communication. Different sensors measure atmospheric parameters
such as temperature, humidity, and rain, soil parameters such as humidity, and water parameters such
as water temperature, salinity, and water height to decide on the need of activating the floodgates
for irrigation. The user application displays the data gathered by the sensors, shows a graphical
representation of the state of irrigation of each ditch, and allows farmers to manage the irrigation
of their fields. Finally, different tests were performed on a plot of vegetables to evaluate the correct
performance of the system and the coverage of the sensor network on a vegetated area with different
deployment options.

Keywords: Internet of Things (IoT); agriculture; wireless sensor network (WSN); flood irrigation;
monitoring; cloud server; mobile app

1. Introduction

The agricultural sector is vital in our society for various reasons. It is a great source of
employment, with 26.26% of the world population working in this sector [1]. In countries
like India, the population employed in the agricultural sector may reach 43.21% [2], and
for countries like Somalia and Burundi, the employment in agriculture surpasses 80%
of the population [1]. It is then a great source of revenue for countries with the highest
employment rates in this sector. Furthermore, the importance of producing food for its
local consumption has been in the spotlight during the COVID-19 pandemic, where the
uncertainty regarding transport and the closure of the airspace led to a fear of shortage of
food and other first need products. Moreover, the produce not used for consumption in the
country can be utilized as a resource for foreign exchange, leading to more revenue gains
for the country.

The need of optimizing the production of produce, the usage of resources such as water
and energy, and the time of the farmers resulted in the introduction of technology in the
fields. The first technologies employed in agriculture included pipe systems for irrigation
and motored vehicles to perform difficult tasks. Then, the automation in irrigation was
introduced. This allowed setting start and finish times to activate and deactivate the
irrigation system. Nowadays, the performance of automation and monitoring tasks using
technology is common in many fields. The introduction of advanced technologies in
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agriculture led to the creation of the term precision agriculture. Sensors, actuators, and
nodes are deployed in the field to capture information, execute commands, and store,
analyze, and transmit the gathered information to local or remote databases [3]. The most
commonly monitored parameters can be classified into water, soil, and weather factors.
Regarding water, the most monitored parameters are water quality, water tank levels, water
flow, water temperature, and water salinity [4]. Soil moisture, soil pH, soil temperature, and
soil nutrients are the most monitored soil parameters. Air temperature and humidity, rain,
or wind, are often considered when monitoring the weather. Finally, the crops can also be
monitored by measuring aspects such as leaf wetness or plant height. Most smart irrigation
systems use a combination of some of the aforementioned parameters that are analyzed
using algorithms to determine the optimal irrigation in a field. Currently, professional
systems employ expensive sensors to monitor these parameters. However, recent papers
explore the use of low-cost sensors and nodes [5].

The use of low-cost nodes and sensors has been very popular in recent research as it
allows for the creation of affordable irrigation systems that can be deployed in developing
countries. Arduino Uno, Arduino Mega, Node MCU, WEMOS Mini D1, Raspberry Pi 2
Model B, and Raspberry Pi 3 Model B+ are the most utilized nodes for IoT irrigation
systems [3]. Low-cost actuators are also utilized to open and close water valves or to
activate coolers, fans, heaters artificial lights, and buzzers. The gathered data are often
forwarded to a cloud platform that allows for the creation of graphs and statistics that help
farmers keep track of the evolution of their fields. One of the most utilized cloud platforms
in IoT is ThingSpeak [6]. However, the use of databases like MySQL [7] as a storage system
is also very widespread.

There are different types of irrigation whose usage depends on the type of crop, the
content and characteristics of the soil, and the topography of the land. Therefore, irrigation
techniques such as drip irrigation, sprinkler irrigation, flood irrigation, and subsurface
irrigation can be found in the fields. Among the recent papers on IoT irrigation systems, the
majority utilizes motor pumps, sprinklers, valves, or drip irrigation [3]. However, the use
of IoT for flooding irrigation has not been widely investigated. In this paper, we present an
IoT flood irrigation control system based on WiFi that monitors the presence of water in
the water canals and allows the farmer to control the water gates from a remote location.
An Android application that gives the farmer access to the logs and the irrigation controls
is also presented.

The rest of this paper is structured as follows. The materials and methods, jointly with
the analytical study used to evaluate path loss of the signal and the theoretical coverage
area of our system, are presented in Section 2. Section 3 depicts the experimental results of
our system. Section 3 presents some related works and discusses their differences with our
proposal. Finally, the conclusions and future work are presented in Section 4.

2. Materials and Methods

This section presents the proposal description, the system design and implementation,
and the cloud service deployment.

2.1. Proposal Description

This subsection presents a brief description of the system requirements as well as the
overall description of our system.

2.1.1. System Requirements

The proposed system tries to solve a problem that is very present in classical agri-
culture: the control of irrigation by flooding. Therefore, the objective of this system is to
provide a remote-control method to make the work easier for farmers. The system must
have the following features:

• It should allow detection of when the water has reached the end of the ditch without
having to physically be at the end of the ditch to observe the control point.
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• The system must be able to uniquely identify each ditch.
• Considering the possibility that farmers of an area tend to group together in irrigation

communities and on many occasions share the irrigation channels, it is necessary to
collect information about the irrigation shift as well as determine whether the gate of
the main channel is open or not.

• Complementing the previous point, an application similar to a shared calendar would
be required. In it, the members of the irrigation community could request/plan their
irrigation.

• An alert system and simple management application that allows the farmer to know
when to close the gates of the secondary channels to stop irrigation.

• Finally, a graphical interface as simple as possible is required since we must con-
sider that the application will be used by the end-users without specialized technical
knowledge.

There is no one-size-fits-all solution to meet the defined requirements. However, the
final solution must be simple and inexpensive since in this way, we will be able to reach
more users.

2.1.2. Overall Description

The complete system is made up of a deployment of wireless nodes with sensors in
charge of monitoring different parameters in the field. Concretely, the system is composed
of a Raspberry Pi3B+ [8] that acts as a gateway and uses Raspbian as the operating system
(O.S.). The sensor nodes were developed using Wemos D1 Mini modules [9] whose
firmware is based on the basic firmware provided by Arduino. However, it was customized
to enable only those elements that we only really needed. These wireless nodes were
connected to a gateway based on WiFi technology. Both sensor nodes and the gateway
require a protocol to exchange the collected information. In this case, we used the version
of Firmata protocol published on 23 July 2021. This gateway is in charge of creating the
local network that will allow farmers to visualize the events detected by the sensors and
the end of each stream. To do that, the farmers use a smart phone that runs Android 9.0 Pie
as an O.S.

The system can be used in two different ways: (1) we can consider it as a fixed
system installed in the field that must be powered by batteries and solar panels to keep
it running; and (2) we can consider this system as a complementary equipment or tool
that the farmer would use during irrigation tasks (as a hoe is used to make a hole). After
finishing the irrigation, the farmer would remove the equipment and store it for the next
irrigation. There are crops such as citrus that do not require more than 2–3 irrigations per
year (depending on the area), so there is no sense in maintaining the system in the field.
Although other crops such as vegetables, which will require irrigations with a frequency
of 2–3 times a month. The use of the system we investigated is the one described in the
second approach.

Many papers have discussed the use of the available wireless technologies for preci-
sion agriculture systems [10–12] and provide the advantages and disadvantages of each
solution. However, the requirements of each IoT system for precision agriculture need
to be analyzed to select the most suitable technology. Considering the requirements of
the system presented in this paper and the ways the system can be utilized, the selected
wireless technology was WiFi. Table 1 presents the characteristics of popular technologies
for precision agriculture. Considering the required coverage range of the system and the
monitored scenario, BLE (Bluetooth low energy) and LoRa were not suitable protocols.
One of the key aspects in selecting WiFi is the high availability of WiFi devices both for
low-cost nodes and devices such as smartphones, tablets, and computers that the user
can use to visualize the data. It is important to consider that the user is a person without
technical knowledge and using their own smartphone to access the data through the local
network makes the system more accessible. Furthermore, the use of WiFi in IoT systems
for agriculture is very popular, as shown in [3]. Furthermore, [10] states that ZigBee nodes
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are required to be deployed with an available line of sight, which can be difficult for
crops due to the height of the plant and the foliage. Nonetheless, the use of WiFi has
its limitations due to the higher energy consumption. This problem can be addressed
using techniques to reduce the energy consumption such as data-driven techniques, or by
utilizing energy-harvesting systems. Using the presented system in the first approach, the
WiFi radio only needs to be active when the user is irrigating the fields, whereas for the
second approach, the battery of the nodes would not be depleted before the user finishes
the irrigation process. Therefore, the energy consumption of using WiFi for this system
is not a problem. Finally, utilizing WiFi provides the system with scalability, allowing
the introduction of more sensors, particularly IP cameras that need higher data rates to
transmit the data.

Table 1. Wireless technologies that can be utilized in precision agriculture systems.

Wireless
Technology ZigBee WiFi BLE LoRa

Frequency band 868 MHz, 915 MHz,
2.4 GHz 2.4 GHz 2.4 GHz 868 MHz, 915 MHz

Energy
consumption Low Moderate Ultra-low Low

Coverage range 100 m 100 m 10 m 15 km
Data rate 250 kbps 150 Mbps 1 Mbps 50 kbps

Figure 1 shows the deployment diagram of the proposal, where water detection
sensors are located at the end of the different streams. There were also a series of sensors
(temperature, humidity, height of the canal water and presence of pesticides) in the main
canal to determine the quality of the irrigation water.

Figure 1. Proposed system for controlling the flood irrigation in agriculture.
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Although it is possible to add several sensors to our system, to perform our tests, we
used a water sensor for soil for measuring the presence of water, a DHT11 to measure
temperature and relative humidity, a distance sensor, and a light-dependent resistor (LDR).

Figure 2 includes the electronic schematic of the sensors used to carry out our tests.

Figure 2. Electric circuits for the sensors used in our tests. (a) moisture soil sensor. (b) relative air humidity and temperature
sensor. (c) light sensor. (d) distance sensor.

Figure 2a shows that the moisture soil sensor presents two probes, although it is
possible to have models with multiple stripes, which are places in contact to the soil
or water. Each probe or strip is plated with a conducting material, often copper, and
both probes act as a variable resistor. While one probe supplies positive voltage, the
other is connected to ground. When both probes are dipped in water, an electric path is
created between the two probes and the sensor starts the conducting current. The value of
conductance and current depends on the level of water.

Figure 2b shows the diagram for the relative air humidity and temperature sensor
(DHT11 sensor). As can be seen, it provides a digital output that requires some discrete
components to filter the signal.

Figure 2c presents light sensor. It is the electric circuit that uses a resistor variable with
the light. It works as a normal resistor and for this reason, a voltage divisor is required.

Finally, Figure 2d shows the operation diagram for the distance sensor. As we can see
the sensor transmits a sound wave as a pulse in its surroundings. This pulse collides with
some objects, and the object reflects the pulse back to the ultrasonic sensor. Finally, the
sensor can measure the distance as a value proportional to the total time elapsed during
the transmission and receiving the reflected wave (i.e., the round trip time (RTT)).

In addition to the sensors, the system should also include microprocessor devices in
charge of collecting and processing the collected data. The system is designed for obtaining
a cheap solution that any farmer can buy. This is achieved by using cheap but reliable
hardware and developing the wireless network with an extremely cheap technology that
does not depend on any type of license [13].

For this reason, we proposed the use of Wemos D1 mini modules. These are shown
in Figure 3.
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Figure 3. Wemos D1 mini.

These nodes are cheap and very small. WemosD1 mini allows connecting various
digital sensors and one analog sensor. Nodes are implemented using ESP8266-based
hardware. Specifically, Wemos D1 mini boards are used to collect the data from sensors.
As a summary, the main features of this module are:

• CPU Speed: 80 MHz
• FlashMemory: 4 M bytes
• Supply Voltage: 3.3 V
• Digital I/O pins: 11, all of them are able to be configured as PWM, interruptions,

and I2C
• Analog Input: 1 (Max. 3.2 V)
• Connector Micro-USB
• Wireless connectivity: IEEE 802.11 b/g/n

To implement the necessary AP in the field, a Raspberry Pi with connection to the
3G/4G network can be used (which would imply the contracting of an additional fee
with a mobile operator) to send the data to the cloud or by using of a smartphone (taking
advantage of the mobile device connectivity).

Likewise, atmospheric parameters (such as temperature, humidity, rain, etc.) that
allow us to implement intelligent irrigation systems in future applications will be used.
All wireless nodes are connected to a Raspberry Pi configured as a local access point (AP).
This AP will enable farmers to connect their tablet or smartphone to control the irrigation
process. The values managed in this system are not particularly sensitive, so the system
does not present very high requirements in terms of quality of service or % of lost packets
(i.e., the loss of a packet would not suppose an extremely serious problem since notifications
of the presence of water are sent every 30 s).

In order to control the presence of water in each ditch, a node is placed at the end of
each one. It is preferable to have one device per ditch, since the separation per channel is
sometimes more than 1 m for vegetables and more than 3–5 m for citrus and trees. The
water sensors have a resistive behavior, so an excess of electrical wiring can damage the
received signal. For this reason, it is preferable to use one node per ditch.

2.1.3. Analysis of Power Consumption

The energy consumption of the system is presented in this subsection. It can be
considered that the nodes go through three stages:

• Stage 1. The microcontroller, the communication peripherals, and the sensors are
active. In this stage, the microcontroller gathers the data from the sensors.

• Stage 2. WiFi transmission: The node transmits the data using WiFi wireless commu-
nication.

• Stage 3. Sleep mode: In this stage, all the modules stay inactive until the timer is
reached.

The power state of the modules in each stage is presented in Table 2:
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Table 2. Power state at each state.

State MCU Sensors WiFi Tx

Sensor Data
Collection ON ON OFF

WiFi Tx ON OFF ON
Sleep Mode OFF OFF PFF

The estimate of the power consumption of each module provided in the specifications
is presented in Table 3.

Table 3. Consumption for each device.

Device Consumption in ON (mAh) Consumption in OFF (mAh)

DHT11 2.5 0.15
Proximity sensor 0.015 -

LDR 0.5 -
Wemos Mini D1 37.81 13.69

ESP8266 120 0.01

Table 4 presents the added power consumption at each stage utilizing the previous
values.

Table 4. Power consumption for each module.

Status Wemos Mini D1 Sensors ESP8266 Total

Sensor Data
Collection 37.81 mA 3.015 mA Included on node

power consumption 40.825 mA

WiFi Tx 37.81 mA 0. 15 mA 120 mA 157.96 mA

Sleep Mode 13.69 mA 0.15 mA Included on node
power consumption 13.84 mA

As it can be seen, the transmission stage is the stage that consumes the most power.
In order to determine the power consumption of one year, the time the node spends
in each stage is needed. As can be seen in Table 4, the time in stage 3 is considerably
larger than that of stages 1 and 2. We considered that the duration of stage 1 is 1 s. The
data are gathered and transmitted each 30 s. The payload of the WiFi packet is 27 bits,
which corresponds to 8 bits for humidity, 10 bits for temperature, 8 bits for light, and 1 bit
for the water presence parameter. Considering the 32 byte header size and a bit rate of
54 Mbps, the transmission time of the WiFi packet and, therefore, the duration of stage 2
was approximately 6 μs. Finally, the duration of stage 3 was 28,994 ms. The mAh per cycle
is calculated in Equations (1)–(3):

40.825 mA·1000 ms = 40, 825 mAms· 1 h
3, 600, 000 ms

= 0.01134 mAh (1)

157.96 mA· 0.006 ms = 0.94775 mAms × 1 h
3, 600, 000 ms

= 263 pAh (2)

13.84 mA· 28, 994 ms = 401, 276.96 mAms· 1 h
3, 600, 000 ms

= 0.1114 mAh (3)

Therefore, the total energy consumption per cycle is 0.11274 mAh. For a battery with
a capacity of 14,000 mAh, a total of 124,179 transmissions can be performed. Considering
2880 transmissions for each day, the node can be active for 43 days. The Raspberry Pi 3 B+
is constantly active and consumes 400 mA per minute with onboard WiFi.

To estimate the cost of deployment, we can consider a rectangular field 40 m long × 30 m
wide and 10 ditches. In this sense, we would need a single gateway device and 10 nodes
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to detect the arrival of water. It is considered one node located on the main channel that
will contain a proximity sensor (to detect if it contains water) and a DHT-11 sensor (just
to register the ambient parameters). The deployment estimation cost for this system are
shown in see Table 5.

Table 5. Budget for a deployment in a field.

Device Unitary Price Number Subtotal

Water sensor 3.30 € 11 36.3 €
Proximity sensor 2.13 € 1 2.13 €
DHT-11 sensor 2.80 € 1 2.80 €

Wemos D1 Mini Board 6.70 € 10 67 €
Battery for nodes and USB cable 6 € 10 60 €

Raspberry Pi 3B 38 € 1 38 €
Power supply for Raspberry Pi 10 € 1 10 €

Total 212.93 €

2.2. Analytical Study

This section presents the analytical study performed to analyze path losses due to rain
and reflection on water and estimate signal levels under these conditions. Therefore, this
section can be divided into three different subsections.

2.2.1. Signal Levels under Rainfall Conditions

Following the recommendations given by the International Telecommunication Union
(ITU), the specific attenuation, γR in dB/km, can be obtained from Equation (4) [14].

γR(dB/km) = kRα (4)

where the coefficient values of k and α are given as functions of frequency in GHz, and R is
the rainfall rate in mm/h, which can be obtained using maps of meteorological parameters
available in [15]. However, for the sake of this study, the value of the specific attenuation
was extracted from [16] and has a value of 0.03 dB/km.

The signal levels under rainfall conditions can be obtained using Equation (5):

Prx = Prx1m − 20 log(d)− Lrain (5)

where Prx1m is the received signal strength at 1 m; d is the distance in meters for air medium
(n = 2); and Lrain are the losses due to rain in dB. Figure 4 shows the obtained signal levels
under rainfall conditions as a function of distance. In this case, it was decided to display
the signal levels of a Raspberry Pi and a mobile phone placed on ground as well as the
signal levels of a transmitter placed 30 cm above ground (near-ground scenario) and 1 m
above ground (above ground scenario).

When a flood irrigation is performed, there is a substantial amount of water over
the soil. Therefore, in our final deployment, we will place the devices 30 cm from the
ground. If we place the nodes (even in a protective case) directly over the soil, it is possible
to damage it (due to the water or a person walking, etc.). Additionally, the wires that
connect the sensors and the nodes can also be damaged. Therefore, the main objective
of this comparison was to observe the differences, when we have an emitter close to the
ground (which can imply problems of interferences and signal reflections) and the effect of
having the ground at 1 m, which, theoretically, is the point where the maximum power is
registered.
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Figure 4. Signal levels under rainfall conditions.

As the figure shows, the performance of the Raspberry Pi and the near-ground and
above ground transmitters was almost the same, and signal levels barely surpassed
−71 dBm. However, in the case of the mobile phone, signal levels reached −80 dBm
after 32 m.

2.2.2. Signal Levels under Air–Water Interface Conditions

The attenuation introduced by reflections on water surfaces depends on the reflection
coefficient of air–water interfaces and can be calculated using Equation (6) [17].

L_reflection (dB) = −V(dB) = −10 log(V) (6)

where the factor V is given by Equation (7).

V2 = 1 +
(
|Γ|e−αΔ(r)

)2 − 2|Γ|e−αΔ(r) × cos
(
π−

(
φ− 2π

λ
Δ(r)

))
(7)

where |Γ| is the amplitude of the reflection coefficient; r is the path length; α is the at-
tenuation constant; Δ(r) is the difference between r and d; and φ is the phase of the
reflection coefficient.

The reflection coefficient can be expressed by Equation (8) [18].

Γ =
η2 − η1
η2 + η1

(8)

where η1 and η2 are the intrinsic impedance of air and water mediums, respectively.
The attenuation constant is described by Equation (9) [19].

α = 2πf

√√√√√μ0ε0ε′
2

⎛
⎝
√

1 +
(
ε′′

ε′

)2
− 1

⎞
⎠ (9)

where f is the frequency; μ0 and ε0 are the permeability and the permittivity of vacuum,
respectively, and ε′ and ε′′ are the real and imaginary parts of the dielectric constant of
water.
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The path length can be calculated using Equation (10).

r =

√
(h)2 +

(
d
2

)2
(10)

where h is the distance between the sensor and the surface of water in meters, and d is the
distance between sensors in meters.

Signal levels under air–water interface conditions can be calculated using Equation (5)
and replacing Lrain by Lreflection. Figure 5 displays the signal levels as a function of
distance, with nodes placed 1 m apart. As it shows, the attenuation due to reflection on
water surfaces does not have a great effect on signal levels. When placing the nodes 2 m
apart, the attenuation due to reflection on water at the level of 85 pdB, and 0 dB when
placing the nodes 3 m apart or more.

Figure 5. Signal levels under air–water interface conditions with distance between nodes of 1 m.

2.3. Analytical Network Design

In order to efficiently design the WSN and distribute the wireless nodes, it is important
to consider the different signal loss during its path in a rural environment. To carry out
the correct calculations, we need to know the power transmission of AP and the antenna
gain of both the AP and the nodes. Additionally, losses due to objects such as trees or
humidity should also be considered [20]. Therefore, taking into account these values, we
can formulate the power balance formula (given by Equation (11)) [14]:

PRx(dBm) = PTx(dBm) + GTx(dB) + GRx(dB)− 10·n· log d − Lrain(dB)− Lvegetation(dB) (11)

where d is the distance between the transmitter and the receiver and n is the atten-
uation variation index. In our case, n = 2 for the air medium [17]. Since our system is
developed to be used in a crop of vegetables and greens, we will only consider the losses
due to rain. Therefore, the coverage distance equation will be (see Equation (12)):

d = 10
PTx(dBm)+GTx(dB)+GRx(dB)−Lrain(dB)−PRx(dBm)

20 (12)

The tests were carried out in the east of Spain. Spain has two main hydrometric areas:
the H area and the K area [15]. In the worst case, losses due to rain were 0.03 dB per
kilometer. For the rest of the parameters, the theoretical transmitted power for an IEEE
802.11 g WLAN device at 1 m (Ptx) was −40.2 dBm. The threshold power, in order to
have enough quality of signal (Prx), was fixed at −78 dBm (i.e., the received power must
be equal of greater than this value to be sure to transmit/receive data). Finally, we will
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use omnidirectional antennas for both the transmitter and the receiver device. Therefore,
considering all these values, the formula needed to design the radio coverage of each
wireless sensor is shown by Equation (13).

d = 10
37.77+GTx(dB)+GRx(dB)

20 (13)

Considering a typical antenna’s gain of 3 dBi for a small sensor node (WEMOS D1
Mini), we could ideally calculate the maximum network coverage as a function of the
antenna’s gain of AP (see Figure 6).

Figure 6. Ideal coverage for our system.

The previous figure shows the maximum coverage for our network using an AP with
different gains and a node of small dimensions and low gain. However, these results are
obtained by taking into account an ideal situation where there are no obstacles between the
transmitter and receiver and there are no losses due to the multipath effect. The multipath
effect can lead to losses up to 20 dB. Therefore, if we consider the worst case, with losses
due to the multipath effect, the maximum coverage of our system as a function of the gain
of AP would be shown in Figure 7.

Figure 7. Coverage for our system considering all factors.

As we can see, the maximum coverage for our network, where a Raspberry Pi 3B+
was used as the AP and a WEMOS D1 Mini was used as the wireless node, would be
around 24 m.
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2.4. System Design and Implementation

In order to implement our solution, we propose the use of a microservice for sensors
connected to the mobile network for Internet access and web service in the cloud. It is a
solution that allows the system to be fully accessible through the Internet. Figure 8 shows
the network architecture of our system. As it shows, the information collected by the
microservices of sensors, which are running on a server (built on a Raspberry Pi) located
on the plot, are sent by using a WiFi connection. The information from sensors is sent to
the cloud server where they will be stored in a database.

Figure 8. Network architecture for mobile communication between the microservices for sensors and
the cloud server.

The Raspberry Pi contains the microservice, which is responsible for managing the
sensors’ operation. This microservice is continuously running due to Docker technology,
whose service facilitates the creation, deployment, and execution of applications using
containers. In addition, this server will act as an AP. It will be in charge of providing the IP
for sensors, so sensors will be uniquely identified in the local network. This server does not
have any permanent storage; data from sensors are sent in real time to the cloud over the
Internet using Dweet.io. Finally, the data are assigned to a user and stored in the available
database managed by the API hosted in the cloud. If it is not possible to access the Internet
through an Ethernet connection, the system will include a USB dongle with a SIM card that
provides 3G/4G/5G connectivity.

The mobile application allows users to receive alerts generated when the water in a
ditch has reach the sensor. The application allows the use of a shared calendar between an
irrigation community for planning the irrigation of plots.

More and more IoT projects are linked to the concept of cloud computing. Cloud
computing offers a suite of services ranging from storage for application to processing
capacity, renting generally over the Internet and based on a pay-as-you-go model. The API
(which is the native mobile application) in the cloud will work as a REST server for the client.
The data stored in the database will be requested by the user through an HTTP request and
returned by the server in a HTTP response (i.e., using a PULL communication method).

2.4.1. Software Design and Implementation

In this subsection, the workflow of the mobile application is presented and explained.
Figure 8 summarizes the system’s block diagram and the possible interactions of this
application. This design is equivalent to the network architecture presented in Figure 7,
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where the technologies used to establish wireless connections and implement the different
subsystems are exposed. This flow diagram is composed of the sensors’ microservice, the
server (backend), and the mobile application (frontend).

The sensors’ microservice running on the Raspberry Pi board corresponds to the green
section of Figure 8. Once the board and the sensors’ microservice are turned on, the system
checks whether there are any sensors available to add them to the local area network
(LAN) and assign them an IP address. If no sensor is available, the system will display an
error and restart the service until it finds a sensor available. Once added to the network,
the system will verify whether the connection was successful in order to proceed. If the
connection is successful, the system will move on and verify whether there is water on the
irrigation channel or any of the floodgates have been opened. At this point, if none of the
previously mentioned cases occur, the sensors’ microservice will continue to be executed
and the system will restart the process. In contrast, if the system detects the opening of a
floodgate or water in the irrigation channel, the detected signal will be sent to the cloud
service and registered into the database.

The flow diagram of the cloud service is presented in the pink section in Figure 9.
Although the server is continuously running, Firebase will be in charge of restarting the
service in the case of errors or server downfalls. Moreover, the service information is
continuously being printed into the Firebase’s console, where the information is shown by
means of graphs to allow further analysis. As the Figure 8 shows, the server itself does not
need a mobile application to perform its tasks and will only send notification to the client
when detected.

Figure 9. Flow diagram of the entire system with the sensors’ microservice, the server (backend) in
the cloud, and the mobile application client (frontend).

Finally, the block diagram of the mobile application and the interactions a user can
perform are presented in blue in Figure 9. In this case, once the application is executed,
the user will be required to either login or fill the registration form. If the user manages to
successfully log in or enroll, the main activity will be shown, and the server will send a
notification message. In order to show the notification alert, the system will check whether
the mobile application is currently visible and show either a popup window or a message
in the status bar.
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2.4.2. Design and Development of the Mobile Application

According to the calculations carried out by Statista, worldwide smartphone users in
2020 is estimated to be up to 3.5 billion [21], which means that every third person we meet
owns a smartphone. Therefore, it can be inferred that most farmers have a mobile phone
and are likely to use it when working at farmlands.

Although Android is currently the most popular smartphone operating system, it
is important to remember that other operating systems have their share in other areas,
in terms of computing devices [22]. In order to ease the application compatibility, it was
decided to develop this mobile app within the React Native framework. This open-source
mobile application framework runs on React, a popular open source library to build user
interfaces with JavaScript (see Figure 10).

Figure 10. React Native basic operation.

Additionally, React Native uses other libraries to implement application functionalities
such as login access via token. The needed token will be saved in the internal storage of
the mobile phone to grant access to the mobile application and verify whether the token is
valid or has expired. To ensure privacy, all cloud services are protected by the validation of
this token. Moreover, push notifications were implemented using Firebase library on the
client side. This library creates its own token, which is refreshed periodically.

The application has been designed with a very simple appearance and is also intended
to be basic in terms of operation. The application start screen (see Figure 11a) allows access
to a user session or the registration of a new client. As already mentioned, the access to the
application is conducted through the user’s national identification number (see Figure 11b).
It is a unique identification number for each person that people often remember.

Figure 11. (a) Initial screen; (b) screen of login to access to the application.

The identification number will also be used to create new accounts (see Figure 12a).
Figure 12b shows a simplified map of the irrigation plot. The crops are represented by
the green lines and the ditches are shown as brown spaces between them. In addition,
the horizontal bar of darker brown represents the main channel. The main channel is the



Electronics 2021, 10, 2454 15 of 29

mainstream from where the ditches are fed by water. Maps can be customizable depending
on the characteristics of each plot in a simplified form to facilitate the use for farmers.

Figure 12. (a) Registration form; (b) main screen of application.

Figure 13a shows the main screen of application during an irrigation where we can
see that the main channel has water and two ditches have already irrigated. Figure 13b
shows the alerts the user receives from the sensors. In this step, the data are stored in the
cloud database.

Figure 13. (a) Animated screen during the monitoring; (b) screen of irrigation historic.

While the application is executing in the background, the user will continue to receive
notifications from the sensors thanks to the implemented push notifications (see Figure 14).
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Figure 14. Notifications of water detection and gate opening.

Finally, Figure 15 shows the irrigation calendar view, in which the farmer can write
down their irrigation dates (in red) and see the dates of other users (in green). The user
can delete the dates that they created, although they cannot delete the dates of other users.
These irrigation schedules are set to avoid water deficit. However, when rain events above
3 mm occur [23], the scheduled irrigation can be cancelled, and the next irrigation event
rescheduled. The soil sensors help in monitoring and adjusting the irrigation, but the
irrigation schedule is also highly dependent on weather parameters such as humidity and
temperature as it affects the evapotranspiration of the plants.

Figure 15. Screen of irrigation calendar.
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2.5. Cloud Service Deployment

This subsection presents a brief description of the system requirements as well as the
different parts (hardware and software) that compose the entire system.

2.5.1. Sensors’ Microservice Deployment

Sensors’ microservice is in charge of processing the received data from the different
sensors of the system. In this paper, we used the Johnny-Five [24] library together with
Dweet.io [25] and Etherport-client libraries to implement a robust system with great
functionality.

Dweet.io is a very simple and lightweight library that offers a machine-to-machine
(M2M) messaging service for IoT systems. This library implements another well-known
technology based on Web Sockets that establishes socket connections between a web
browser and a server. In this way, we achieved a TCP socket connection that allows both
the client and server to transmit data at any time. Moreover, this technology allows us to
reestablish the connection automatically in the case of connection loss as well as detecting
disconnections, etc. Therefore, the sensors connected to the system will generate events
and send them for the microservice to process them and send them to the cloud, where they
will be intercepted by the web server. The Etherport-client library allows a service to be
directly connected via WiFi by adding a transport layer and working together with Firmata
protocol to allow communication with the ESP8266 board. Therefore, Etherport-client is
a virtual client-side serial port for Etherport, which is why a TCP client for JavaScript
is needed.

Finally, we used Docker technology to implement the microservices in Raspberry Pi
by creating containers. According to Docker, a container is a lightweight and portable
software unit that packages the code and all dependencies of an application so that it can
run faster and in a more efficient manner at any given environment. Moreover, its use
provides great advantages such as scalability, security, and maintainability.

2.5.2. Creating of API REST Server in the Cloud

In order to develop the server in the cloud, we used REST APIs. It is the most
popular option in web and application development as well as for the development of IoT
applications. REST APIs are developed using Express.js.

Node.js is a synchronous event-oriented JavaScript runtime environment built with
Chrome’s V8 JavaScript engine. It is designed to build scalable network applications.
Express.js is the most popular Node.js framework that provides mechanisms for writing
request handlers with different HTTP verbs in different URL paths and for processing
requests through additional and customized middle-wares at any point within the pipeline
of handling requests. This fact greatly facilitates the development of the REST API for this
system. HTTP error handling is another case where Express.js simplifies its implementation.

The service created with Node and Express is located in the cloud. Among the many
options available, Firebase was chosen. Firebase is a software development platform that
was acquired by Google in 2014 and offers a cross-platform toolkit compatible with iOS,
Android, web development, Unity, and C ++. Firebase provides features like statistics,
databases, bug reporting, and messaging using the Google infrastructure. In general, cloud
computing platforms offer a series of delivery methods, among which are: Software as
a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). In
Firebase, the platform is a Backend as a Service (BaaS), which makes it possible to build
a complete web server from scratch using only the different functionalities that these
services offer. Therefore, Firebase allows us to completely/partially replace the backend
of an application thanks to user authentication services, notify database in real time, etc.
However, in our case, the use of this platform is more similar to the PaaS model, since
the backend developed with Node and Express is essentially a function that integrates an
entire user and content management in a micro-service.
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The system database, which the microservice will give prior user authentication, will
be dynamically created with the Firebase Cloud Firestore data storage service. It is a
NoSQL database hosted in the cloud and organized in documents that are grouped into
collections.

Figure 16 shows an example of the structure of the water sensor detection collection
in the Firebase Cloud Firestore database. For the sensors’ data collection, the sensor ID is
stored to identify in which specific stream the presence of water has been detected, the
exact time and date of the detection. These data are assigned to the user ID.

Figure 16. Structure for the detection collection of water sensors in the database (panel of Firebase Cloud Firestore).

Finally, with the Firebase Cloud Messaging service, the farmer is notified on the
presence of water in each ditch of the plot. It is a free service that allows communication
from the server to the client, as opposed to the HTTP request model, implementing push
notification devices. With this service, it is possible to notify the events executed in the
server developed in the cloud. In this sense, the user will receive a notification every time
a sensor launches an event, at any time, even if the application is not open or it is running
in the background.

3. Results

This section presents the place where tests are performed as well as the measurements
of the different sensors used in our WiFi-based system for flood irrigation control in
agriculture applications.

In order to test the system in a real environment, a plot of vegetables with a flood
irrigation system was used (See Figure 17). Tests were performed in a real field.
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Figure 17. Place where tests were carried out.

3.1. Network Coverage in the Plot

Using practical experiments like the ones shown in [26], we collected data of received
signal strength intensity (RSSI) to determine the area that the network can cover. After
deploying the network and connecting the different sensors (see Figure 18), we started to
measure the values of RSSI as a function of the distance to the AP.

Figure 18. Server activity registering the connection of the two nodes.

Figure 19 shows the coverage area using Raspberry Pi as an AP in comparison with
the coverage areas of a sensor buried 30 cm in the ground and a sensor placed 30 cm
above ground. The measures were performed five times and the data were averaged to
obtain the final results. We decided to carry out five repetitions because the tests were
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performed under the same conditions. As Figure 19 shows, burying the transmitter results
on a coverage distance shorter than 6 m while placing the transmitter 30 above ground
increased the coverage distance up to 22 m. When comparing these findings to the collected
data of the RSSI from a Raspberry Pi placed on the ground, we can clearly remark that its
coverage area was higher than the rest, allowing the AP to be placed up to 20 m or more.

Figure 19. Comparison of network coverages with measured data using a Raspberry Pi as AP.

A similar approach can be seen in Figure 20, where a comparison was made between
the coverage area of these two sensors, but using a mobile phone as an AP. In this case, the
measured RSSI obtained from the mobile phone was lower than the one obtained from the
transmitter placed 30 cm above ground. However, its coverage range was very similar to
the one obtained with the Raspberry Pi, which indicates that placing both the transmitter
and the receiver on the ground can be a good approach.

Figure 20. Comparison of network coverages with measured data using a mobile as the AP.
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This coverage can be improved by using antennas with bigger gain and other nodes
with external antennas.

3.2. Data from Sensors

In this subsection, the data from the sensors that comprise our system are presented.
Figure 21 shows the amplitude of the voltage signal emitted by the water sensor. As

stated before, the analog signal emitted by the water sensor has a 1024 bits resolution.
Whenever the sensor is partially or completely underwater, the signal reaches its maximum
level. This graph allows us to establish the threshold level to control the sensors and
determine the range of values that will trigger the water detection notifications. Based
on the tests carried out, the threshold value was set to 800. Therefore, all values above
this threshold will trigger water detection notifications. In this graph, the yellow signal
represents a test in which the sensor was underwater a second time. In this case, the signal
slowly decreases as the sensor continues to be wet, even though it was not completely
covered by water. Thus, a threshold higher than 800 would continuously trigger water
detection notifications, despite the fact that the sensor was not underwater.

Figure 21. Measurement of water detection by the sensor.

It is important to note that the sensor used to measure the water level has a resistive
behavior. Very small variations in the water level can produce some unusual instantaneous
values. It is possible to eliminate these unstable values by filtering the received signal,
using a small condenser. Figure 21 shows the resulting filtered signal in orange. We can see
that this signal maintains the shape of the signal, but unstable values have been eliminated.

Figure 22 shows the distance measured with the proximity sensor, in centimeters,
in relation to the ideal values given by their linear relationship. However, as Figure 22
shows, the collected measurements have a significantly lower value. As mentioned in the
device description, the theoretical coverage range of this sensor varies from 10 cm to 80 cm,
approximately.
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Figure 22. Results of proximity sensor for measuring the height of water in the main channel.

In order to determine the threshold at which the gate can be considered to be opened,
we measured the distances for each 5 cm, from 5 cm up to 75 cm. Moreover, it was decided
to use a black plastic screen and a white plastic screen to determine whether the color of the
screens influenced the readings. However, the collected data did not show any remarkable
difference, which led us conclude that the color of the screens had no significant effect on
the measurements. Nevertheless, it should be noted that the threshold value is dependent
on the position at which the sensor is placed.

The data of the environmental parameters was obtained from the weather monitoring
node in [27]. The node is comprised of a DHT11 digital temperature and humidity sensor,
a light sensor, and a rain sensor. The presented data were measured to determine the
changes in humidity, temperature, and luminosity on a March night in a Mediterranean
region in Spain. The rain sensor only determines whether it is raining or not. It did not
rain during the measurements. The values were taken using a 5-min interval. Figure 23
presents the humidity values for a night at the Mediterranean. As can be seen, humidity
increases when the sun has set and decreases in the morning.

Figure 23. Monitored humidity throughout the night.
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The temperature values are presented in Figure 24. The temperature decreased
throughout the night and increased rapidly in the morning. The changes in temperature
were more spaced between 00:00 and 7:00.

Figure 24. Monitored temperature throughout the night.

Finally, the luminosity is presented in Figure 25. As can be seen, the luminosity
remained mostly constant until sunrise and sunset, where it varied rapidly.

Figure 25. Monitored luminosity throughout the night.

The meteorology data are necessary to calculate the irrigation requirements and can
be utilized by the farmers to make decisions on other factors regarding aspects such as the
need of covering the crops with plastics or the best moment to harvest the crops.

3.3. Mobile Application

The user application was tested in real time on a field of vegetables. The execution of
the application on the mobile phone is presented in Figure 26. As can be seen, the system
detects and displays the ditches where there is water. Furthermore, a text box indicates the
area of the ditch the water has reached.
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Figure 26. Execution of application in the smartphone.

4. Discussion

This section presents some previous works where mobile applications and irrigation
control systems are presented. The section also includes a brief summary of the practical
implementation problems and challenges to be considered in the development of wireless
sensor networks.

In 2014, D.F.B. Rodrigues et al. developed a mobile phone application for irrigation
scheduling called IGdroid [28]. This app was implemented to help farmers irrigate crop
areas in a more efficient manner by taking into account parameters such as: soil properties,
irrigation system, and crop data. The scheduling task is dependent on climatological data
that the user must input daily. As a result, the farmer will receive notifications whenever
a registered area needs to be irrigated, informing them of the water depth and how long
the system needs to be run. Additionally, this application allows the user to simulate
irrigation scenarios to estimate water use in the production cycle. However, the developed
app does not have access to the Internet, which forces the user to manually search for
the necessary data to schedule irrigations. Moreover, since this application does not rely
on sensors to collect information such as the soil moisture, scheduling times are being
estimated. Thus, this situation may lead to under-irrigating or over-irrigating certain areas,
even with meteorological data being correctly input by farmers.

In [29], A.C. Bartlett et al. presented a smartphone application to serve as the interface
of an online irrigation scheduling tool called Water Irrigation Scheduling for Efficient
Application (WISE) intended to better use water resources. This online tool uses the soil
water balance approach as well as data queries from two weather stations. In this this
way, users can obtain information of the soil moisture deficit of their fields along with the
weather conditions. Since this app does not allow users to outline field shapes, the setup of
a field must be done through a web browser in order to draw the field boundaries on a map
layer and input parameters such as crop type, plating date, initial soil water deficit, and
emergence date. Moreover, to effectively use WISE, users must input irrigation amounts,
unrecorded precipitation amounts, and any adjustments to the soil moisture deficit as well
as the dates. This information will then be used to calculate the effective water added to
the soil and the daily soil water deficit of the registered fields. Even though this solution
does allow users to obtain information related to soil moisture and the effective water
added to the field, the setup may be too difficult for farmers with a low technical profile.
Additionally, the calculations being done are estimations dependent on third parties, which
could lead to major errors in the irrigation schedule.
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In 2015, J.G. Jagüey et al. designed an automated irrigation sensor that uses a mobile
device to capture images of the soil around the root zone of crops and processes the pictures
to estimate water content [30]. For this sensor to work correctly, the chamber that contains
it needs to be buried at the root level with the illumination conditions regulated beforehand.
The digital camera and the WiFi network are controlled by an Android app that activates
the device to capture the images and perform a series of transformations to the RGB picture
to calculate the ratio between wet and dry areas. This value is sent to a gateway though a
route node to control the water pump. Once this last task is performed, the mobile phone
is put to sleep in order to save energy of the rechargeable batteries that will be charged in
time with a photovoltaic panel. Nevertheless, this approach requires in-land calibration
to successfully acquire a dynamic range to differentiate dry and wet soils throughout
image processing techniques and requires more time and effort to install a set of sensors in
cultivation terrains.

T. Savić and M. Radonjić proposed a solution to control three electromagnetic valves
to release water in agricultural fields in a flexible manner based on the Libelium Waspmote
open source platform [31]. Additionally, this solution allows time scheduling irrigation
and set the closure of valves in terms of the amount of water released or duration of
the irrigation process. Moreover, the system can also be controlled remotely by sending
commands via Short Message Service (SMS). The information report will then be sent via
SMS to remind the user the configuration being used, and the amount of water released.
Furthermore, this report is sent to a remote server to allow additional analysis. Furthermore,
the designed solution is a modular system in which users can add more features on demand.
The main control unit display both data and menu options on an LCD display to facilitate
user interactions with its interface. However, this approach requires the user to either access
the main control unit or remember commands to control the system remotely. Moreover,
its functionality relies on the user’s criteria rather than the real needs of the crops.

In [32], G. Vellidis et al. developed a smartphone application to schedule irrigation
in cotton fiber crops called the Cotton SmartIrrigation App (Cotton App). This model is
based on the evapotranspiration of water from soil and plants and uses meteorological
data from weather stations and other parameters to estimate water deficits. To do so, the
user needs to accurately register the field location to be able to locate the nearest weather
station, select a soil type, an irrigation system, and a default irrigation rate. The application
displays the estimated water deficit as a graph bar, but also numerically, and informs the
user of the amount of water required to refill the land. Once the field has been irrigated,
the user needs to record that irrigation and input the amount of water applied and the
observed rain to double check the precipitation data with the rain data from the weather
station. If any phenological changes occur, the app will notify the user to ensure that they
will have enough time to trigger irrigation events in case of need. Since the Cotton App is
strongly dependent on meteorological stations, its accuracy can be diminished by in-field
precipitation variations. To avoid this, users must input the observed rain at the field,
which will not be possible unless they visit the land.

In 2017, R.G. Perea et al. developed a multiplatform application for precision irrigation
scheduling to be used in the strawberry production sector both from PC and Android
devices [33]. This software aims to guide strawberry growers to apply the correct amount
of water during the right amount of time by analyzing agroclimatic and soil data for a given
irrigation system. Moreover, this solution allows users to control the irrigation system
manually and remotely. Water requirements are estimated taking into account crop data
and meteorological information from weather stations as well as soil characteristics, in
order to minimize percolation losses and maximize the efficiency of water resources. The
irrigation scheduling is performed by the computer software and can be downloaded
as files. The Android application allows users to have remote access to the system and
gives them information related to daily irrigation times. Although this system successfully
manages to increase water savings, its implementation focuses on a specific crop and relies
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on general parameter values instead of analyzing site-specific soil characteristics by means
of sensors.

Z. Gu et al. developed an irrigation scheduling software based on predicted crop
water stress and weather data to evaluate its effectiveness and economize water usage
when maintaining the field [34]. In this way, the amount of water that needs to be supplied
is determined by the simulation results obtained from a calibrated model. In this case,
weather conditions were obtained from websites and/or weather stations to schedule
real-time irrigation using a software based on RZWQM2 and evaluate the potential water
saving for a more efficient water usage. After analyzing the results, it was concluded that
water stress-based irrigation could help reduce water usage, since irrigation was triggered
by crop water stress index and forecast rainfall. However, more work is needed to install
and test this system in irrigated field scenarios.

In [35], O. Adeyemi et al. discussed how incorporating advanced monitoring systems
and decision support systems (DSS) in irrigation management could enhance efficiency. In
this review, it was highlighted that these techniques could not only help achieve environ-
mental goals but increase economic benefits, and that sustainability in irrigated agriculture
could be improved with the use of soil, plant, and weather sensors. Furthermore, the use of
model predictive control in DSSs can help achieve significant improvements in crop yield
and water savings. With this research, the authors provided an in-depth analysis of the
necessary factors needed to develop a practical and robust DSS for irrigation management,
taking into account monitoring systems, water application systems, adaptative DSSs, and
the use of simulations and artificial intelligence to improve sustainability. It was concluded
that a robust design of DSS includes monitoring soil, plant, and weather parameters as
well as considering agronomic objectives. However, the high cost of such systems may
lead to lower incomes at the field-scale.

M. T. Abi Saab et al. developed a smartphone irrigation scheduling tool, called Bluleaf,
that uses crop, soil, weather, and irrigation system data to support farmers in the water
application process and schedule irrigations [36]. The testing process of this app showed
a water saving of more than 1000 m3/ha, which demonstrates that the use of this type of
technology can help farmers improve irrigation practices at the local and regional scales,
while increasing productivity and reducing freshwater withdrawal. This mobile application
uses local meteorological data and weather forecasting as well as crop and soil data, and
the characteristics of the irrigation system. Furthermore, the presented application could
be used to perform traceable records of farm activities and estimate the eco-efficiency of
these practices.

In 2020, L. García et al. presented a survey summarizing the state-of-the-art of smart
irrigation to determine the monitored parameters in current systems [37]. Among the
possible parameters being sensed, researchers found water quality and quantity, weather
conditions, and soil characteristics. Moreover, the most utilized nodes and wireless tech-
nologies were summarized to provide an overview of IoT-based irrigation systems. Among
the most sensed parameters to characterize soil, plants, and water quality, researchers
found soil moisture to be the most utilized parameter, followed by water levels and pH.
As for the atmospheric parameters, air temperature and humidity, together with weather
forecast, seemed to be the most popular ones. The most utilized nodes to implement IoT
irrigation systems used Raspberry Pi, Arduino UNO, or Node MCU boards, together with
WiFi, GSM, ZigBee, and Bluetooth as communication technologies and the ThinkSpeak
platform to store data.

Table 6 presents a comparison of previous related studies. As it shows, most systems
rely on user input data associated with soil and crop data as well as irrigation systems
and meteorological data. Moreover, most applications do not use sensors to trigger events,
although many studies recommend doing so. The difficulty level of these mobile appli-
cations is often medium/high since farmers are required to have technical knowledge of
soil properties as well as technologies in order to correctly introduce the solicited data. In
our proposal, we present a mobile application for food irrigation control and irrigation
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scheduling that allows farmers to remotely control water gates and relies on sensed data
from the plantation field. The main novelty of the system lies in the simplicity and cost
deployment. The system is built with very cheap hardware that must perform extremely
simple monitoring tasks. This gives the system the required robustness for the overall
objective of our proposal. The gateway can be deployed using a Raspberry Pi or using a
smartphone.

Table 6. Comparison of related studies.

Authors Year Parameters Use of Sensors Input Data Difficulty Level

D.F.B. Rodrigues et al. [28] 2014
Soil properties, irrigation

system, crop data,
climatological data

NO YES LOW

A.C. Bartlett et al. [29] 2015
Crop type, plating date,
initial soil water deficit,

emergence date
NO YES HIGH

J.G. Jagüey et al. [30] 2015 Soil pictures YES NO LOW

T. Savić et al. [31] 2016 - NO - MEDIUM

G. Vellidis et al. [32] 2016

Field location, soil type,
irrigation system, default

irrigation rate,
meteorological data

NO YES MEDIUM

R.G. Perea et al. [33] 2017
Agroclimatic data, crop
data, soil data, irrigation

system, meteorological data
NO YES MEDIUM

Z. Gu et al. [34] 2017 meteorological data,
weather forecasting NO YES MEDIUM

O. Adeyemi et al. [35] 2017
Soil data, plant data,

weather data, agronomic
objectives

- - -

M.T. Abi Saab et al. [36] 2019 Crop data, soil data,
meteorological data, 2019

L. García et al. [37] 2020 Soil data, plant data,
weather data - - -

Our proposal -

Soil temperature, soil
humidity, water height,

water proximity, pesticides,
meteorological data

YES NO LOW

Finally, it is extremely important to consider practical implementation problems and
challenges.

One of the main problems outdoors is how to protect the electronics from the adverse
conditions. The places where the devices are deployed should also be taken into account.
Therefore, waterproof protection is highly recommended. The time during which the
sensors and devices work can cause variations in the measurements. This fact should
be controlled since an incorrect reading could provoke an anomalous behavior. For that,
we can use techniques of artificial intelligence and redundancy mechanisms to face this
problem.

Another important issue to consider is the physical properties of the sensors and
probes. Most of them (especially those that are in contact with the water and soil) are
manufactured with copper. In this sense, it is recommended to use sensors manufactured
with the process of gold platting (not original gold) to combat the corrosion of probes.
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Finally, theoretical estimations regarding coverage do not usually correspond to
practical experimentation and for this reason, we believe that it is vitally important to
perform practical experiments such as the ones presented in this paper.

5. Conclusions

Agriculture is a sector that creates one of the highest percentages of employed people
in the world, with over a quarter of the population working in this area, more so in
countries such as India and Somalia where agriculture is a key sector. It is also a large
source of revenue for many countries. Climate change has put the focus on the need for
water optimization. Thus, the technology has been applied to agriculture to create precision
agriculture systems. In this paper, we presented a system for flood irrigation that consisted
of a sensor network that utilized WiFi as its communication protocol. Several atmospheric
parameters such as temperature, humidity, and rain, soil parameters such as humidity, and
water parameters such as water temperature, salinity, and water height were measured by
different sensors. A user application was designed to display the information gathered by
the sensors and to allow the farmer to control the irrigation system. Tests were performed
in a real environment to determine the coverage of the nodes with different deployments
and to evaluate the correct performance of the system and the sensors.

In future work, we will implement this irrigation system for other types of crops
such as citrus trees and other types of irrigation such as drip irrigation. To be sure the
coverage is sufficient under all conditions, we also want check our system under adverse
conditions due to rain, high level of relative humidity, low temperatures, etc. Moreover,
we will implement the application for Apple iOS devices. We will also utilize other types
of communication technologies such as LoRa for long-distance communication between
the nodes deployed on remote fields and the server.
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