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The cascade approach to Speech Translation (ST) is based on a pipeline that concatenates an Automatic
Speech Recognition (ASR) system followed by a Machine Translation (MT) system. Nowadays, state-of-
the-art ST systems are populated with deep neural networks that are conceived to work in an offline
setup in which the audio input to be translated is fully available in advance. However, a streaming
setup defines a completely different picture, in which an unbounded audio input gradually becomes
available and at the same time the translation needs to be generated under real-time constraints. In this
work, we present a state-of-the-art streaming ST system in which neural-based models integrated in
the ASR and MT components are carefully adapted in terms of their training and decoding procedures
in order to run under a streaming setup. In addition, a direct segmentation model that adapts the
continuous ASR output to the capacity of simultaneous MT systems trained at the sentence level is
introduced to guarantee low latency while preserving the translation quality of the complete ST system.
The resulting ST system is thoroughly evaluated on the real-life streaming Europarl-ST benchmark to
gauge the trade-off between quality and latency for each component individually as well as for the
complete ST system.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep Neural Networks (DNNs) are revolutionizing not only
peech-related research fields, such as purely Automatic Speech
ecognition (ASR) with significant breakthroughs (Chan, Jaitly,
e, & Vinyals, 2016; Irie, Zeyer, Schlüter, & Ney, 2019; Jorge,
t al., 2020; Park, et al., 2019), but also other closely connected
ields, such as Machine Translation (MT) (Bahdanau, Cho, & Ben-
io, 2015; Sennrich, Haddow, & Birch, 2016a, 2016b; Vaswani,
t al., 2017) and consequently, Speech Translation (ST). Indeed,
T is gaining momentum due to the vast number of industry
pplications that could be exploited based on this technology,
rom person-to-person communication to subtitling of audiovi-
ual content, just to mention the main two applications.
Nowadays, two approaches to ST, end-to-end and cascade,

oexist. End-to-end models directly perform a mapping from
peech in a source language into a text representation in a target
anguage, without exploiting an intermediate discrete represen-
ation and jointly training model parameters (Berard, Besacier,
ocabiyikoglu, & Pietquin, 2018; Gangi, Negri, Cattoni, Dessi, &
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Turchi, 2019; Jia, et al., 2019; Weiss, Chorowski, Jaitly, Wu, &
Chen, 2017). However, current end-to-end models are not usually
well-suited for a streaming setup, since they need to process
the entire input sequence before providing the corresponding
translation.

Differently, the cascade approach considers a two-step process
in which an ASR system transcribes the source language in speech
form, and the automatically generated transcription is pipelined
into an MT system that provides the target language in text form.
There are well-known pros and cons of this approach with respect
to that of end-to-end. On the one hand, it is possible to train
strong independent ASR and MT systems in the cascade approach,
since abundant manually transcribed audio and parallel data are
widely available in high-resourced languages. In contrast, this
is not usually the case in end-to-end models, since manually
transcribed audio data in a source language aligned with text
data in the desired target language is more expensive to produce
and cannot be found in the same magnitude. Thus, end-to-end
models resort to pre-training and data augmentation techniques
to alleviate this problem (Bahar, Bieschke, & Ney, 2019; Pino,
et al., 2019). On the other hand, the cascade approach tends
to propagate ASR errors into the MT system, while training a
single end-to-end model is theoretically more robust than two
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ecoupled models, if sufficient data would be available. All in all,
ascade systems still outperform end-to-end systems in standard
etups (Bahar, et al., 2020; Niehues, et al., 2019; Pino, et al., 2019).
Streaming cascade-based ST systems just started to become

vailable (Bahar, et al., 2020) thanks to recent advances in stream-
ng hybrid and end-to-end ASR systems stating competitive re-
ults compared to offline systems (Jorge, et al., 2019, 2020; Miao,
heng, Gao, Zhang, & Yan, 2020; Moritz, Hori, & Le, 2020; Zeyer,
ahar, Irie, Schlüter, & Ney, 2019; Zeyer, Schlüter, & Ney, 2016;
hang, Lu, et al., 2020), and also due to the significant progress
n simultaneous MT (Arivazhagan, et al., 2019, 2020; Ma, et al.,
019; Niehues, Pham, Ha, Sperber, & Waibel, 2018; Zheng, Zheng,
a, & Huang, 2019). However, the segmentation of the ASR
utput is still essential to deal with the simultaneous translation
f long audio streams (Cho, Niehues, Kilgour, & Waibel, 2015;
ügen, Waibel, & Kolss, 2007; Gu, Neubig, Cho, & Li, 2017; Iranzo-
ánchez, et al., 2020; Oda, Neubig, Sakti, Toda, & Nakamura,
014; Rangarajan Sridhar, Chen, Bangalore, Ljolje, & Chengal-
arayan, 2013). Indeed, state-of-the-art simultaneous MT models
re Transformer-based models trained on sentence pairs with
limited length. These vanilla Transformer models cannot cap-

ure any longer-term dependency beyond the predefined sen-
ence length observed in training (Dai, et al., 2019; Popel &
ojar, 2018). Thus, the translation accuracy of these simultaneous
ransformed-based MT models rapidly degrades as the source
entence length goes beyond that observed in training. This fact
eads to the need of a text segmenter that splits the ASR output
nto hopefully semantically self-contained chunks1 that can be
uccessfully translated by a simultaneous MT system.
In this work we present a state-of-the-art streaming cascade-

ased ST system evaluated on the Europarl-ST task
Iranzo-Sánchez, et al., 2020), a real streaming ST benchmark
ncluding parliamentary speeches of up to 10-minute long. This
enchmark along with the limitation of simultaneous
ransformed-based MT models to adequately translate an un-
ounded sequence of words, motivates the crucial role played
y the segmenter when translating continuous text streams pro-
ided by an ASR system under real-time constrains. For this
eason, this work, in addition to review the ASR and MT com-
onents of the ST system developed in previous work, puts
pecial emphasis on the description of our neural-based Direct
egmentation (DS) model followed by a thoroughly evaluation of
ts impact on a streaming cascade-based ST system in terms of
ccuracy and latency.
In contrast to our previous work in which the DS model was

nitially presented (Iranzo-Sánchez, et al., 2020), here off-line MT
ystems are replaced by simultaneous MT systems. This fact has
ery important implications in this work. First, words provided by
he ASR system are translated as they become available without
aiting for the end-of-chunk token to appear in the input of the
T system. This is a significant difference with our previous work
entioned above in which translations were only generated once
complete chunk was available, which is the expected chunk-

evel behavior of off-line MT systems. Second, simultaneous MT
ystems work at the word level, this allows to compute word-
evel latencies in contrast to the chunk-level latencies reported
n our previous work. Finally, word-level latencies define a more
ealistic and challenging evaluation closer to the user experience
nd thus, specific experimental conditions for this work. As op-
osed to our previous work in which the ST system was only
ptimized for translation accuracy, in this work a joint optimiza-
ion of the DS and translation models is carefully performed and
eported not only for translation accuracy but also for word-level
atency.

1 A chunk must be understood as a sequence of words.
304
This paper is organized as follows. The neural-based stream-
adapted ASR and MT components of the ST system are reviewed
in Sections 2 and 3 , respectively. Next, Section 4 describes in
full detail the DS model seamlessly integrated between the ASR
and MT components to allow streaming ST decoding. Then, in
Section 5, ASR and MT components are individually assessed on
the Europarl-ST task before going into an extensive evaluation
in terms of accuracy and latency of the ST system when the
DS model is integrated into the pipeline. Finally, conclusions are
drawn and future work is foreseen in Section 6.

2. Streaming automatic speech recognition

Nowadays, state-of-the-art hybrid ASR systems use DNNs to
approximate acoustic and language model probabilities. How-
ever, when we move from the offline to the streaming (online)
setup, it is necessary to take into account a series of constraints
imposed by the streaming scenario to efficiently manage DNNs.
First, the acoustic information comes gradually over time, so the
input sequence xT1 is not fully available at decoding time. Second,
utput must be provided under tight real-time constraints, so ef-
icient inference procedures must be devised to guarantee system
sability.
More precisely, the limited access to the input poses some

hallenges to transcribe an audio stream, since the system needs
o wait for enough acoustic information in the input to be avail-
ble to perform the next decoding step. This fact introduces a
rade-off between the quality of the acoustic scores provided by
he DNN and the latency of the decoding step that directly im-
acts the response-time of the system. As acoustic models (AMs)
ased on DNNs work at sequence level, we should adapt their
ehavior to include these constraints. On the other hand, most
f the LMs can naturally work on a streaming setup, since model
ependencies involve conditioning on previous words (history) to
rovide the posterior probability of the next one. In this case, the
hallenge resides on the inference speed when it comes to state-
f-the-art neural-based LMs. In the following sections we will
eview how these neural-based models are adapted to perform
treaming ASR.

.1. Acoustic model

Over the last decade, deep Feed-Forward Networks (FFNs)
Hinton, et al., 2012), Convolutional Neural Networks (CNNs)
Bozheniuk, Zeyer, Schlüter, & Ney, 2020; Sainath, et al., 2015)
nd Recurrent Neural Networks (RNNs) (Schuster & Paliwal, 1997)
ave contributed to improve acoustic modeling with respect
o the historical approach based on Gaussian Mixture Model
GMM) (Bourlard & Wellekens, 1990; Russell & Moore, 1985).
ndeed, RNNs based on the Long–Short Term Memory (LSTM)
nit (Hochreiter & Schmidhuber, 1997) have been successfully
pplied in ASR (Graves, Jaitly, & Mohamed, 2013; Zeyer, Doetsch,
oigtlaender, Schlüter, & Ney, 2017). More precisely, the so-called
idirectional LSTM (BLSTM) architecture has been widely applied
nd studied for AM in ASR (Zeyer et al., 2017).
As expected in an offline setup, the BLSTM architecture ob-

erves the complete acoustic sequence to estimate the score for
ach frame in this sequence. However, this is not feasible in a
treaming scenario under tight real-time constraints, as we need
o minimize the time elapsed between the speaker utterance, and
he corresponding transcription of that utterance by the system.
or this reason, following the study performed in Zeyer et al.
2016), we introduce the concept of lookahead context of a given
frame, as the sequence of frames following this given frame that
need to be processed to compute the acoustic score (Jorge, et al.,

2020). The length of the lookahead context nlookahead allows us to
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ontrol the trade-off between accuracy and latency, adjusting it
o a minimum length that allows the BLSTM network to gather
nough acoustic information. In practice, a sliding window with
limited lookahead context is moved over the infinite sequence
f frames one frame at a time. The acoustic score of a given frame
s a weighted average of the posterior probabilities of that frame
omputed over overlapping windows.
There is a final consideration that is missing in this adaptation

f the BLSTM architecture to the streaming setup, that is, the
ormalization of acoustic features. Acoustic features are mean
ormalized over the full sequence, but again this is not possible
n a streaming setup. We alleviate this problem by introducing
configurable delay when starting to process an audio stream

n order to gather enough acoustic evidence to compute the
equired statistics to normalize input features (Jorge, et al., 2020).

.2. Language model

Similarly to AMs, LMs have significantly evolved from the
ount-based n-gram model (Chen & Goodman, 1999; Shannon,
1948) to continuous neural LMs based on LSTM RNN (Bengio,
Ducharme, Vincent, & Janvin, 2003; Schwenk, 2007) and the
Transformer architecture (Vaswani, et al., 2017) with impressive
results in ASR (Irie et al., 2019). However, the integration of
neural-based LMs into a streaming ASR decoder requires an adap-
tation of their training procedure (Baquero-Arnal, et al., 2020).
First, the full computation of the softmax function cannot be
afforded under real-time constraints. Instead, a variance regular-
ization (VR) term is added during training, so that the sum of the
softmax deviates minimally from a constant value (Shi, Zhang,
Cai, & Liu, 2014). This constant value is assumed to be invariant
during inference, significantly reducing the high computational
cost of the softmax function. Second, a key idea applicable specif-
ically to Transformer LMs is to limit the size of the word history.
Though Transformer LMs are robust dealing with long-range de-
pendencies due to their ability to attend to all previous words
in a direct manner, this implies that every time a next word
is predicted the whole word history needs to be processed. For
the streaming case, we limit the size of the history to n words,
avoiding an unbounded growth of memory requirements for the
internal state.

2.3. Decoding

In the hybrid approach, decoding is performed with the con-
ventional beam-search Viterbi algorithm (Viterbi, 1967; Ney,
1984). This algorithm combines scores provided by the AM,
the LM and the pronunciation dictionary or lexicon, in order
to find the most likely sequence of spoken words. Due to this
combination of external models, the decoding process becomes
much more complex than in end-to-end models. Nowadays, there
are two predominant approaches to decoding, those based on
Weighted Finite-State Transducer (WFST) (Mohri & Riley, 1999,
2001; Povey, et al., 2011), and those grounded on History Con-
ditioned Search (HCS) (Ney & Ortmanns, 2000; Nolden, 2017).
Both approaches convert the AM and LM into data structures
to perform a time-synchronous search, to which several pruning
techniques will be applied in order to reduce the exponentially
growing search space.

These decoders leverage the discrete nature of count-based
LMs to create the skeleton of the aforementioned search space
before decoding. However, with the advent of neural-based LMs,
it became unclear how to integrate these continuous models
into the discrete search space. For this reason, multi-pass de-
coders benefited from neural-based LMs performing an additional
305
rescoring step, in which n-best hypotheses stored in a word-
graph structure were re-ranked to obtain significant accuracy im-
provements (Chen, Liu, Ragni, Wang, & Gales, 2017; Sundermeyer,
Tüske, Schlüter, & Ney, 2014; Xu, et al., 2018).

Obviously, this additional rescoring step increases the re-
sponse time of ASR systems compared to those based on one-pass
decoders. In addition, search errors propagated in previous passes
cannot be fixed in the rescoring step. One-pass decoders integrat-
ing neural-based LM have been proposed, such as those in Arısoy,
Chen, Ramabhadran, and Sethy (2014), Lee, Park, Kim, and Lee
(2018) and Singh, Oualil, and Klakow (2017), but few of them
have reached the technology readiness level for a production
environment under streaming conditions. In Jorge, et al. (2019),
we proposed a novel one-pass decoder that allows a seamless
integration of neural-based LMs, while keeping the system fast
enough to perform real-time streaming decoding.

Our decoder follows a similar structure to the HCS decoder
proposed in Nolden (2017), where hypotheses are organized ac-
cording to the LM history. To do that, we precompute a looka-
head finite state model from a heavily pruned n-gram model.
This model provides the main static search structure at word
and triphoneme levels on which the decoding is based. Unlike
other WFST-based decoders, no finite-state reduction algorithm
is applied. Moreover, Hidden Markov Model (HMM) states are
dynamically expanded on-demand during decoding to reduce
memory consumption.

Apart from conventional beam search decoding parameters,
such as beam width or the maximum number of active hypoth-
esis, we enriched our decoder with two additional LM-related
decoding parameters to specifically deal with neural-based LMs:
the Language Model History Recombination (LMHR) and the Lan-
guage Model Histogram Pruning (LMHP).

Regarding LMHR, it is important to remark that, unlike count-
based LMs, neural-based LMs benefit from the unlimited context
condensed in their internal state, a continuous vector represen-
tation, that potentially contains the previous context observed so
far. Not including any limitation on the previous context leads to
the generation of similar hypotheses that only differ in words far
from the current time step. This fact limits the effectiveness of
beam search, reducing hypothesis diversity and exploration. The
LMHR parameter sets the length of the LM context, in terms of
words, that is considered before performing hypothesis recombi-
nation. For example, setting LMHR to 3 means that hypotheses
whose context is longer than three words are recombined. LMHR
differs from the conventional recombination induced by WFSTs,
as in that case recombination is limited to the precomputed trans-
ducer resulted from combining the HCLG model (Mohri & Riley,
1999). Indeed, LMHR values can easily go beyond the usual 4 or
5-grams commonly used to compute WFSTs. In other words, the
LMHR parameter enforces a structural limitation to the previous
LM context, while the internal continuous state of neural-based
LMs is preserved.

On the other hand, inference in neural-based LMs is compu-
tationally demanding. In this sense, the LMHP parameter pro-
vides an additional mechanism to control the number of active
hypotheses at word level, that is, the number of hypotheses
that will be expanded when a word-end node is reached. Thus,
LMHP limits the number of queries (inferences) performed by the
neural-based LM speeding up the decoding process.

3. Simultaneous machine translation

Current state-of-the-art MT systems (Barrault, et al., 2020)
are based on the Transformer architecture. However, this archi-
tecture was originally envisioned to entirely process a sentence
before generating the corresponding translation, and thus it is
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ot well-suited for a streaming scenario under real-time con-
traints. Recently, some variants of attention-based architectures
hat are able to carry out simultaneous translation have been
resented (Arivazhagan, et al., 2019; Elbayad, Besacier, & Verbeek,
020; Ma, et al., 2019; Ma, Pino, Cross, Puzon, & Gu, 2020; Raffel,
uong, Liu, Weiss, & Eck, 2017). Basically, these variants limit
he attention mechanism to those input words available in the
tream, since the complete sentence cannot be observed. How-
ver, we focus on two Transformer-based variants: the Monotonic
ulti-Head Attention (MMA) framework (Ma et al., 2020) and the
fficient multi-path wait-k approach (Elbayad et al., 2020), since
oth have achieved competitive results on reference tasks.
On the one hand, two attention mechanisms are discussed

n Ma et al. (2020), the Hard MMA (MMA-H) that attends only
single position in the input (Raffel et al., 2017), and the Infi-
ite Lookback MMA (MMA-IL) that keeps track of all previous
ositions in the input (Arivazhagan, et al., 2019). However, MMA-
L attention mechanism is very computationally demanding and
treaming response-time requirements cannot be met. Therefore,
e resort to the MMA-H in this work. In MMA-H, a hyper-
arameter λ must be adjusted in order to control the balance
etween system latency and quality. Higher values of λ will bias
he multiple heads in the attention mechanism towards reading
ynchrony, increasing translation speed but degrading accuracy.
On the other hand, wait-k models read k words from the input

entence before alternating write/read operations of one word
t a time, being the write operation the generation of a target
ord (Ma, et al., 2019). Wait-k models have proved to obtain bet-
er performance when trained for the specific k value employed
n decoding (Zheng et al., 2019). This is exactly what is tackled
y Elbayad et al. (2020) when proposing their efficient multi-path
ait-k models. These models are trained across multiple values
f k, allowing to perform the decoding with different latency
onstraints.
The conventional offline MT decoding is carried out using

eam search. However, the streaming setup conditions the decod-
ng process in simultaneous MT. First, the beam-search decoder is
eplaced by a greedy decoder to work under real-time constraints.
econdly, the decoding algorithm must carry out simultaneous
ranslation, and start translating without having received the
ntire source sentence.

. Direct segmentation model

Our streaming cascade-based ST system integrates the ASR
nd MT components described above in Sections 2 and 3. How-
ver, streaming ST poses additional challenges that combine
hose of translating error-prone ASR output with those of simul-
aneous MT processing unbounded word sequences. As discussed
n Section 1, simultaneous Transformer-based MT systems trained
t the sentence level are not able to properly produce longer
ranslations than those observed in training. Besides, an addi-
ional related problem with Transformer models, already men-
ioned in Section 2.2, is the significant increase of computational
equirements as a function of the length of the input sequence.
hus, an intermediate preprocessing step that perfectly accom-
odates the continuous output of the streaming ASR system to

he current capabilities of simultaneous MT systems is needed
o achieve real-time streaming ST. In this regard, this section
ntroduces a novel state-of-the-art segmentation model specially
uited for streaming cascade-based ST.
The goal of a segmenter in a ST pipeline is to split the con-

inuous stream of words generated by the upstream ASR system
nto non-overlapping chunks that maximize the accuracy of the
ownstream MT system. This is necessary in order to transform
nbounded-length ASR transcriptions into sentence-like chunks
306
hat can be processed by MT models, which have been trained
sing sentence-aligned data. Every time the segmenter emits an
nd-of-segment event, the MT encoder and decoder are reset
o make a fresh start of the translation process. Although re-
ent advances in document-level MT could alleviate the need
or a segmenter (Junczys-Dowmunt, 2019) in the future, as dis-
ussed above it still remains a necessary component for streaming
ascade-based ST. In this work, the DS model is reviewed (Iranzo-
ánchez, et al., 2020). This model innovatively considers a word
ontext not only into the past, but also into the future, as well as
coustic information to take segmentation decisions on the ASR
utput.
Formally, the segmentation problem is the task of splitting a

equence of input words w
J
1 into non-overlapping chunks. We

epresent this with a sequence of split/non-split decisions, yJ1,
ith yj = 1 if the associated word wj is the word that ends a
hunk; and yj = 0, otherwise. In this work, as mentioned above,
e incorporate acoustic word-based features x̌J1 aligned with the
equence of words output by the ASR system. From a statistical
iewpoint, the sequence of split/non-split decisions is taken on
he basis of

ˆ
J
1 = argmax

yJ1

p(yJ1 | w
J
1, x̌J1)

= argmax
yJ1

J∏
j=1

p(yj | yj−1
1 , w

J
1, x̌J1). (1)

However, in a streaming setup, we need to bound the sequence to
d words into the future (hereafter, future window) to meet latency
requirements

ŷJ1=argmax
yJ1

J∏
j=1

p(yj | yj−1
1 , w

j+d
1 , x̌j+d

1 ). (2)

Indeed, for computational reasons and to prevent an ever-
growing unbounded history, the word sequence w

j+d
1 is limit to

words into the past, and the acoustic sequence x̌j+d
1 drops its

istory as

ˆ
J
1=argmax

yJ1

J∏
j=1

p(yj | yj−1
j−n, w

j+d
j−n, x̌j+d

j ). (3)

The DS model estimates the probabilistic term in Eq. (3) as
chematically depicted from bottom to top in Fig. 1. First, the
nput word sequence w

j+d
j−n is replaced by an extended version

hat incorporates previous split decisions yj−1
j−n. The new sequence

′j+d
j−n inserts an end-of-chunk token into the text input sequence
very time a split decision has been taken. Next, the correspond-
ng word embeddings hj+d

j−n of the input tokens are computed and
nput into a GRU-based RNN (Cho, et al., 2014), represented by
unction f1( ). So, the resulting text state vectors are defined as
j+d
j = f1(h

j+d
j−n). (4)

Acoustic word-based vectors x̌j+d
j are obtained from three

coustic features associated to each word: duration of the current
ord, duration of the previous silence (if any), and duration of
he next silence (if any). Next, the split probability is computed
y concatenating text and audio vectors of the current word and
hose in the future window, and passing them through a FFN,
epresented by function f2( ), as

(yj | yj−1
j−n, w

j+d
j−n, x̌

j+d
j ) ≈ f2([s

j+d
j ; x̌j+d

j ]). (5)

The incorporation of the acoustic word-based vectors into the
segmentation model has been shown to outperform a version of
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w

Fig. 1. Architectural overview of the DS model. At the bottom, input acoustic
ord-based vectors x̌j+d

j are found. Then, inside the dashed boundary, the

input word sequence w
j+d
j−n is processed by an RNN and concatenated with

the acoustic word-based vectors before passing through a FFN to output p(yj |

yj−1
j−n, w

j+d
j−n, x̌j+d

j ).

the segmentation model that only depends on the word sequence
w

j+d
j−n in order to decide whether to split or not (Iranzo-Sánchez,

et al., 2020).
At training time, the components inside the dashed boundary

in Fig. 1 are first pre-trained using only text data, and this allows
training with more data, as there is a limited amount of audio
datasets that include explicit sentence-level segmentation. Then,
the RNN is frozen and training of the FFN continues with the
addition of acoustic word-based vectors.

The segmenter just described is a streaming-ready model, so
no specific adaptation needs to be performed to the decoder
in a streaming setup. A greedy and a beam-search decoders
were implemented to search for the most probable sequence of
split decisions according to Eq. (3), but no significant differences
in performance were observed between them (Iranzo-Sánchez,
et al., 2020). Basically, this decoder moves a sliding window over
the ASR output in order to decide whether to split or not after the
current word. If a split decision is taken, an end-of-chunk token is
inserted right after the current word wj, and the decoding process
continues.

5. Evaluation

In this section, after describing the experimental streaming
setup, the ASR and MT components are independently assessed.
Then, the complete ST pipeline concatenating the ASR system, the
segmentation model and the simultaneous MT system is finally
evaluated in terms of accuracy and latency.

5.1. Experimental setup

In order to properly evaluate the accuracy and latency of
the proposed ST system, the testing conditions must mirror as
close as possible those of a real streaming ST use case. This is
why we have decided to use the Europarl-ST corpus (Iranzo-
Sánchez, et al., 2020) for evaluation purposes. The Europarl-ST
corpus is a collection of interventions carried out by Members of
the European Parliament (MEP) between 2008 and 2012, jointly
with their corresponding transcriptions and translations. Unlike
307
other corpus, the data is provided aligned at both, segment and
intervention levels. Therefore, the segment-aligned data can be
used during training, and entire interventions can be used at
testing time in order to simulate real streaming conditions. This is
the experimental setup that has been selected for this work. The
advantage of this setup is that, by using the entire interventions
at testing time, we are able to properly measure the performance
of the streaming ST system in its intended setting. As mentioned
in Section 1, each intervention is several minutes long, and this
motivates the inclusion of the segmenter component, as the MT
system would be unable to translate the entire recording oth-
erwise. Additionally, the ST task of parliamentary debates is a
realistic and challenging task that currently receives much inter-
est due to the actual need to find an accurate enough solution in
the near future (European Parliament & DG Translation, 2019).

In this work, a state-of-the-art streaming Spanish ASR system
is cascaded with simultaneous MT systems to perform ST from
Spanish (Es) into French (Fr) and English (En). The statistics of the
language pairs of the Europarl-ST corpus involved in our evalu-
ation are shown in Table 1. For the purpose of these statistics,
an oracle segmentation based on end-of-sentence punctuation
marks was applied to split videos into chunks. Consequently, the
average length of the resulting chunks was 10 s, and 27 to 28
words for Spanish and English, and 32 to 33 words for French.

5.2. Automatic speech recognition

The AMs integrated in our ASR system follow the hybrid
approach introduced in Section 2.1. First, a GMM–HMM is used
to initialize the required alignments to train the subsequent DNN
architectures. Then, context-dependent FFN–HMMs with three
left-to-right states are trained. More precisely, our ASR system
uses 48-dimensional feature vectors as a result of preprocessing
with a Hamming window of 25 ms shifted at 10 ms intervals
into 16 Mel-frequency cepstral coefficients (MFCC) plus deltas
and accelerations (Zolnay, Schluter, & Ney, 2005). The input to
the FFN is a context of 11 frames unrolled into a 528-dimensional
vector. This FFN includes 8 layers containing 2048 hidden units
each followed with Rectified Linear Units (ReLU), and a final
softmax layer with 10K labels corresponding to the number of
clustered subphonetic units considered in this task. This network
is trained using plain backpropagation to optimize cross-entropy.
The feature extraction process, the training of the GMM–HMM
and the FFN–HMM systems were performed with the transLec-
tures UPV toolkit (TLK) (del Agua, et al., 2014). The FFN was
used to bootstrap a BLSTM–HMM with 8 layers and 512 units per
direction. Differently from the FFN, the BLSTM network uses 85-
dimensional filter-bank features (Aggarwal & Dave, 2012). This
network is trained using TensorFlow (Abadi et al., 2015) with
cross-entropy loss during 16 epochs. Dropout (Hinton, Srivas-
tava, Krizhevsky, Sutskever, & Salakhutdinov, 2012) and specaug-
ment (Park, et al., 2019) regularization techniques were used to
improve the generalization of the model. We performed Back-
Propagation Through Time (BPTT) limited to 50 frames according
to Zeyer et al. (2017). Table 2 shows statistics of the transcribed
speech data sources used to train our AMs. Figures of internal,
private speech data sources are provided organized by domain.
Overall, almost four thousand hours were used for training. In
addition, a multi-domain dev set of 41 h, which included the dev
set of Europarl-ST, was used to tune model hyperparameters.

Table 3 shows statistics of data sources adding up to over 3.4
billion of words devoted to LM training. First, we trained a 4-gram
model with Kneser–Ney discount (Kneser & Ney, 1995) using the
SRILM toolkit (Stolcke, 2002). We limited the system vocabulary
to the most probable 255K words. Next, concerning the neural
LMs, we trained both a LSTM-based and a Transformer-based LMs
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Table 1
Basic statistics of the Europarl-ST corpus for the training, development and test sets for the Es–En and Es–Fr language
pairs.

Training Dev Test

Lang Vids Chks Hrs Kwords Vids Chks Hrs Kwords Vids Chks Hrs Kwords
Pairs Src Trg Src Trg Src Trg

Es–En 727 7402 21.6 203 200 202 1947 5.7 53 53 206 1816 5.3 50 50
Es–Fr 439 4673 13.7 129 149 121 1115 3.2 30 35 124 1082 3.2 31 36
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Table 2
Statistics of transcribed Spanish speech data sources used to train AMs.
Data source Hours

Internal: TV, entertainment 3034
Internal: education 306
Internal: user-generated content 202
Internal: politics 158
Internal: audiobooks 21
RTVE2018 (Lleida, et al., 2019) 205

TOTAL 3926

(TLM). On the one hand, our LSTM LM, with a 256-dimensional
embedding and two layers of 2048 hidden units, was trained
using the CUED-RNNLM toolkit (Chen, Liu, Qian, Gales, & Wood-
land, 2016) for 6 epochs. BPTT was set to consider the 6 previous
words. Training criterion was based on the Noise Contrastive
Estimation (NCE) (Mnih & Teh, 2012) to accelerate the training
process. Also, VR was used to speed up the inference process. For
this model, we sampled a 500M words subset from the available
training data to accelerate the training process. On the other
hand, we trained a Transformer LM using a customized version
of the FairSeq (Ott, et al., 2019) toolkit, with the same training
dataset as the LSTM, using a configuration consisting of a 24 layer
network with 768 units per layer, 4096-unit FFN, 12 attention
heads, and an embedding of 768 dimensions. This model was
trained during 8 epochs, with batches limited to 512 tokens, 512
sentences, and 512 words per sentence. Model parameters were
updated every 32 batches. During inference, VR was also used to
speed up TLM score computation. Both neural LMs and the 4-
gram LM used the same vocabulary. The out-of-vocabulary (OOV)
ratio in this task for this vocabulary was less than 0.4%, in both
dev and test sets.

Table 4 shows the figures of baseline experiments with per-
lexities, weights for the interpolated models, and Word Error
ate (WER) for the three types of LMs considered in this work: n-
ram (NG), LSTM, and Transformer (TLM), and their interpolated
ombinations. Hyperparameters were tuned on the dev set as de-
ined in Baquero-Arnal, et al. (2020). These baseline experiments
llow us to select the best LM combination for the streaming

etup. 0
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Regarding these results, while the difference in terms of per-
lexity is significant when considering neural LMs and its com-
inations, this improvement is not reflected in terms of WER,
here the interpolated models provided very similar figures. The
onclusion that can be drawn after these results is that the AM
s sound, and it can depict promising paths during the decod-
ng, not requiring much help from the LM. This is reflected in
he fact that a small relative reduction of 6.7% in WER is the
ifference between the LMs with the highest (n-gram) and the
owest (three-way interpolation) perplexity. Therefore, in favor
f studying the history limitation of the TLM, and to keep the
ecoding process as lightweight as possible, we have selected
or the following experiments the interpolated model combin-
ng the n-gram and the TLM. The interpolation of n-gram and
LMs was also proved in Baquero-Arnal, et al. (2020) to be an
ssential ingredient of our streaming ASR systems for English
hen positively compared in well-established benchmarks to
ther state-of-the-art streaming ASR systems (Moritz et al., 2020;
hang et al., 2020; Zhou, et al., 2020).
The following set of experiments are devoted to study the

mpact of the streaming parameters presented in Section 2.1 on
he system performance. These parameters are the nlookahead that
efines the length in seconds of the sliding window and has a
irect impact on the baseline latency, the history size for the TLM,
nd finally the LMHR and LMHP, that are related to the pruning
rocess in order to minimize the computational requirements of
he neural LMs.

Fig. 2 shows results on WER as a function of the nlookahead in
econds on the Europarl-ST dev set. The rest of the parameters are
ixed as defined in the baseline experiments. As expected, lower
ER figures are achieved as the length of the lookahead window
rows to consider more future frames to compute the acoustic
core. However, we need our system to work under real-time
onstrains, meaning that we should ensure a reasonable trade-
ff between WER and latency. In this case, setting this parameter
o a particular value introduces a fixed delay equal to nlookahead
econds, that again, is the length of the sliding window that is
pplied over the input stream. Taking into account our previous
ork in streaming ASR (Jorge, et al., 2020), an nlookahead value of

.6 s is a reasonable baseline delay, since subsequent components
Table 3
Statistics of Spanish text resources used for language modeling. S = Sentences, RW = Running words, V =

Vocabulary. Units are thousands (K).
Corpus S(K) RW(K) V(K)

Internal: TV, entertainment 4799 59235 307
Internal: education 87 1526 35
Internal: politics 1361 35170 126
Opensubtitles (OpenSubtitles, 2020) 212635 1146861 1576
UFAL (UFAL Medical Corpus, 2020) 92873 910728 2179
Wikipedia (Wikipedia, 2020) 32686 586068 3373
UN (Callison-Burch, Koehn, Monz, et al., 2012) 11196 343594 381
News Crawl (News Crawl corpus (WMT workshop) 2015, 2015) 7532 198545 648
eldiario.es (Eldiario.es, 2020) 1665 47542 247
El Periódico (ElPeriodico.com, 2020) 2677 46637 291
Common Crawl (CommonCrawl 2014, 2014) 1719 41792 486
News Commentary (News Crawl corpus (WMT workshop) 2015, 2015) 207 5448 83

TOTAL 369434 3423146 5785
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PLs, interpolation weights and WERs for EuroParl dev and test sets.
Model PPL-dev PPL-test Weights WER-dev WER-test

NG 70.3 78.4 – 10.5 11.3
LSTM 46.3 54.4 – 10.2 10.9
TLM 32.1 37.6 – 9.9 10.7
NG+LSTM 41.7 48.0 (0.20/0.80) 10.0 10.8
NG+TLM 30.2 34.8 (0.10/0.90) 9.8 10.5
LSTM+TLM 32.0 37.5 (0.07/0.93) 9.9 10.6
NG+LSTM+TLM 30.2 34.8 (0.09/0.04/0.87) 9.8 10.5

Fig. 2. WER vs nlookahead in seconds on the EuroParl-ST dev set.

Fig. 3. Perplexity as a function of the TLM history size measured in n words on
the EuroParl-ST dev set.

of the cascade ST system will introduce additional delays. Hence,
we fixed this value for the following experiments.

As mentioned in Section 2.2, the computational cost of the
TLM requires to limit its history size in order to perform stream-
ing decoding. For this reason, Fig. 3 explores the impact of the
TLM history size, in terms of the number of words n, evaluating
the perplexity on the dev set.

As observed in Fig. 3, increasing the history size consistently
decreases perplexity, reaching a minimum value with a history
309
Fig. 4. WER vs. RTF as a function of the beam width without limiting the value
of LMHP (LMHP=Inf) and considering LMHP equal to 80 on the Europarl-ST dev
set.

size of 50 words. Additionally, we have validated this parameter
in terms of WER, but differences were not significant on the
Europarl-ST dev set. Therefore, we decided to adopt a history size
of 50 words.

Regarding decoding pruning parameters, we have also studied
the effect of the LMHR parameter that controls the length of
the previous context to perform hypothesis recombination during
decoding. In line with the effect of history size discussed above,
LMHR had little impact in WER on the Europarl-ST dev set. For
this reason, and considering that a shorter context involves ear-
lier hypothesis recombination and consolidation reducing system
latency, LMHR was set to 3.

The second pruning-related parameter is the LMHP, that con-
trols the number of active hypotheses at word level during de-
coding. Consequently, this parameter affects WER and the Real
Time Factor (RTF) of the system. The RTF is defined as the ratio
between the decoding time of an audio input and its duration.
Fig. 4 illustrates WER vs. RTF results varying beam width with-
out limiting LMHP (LMHP=Inf) and fixing that value to 80. As
observed, limiting the number of active hypotheses to 80 has no
negative impact on WER in line with our previous work (Jorge,
et al., 2020). This means that the information provided by the AM
is definitively enough to figure out the best path, so the number
of active hypotheses querying the LM are somehow limited in the
Europarl-ST task. Considering this, LMHP equal to 80 is adopted
for the rest of the experiments, to ensure that the performance
of the decoder is kept even in difficult parts of the decoding.

To sum up, in this section we have defined the ASR system
that will provide the transcriptions to the MT system. The final
ASR system is based on a BLSTM acoustic model with a lookahead
context window of 0.6 s, using the interpolation of the n-gram
model and the TLM with a limited history of 50, with the pruning
parameters LMHR equal to 3 and LMHP equal to 80. This sys-
tem provides 9.8 and 10.5 WER points on Europarl-ST dev and
test sets, respectively. These figures are good enough to provide
high-quality transcriptions to ease the downstream MT process.

5.3. Simultaneous machine translation

Offline and simultaneous MT systems were trained for each
of the translation directions using the Transformer BASE con-

figuration (Vaswani, et al., 2017) implemented with the Fairseq
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able 5
raining data used for the general-domain neural MT systems in millions of
entence pairs.
Corpus Es–En (M) Es–Fr (M)

Common Crawl (CommonCrawl 2014, 2014) 1.8 –
DGT (Tiedemann, 2012) – 4.8
EU Bookshop (Tiedemann, 2012) 5.2 4.9
EU Bulletin EU Bulletin (2020) 1.0 –
JRC-Acquis (Tiedemann, 2012) – 1.6
United Nations (Callison-Burch et al., 2012) 11.2 25.8
Wikipedia (Wikipedia, 2020) 1.8 –

toolkit (Ott, et al., 2019). The initial models are general out-of-
domain systems trained with the data shown in Table 5. After
training finishes, domain adaptation by finetuning (Luong & Man-
ning, 2015) was carried out using the Europarl-ST training data.
Finetuning is performed using the SGD optimizer and a fixed
learning rate, equal to that used in the general-domain model
when training finished. Early stopping is carried out by measuring
performance against the Europarl-ST dev set.

In the case of the MMAH models, the trade-off between ac-
uracy and latency has been explored by training several models
arying the hyperparameter λ. Wait-k models are trained using
he multi-path strategy sampling different values of k at each
raining step, and therefore the value of k can be specified at de-
oding time. The accuracy of MT systems is evaluated in terms of
ilingual Evaluation Understudy (BLEU) (Papineni, Roukos, Ward,
Zhu, 2002). BLEU gauges the degree of n-gram overlapping be-

ween the automatic and reference translations ranging n from 1
o 4. In addition, a penalization factor is included if the automatic
ranslation is shorter than the reference translation.

In addition to BLEU, the theoretical latency of simultaneous
T systems is usually evaluated in terms of delay of the output
ith respect to the input by three measures: Average Proportion
AP) (Cho & Esipova, 2016), Average Lagging (AL) (Ma, et al., 2019)
nd Differentiable Average Lagging (DAL) (Cherry & Foster, 2019).
o define AP, AL and DAL we need to introduce function g( ), that
or each output position i, g(i) indicates how many words from
he input had been read when output word ei was written. AP is
n average delay, in terms of input words, taking into account the
ource sentence length |w|, that is,

P =
1

|w| · |e|

|e|∑
i=1

g(i). (6)

AL can be understood as the average delay, in terms of input
words, of the system with respect to an ideal translator that
does not need to wait for input words to generate the next word
(wait-0 policy) (Ma, et al., 2019), that is,

AL =
1
τ

τ∑
i=1

g(i) −
i − 1
γ

(7)

where γ = |e|/|w|. In order to account for differences in source
and target length, the measure is computed only up to the input
position at which the entire source sentence has been fully read

τ = argmin
i:g(i)=|w|

g(i) (8)

Both AP and AL, specially the former, present some issues (Cherry
& Foster, 2019). DAL tries to solve those issues by assigning a cost
to write operations, while at the same time presenting a measure
that is differentiable and could be part of a loss function. In order
to do this, a modified delay g ′(i) including the cost of writing
operations is computed as

g ′(i) =

{
g(i) i = 1
max

(
g(i), g ′(i − 1) +

1
)

i > 1 (9)

γ
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Table 6
BLEU, AP, AL and DAL results on the Europarl-ST dev set for Es–En and Es–
Fr with reference transcriptions and oracle segmentation as a function of the
hyperparameter λ.
Model Es–En Es–Fr

λ/k BLEU AP AL DAL BLEU AP AL DAL

Offline – 44.3 1.00 29.68 29.68 33.5 1.00 31.09 31.09

MMAH
0.1 31.0 0.69 5.58 9.79 25.6 0.62 3.28 7.24
0.2 29.9 0.63 3.79 7.84 23.0 0.60 2.44 6.42
0.4 30.5 0.62 3.37 6.64 24.4 0.59 2.23 5.98

Wait-k

1 32.6 0.57 2.14 2.89 27.0 0.62 3.80 4.76
2 35.2 0.59 2.90 3.49 29.1 0.65 4.61 5.46
4 37.6 0.65 4.47 5.05 29.9 0.70 6.15 7.00
32 39.4 0.99 25.4 25.29 29.8 0.99 25.99 26.23

So, the DAL is defined as

DAL =
1
|e|

|e|∑
i=1

g ′(i) −
i − 1
γ

(10)

First, we evaluate the performance of MT systems by them-
selves, using the Europarl-ST dev set reference transcriptions
and oracle segmentation based on end-of-sentence punctuation
marks, in order to measure the accuracy gap incurred between of-
fline and simultaneous MT systems. Table 6 reports comparative
BLEU and latency measures as a function of the hyperparameter
λ for MMAH and k for wait-k when translating from Spanish into
English and French. Values of λ and k ≤ 4 were selected so
that similar latency figures were obtained for MMAH and wait-
k systems, and a fair comparison in terms of BLEU is possible. In
the case of wait-k, an exceptionally high value for k (k = 32)
simulating offline behavior was additionally tested to compare
BLEU scores with the offline systems. As observed, in this latter
comparison, the offline system supersedes the wait-k system
by 4.9 and 3.7 BLEU points for Es–En and Es–Fr, respectively.
This gap in BLEU is the baseline translation quality degradation
of deploying simultaneous vs. offline MT systems in order to
guarantee low-latency ST.

In the case of MMAH systems, latency is correlated with λ,
since as λ increases, latency decreases. When comparing BLEU
scores across λ values, we observe only a slight improvement
from λ = 0.4 to λ = 0.1, since heads gain in freedom to align
far apart one from the others. In wait-k systems, higher values of
k have larger delays as the model must wait longer before starting
to translate, but this results in better translation quality. The
value of k has a significant effect on quality for Es–En, whereas
for Es–Fr, k values higher than 4 have very similar performance.

As reported in Table 6, for the smallest latency values, wait-k
models outperform the equivalent MMAH models. As we increase
k allowing for slightly longer delays, wait-k models are much
better than MMAH models. Specifically, the wait-4 configuration
is 6.6 and 4.3 BLEU points better than the best MMAH model
in Es–En and Es–Fr, respectively. As a result of this comparison,
the multi-path wait-k approach was selected in the rest of the
experiments.

5.4. Speech translation

Once the ASR system has been adjusted for streaming condi-
tions in Section 5.2 and the simultaneous MT system was selected
in Section 5.3, we move on to evaluate the complete ST pipeline,
including the segmentation model which allows for a seamless
connection between the ASR and MT systems under a streaming
setup.

The architectural overview of the segmentation model pro-
vided in Section 4 is instantiated here. First, an embedding layer
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f size 512 followed by a GRU-based RNN of the same size is
sed in order to process the ASR text output. The generated word
tate vectors are then combined with the acoustic word-based
eature vectors and fed into a two-layer FFN with ReLU activation,
ollowed by a softmax output layer. During training, dropout of
.2 is applied after the text-based RNN as well as after each layer
f the FFN. Chunks belonging to the split class are upsampled
o that, on average, one third of the samples of each batch are
plit samples. Otherwise, the model has trouble converging, as
he data is heavily unbalanced. As previously mentioned, training
s carried out by first using a model with only a text RNN, and
nce it achieves convergence, its weights are frozen and training
ontinues with the addition of the acoustic features.
This segmentation model was trained using the Europarl-ST

ata, as well as additional data from the Europarl corpus (Koehn,
005) from years not covered by Europarl-ST. Its hyperparame-
ers, history size and future window length, were tuned on the
uroparl-ST dev set. As in Iranzo-Sánchez, et al. (2020), longer
istory sizes improve BLEU scores of the ST system up to a certain
oint, but similar BLEU scores are obtained beyond a history size
f 10 words. Thus, history size was fixed to 10 words in these
xperiments. However, the future window length has a significant
mpact on the performance of the ST system, not only in terms
f BLEU scores, but also in latency. It should be reminded that
he future window length d is the number of future words the
egmenter needs to see in order to make a split decision after
he current word. So, a trade-off between translation quality
nd latency in the segmentation model needs to be found in
onjunction with the simultaneous MT model.
Indeed, there are two main factors that contribute to the

uality–latency trade-off of the ST system: the already mentioned
uture window length d of the segmentation model and the
yperparameter k of the wait-k models, that is, the number of
ource words that the simultaneous MT system needs to read
efore starting the translation. At the beginning, given an input
SR stream, the segmenter and wait-k models accumulatively
ait for d + k − 1 words before the MT system starts writing
he translation. Then, the MT system will write a translated word
ach time a new input word is received from the segmenter,
ollowing the wait-k schedule.

In Section 5.3, we have discussed theoretical latencies in terms
f how many words the output is behind the input for simulta-
eous MT systems. However, the MT system must also be able to
ork fast enough not to fall behind the ASR system in a streaming
etup. High latencies in a streaming ST system can be caused by
aiting too long for the ASR input, or due to a high computational
ost of the MT system itself that makes it unfeasible to process the
SR output under real-time constraints. This is specially crucial in
he ST case, because due to the dependency on the ASR input, and
he realistic testing conditions, the system must keep an adequate
hroughput during the entire streaming session. A simultaneous
T system that translates significantly ahead of the ASR output
oes nothing to improve the response time, while at the same
ime, if at any point the MT system falls behind the ASR stream,
t will need to catch up at some point in the future. This means
hat short bursts of translation speed can only be used to catch
p and make up for previous slowdowns, but otherwise offer no
dvantage. We will test the behavior of our cascade ST system by
easuring its latency in our realistic streaming scenario.
To this purpose, we define accumulative word-level latencies

t three points in the system, as the time elapsed between a
ord spoken, and: (1) The moment the consolidated hypothesis

or that word is provided by the ASR system; (2) The moment
he segmenter has processed that word on the ASR consoli-
ated hypothesis; (3) The moment the MT system translates that

ord after being processed by the segmenter. In addition, some
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Table 7
Accumulative word-level latencies in seconds (mean ± std. dev.) for the ASR
and segmenter components of the ST system on the Europarl-ST dev set.

Latency (seconds)

ASR 1.6 ± 0.5
+ Seg. (d = 0) 2.0 ± 0.6
+ Seg. (d = 1) 2.4 ± 0.7
+ Seg. (d = 2) 2.8 ± 0.8
+ Seg. (d = 4) 3.5 ± 0.9

considerations should be done about how latencies have been es-
timated. On the one hand, it should be noticed that this ST system
is working with ASR consolidated hypotheses in the sense that
these hypotheses will not change as the audio stream is further
processed. Working with non-consolidated hypotheses it is also
possible, and in fact it reduces drastically the ASR latency. How-
ever, although in our experience non-consolidated hypotheses are
suitable for an ASR streaming scenario, we realized that when
combined with an MT system it produces an annoying flickering
effect. For this reason, despite the increase in ASR latency it was
decided to work only on consolidated hypotheses. On the other
hand, determining when a spoken word has been translated is
not a trivial task since translation is not a monotonic process,
and hence, a correspondence between input and output words
is required. Although it would be possible to retrieve alignments
from the translation process, in order to simplify the estimation of
the MT latency, it was decided to use the approximation recently
proposed in Arivazhagan, et al. (2020). In this approach, the
estimation of the alignment between words is approximated by
assuming a uniform monotonic alignment. More precisely, for a
given output word ei the position j of its corresponding word in
the input sentence is calculated as j = i · |w|/|e|.

Table 7 reports accumulative word-level latencies, in terms
of mean and standard deviation, for the ASR system plus the
segmentation model, before detailing latencies of the complete
ST system when incorporating the MT system. As previously
mentioned, latencies were computed using complete MEP inter-
ventions. All reported latencies are measured on a machine with
a i7-3820 CPU and a RTX 2080Ti GPU.

As observed in Table 7, the ASR system introduces a latency
of 1.6s. Around 0.9s is due to the lookahead context and other
decoding aspects, while the other 0.7s is related to the fact we
are working with consolidated hypotheses. The segmenter adds
an additional latency that ranges from 0.4s to 1.9s depending on
the future window length. This latency is mostly due to the need
to wait for the words in the future window to be consolidated by
the ASR, as the time taken by the segmenter to decide whether
to split or not is negligible (≃ 0.01s). In the case of d = 0, the
dditional delay of 0.4s with respect to the ASR system is due to

the fact that the segmenter needs to wait for the consolidation of
the next silence phoneme in order to compute the corresponding
acoustic features.

Next, we focus on the trade-off between latency and quality
of the complete ST system. Fig. 5 shows BLEU scores vs. average
word-level latency in seconds on the Europarl-ST dev set for Es–
En (top) and Es–Fr (bottom) translation directions. Each curve
represents a fixed value for the future window length d =

0, 1, 2, 4} of the segmenter, while each point on this curve from
left to right correspond to k = {1, 2, 4, 8} of the wait-k model
behind. As observed, in general terms, for a given latency, it
is more beneficial to use a lower value of d such as 1 or 2,
paired with a higher value of k, than to use configurations with
higher d but lower k. Therefore, we can conclude that, at lower
latency regimes, increasing k has a bigger positive impact than
increasing d. However, if we continue to increase k we quickly

start to get diminishing returns, at which point it is more efficient
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Fig. 5. BLEU vs average word-level latency for Es–En (top) and Es–Fr (bottom)
ith future window length d = {0, 1, 2, 4} of the segmentation model on
uroparl-ST dev set. Points on each curve from left to right represent increasing
alues of k = {1, 2, 4, 8} in the wait-k MT system.

o increase latency by giving more context to the segmenter.
verall, it can be said that the MT decoding strategy has a bigger
mpact on translation quality than the segmenter context, but
egmentation quality remains a limiting factor for downstream
T performance. This means that sometimes it will be necessary

o increase d if a certain MT quality threshold must be reached.
When looking for a final configuration to use, it would be ideal

o choose one that maximizes quality without adding so much
atency that the user experience is negative. We propose to use
latency similar to that of a professional (human) interpreter,

o that our (artificial) interpreter can be used in a similar way.
ortunately, there exists ample literature about measuring the
ar-Voice Span (EVS) of human interpreters, which is the delay
etween a chunk being spoken and its corresponding transla-
ion being produced. Many factors have been shown to affect
VS (Yagi, 2000), but a delay of 2–4 s is a reasonable expected
alue (Barik, 1973; Lederer, 1978; Lee, 2002). Therefore, we select
combination of d and k values that maximizes quality but does
ot exceed a latency of 4 s. Based on this, we have chosen d = 1
ith k = 4 for Es–En, and d = 0 with k = 2 for Es–Fr.
Next, we evaluate the proposed ST system on the Europarl-

ST test set in terms of accuracy and latency. First, in order to
measure the degradation of the ST performance introduced by up-
stream ASR and/or segmentation errors, we compare the system
accuracy depending on the input configuration: ASR output seg-
mented with the DS model, ASR output with oracle segmentation
and reference transcription with oracle segmentation. The oracle
segmentation is based on end-of-sentence punctuation marks. Ta-
ble 8 reports BLEU scores for the input configurations mentioned

above on the Es–En and Es–Fr Europarl-ST test sets. First, the
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Table 8
BLEU scores under the input settings for the wait-k MT system evaluated on the
Es–En and Es–Fr Europarl-ST test sets.
Input Es–En Es–Fr

Ref. + Oracle Seg. 34.8 27.5
ASR + Oracle Seg. 31.8 24.7
ASR + DS 30.0 22.9

Table 9
Accumulative word-level latencies in seconds (mean ± std. dev.) for the ASR,
segmenter and MT components of the ST system on Es–En and Es–Fr Europarl-ST
test sets.

Es–En Es–Fr

ASR 1.7 ± 0.5
+ Seg. 2.4 ± 0.7 2.0 ± 0.6
+ MT 4.0 ± 1.8 3.9 ± 1.9

configuration of reference transcription plus oracle segmentation
defines an upper bound for BLEU scores when neither ASR nor
segmentation errors are present. Then, the ASR output plus oracle
segmentation allows to know how much translation accuracy
degradation is introduced by the DS model shown in the last
row. As observed, the degradation in BLEU scores with respect to
the ASR output and DS model due to the effect of segmentation
errors is 1.8 points in both language pairs, while the impact of
segmentation plus ASR errors goes from 4.6 points for Es–Fr to
4.8 points for Es–En.

Table 9 shows accumulative word-level latencies for the three
components of the ST system on the Es–En and Es–Fr Europarl-
ST test sets. As expected from hyperparameter tuning on the dev
set, the average latency of the complete ST systems is 4 s for
both translation directions. Almost half of the latency is explained
by the ASR, while the other half is due to the segmenter plus
the MT system, though in different proportion depending on the
language. As observed, the MT component introduces the greater
amount of variability in the latency of the ST system.

Finally, we compare the translation accuracy and word-level
latency of the DS model with other streaming segmentation
schemes, integrating them into our streaming ST pipeline and
tuning them on the dev set under the same maximum 4-second
word-level latency constraint. Three segmentation schemes were
initially considered: a VAD-based segmenter (Silvestre-Cerdà,
Giménez, Andrés-Ferrer, Civera, & Juan, 2012), a monolingual
MT segmenter (Cho, Niehues, & Waibel, 2017) and an ASR-based
segmenter grounded on the by-product of the ASR decoding when
the special end-of-chunk token is recognized. However, the VAD-
segmenter was discarded because it makes the ST system to
work in an off-line manner. In other words, the VAD segmenter
prevents the ST system from translating simultaneously since the
ASR output only becomes available to the MT system as complete
chunks, and consequently only chunk-level latencies could be
measured. Table 10 shows comparative BLEU scores and accumu-
lative word-level latencies for the ST system as a function of the
segmentation scheme on the Europarl-ST test sets. As observed,
the DS model and the ASR-based segmenter achieved similar
BLEU scores, but both better than the monolingual MT segmenter.
However, the DS model clearly exhibits a lower latency variance
than the ASR-based segmenter, since the latter defines chunks
that are approximately 60% longer than the former leading the
simultaneous MT system to incur in a greater latency variability.
In addition, it should be reminded that the ASR-based segmenter
is a by-product of the ASR system. On the one hand, this means
that the ASR-based segmenter is taking advantage of the large
amount of data devoted to train the ASR system, indeed one order
of magnitude larger than the DS model. But, on the other hand,
the ASR-based segmenter is fully dependent on the ASR system
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able 10
omparative BLEU scores and accumulative word-level latencies across seg-
entation schemes evaluated on the Es–En and Es–Fr Europarl-ST test
ets.

Es–En Es–Fr

BLEU Latency BLEU Latency

Mono. MT 28.1 3.6 ± 4.7 21.4 3.7 ± 4.4
ASR-based 29.9 3.2 ± 3.1 23.1 3.9 ± 3.9
DS 30.0 4.0 ± 1.8 22.9 3.9 ± 1.9

in contrast to the high flexibility provided by the DS model, that
can be trained independently from the ASR system in terms of
both, input features and model architecture.

6. Conclusions

In this work we have presented a state-of-the-art streaming
T system under the cascade approach. After revisiting from a
treaming viewpoint the neural-based models behind the ASR
nd MT components, special attention is devoted to the direct
egmentation model that allows to accommodate the continu-
us ASR output to the limited-length capacity of state-of-the-art
imultaneous MT systems.
In ASR, the BLSTM network employed for acoustic modeling

as modified in order to consider a lookahead context of future
rames to deal with the progressive access to the input acoustic
equence in a streaming setup. Indeed, WER figures proved the
mpact of the lookahead context in the ASR system. On the
ther hand, neural-based LMs exploited the idea of the VR term
o minimize inference time, while limiting the history size in
raining and via the LMHR and LMHP parameters in decoding had
minor effect in terms of WER, but allowed for low latencies on
he Europarl-ST benchmark under real-time constraints.

Next, two state-of-the-art simultaneous MT systems, MMAH
nd multi-path wait-k, were assessed before deploying a stream-
ng cascade-based ST pipeline. This pipeline integrating our DS
odel was extensively evaluated in conjunction with the best
erforming wait-k MT systems to guarantee low latency for us-
bility purposes while preserving translation quality. In this re-
pect, the DS model proved to play a crucial role in a streaming
T system to manage unbounded audio streams.
In terms of future work, performance improvements could be

btained by a closer coupling of the components of the cascade
ystem. Currently, the simultaneous MT system has a translation
olicy that is independent from the ASR input stream. A dynamic
olicy that takes into account how many ASR words are ready
ould provide improvements in quality with little to none addi-
ional latency. Another research line to improve performance is to
onsider segmentation and translation as a joint problem, there-
ore avoiding a source of cascading errors. Finally, an adequately
odified document-level MT model could carry out simultaneous

ranslation without the need for a segmentation model.
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