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Abstract-- This paper proposes to administer a multi-step 

artificial intelligence approach with an ensemble of adaptive 
neural networks (NNs) trained on 50000 samples to identify partial 
discharge (PD) diagnostic measurements for in-service medium 
voltage (MV) power cables. To evaluate the performance of the 
algorithm, a case study was performed on cables deliberately 
selected to contain both uncomplicated measurements and 
disruptive irregularities representative of conditions during field 
testing. Experimental test results prove that the proposed cable-
specific adaptation improves PD identification accuracy, with 
further increment through the NN ensembles. The main 
contribution of the approach is in both the cable-specific adaption 
and the NN ensemble being applied to MV cable field 
measurements. 
 

Index Terms-- partial discharge, neural networks, medium 
voltage cables 

I.  INTRODUCTION 
 ARTIAL discharge (PD) is a standardised measurement 
test conducted on MV cables during commissioning stages 

to detect initial installation defects and later during maintenance 
stages to determine insulation degradation. Typically, to stress 
the insulation defects and incept discharge, multiple increasing 
voltage levels are applied. The large number of recorded 
measurements are often imperfect due to numerous prominent 
but non-exhaustive considerations – background noise, 
pollution by neighbouring sources, inherent attenuation and 
dispersion from the pulse propagation characteristics [1], 
recording errors, multiple discharge sites and ambiguous 
interpretations. The total number of the recordings combined 
with the waveform complexity encountered potentially create 
complications that requires intricate attention by domain 
experts – this arduous process poses as a dilemma to the 
operator during on-site testing, and creates substantial workload 
during off-site evaluation [2]. 

Recent years have seen a resurgence in the application of 
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neural networks on PDs, undoubtfully from the breakthroughs 
seen by machine learning (ML) and deep learning (DL). Basic 
NN experiments on varying hyperparameters were performed 
on PD frequency [3] and power spectrum [4], feature extraction 
were performed on phase-resolved partial discharge (PRPD) 
patterns [5] - [6]. Experimental results all agree that NNs are 
highly accurate in PD pulse shape recognition under laboratory 
conditions. Inclusion of PD defects from the field [7] were 
attempted, which led to a decrease in evaluation accuracy; it can 
be deduce here that the noise-influenced measurements from 
field conditions must be given due considerations. Recognising 
the importance of identifying noise signals in practical 
applications, study into PRPD with noise signals was conducted 
[8], NNs were considered here for recognition, among data 
mining and ML methods, but was 10% less accurate than the 
proposed PD recognition technique. The contents of the works 
were then extended to [9] and [10], where in [9] further 
comparison of different manual feature selection were made, 
and in [10] features were extracted via wavelet transformation. 
Conclusion was drawn here that the NNs required large data set 
in order to perform well, but is useful for identification of PD. 
However, there is a general skepticism in the application of 
NNs due to the difficulty in explaining the good results 
achieved in automated diagnosis of PD. In an attempt to dissect 
the NN black box conundrum, works were performed to display 
visualisation of neuron activation [11].  

The need for detailed research pertaining to how different 
noise level affect PD identification accuracy was 
acknowledged [12], as majority of the research done previously 
for PD identification was conducted with self-fabricated 
insulation defects within laboratory conditions. For on-site 
investigations, the increasing amount of electrical interference 
on PD measurements are well described [13] and current 
research focus has still largely been directed to applying 
discrete wavelet transformation for PD analysis in MV cables 
measured with high frequency current transformer (HFCT) 
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coupled to live conductors. As described above, previous 
experimental investigations have been conducted on time-
resolved partial discharge (TRPD) and PRPD confined largely 
to laboratory conditions, with either artificially recreated 
defects or slight inclusion of field measurements. Existing 
literature do not address complications faced by TRPD 
measurements obtained from in-service cables taken offline and 
excited with an external power source – there has not been a 
detailed study conducted on TRPD measurements gathered 
solely from in-service cables. While previous exploratory 
studies are critical for foundational understanding, they have 
difficulty translating to practical applications because they are 
unable to consider the consequences arising from field 
measurements. 

Analysis in this paper is done in the time-resolved domain 
for field cable measurements, which enable us to examine the 
shape of the PD pulse in the nanosecond scale of the insulation 
defect and determine if the received measurement is PD or 
noise. It is evident from the literature reviewed that PD 
waveforms recorded during field measurements must be 
assessed carefully as they are measured under noise influences. 
It is necessary but laborious to build an exhaustive databank 
when utilising NNs as they are generally acknowledged to have 
the ability to excel on complex correlation task when given 
large amounts of well-selected data sets, though admittedly 
such a luxury is not always available when dealing with 
practical applications. 

This paper investigates DL techniques and their applications 
for automatic PD identification. To address the potential data 
limitations, NN adaptation techniques are presented. To 
improve generalisation capabilities, the combination of 
multiple NNs is considered. In order to exhibit the applicability 
of this algorithm, a performance evaluation is conducted 
through a case study to explore the success in overcoming these 
aforementioned impediments. The framework for the multi-
step methodology is as follows, creation of a PD databank used 
to train several NNs, adaptation of the individual NNs through 
retraining on the measured calibration pulse of the measuring 
system of the cable under evaluation, formulation of a 
prediction and decision through an ensemble.  

The structure of the paper is as follows – Section 2 introduces 
the background of the study, Section 3 proposes the algorithm 
of the experimental work, Section 4 describes the results of the 
methodology and finally Section 5 summarises for conclusion. 

A.  Partial Discharge Fundamentals 

 
Fig. 1. Example of PD measurement in cable. 

Fig. 1 is the classical signature of a PD in an offline 
power cable test that shows three decaying peaks – the 

triggering pulse (P0), the first reflection (P1) and the second 
reflection (P2); the time difference between the first reflection 
and the triggering pulse denotes the discharge location through 
the travelling wave theory. Normally, because of the signal 
attenuation and dispersion, the pulse waveforms are distorted in 
such a way that the amplitudes of the three consecutive pulses 
decrease and the pulses elongate. In some cables, depending 
upon the internal and external noise influences, mismatch 
impedances from joints, signal attenuation and dispersion and 
total cable length, it is possible to measure more complex 
waveforms that are a challenge for the expert to analyse. 

It is understood and required by IEC 60270 that calibration of the 
PD measurement system is needed before any test and is done by 
a charge calibrator. Using a calibrator, a pulse of known charge is 
injected into the circuit. The injected charge value is reduced to the 
minimum detectable level which determines the sensitivity check 
of the measurement. By estimating the damping seen from the 
energy loss of the pulse and the successive pulse reflections, the 
required scale factor of the measurement is determined. This 
procedure is also used to determine the propagation time, and for 
the identification of the cable ends through the reflection due to 
impedance changes [14]. 

 
Fig. 2. Field noise measurement; (a) Random distributed noise, (b) Repetitive 
noise. 

As mentioned previously, noise interference is an undeniable 
factor in field cable testing. It has nonstationary properties and 
could come in the simple form of small perturbations at zero-
crossing, large messy spikes as shown on the top in Fig. 2a, or 
repetitive at random frequencies and magnitude as shown on 
the bottom in Fig. 2b. Given a noisy environment, it would not 
be unexpected that the recorded PD pulses are corrupted with 
noise. In order to recognise noise signature in the field, it is 
paramount that the noise sample data set is not filled with 
multiple copies of the same noise types but a wide variant of 
probable noisy conditions so that the NNs are able to generalise 
well and differentiate between PD and noise. Therefore, the 
recognition of PD pulses in noisy environments is a difficult 
task that needs an expert supervision to properly select a diverse 
and distinct data set in order for the NNs to react successfully 
to new data. 

B.  Neural Network Fundamentals 
The basis for any NN is fundamentally similar; given an 

input it predicts an output. Information is fed forward to be 
multiplied with weight of the node and an output is predicted 
with the assistance of an activation function. The output for the 
sigmoid activation function can be defined as: 
𝑆𝑆(𝑥𝑥) = 𝑒𝑒𝑥𝑥

𝑒𝑒𝑥𝑥+1
                    (1) 

where x is the input value and sigmoid function is used for 
binary interpretations. 

Different groups of NNs are categorised by the movement 
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structure of the data. There are several elemental configurations 
that are understood to be applied for certain data structure. The 
convolutional neural network (CNN), recurrent neural network 
(RNN), and convolutional recurrent neural network (CRNN) 
are explored in this paper. 

CNNs are the current state-of-the-art in computer vision and 
image recognition. The convolution property of the network 
captures spatial dependencies of the input data through the 
application of filters of adjustable sizes, with each hidden layer 
learning a corresponding feature of the data [15].  

RNNs are the current state-of-the-art in processing of time-
series data. The recurrent property of the network enables 
consideration of temporal influences during processing of 
sequential data through interconnection between nodes of each 
successive layer [16]. The vanishing gradient phenomena is 
formally addressed in Hocheriter’s thesis [17] with the 
introduction of the Long Short-Term Memory (LSTM) cells. It 
is also possible to have Bidirectional Long Short-Term Memory 
(BILSTM) cells, which administers sequential information 
from both the past and future. 

[18]. 

C.  Data Acquisition 

 
Fig. 3. On-site PD measurement setup. 

In this study, PD testing and calibration of the measurement 
setup were in accordance with the industry standard IEC 60270 and 
is as shown in the Fig. 3. 

TABLE I 
Data Set Parameters 

Parameters 
Sample size 47852 

Type XLPE 
Length 50 m – 1500 m 
Joints 2 – 17 

Voltage 0.5, 1, 1.5, 1.7x U0 
Age New and old mixed 

PD vs. Noise 50%-50% 
 

The parameters are as shown in the Table I. The data set 
consisted of 47852 samples equally distributed between PD and 
noise. The waveforms are carefully selected such that there are 
infrequent duplicates of the PD or noise signatures, this curation is 
to provide distinct diversity amongst the samples. Training set and 
validation set were divided with a split of 90% and 10% 
respectively from the data set. The samples were obtained from in-
service cables taken offline and excited externally with a very low 
frequency test set. Tests were performed at different voltage levels, 
with the 1.7x U0 as the maximum value; U0 was 6.35 kV – this 

provides insight to the partial discharge inception and extinction 
voltage. Samples were only taken from XLPE cables to ensure 
homogeneity and tests were performed on different cable lengths 
consisting of different number of joints. The estimated localisation 
error is approximately 1% of the cable length and PD measurement 
range vary from 1 pC to 100 nC. The longest cable length in this 
data set was approximately 1.5 km. The sampling time was 10 ns, 
which provided a maximum bandwidth of 50 MHz and was 
sufficient for the cables measured.  

Conventionally, the database is formed through a combination 
of all the PD and noise waveforms from the cables and divided 
randomly into three sets – which are the training set influencing the 
model, the validation set indirectly influencing the model, and the 
test set being purportedly providing an unbiased evaluation of the 
model fit on the data set. However, the disadvantage of such an 
arrangement is that the test set can contain traces of waveforms 
from the same cables being used to train model previously. While 
strictly speaking the model has not seen the data in the test set, it is 
highly probable that it has seen identical signatures during training. 
To counteract, the test set chosen in this paper is composed of five 
different cables that are not included in the database; this forms the 
case study. This subdivision also allows access into each individual 
background parameter of the cable for NN adaption purposes. 
These cables were deliberately selected because they were 
representative of both the typical measurements and disruptive 
irregularities found during field testing; the waveforms are 
exemplified in the next subsection. 

III.  PROPOSED METHOD 

A.  Algorithm Proposal 
NNs are generally acknowledged to have the ability to excel on 

complex correlation task when given large amounts of 
well-selected data sets. The obvious solution would be to prepare 
a comprehensive databank comprising of different PD pulses and 
noise patterns from an assortment of different lengths. But the 
common constraint, admittedly, is that such a luxury is not always 
available due to resource limitations when dealing with data 
scarcity and environmental variability. Here exploration is done on 
how the NNs may overcome the aforementioned constraints 
through an initial meticulously formed databank, subsequently 
acclimatised to cable ground conditions by re-training with the 
measured calibration pulse of the measuring system, and finally 
supported by an ensemble. 

 
Fig. 4. Adaptive NN ensemble system. 

Our adaptive NN ensemble system architecture is as shown in 
Fig. 4. The NN draws the data from the PD library and performs 
training till a desired state is reached, it is then adapted to the 
individual calibration pulse of the cable undergoing evaluation. 
Prediction of the test waveforms are made, and the results 
concatenated to the NN ensemble for the combined prediction. The 
main contribution of the approach is in both the cable-specific 
adaption and the NN ensemble being applied to MV cable 
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field measurements. 

B.  Cable-Specific Adaptation 
In practice, as mentioned earlier, it is not unusual for the 

measurement to be distorted by noise originating both externally 
and internally [19]. External noise could arise from 
telecommunication transmission, arcing, power electronic 
switching pulses, and PD from the power system. Internal noise is 
a result of thermally induced current fluctuations from the 
measuring circuit. Instead of actively performing manual feature 
selection to separate the PD signal and suppress the noise, NNs in 
this proposed algorithm have been tasked to automatically extract 
features from the data set to identify PD that have been polluted by 
noise – examples of the highly challenging waveforms are as 
shown in Fig. 5. The authors have successfully proven the 
capability of this approach in previous works [2] [18] [13]. 

 
Fig. 5. (a) Small PD pulse with large repetitive noise, (b) Multiple PD pulses 
fused together, (c) Singular PD pulse with large noise, (d) Wrong triggered 
recording. 

However, with consideration of all the aforementioned field 
complications, this paper proposes a more strategic approach for a 
comprehensive generalisation through the adaption of the NNs 
with readily accessible cable-specific context. The cable-specific 
context can be incorporated in the algorithm using the measured 
calibration pulse of the measuring system obtained during the cable 
calibration and the sensitivity check. 

 
Fig. 6. (a) Calibration pulse with prominent over and undershoot, indicative of 
impedance change, (b) Ensuing PD measurements. 

Apart from checking the sensitivity of the measurement system, 
the measured calibration pulse of the measuring system determined 
the cable length numerically through the amount of samples 
between pulses X0 and X2 from Fig. 6a when processed by the 
NNs. This waveform also reproduced probable ground conditions 
that occurs during the PD measurement, e.g. location of the 
triggering pulse with respect to the total recording, joint location, 

second reflection and ambient noise. Joint location can be observed 
with prominent over and undershoot as marked with pulse X1 in 
Fig. 6a, which is  typical of impedance change – this information 
aids the machine in recognition of prospective discharge spots by 
providing computational clues as to where the discharge location 
might be; cable joints are recognised to be common insulation 
weak spots that causes PD. Comparing Fig. 6a and Fig. 6b, the 
calibration triggering pulse X0 is in the same position as the PD 
triggering pulse P0. The calibration pulse reflecting at the end of 
the cable is the pulse X2, which is in the same position than the PD 
second reflection pulse P2. Regarding the position of the joints, the 
discharge location of pulse P1 is in the same position than the 
second joint location indicated by the pulse X1 in Fig. 6a. This 
visibly illustrates the correlation between the calibration pulse and 
PD measurement. These factors reinforce the advantages derived 
from utilising cable-specific context. 

The adaption was performed by re-training only the classifier 
layer of the trained NNs with the measured calibration pulse of the 
measuring system – this adaption is unique to each cable 
evaluation. The proposed technique was motivated by the 
principles of transfer learning and previous works done on speaker 
adaption on speech recognition [20]. The results of the 
effectiveness for the adaption will be presented on the case study 
cables through comparison of the statistical analysis both before 
and after adaption; it is described through the performance of the 
individual NNs and the ensembles. 

C.  Neural Network Ensemble 
The basic idea of an ensemble is to classify the given input 

through consensus classification from multiple NNs. This can be 
achieved in two different ways through equation 1 – the output of 
the sigmoid activation function. The sigmoid activation function 
yields a decimated value between 0 and 1; during binary 
classification, a threshold value is set for conversion of the output 
decimated value. Two different ensembles are proposed, where 
each ensemble will be made up of two different NNs giving a total 
of six different models for each ensemble.  

Ensemble 1 analyses the binary result for the prediction of two 
different models – PD or noise. When there is a difference in 
prediction between models, the sample is removed and deferred to 
be examined by the domain expert. Ideally, only a minimal amount 
of complicated waveforms should be conveyed for external 
analysis. This proposed method expects the NNs to be highly 
accurate, as otherwise a large number of waveforms would be 
deferred and is not the intention. The authors have successfully 
proven the capability of this approach in a previous work [18]. 

Ensemble 2 sums the output decimated value from the activation 
function of two different models and sets an accordingly higher 
threshold value for binary conversion. As a NN may perform better 
in analysing certain waveforms signatures, it can assist another NN 
with uncertain prediction and compensate for the shortcomings. 
For instance, in analysing the same PD waveform, the threshold for 
PD recognition is set at 0.5, given the boundaries of 0 to 1 from the 
sigmoid function in (1). The first NN being hesitant could have 
tabulated a result of 0.4 whereas the second NN could have more 
confidently computed a result of 0.7. Individually, this would have 
resulted in a noise and PD classification respectively for the two 
NNs. In the proposal of Ensemble 2, the threshold herein would be 
increased from 0.5 to 1 due to the summated decimal output. With 
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the proposed summation, the second NN is able to edge the 
combined evaluation across the threshold and correctly label the 
waveform as PD.  

The results of the effectiveness for the ensembles will be 
presented on the case study cables through comparison of the 
statistical analysis between the individual NNs and the ensembles. 
Pertinent to analysis of Ensemble 1 would be the amount of 
waveforms excluded during evaluation, which should be a minimal 
number of complicated waveforms. For Ensemble 2, observation 
would be made to ascertain the likelihood of a more confident NN 
providing compensation for complicated waveforms. 

IV.  EXPERIMENTAL RESULTS 

A.  Case Study 
The five cables under the case study were not included in the 

training data set. They were deliberately selected because they 
contained both uncomplicated measurements and disruptive 
irregularities representative of field conditions which are difficult 
to organically replicate in the laboratory – plotted in Fig. 7 to Fig. 
11 are either noise signatures, PD pulses or a combination of both. 

 
Fig. 7. Cable 1; (a) Noise waveform (left), (b) Single peak PD (right). 

Cable 1 had 775 recordings and was slightly over 1000 m with 
more than 20 joints; the end of the cable is denoted with the dotted 
vertical line on Fig. 7b. It contained pulsating noise as shown in 
Fig. 7a, this large noise influence is present in the PD recordings 
as shown in the mild oscillations of Fig. 7b. This is a common and 
unmistakable singular PD peak waveform, typical in longer cables 
with multiple joints. 

 
Fig. 8. Cable 2; (a) Two peak PD (left), (b) Interrupted PD recording (right). 

Cable 2 had 507 recordings and was 480 m long. As shown on 
Fig. 8a, there are two large peaks, with the latter being the 
discharge site location; the end of the cable is denoted with the 
dotted vertical line. As shown in Fig. 8b, while it is plausible that 
the second largest peak is the first reflection, it is difficult to be 
certain as this is an incomplete recording – interruption was at 
approximately the 5 us mark. In both plots, it is also possible to see 
evidence of multiple discharge sites making it is hard to distinguish 
between noise influence and multiple discharge sites. 

 
Fig. 9. Cable 3; (a) Noise waveform (left), (b) Wrongly triggered PD recording 
(right). 

Cable 3 had 546 recordings and was 150 m long. As shown on 
Fig. 9a, it contained noise in both high and low frequencies, and a 
DC bias; this same noise signature can be seen at the start of Fig. 

9b. Also shown in Fig. 9b, wrong trigger of the PD recording 
caused the two peaks to be at the end of the waveform instead of 
the start, the end of the cable is denoted with the dotted vertical 
line. 

Cable 4 had 1828 recordings, was 150 m long, and contained 
discharges in two locations, as shown with the different PD plots 
in Fig. 10a and Fig. 10b. In Fig. 10a, wrongly triggered recording 
of a singular pulse PD recording can be seen, the noise perturbation 
coupled with DC offset caused it to have an amplitude similar to 
the PD pulse. In Fig. 10b the end of the cable is denoted with the 
dotted vertical line, it can be seen that there is excessive recording. 
Combination of the erroneous measurement poses as an obstacle 
because this causes recordings that are uncommon and therefore 
biased in training class – samples in the PD databank of such 
peculiarity are not statistically represented. 

 
Fig. 10. Cable 4; (a) Early trigger singular PD pulse (left), (b) Excessive 
recording two peak PD (right). 

 
Fig. 11. Cable 5; (a) Excessive recording four peak PD pulse (left), (b) Noise 
waveform (right). 

Cable 5 had 252 recordings, was 100 m long, and similarly 
suffered from excessive recording, but with a different 
complication. The end of the cable is denoted with the dotted 
vertical line as shown in Fig. 11a, the unnecessary recording 
resulted in four PD peaks – an understandably abnormal 
activity. As shown in Fig. 11b, at first glance the waveform 
looks to contain peaks identical to clipping of PD along with 
multiple discharge sites comparable to Fig. 8, but it is actually 
misleading oscillations if the amplitude is observed carefully. 
This noise signature can be extremely confusing to the NNs as 
these waveforms resemble clipped PD. 

B.  Test Parameters 
The hyperparameters for the various models were chosen 

after extensive comparison. For the CNN – size of filters, 
convolution and pooling layers were examined; simpler 
architecture generated better performance. The CNN model 
contained two convolutional layers of four filters, average 
pooling layer of four units was placed after each convolutional 
layer. It is then connected to a dense layer and finally the output 
layer. For the CRNN – the model contained two convolutional 
layers of four filters, average pooling layer of four units was 
placed after each convolutional layer. The dense layer here is 
replaced with BILSTM cells and then connected to the output 
layer. For the LSTM and BILSTM – hidden layers and nodes 
were examined, slightly complicated architecture generated 
better performance. Both models had 4 hidden layers and 512 
nodes in each layer. Dropout of 0.2 was placed on the visible 
layer of all four NNs. 
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The data set was divided into training and validation set with 
a split of 90% and 10% respectively; the case study had a total 
of 3908 recordings from 5 cables. Adam optimisation 
algorithm [21] was used for the gradient descent algorithm and 
the loss function was calculated with the mean squared error. 
The training was done on a single GPU setup with Keras [22] 
and Tensorflow 2 [23] as the backend. 

 
Fig. 12. Validation set accuracy. 

It is understood that DL training is a stochastic process that 
could yield a different result each iteration. For an unbiased 
impression of the model general performance, it is necessary to 
observe the average results over an arbitrary amount of 
iterations. The training of the model was performed over 10 
iterations, with 100 epoch each iteration. Models could be saved 
on either highest validation accuracy or lowest validation loss; 
the highest validation accuracy model was chosen as it gave 
better performing weights when compared. Validation accuracy 
averaged over 10 iterations are as shown in Fig. 12, the 
convergence of the NNs can be seen. Majority of the models 
fluctuate close to the 99% mark, with the CNN slightly 
below 98%. 

After the model is obtained, for evaluation of each specific 
cable, the top layer before the classifier is re-trained with the 
measured calibration pulse of the measuring system through 
stochastic gradient descent for 10 epochs. The adaption training 
process is rapid and accepts either polarity for the 

calibration pulse. 
The performance of the individual NNs and the ensemble on 

evaluating the cables will be given in the succeeding tables. The 
results of the adapted NNs are displayed, with the difference 
between non-adapted NNs given beside in a bracket; plus 
indicates improvement whereas minus implies deterioration. 
Apart from the accuracy (Acc), two other standard statistical 
evaluation parameters are displayed for further measures which 
are precision (Pre) and recall (Rec). Precision is the ability to 
identify only relevant data points and recall is the ability to find 
all relevant cases in a data set. For Ensemble 1, an additional 
parameter (Exc) depicting the amount of excluded samples is 
included in this table. The best performing model for the cables 
individually and averaged is highlighted. Discussion will be on 
the general overview of the results, emphasising on the best 
performing model that was enhanced by the adaptation and 
improved by the ensemble. Good performance in Cable 1 is 
expected as this was an uncomplicated measurement. The 
enhanced generalisation capability of the proposed algorithm 
on Cables 2, 3 and 4 is of further interest.  

C.  Individual Neural Network Results 
Shown in Table II is the performance of the individual NNs.  
Cable 1: All the NNs were capable of identifying the case of 

noise and singular peak PD in the cable. After adaption, slight 
improvement was observed.  

Cable 2: The accuracy of all the NNs except the CNN was 
below 90% and sees overall improvement after adaptation. This 
file consisted of multiple discharge site, and distortion of the 
PD pulse due to reflections.  

Cable 3: The accuracy for all NNs was greater than 90% and 
sees marginal improvement after adaptation. Due to the 
dispersion in the frequency domain, the width of the PD pulse 
has increased slightly causing it to resemble noise signatures of 
the cable with both high and low frequencies. Despite the 
resemblance, the NNs generally were able to differentiate and 
identify the PD. 

Cable 4: Excessive recording by the system results in 
misleading interpretations. After adaptation the confusion was 
corrected, all NNs saw significant increase in accuracy and 
decrease in the false negatives. 

Cable 5: Four PD pulses appear in these samples due to excessive 
recording. To the best of the author’s recollection this PD signature 
is not commonly found in the data set, which causes imbalanced 
data and the inability to identify the waveforms. Shown in Table III 
is the confusion matrix for the CRNN model, the results before 
adaptation are on the left. After adaption, significant improvement 
can be observed as shown, with the false negative again greatly 
reduced and the true positive increased accordingly. 

On the average after adaptation, the BILSTM was the best 
performing model, followed by the LSTM, CRNN and then CNN. 

0 20 40 60 80 100

Epoch

97

98

99

A
cc

ur
ac

y 
(%

)

CNN
CRNN
LSTM
BILSTM

TABLE II 
Individual neural network success ration of PD identification. 

  
CNN CRNN LSTM BILSTM 

C
ab

le
 1

 Acc (%) 98.97 (+0.65) 99.87(-) 100 (+0.26) 100 (+0.26) 
Pre (%) 99.63 (-0.67) 99.67 (-) 100 (-) 100 (-) 
Rec (%) 98.01 (+2.31) 100 (-) 100 (+0.66) 100 (+0.66) 

C
ab

le
 2

 Acc (%) 93.49 (+1.58) 82.84 (+1.58) 86.79 (+5.72) 86 (+2.96) 
Pre (%) 97.08 (-0.6) 93.35 (-4.51) 94.05 (-5.12) 92.81 (-4.86) 
Rec (%) 95.58 (+2.44) 86.95 (+6.2) 90.93 (+11.51) 91.37 (+9.29) 

C
ab

le
 3

 Acc (%) 92.49 (+1.83) 91.76 (+0.18) 94.14 (+1.47) 94.69 (+1.47) 
Pre (%) 94.7 (-0.8) 95.37 (-0.74) 94.96 (-0.64) 96.24 (-0.12) 
Rec (%) 97.18 (+3.03) 95.56 (+1) 98.79 (+2.42) 97.98 (+1.81) 

C
ab

le
 4

 Acc (%) 92.29 (+9.85) 96.44 (+8.26) 97.59 (+5.85) 97.98 (+10.78) 
Pre (%) 98.63 (-0.96) 99.71 (-0.16) 99.77 (-0.17) 99.1 (-0.71) 
Rec (%) 93.34 (+11.11) 96.62 (+8.69) 97.74 (+6.2) 98.82 (+11.85) 

C
ab

le
 5

 Acc (%) 98.41 (+3.57) 95.24 (+14.29) 89.29 (+4.37) 90.48 (+7.94) 
Pre (%) 98.7 (-0.39) 95.4 (-1.01) 93.53 (-2.61) 94.76 (+0.07) 
Rec (%) 99.56 (+4.36) 99.56 (+17.46) 94.76 (+7.86) 94.76 (+9.17) 

A
ve

ra
ge

 Acc (%) 94.19 (+5.42) 94.63 (+5.02) 95.65 (+4.02) 95.88 (+6.19) 
Pre (%) 97.85 (-0.77) 97.86 (-0.87) 97.8 (-1.07) 97.57 (-1.17) 
Rec (%) 95.11 (+7.38) 95.63 (+6.98) 96.96 (+5.97) 97.48 (+8.73) 

 

TABLE III 
Confusion Matrix of CRNN for Cable 5 

Before 
adaptation 

Prediction  After 
adaptation 

Prediction 
Noise PD  Noise PD 

La
be

l Noise 16 7  

La
be

l Noise 12 11 

PD 41 188  PD 1 228 
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Before adaption, the BILSTM fared slightly poorer than the 
LSTM. All models improved after the adaption and were greater 
than 94%, slight decrement in precision scores were constantly 
seen. Adaption of the NNs proved to be useful for increasing 
identification accuracy. 

D.  Ensemble Results 
Shown in Table IV is the performance of Ensemble 1 and 2. 

The results are as follows: 
Cable 1: All combinations in Ensemble 1 except for LSTM-

BILSTM performed better than Ensemble 2, deferring a small 
percentage of uncertain waveforms. The general overall 
accuracy of both ensemble is consistently high. For Ensemble 1, 
results for most waveforms had no identification mistakes 

before adaption and were at 100% accuracy. The LSTM-
BILSTM combination achieved the same results after a slight 
increment from adaptation. Overall, the amount of waveforms 
deferred for external analysis were less than 1% of the total 
evaluated, with lesser files being deferred after adaptation. For 
Ensemble 2, adaptation of the ensemble generally gave slight 
improvements, except for the CRNN-BILSTM which saw a 
decrement and CRNN-LSTM which had no improvement; all 
the combinations were close to 100% accuracy. Except for the 
LSTM-BILSTM, all the combinations performed slightly lower 
than Ensemble 1. As this was a relatively uncomplicated 
measurement, the best performing ensemble and individual NN 
performed equally as good. 

TABLE IV 
Ensemble neural network success ration of PD identification. 

 CNN 
BILSTM 

CRNN 
BILSTM 

LSTM 
BILSTM 

CNN 
LSTM 

CRNN 
LSTM 

CRNN 
CNN 

C
ab

le
 1

 

En
s. 

1 

Acc (%) 100 (-) 100 (-) 100 (+0.26) 100 (-) 100 (-) 100 (-) 
Pre (%) 100 (-) 100 (-) 100 (-) 100 (-) 100 (-) 100 (-) 
Rec (%) 100 (-) 100 (-) 100 (+0.66) 100 (-) 100 (-) 100 (-) 

Exc 8 (+7) 1 (+2) 0 (-) 8 (+7) 1 (2) 9 (+5) 

En
s. 

2 Acc (%) 99.74 (+0.51) 99.87 (-0.13) 100 (+0.26) 99.74 (+0.51) 99.87 (-) 99.61 (+0.38) 
Pre (%) 99.34 (-0.66) 99.67 (-0.33) 100 (-) 99.34 (-0.66) 99.67 (-) 99.02 (-0.98) 
Rec (%) 100 (+1.99) 100 (-) 100 (-0.66) 100 (+1.99) 100 (-) 100 (+1.99) 

C
ab

le
 2

 

En
s. 

1 

Acc (%) 95.9 (+2.32) 87.53 (+3.85) 87.89 (+3.97) 95.94 (+3.12) 88.29 (+5.24) 94.69 (+1.65) 
Pre (%) 97.32 (-1.86) 94.9 (-4) 94.9 (-4.25) 97.56 (-1.88) 96.06 (-3.37) 97.47 (-1.71) 
Rec (%) 98.28 (+4.69) 91.36 (+8.64) 91.7 (+9.07) 98.03 (+5.54) 91.12 (+9.49) 96.74 (+3.7) 

Exc 68 (+3) 42 (-19) 20 (+8) 64 (+11) 46 (-17) 74 (+2) 

En
s. 

2 Acc (%) 94.48 (+3.75) 85.01 (+3.55) 86.59 (+5.13) 93.89 (+4.34) 85.6 (+4.53) 92.9 (+2.96) 
Pre (%) 95.69 (-2.64) 92.15 (-6.23) 93.44 (-5.2) 95.66 (-2.88) 92.78 (-5.85) 95.22 (-3.09) 
Rec (%) 98.23 (+7.08) 90.93 (+10.4) 91.37 (+11.06) 97.57 (+7.97) 90.93 (+11.06) 96.9 (+6.63) 

C
ab

le
 3

 

En
s. 

1 

Acc (%) 96.67 (+0.69) 95.38 (+0.6) 95.67 (+1.34) 95.92 (+0.87) 95.01 (+1.28) 93.89 (+0.3) 
Pre (%) 96.73 (-0.06) 96.11 (-0.33) 96.22 (-0.1) 96.38 (-0.24) 95.75 (-0.32) 95.93 (-0.69) 
Rec (%) 99.79 (+0.88) 98.95 (+1.08) 99.18 (+1.66) 99.38 (+1.31) 98.95 (+1.87) 97.52 (+1.11) 

Exc 36 (+12) 26 (+3) 15 (+2) 31 (+10) 25 (-5) 22 (+9) 

En
s. 

2 Acc (%) 94.32 (+1.28) 94.69 (+3.11) 94.14 (+1.1) 93.22 (+0.55) 93.96 (+2.02) 92.12 (+0.73) 
Pre (%) 94.29 (-1.88) 95.52 (-0.4) 94.96 (-1.02) 93.55 (-2.6) 94.95 (-0.98) 94.15 (-1.57) 
Rec (%) 99.8 (+3.63) 98.79 (+4.03) 98.79 (+2.42) 99.4 (+3.63) 98.59 (+3.43) 97.38 (+2.62) 

C
ab

le
 4

 

En
s. 

1 

Acc (%) 99.28 (+1.31) 98.7 (+9.01) 98.77 (+6.5) 99.4 (+1.65) 98.1 (+5.51) 99.21 (+2.2) 
Pre (%) 99.57 (-0.27) 99.71 (-0.16) 99.77 (-0.16) 99.75 (-0.18) 99.77 (-0.16) 99.75 (-0.09) 
Rec (%) 99.7 (+1.66) 98.96 (+9.48) 98.97 (+6.89) 99.63 (+1.89) 98.27 (+5.86) 99.44 (+2.39) 

Exc 154 (+347) 56 (+36) 37 (+84) 165 (+243) 41 (+72) 180 (+275) 

En
s. 

2 Acc (%) 98.36 (+5.96) 98.03 (+9.63) 98.09 (+7.06) 98.41 (+8.37) 97.81 (+7.16) 98.25 (+6.57) 
Pre (%) 98.66 (-1.16) 99.71 (-0.1) 99.71 (-0.1) 98.93 (-0.94) 99.71 (-0.17) 98.88 (-1) 
Rec (%) 99.66 (+7.33) 98.25 (+10.04) 98.31 (+7.39) 99.44 (+9.59) 98.03 (+7.56) 99.32 (+7.78) 

C
ab

le
 5

 

En
s. 

1 

Acc (%) 99.12 (+4.19) 96.15 (+8.41) 91.36 (+4.72) 99.11 (+4.44) 95.71 (+8.98) 98.76 (+3.5) 
Pre (%) 99.08 (+0.1) 96.44 (+0.31) 94.69 (-1.25) 99.08 (+0.08) 96.02 (-0.26) 98.70 (-0.77) 
Rec (%) 100 (+4.43) 99.54 (+9.38) 95.96 (+6.81) 100 (+4.81) 99.54 (+10.81) 100 (+4.62) 

Exc 24 (+11) 18 (+22) 9 (+11) 27 (-) 19 (+7) 10 (+31) 

En
s. 

2 Acc (%) 95.24 (+2.78) 94.05 (+7.94) 90.87 (+7.93) 93.65 (+2.38) 93.25 (+7.93) 96.34 (+5.95) 
Pre (%) 95.4 (-3.67) 94.58 (-1.61) 94.02 (-0.69) 94.19 (-4.86) 93.8 (-2.35) 96.22 (-2.82) 
Rec (%) 99.56 (+6.98) 99.13 (+10.92) 96.07 (+10.04) 99.13 (+7.86) 99.13 (+11.79) 100 (+9.61) 

A
ve

ra
ge

 

En
s. 

1 

Acc (%) 98.65 (+1.3) 96.97 (+5.33) 96.73 (+4.04) 98.59 (+1.58) 96.72 (+4.01) 98.03 (+1.5) 
Pre (%) 98.82 (-0.32) 98.31 (-0.63) 98.22 (-0.74) 98.88 (-0.33) 98.41 (-0.58) 98.78 (-0.38) 
Rec (%) 99.57 (+2.02) 98.06 (+7.19) 97.88 (+5.74) 99.44 (+2.35) 97.66 (+5.53) 98.87 (+2.32) 

Exc 290 (+380) 143 (+44) 81 (+105) 295 (+271) 132 (+59) 295 (+322) 

En
s. 

2 Acc (%) 97.36 (+3.74) 95.98 (+5.89) 95.96 (+4.68) 97.03 (+4.79) 95.8 (+4.73) 96.85 (+4.02) 
Pre (%) 97.38 (-1.61) 97.63 (-1.11) 97.72 (-0.98) 97.29 (-1.75) 97.57 (-1.22) 97.45 (-1.49) 
Rec (%) 99.51 (+6.21) 99.45 (+6.15) 97.42 (+6.7) 99.2 (+7.63) 97.39 (+7.01) 98.8 (+6.43) 
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Cable 2: CNN-LSTM in Ensemble 1 marginally 
outperformed CNN-BILSTM in Ensemble 1 but defers almost 
13% of the waveforms. The general overall accuracy has a 
fluctuation in the scores, demonstrating the capabilities of some 
ensembles over others. For Ensemble 1 and 2, adaptation 
increased the overall ensemble accuracy. The two best 
combinations were the CNN paired with either the BILSTM or 
the LSTM, with both yielding comparable performance. 
Amongst Ensembles 1, the amount of waveforms deferred for 
external analysis ranged from 4% to 14%. Comparing the 
ensembles with individual NNs, the best results from both the 
adapted ensemble were better than individual NN – the CNN.  

Cable 3: Results of the statistical analysis in Ensemble 1 
and 2 were consistent throughout the various models and had a 
low standard deviation; the two ensembles were comparable in 
performance. For Ensemble 1, adaptation provided a marginal 
increment, whereas slightly more contribution was seen in 
Ensemble 2. Almost 2% of increment in accuracy was achieved 
in Ensemble 1, in comparison to Ensemble 2. The best 
performing model of Ensemble 2, the CRNN-BILSTM, had the 
same accuracy as the best performing individual NN – the 
BILSTM. The amount of files deferred for external analysis in 
Ensemble 1 were less than 10%, except for the CRNN-LSTM 
combination, lesser files were deferred after adaptation. 

Cable 4: Results of the statistical analysis in Ensemble 1 
and 2 were close to 100% and consistent throughout the various 
models with a low standard deviation; the two ensembles were 
comparable in performance. For Ensemble 1, adaptation 
provided significant improvement in four of the models. The 
amount of files deferred for external analysis were less than 1% 
of the total evaluated, with lesser files being deferred after 
adaptation. For Ensemble 2, akin to Ensemble 1, adaptation of 
the ensembles saw large increase in accuracies throughout, with 
all models performing approximately at 98%. Comparing the 
ensembles with individual NNs, the best results from both the 
adapted ensemble were better than individual 
NN – the BILSTM. 

Cable 5: Large variance is observed in the results from 
Ensemble 1 and 2. The PD signature is not commonly found in 
the data set and as a result caused an imbalance in the training 
data set for recognition. For Ensemble 1, adapted ensemble 
results from the CNN combinations performed closed to 100% 
accuracy, good amount of overall increment was seen by the 
combinations after the adaptation. The amount of files deferred 
for external analysis was less than 10% of the total evaluation, 
with lesser files deferred after adaptation. For Ensemble 2, 
adaptation of the ensembles helped the models to improve and 
achieved between 90% to 96%. Comparing the ensembles with 
the individual NNs, CNN-BILSTM from Ensemble 1 is the best 
performing model, followed by the individual CNN 
outperforming the best performing model of Ensemble 2 – the 
CRNN-CNN. This is the only cable where the Ensemble 2 did 
not outperform an individual NN. 

On the average for Ensemble 1, the results agree with the 
performance from the individual models, where the CNN and 
BILSTM models were better. All the models improved after 
adaption and the accuracies were greater than 95%. Large 

majority of the files had a reduction in precision scores after 
adaptation. The amount of deferred samples after adaptation 
was reduced tremendously. On the average for Ensemble 2, the 
CNN and BILSTM was similarly the superior model. All the 
ensembles improved after adaptation and accuracies ranged 
from 94% to 96%. Comparing the performance in evaluating 
the cables between the ensembles, Ensemble 1 outperforms 
Ensemble 2 for all models; this is expected as waveforms were 
excluded for external analysis. However, the best performing 
model for Ensemble 2 is consistently comparable to Ensemble 
1, with only a marginal 1% to 3% difference between them. The 
best performing individual NN model, the BILSTM, did not 
outperform either of the ensembles. This clearly validates that 
ensemble NNs are useful in increasing identification accuracy. 
Very much like the individual NNs, adaption of the NNs causes 
a decrement in precision scores, but proved also to be useful for 
increasing identification accuracy. 

E.  Further Analysis 

 
Fig. 13. Cable 4; Example of complicated waveform. 

Shown in Fig. 13 is an example of a complicated PD 
measurement from Cable 4. While the general PD 
characteristics can be established with the triggering pulse and 
first reflection denoted by P0 and P1 respectively, the signal to 
noise ratio is not significantly large. The measurement was 
triggered incorrectly by a large spike denoted T at the start of 
the recording, had a DC offset and contained high and low 
frequency noise. This results in T being larger in amplitude than 
P0 and resembles misleading noise oscillations observed in 
Fig. 9a. The CNN-LSTM ensemble model will be discussed as 
it produced the highest accuracies in both ensembles. Before 
adaptation, both the CNN and CRNN labeled the waveform as 
noise, whilst the LSTM and BILSTM labeled the waveform as 
PD. From (1), the CNN predicted a value of 0.301, whereas the 
LSTM predicted 0.99. Through the proposed methodology of 
Ensemble 2, the more confident NN can lead the evaluation in 
the right direction – this reinforces the utilisation of the NN 
ensembles. After adaption, both the CNN and CRNN were able 
to correctly label the waveform as PD. 

The confusion matrix for the CNN is as given in Table V, 
shown on the left is the results before adaptation. After 
adaptation, the true positives have increased significantly whilst 
the false negative decreased in accordance – this unmistakably 
reinforces the advantage of adaptation. The two demonstrated 
factors from the adaption and ensemble positively exemplify 
the advantages of the proposed algorithm. 
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TABLE V 
Confusion Matrix of CNN for Cable 4. 

Before  
Adaptation 

Prediction  After  
Adaption 

Prediction 
Noise PD  Noise PD 

La
be

l Noise 49 6  

La
be

l Noise 32 23 
PD 315 1458  PD 118 1655 
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V.  CONLUSION 
This paper investigates identification of PD measurements from 

in-service cables and proposes an algorithm that is applicable to 
TRPD cable measurements. The presented methodology is able to 
identify highly challenging PD waveforms that have been polluted 
by noise, this was demonstrated on 5 case study cables which were 
independent from the training data set. 

Individual NN validation set results were remarkably high, 
which represents the ability of the NNs in identifying the 
waveforms. However, the five case study files before adaption do 
not completely reflect the same degree of accuracy seen 
previously. Such varying results are not uncommon representation 
of the generalisation competencies for field measurements. While 
good performance for straightforward measurements such as 
Cable 1 are expected, the focus of the algorithm is on the 
complicated recordings as seen on cables 2 to 5.  

Without the adaptation process, the average accuracy for the 
individual NNs were slightly below 90%. With the adaptation 
process, the individual NNs were able to increase the accuracy 
hoovering at 95%. This proves that the cable-specific adaptation 
has the ability to negate the uncertainty caused by unpredictable 
waveforms that are not included in the databank and is able to 
enhance the performance of highly trained NNs. 

Ensemble NNs provides better overall performance compared to 
individual NNs; adaptation on ensemble NNs further improves the 
performance. Through Ensemble 1, an extremely high accuracy of 
98.65% can be attained with the best performing combination 
CNN-BILSTM – with only 7.4% of the waveforms deferred to the 
operator. In Ensemble 2 the best performing combination was 
similarly CNN-BILSTM, the accuracy was lower than 
Ensemble 1, but still remarkably successful at 97.36%. For both the 
ensembles the best performing combination was the CNN paired 
with the BILSTM, despite the CNN being the lowest performing 
individual model. This further ascertains the belief that NNs of 
differing principles, when used collectively, can negate 
shortcomings stemming from each individual NN type; the overall 
generalisation errors and variance of the prediction is also 
decreased significantly. 

Drawback of adaptation is evident in the slight decrement of the 
overall precision; however, this is inconsequential considering the 
overall success. The successful results from adapting highly 
trained NNs to cable-specific conditions and evaluating 
thereafter with NN ensembles successfully demonstrates the 
capability of the algorithm. The proposed methodology 
distinctly displays a systematic approach to the challenges 
faced in field PD identification. 

For future works, with respect to the increase in false 
positives, it is proposed to further analyse the predicted PD 
through consideration of the cumulative energy signal – as a PD 
signal contains energy, this feature extraction may prove to be 
a simple and efficient tool. 
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