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a b s t r a c t

The steady-state simplified spherical harmonics equations (SPN equations) are a higher order approxi-
mation to the neutron transport equations than the neutron diffusion equation that also have reasonable
computational demands. This work extends these results for the analysis of transients by comparing of
two formulations of time-dependent SPN equations considering different treatments for the time de-
rivatives of the field moments. The first is the full system of equations and the second is a diffusive
approximation of these equations that neglects the time derivatives of the odd moments. The spatial
discretization of these methodologies is made by using a high order finite element method. For the time
discretization, a semi-implicit Euler method is used. Numerical results show that the diffusive formu-
lation for the time-dependent simplified spherical harmonics equations does not present a relevant loss
of accuracy while being more computationally efficient than the full system.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The distribution of the neutrons inside a reactor core is
modelled by means of the Boltzmann neutron transport equation.
This integro-differential equation depends on four independent
variables defined in a total of seven dimensions: three for the po-
sition, two for the direction of the neutrons, one for energy and one
for time [1]. That makes obtaining the analytic solution (excluding
some very simple problems) a very challenging problem. Therefore,
two types of methodology are normally used to approximate this
equation.

The first is to use stochastic methods such as the Monte-Carlo
methodology, where discrete particle histories are tracked. Tradi-
tionally, these methods only allow steady-states computations.
Recently, this kind of methods have been also used for dynamic
computations [2e4].

The other alternative is to use deterministic methods that
numerically solve approximations to the Boltzmann transport
equation as a differential equations. Amongst the deterministic
methods, there are many alternatives depending on the treatment
of the continuous dependence of the independent variables.
by Elsevier Korea LLC. This is an
For the energy dependence, the multigroup approximation is
considered where the continuous energy is divided into several
discrete energy groups. The approximation reduces the continuous
equation into several monoenergetic equations that are coupled
through the fission or the scattering terms. In this work, the spatial
discretization is made by using a continuous Galerkin finite
element method. This methodology has been applied to several
approximations of the neutron transport equation giving very ac-
curate results and using large nodes and a moderate number of
degrees of freedom in the finite element expansion [5,6]. Moreover,
this methodology can easily treat different kind of meshes in the
discretization. This facilitates the analysis of reactors with any type
of geometry (including hexagonal geometries or unstructured
meshes for pin-level computations). This cannot be easily done
with other discretizations such as finite difference methods or
nodal methods as it is discussed in Refs. [7,8].

For the steady state computations, the time dependence is
removed by forcing the criticality of the system. For that purpose,
the l-modes problem is used, which is obtained by dividing the
fission term by a positive number l. This problem is a generalized
eigenvalue problem where the largest eigenvalue in magnitude
corresponds to the k-effective of the nuclear system and the cor-
responding eigenfunction is associated with the neutronic flux
distribution inside the core. Alternative problems can be defined,
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but their computation is considerably more expensive [9]. Once the
steady-state problem is obtained, different time schemes can be
applied to discretize the time dependence of the equations. The
most common method is to use a finite differences technique such
as the implicit backward method [10,11]. Moreover, one can apply
quasi-static methods that assume a decomposition of the flux as a
product of two functions that are obtained by using two indepen-
dent time scales [12,13]. Another possibility is to use modal
methods that describe the flux as a linear combination of a set of
dominant modes [14,15]. In this work, a stable semi-implicit
scheme is used for the time discretization because first order
schemes are a usual practice in the existing neutronic solvers.
Future works will study more elaborated higher order schemes in
time.

Finally, the angular dependence treatment usually classifies the
approximations of the neutron transport equation. Over the years,
the most used approximation is the neutron diffusion equation
because, even though its use is limited by certain conditions, it
gives accurate solutions with a relatively low computational cost.
Nevertheless, to study new fuel designs and configurations with
complex geometry more precise approximations of the neutron
transport equations can be considered. The discrete ordinates
equations (SN equations) are obtained by using different quadrature
sets for the angular discretization [16e18]. The spherical harmonics
equations (PN equations) are then obtained by expanding the
angular variable in terms of spherical harmonics [19e21]. More-
over, one can apply the method of characteristics (MOC) that solves
the neutron transport equation along a large enough set of char-
acteristic lines generated by subdividing the solid angle domain
into several discrete directions [22,23]. All these models for a
realistic problem lead to large sets of equations that require
petascale computing to be solved [24]. In order to reduce these high
computational resources, a simplified formulation for the PN
equations was developed in Ref. [25] known as the simplified PN
equations or SPN equations. This approximation is derived from the
PN equations for a one-dimensional geometry where the partial
derivatives of the even moments are substituted by gradients and
the partial derivatives of the odd moments are substituted by
divergence operators. Even though this model is not convergent to
the neutron transport equation, it has been shown to be an
asymptotic correction to standard diffusion theory [26e28].

In the steady-state SPN equations, odd moments are normally
isolated and replaced again in the even moments equations, lead-
ing to a simplified formulation where only the even moments are
part of the equations. Several works [29e31] have verified this
approach. Another possibility is to consider the full set of equations
(even and odd moments). Both strategies (theoretically equivalent)
are used in this work for the time-dependent SPN equations. In
these equations, several approximations can be considered based
on different assumptions related to the time derivative of the
spherical harmonics moments. First, one can use the full SPN
equations where it is assumed that the time variation of all mo-
ments is different from zero (FSPN equations). In a second approach,
it is assumed that the odd moments are constant in time (DSPN
equations). This last consideration gives a simpler formulation than
the first one because (as with in the steady-state problem) only the
even moments appear in the equations and second order spatial
derivatives appear leading to a generalized time-dependent diffu-
sion equation. For the special case of N ¼ 1, the FSP1 and the DSP1
equation (with isotropic scattering) are equivalent to the telegra-
pher's model and the neutron diffusion equation, respectively.
Some works are devoted to comparing these two approximations
showing a retardation in the time response as the relaxation time
3862
increases [32,33]. However, it is not clear that these results are
maintained for N > 1 [34]. Finally, one can consider that only the
time derivative of the scalar flux (first moment) is not equal to zero
to obtain another time-dependent SPN formulation [35].

The main objective of this work is to compare the full and the
diffusive formulations of the time-dependent SPN equations
showing the differences between these two models for different
type of transients. These transients display differences between the
diffusion and higher approximations of the neutron transport
equations. However, if the full PN equations are used, they lead to
very large problems which require super computers to be solve.
This work also aims to verify the implementation of the proposed
methodology using the finite element method for the spatial dis-
cretization and the semi-implicit difference method to approxi-
mate the time dependence of the SPN equations. The results
obtained are compared with the ones computed with other
neutronic codes.

The rest of this paper is structured as follows. Section 2 presents
the steady-state SPN equations and the two treatments for the time-
dependent SPN equations considered here: the FSPN and the DSPN
formulations. Section 3 briefly reviews the finite element method
used for the spatial discretization of SPN equations. Section 4 de-
scribes the semi-implicit time discretization scheme to integrate
the time-dependent equations. Section 5 presents the analytical
solutions of the time-dependent SP1 and full SP3 equations for a
homogeneous slab. Section 6 contains the numerical results of this
work for different benchmark problems. Finally, the paper ends
with the main conclusions which were reached, (Section 7).
2. The time-dependent simplified spherical harmonics
equations

The simplified spherical harmonics equations are normally ob-
tained from the one-dimensional multigroup time-dependent
spherical harmonics equations, PN equations. These equations can
be expressed in matrix form as [1].

V v

vt
f0 þ v

vx
f1 þ S0f0 ¼ Ff0 þ

XK
k¼1

MkCk;

V v

vt
fn þ v

vx

�
n

2nþ 1
fn�1 þ nþ 1

2nþ 1
fnþ1

�
þ Snfn ¼ 0

n ¼ 1;…;N (1)

where the equations for the delayed neutron precursor concen-
tration are

v

vt
Ck ¼ �ldkCk þRkf

0 k ¼ 1;…;K: (2)

In the previous equations, the spatial and time-dependent op-
erators present are defined as

fn ¼ �fn
1;f

n
2;…;fn

G

�T
; (3)

Sn ¼

0BBBBB@
St1 � Sn

s11 �Sn
s21 … �Sn

sG1

�Sn
s12 St2 � Sn

s22 … �Sn
sG2

« « 1 «

�Sn
s1G �Sn

s2G … StG � Sn
sGG

1CCCCCA; (4)
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F ¼

0BBBBBB@
cp1

�
1�b1

�
n1Sf1 cp1

�
1�b2

�
n2Sf2 … cp1

�
1�bG

�
nGSfG

cp2

�
1�b1

�
n1Sf1 cp2

�
1�b2

�
n2Sf2 … cp2

�
1�bG

�
nGSfG

« « 1 «

cpG

�
1�b1

�
n1Sf1 cpG

�
1�b2

�
n2Sf2 … cpG

�
1�bG

�
nGSfG

1CCCCCCA;

(5)

V ¼

0BB@
1=v1 0 … 0
0 1=v2 1 «
« 1 1 0
0 … 0 1=vG

1CCA; Mk ¼

0BBB@
ldkc

d;k
1
«

ldkc
d;k
G

1CCCA ; (6)

Rk ¼
�
b1kn1Sf1 / bGk nGSfG

�
(7)

The variable fn
g ¼ fn

gðx; tÞ denotes the nth-moment of the
neutron flux. Ck denotes the delayed neutron precursor concen-
tration. Subindex g (g ¼ 1, …, G) refers to the energy group and
subindex k (k ¼ 1,…, K) refers to the precursor group. The total and
the fission macroscopic cross-sections are denoted by St and Sf,
respectively. The value of Sn

s is the nth-component of the scattering
cross section in the spherical harmonics expansion. The value of n is
the mean number of neutrons produced by fission. The value of v
denotes the neutron velocity. The spectrum of the prompt and the

delayed neutrons are denoted by cpg and cd;kg . The fraction of the

delayed neutrons is bgk such that the total delayed neutron fraction

bg ¼ PK
k b

g
k . Finally, the neutron precursor delayed constants are

represented by ldk.
In the expressions above it is assumed that the scattering is

isotropic, so the components of the scattering cross-sections are
assumed to be equal to zero for moments equal or higher than 1.
Moreover, the total cross-section, St, is approximated by the
transport cross-section Str.

The absorption cross-section Sag, which will appear later in the

text, is equal to St �
PG

g0¼1Ssgg0 .
The PN equations constitute a set of N þ 1 equations with N þ 2

unknowns. The most common option to solve this problem it to
remove the term dfNþ1/dx that appears in the N-th equation. Other
solutions, known as closures, have also been studied in the litera-
ture [36].

From Equation (1), the steady-state problem can be obtained by
dividing the fission term F by a positive number l to force the
criticality of the system. The steady-state PN equations are

d
dx

41þS0
stat4

0¼1
l
F
�
40;

d
dx

�
n

2nþ1
4n�1þ nþ1

2nþ1
4nþ1

�
þSn

stat4
n¼0; n¼1;…;N: (8)

where 4¼ f(x, 0) is the steady-state flux, S0
stat is the matrix given in

Equation (4) at t ¼ 0, the new F
�

operator is defined as
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F
�

¼

0BB@
c1n1Sf1 c1n2Sf2 … c1nGSfG
c2n1Sf1 c2n2Sf2 … c2nGSfG

« « 1 «
cGn1Sf1 cGn2Sf2 … cGnGSfG

1CCA; (9)

and the value of cg is cg ¼ cpgð1 � bgÞ þPK
k c

d;k
g bgk . The value for all

magnitudes corresponds to the value of them at time t ¼ 0. The
largest eigenvalue in magnitude corresponds to the k-effective of
the system.

This system of differential equations must be completed with
the boundary conditions of the reactor. In this work, we consider:

� Vacuum boundary conditions. We can use the Marshak's con-
ditions that, given a boundary position x0 and making use of the
spherical harmonics expansion, can be written as

ð
min

PnðmÞ
XN
n0¼0

2n0 þ 1
2

fn0 ðx0ÞPn0 ðmÞdm ¼ 0 n ¼ 1;3;…;N (10)

where Pn is the Legendre polynomial of degree n and m is defined as
m ≡ cos(q) where q is the angle between the x axis and the direction
of the incident neutron velocity [1].

For instance, in the P3 equations, if n⃗ is the normal direction at
the boundary x0, the Marshak's boundary conditions are:

1
2
f0 þ5

8
f2 ¼ n⃗f⃗

1
;�1

8
f0 þ5

8
f2 ¼ n⃗f⃗

3
: (11)

� Reflective boundary conditions. In this case, the only conditions
that make physical sense is forcing the odd moments are equal
to zero [1],

fnðx0Þ ¼ 0 ; n ¼ 1;3;…;N: (12)

The angular flux moments of the steady-state problems ob-
tained from the eigenvalue problem (8) are undetermined. Thus, a
normalization criterion must be defined. The mean neutron power
density production at time t is defined as

P
�
ðtÞ ¼ 1

Vt

XG
g¼1

ð
U

Sfgf
0
g
�
r⃗; t
�
dV ; (13)

where U is the reactor domain and Vt the total volume of the
reactor. The normalization criterion is such that, at steady-state, the
mean relative power production is equal to 1, i.e.

1 ¼ P
�
ð0Þ: (14)

The extension of the steady-state PN equations to be valid in
multidimensional geometries to obtain the SPN equations is done
by substituting in the even n equations the derivative with respect
to x by a divergence, and in the odd n equations the x derivative is
changed by a gradient [25,28]. However, in the time-dependent
case, several treatments for the time derivatives of the moments
can be considered that yield different time-dependent SPN
formulations.
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2.1. Full spherical harmonics equations (FSPN equations)

The full time-dependent multidimensional FSPN equations are

V v

vt
f0 þV

⃗
$f
⃗1 þS0f0 ¼Ff0 þ

XK
k¼1

MkCk;

V v

vt
fnV

⃗
�

n
2nþ 1

fn�1 þ nþ 1
2nþ 1

fnþ1
�
þSnf

⃗n ¼ 0; n odd;

V v

vt
fn þV

⃗
$

�
n

2nþ 1
f
⃗n�1

þ nþ 1
2nþ 1

f
⃗nþ1�

þSnfn ¼ 0 n>0; even ;

(15)

where n ¼ 1, …, N. The evolution of the delayed neutron precursor
concentration is given by Equation (2). Note that this formulation
yields to (N þ 1) (d þ 1)/2 scalar equations, where d is the
dimension of the problem (d ¼ 1, 2, 3).

The steady-state equations associated with the FSPN equations
are

V
⃗
�

n
2nþ1

4n�1þ nþ1
2nþ1

4nþ1
�
þSn4

⃗n¼0;nodd:

V
⃗
$

�
n

2nþ1
4
⃗n�1

þ nþ1
2nþ1

4
⃗nþ1�

þSn4n¼dn0
1
l
F
�
40;neven:

(16)
2.2. Diffusive spherical harmonics equations (DSPN equations)

The idea of this approximation is to generalize the time-
dependent neutron diffusion equation, that is equivalent to FSP1

equations where the time derivative of the current (f⃗1) is assumed
to be equal to zero. In this way, for the different SPN equations we
have

v

vt
f⃗
n ¼ 0; n odd: (17)

Equation (17) is then substituted into the FSPN equations
(Equation (2.1)) to obtain, for n ¼ 1, …, N,

V v

vt
f0 þ V⃗$f⃗

1 þ S0f0 ¼ Ff0 þ
XK
k¼1

MkCk; (18a)

V⃗
�

n
2nþ 1

fn�1 þ nþ 1
2nþ 1

fnþ1
�
þ Snf⃗

n ¼ 0 n odd: (18b)

V v

vt
fnþV

⃗
$

�
n

2nþ1
f
⃗n�1

þ nþ1
2nþ1

f
⃗nþ1�

Snfn ¼0 n>0; even:

(18c)

The equations for the delayed precursor concentrations are in
Equation (2). System (18) has a particular advantagewith respect to
the full formulation. The odd moments of Equation (18b) can be
isolated and substituted into Equations (18a) and (18c) to obtain the
diffusive spherical harmonics equations (DSPN equations)

V v

vt
fn � V⃗$

0@ n
�
Sn�1

��1

ð2nþ 1Þð2n� 1ÞV
⃗
�
ðn� 1Þfn�2 þ nfn

�
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þ
ðnþ 1Þ

�
Snþ1

��1

ð2nþ 1Þð2nþ 3Þ V
⃗
�
ðnþ 1Þfn þ ðnþ 2Þfnþ2

�1Aþ Snfn

¼ dn0Ffn þ dn0
XK
k¼1

MkCk n ¼ 0;2;…;N � 1:

(19)

Note that, now, the number of scalar equations in this system is
equal to (N þ 1)/2. Also, the resulting system of the DSPN equations
is a set of diffusion-like second order differential equations, which
can be treated with similar methods to the ones used for the time-
dependent neutron diffusion equation.

Using the linear change of variables proposed in Ref. [37] for the
steady-state SPN equations, we define

Um ¼ ð2m� 1Þf2m�2 þ 2mf2m; m ¼ 1;2;…;M � 1; (20)

UM ¼ ð2M�1Þf2M�2; (21)

where M ¼ (N þ 1)/2 and Um includes the group dependent diffu-
sive pseudo-moments

Um ¼ �um1 ; um2 ; …; umG
�T
; (22)

to obtain the system

V
v

vt
U � V⃗$ðDV⃗UÞ þ SU ¼ FU þ C: (23)

For instance, in the case of the P3 equations, the change of var-
iables is

U1 ¼ f0 þ 2f2 U2 ¼ 3f2; (24)

such that

U ¼
�
U1; U2

�T
:

In Equation (23), the velocity matrix (V), the effective diffusion
matrix (D), the absorption matrix (S), the fission matrix (F) and the
precursors term (C) are given by

D ¼

0BB@
1
3

�
S1
��1

0

0
1
7

�
S3
��1

1CCA; (25)

Sij ¼
X2
m¼1

cðmÞ
ij Sm; Vij ¼

X2
m¼1

cðmÞ
ij V; (26)

Fij ¼ cð1Þij F ; Ci ¼ di

XK
p¼1

MkCk; (27)

where the coefficients matrix, c(m) and vector d are

cð1Þ ¼

0BB@ 1 �2
3

�2
3

4
9

1CCA; cð2Þ ¼
0@0 0

0
5
9

1A; d ¼
�
1� 2

3

�
(28)

Following the same process and change of variables for the
steady-state problem, we obtain the eigenvalue problem
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�V⃗ðDV⃗UÞ þAU ¼ 1
l
F
�
U; (29)

where in this case

F
�

¼ cð1Þij F
�
: (30)

Finally, the previous equations, the boundary conditions with
this change of variables have the following forms [37].

The vacuum boundary conditions can be applied by forcing

�n⃗ DV⃗Uðx0Þ ¼ BUðx0Þ; (31)

where n⃗ is the normal direction to the boundary. For instance, the
matrix B for the SP3 case, is the result of the Kronecker product of
matrix b by an G � G identity matrix as

B ¼ b5IðG�GÞ b ¼

0BB@
1
2

�1
8

�1
8

7
24

1CCA (32)

The reflective boundary conditions are setting as

V
⃗
Umðx0Þ ¼ 0; m ¼ 1;2;…; ðNþ1Þ�2: (33)
3. Spatial discretization: the finite element method

A high order finite element method is used for the spatial dis-
cretization of the previous differential equations. For simplicity, let
us consider the steady-state problem and one energy group in the
formulations to explain the finite element discretization method.
The steady-state computation is the first step in any transient
analysis. A similar process is applied for the spatial discretization of
the time-dependent problems and problems with more energy
groups.

We start with the steady-state SP1 equation in the full version
(with the odd and the even moments) assuming S1

s ¼ 0 and
denoting Ss ¼ S0

s that is

1
3
V⃗40 þ St4

⃗1 ¼ 0; (34)

V⃗$4⃗
1 þ ðSt �SsÞ40 ¼ 1

l
nSf4

0: (35)

In matrix form, the previous expression can be written as0@ ðSt � SsÞ V⃗

1
3
V⃗$ St

1A�40

4⃗
1

�
¼ 1

l

�
nSf 0
0 0

��
40

4⃗
1

�
(36)

First, we define the weak formulation of the problem by pre-

multiplying it by a test function ðj0; j⃗
1Þ and integrating over the

reactor domain, U, to obtain
3865
ð
U

�
j0;j

⃗1�0B@ðSt�SsÞ V
⃗

1
3
V
⃗
$ St

1CA 40

4
⃗1

!
dV

¼1
l

ð
U

�
j0;j

⃗1��nSf 0
0 0

� 40

4
⃗1

!
dV :

(37)

Equation (37) is equivalent to

�
j0; ðSt � SsÞ40

�
U
þ
�
j0;V

⃗
$4
⃗1�

U

þ1
3

�
j
⃗1

;V
⃗
40
�
U
þ ðj

⃗1

;St4
⃗1ÞU

¼ 1
l

�
j0; nSf4

0
�
U
; (38)

where (a,b)U denotes the inner product !Ua $ b dV.
Now, if the Gauss identity is applied to the second term of

Equation (3), we obtain

�
j0;V⃗$4⃗

1�
U
¼ V⃗$

�
j0;4⃗

1�
U
�
�
V⃗j0;4⃗

1�
U
; (39)

and then, using the Divergence theorem on the second term of
Equation (39)

V⃗$
�
j0;4⃗

1�
U
¼
�
j0;n⃗4⃗

1�
vU
; (40)

Equation (38) is transformed into

�
j0; ðSt � SsÞ40

�
U
þ
�
j0;n

⃗
4
⃗1�

vU
�
�
V
⃗
j0;4

⃗1�
U

þ1
3

�
j
⃗1

;V
⃗
40
�
U
ðj
⃗1

;St4
⃗1ÞU ¼ 1

l

�
j0; nSf4

0
�
U
; (41)

where vU is the boundary of the domain and (a,b)vU ¼ !vUa $ b dS.
The last step is to divide the domain U into cells or subdomains

Uc such that U ¼ ∪c¼1;…;Nc
Uc where it is supposed that the cross-

sections, obtained by a previous spatial homogenization strategy,
are constant. Likewise, vUc is the corresponding subdomain surface
which is part of the boundary vU. Thus, Equation (3) is equivalent to

XNc

c¼1

�
Sc
t � Sc

s
��

j0;40
�
Uc

þ
XNc

c¼1

�
j0;n

⃗
4
⃗1�

vUc

�
XNc

c¼1

�
V
⃗
j0;4

⃗1�
Uc

þ
XNc

c¼1

1
3

�
j
⃗1

;V
⃗
40
�
Uc

þ
XNc

c¼1

Sc
t ðj

⃗1

;4
⃗1ÞUc

¼ 1
l

XNc

c¼1

nSc
f

�
j0;40

�
Uc

:

(42)

To solve the integrals over the subdomains, Uc, the function 40

and the components of 4⃗1 ¼ ð41
x ;4

1
y ;4

1
z Þ are approximated as sum

of shape functions, N a, multiplied by the unknown expansion co-
efficients as
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40z
XNdofs

a¼0

N a e40
a 4⃗

1
z
XNdofs

a¼0

N a
e4⃗1
a ; (43)

where Ndofs is the total number of degrees of freedom.
A continuous Galerkin approximation is used such that the test

functions space is the same as the space defined by the basis of
shape functions. The shape functions are taken as Lagrange poly-
nomials [38].

If one uses the above assumptions in Equation (3), the following
algebraic eigenvalue problem is obtained

Ae4 ¼ 1
l
Be4; (44)

where

A ¼
�
A11 A12
A21 A22

�
; B ¼

�
B11 0
0 0

�
; e4 ¼

�e40

e
4
⃗
1

�
; (45)

and the matrices elements (a, b) are taken as

A11ðabÞ ¼PNc

c¼1

�
Sc
t �Sc

s
�ðN a;N bÞUc

; A21ðabÞ ¼
1
3

XNc

c¼1

�
M
⃗

a;V
⃗
N b

�
Uc

;

A12ðabÞ ¼PNc

c¼1

 �
N a;n

⃗M
⃗

b

�
vUc

�
�
V
⃗
N a;M

⃗

b

�
Uc

!
;

A22ðabÞ ¼PNc

c¼1
Sc
t

�
M
⃗

a;M
⃗

b

�
Uc

; B11ðabÞ ¼
XNc

c¼1

nSc
f ðN a;N bÞUc

;

where M⃗a ¼ ðN a;N a;N aÞ.
In the expressions above surface integrals over the boundaries,

vUc, appear. They will depend on the boundary conditions. The
value of n⃗M⃗b is substituted by the first term of expression (32) if
vacuum boundary conditions are used or by zero if reflective
boundary conditions are employed.

These integrals only are different from zero if shape functions
N a and N b collide inside the same cell. Therefore, sparse matrices
are obtained. For a general problem with G energy groups, N mo-
ments and dimension d the size of the matrices is Nt¼ NdofsG(dþ 1)
(N þ 1)/2.

To solve the algebraic generalized eigenvalue problem (44), the
generalized Davidson method, implemented by the open source
library SLEPc, is used [39]. This eigenvalue solver updates the
eigenvector of a matrix by solving a linear system with an
approximation of this matrix known as preconditioner [40]. Usu-
ally, this approximation behaves better than the original matrix. In
this case, the ILU(0) factorization is taken from the library PETSc as
preconditioner [41]. Note that the matrices obtained have a block
structure. However, the nature of this formulationmeans that block
methods proposed in previous works by the authors [31], do not
converge as fast as before. Therefore, the eigenvalue solver is
applied directly to the entire matrices without taking into account
their block structure.

Now, the finite element process for the diffusive steady-state SP1
equations is shown. For that, we use the one energy group equation�
� V⃗

1
3
StV

⃗ þðSt �SsÞ
�
j ¼ 1

l
nSfj: (46)

The weak formulation in this case is
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�
j;

�
� V⃗

�
1
3
StV

⃗

�
þ ðSt � SsÞ

�
4

�
U

¼ 1
l

�
j; nSf4

�
U
; (47)

where j is a test function.
As in the previous case, the reactor domainU is decomposed as a

sum of subdomains Uc and the solution 4 is approximated in each
node as a sum of shape functions N a as

4z
XNdofs

a¼1

N ae4a: (48)

To apply this finite elementmethod, the Galerkin approximation
and Lagrange polynomials are also used.

Introducing the assumptions into theweak formulation (47) and
using the Gauss Divergence theorem yields a generalized algebraic
eigenvalue problem

Ae4 ¼ 1
l
Be4; (49)

where the matrix elements are now given by

Aab ¼
PNc

c¼1

�
1
3
Sc
t ðV⃗N a;V

⃗N bÞUc
� 1
3
Sc
t
�N a;n⃗V⃗N b

�
vUc

þ�Sc
t � Sc

s
�ðN a;N bÞUc

�
;

Bab ¼
XNc

c¼1

nSc
f ðN a;N bÞ; (50)

where the boundary conditions are used to compute the boundary
integral in the above expressions. See more details in Ref. [5].

For a general problem, the size of the matrices obtained with
this diffusive formulation is Nt ¼ (Nþ 1)GNdofs/2, that is dþ 1 times
smaller than the size of the full formulation, where d is the
dimension of the problem.

In this case, to solve the generalized eigenvalue problem (49),
the block inverse-free preconditioned Arnordi method (BIFPAM) is
used [31]. This method updates the successive eigenvectors by
computing the Krylov subspace associated to the residual matrix
(B � lA). Its convergence can be accelerated with a preconditioner
of this residual matrix. In particular, it uses the block Gauss-Seidel
preconditioner that takes advantage of the block structure that
appears if the number of moments and energy groups are greater
than 1.

The finite element method for the two formulations has been
implemented using the open source finite elements library Deal. II
[42]. For time-dependent problems, similar processes can be
applied in each case that lead to semi-discrete problems whose
time discretization will be described in next Section.
4. Time discretization: the semi-implicit method

Independently of the chosen formulation for the SPN equations,
the spatial discretization of the time-dependent problems yields to
a semi-discrete problem of the form

V
d
dt

Fþ TF ¼ FFþ PNp

p¼1
MpCp; (51)

where V, T and F are the discretized operator of the velocity, the
production and the fission, respectively. The form of these opera-
tors will depend on the formulation. The vector F contains the
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discrete version of themoments, ef for FSPN or eU for DSPN equations.
The vector Ck is the discretization of delayed neutron precursor
concentration Ck. The matrix Mk is the discretized operator of Mk.

Analogously, the equation for the concentration of delayed
precursors is

d
dt

PCk ¼ �LkCk þ Rkef0
; (52)

where Lk and Rk are the discretized operator of Lp ¼ ldk and Rk,
respectively. The matrix P denotes the mass matrix that is different
from the identity matrix because the basis of the FEM (Lagrange
polynomials) is not orthonormal.

Usually, for nuclear systems, the time-dependent semi-discrete
ordinary differential equation (4) are stiff, thus, it is suitable to use
implicit methods for its time discretization. Basically, this system is
composed of two sets of equations: one set for the moments and
another set for the concentration of delayed precursors, that are
coupled. The complete system can be assembled (obtaining only
onematrix equation) to design a full implicit scheme. However, this
treatment is computationally very expensive. In this work, the
alternative is to consider each set of equations independently and
to use a semi-implicit scheme (prompt implicit) because this kind
of scheme is cheaper and provides accurate results for the range of
selected time-steps. Other alternative can be splitting methods
[43].

The time interval [0, T] is divided into several subintervals [th, thþ1]
whereDth¼ thþ1� th. First, themoments at t¼ thþ1 are approximated
by applying a backward difference of first order for the partial time
derivative. The rest of terms are then substituted by its value at time
thþ1 except the concentration of precursors term. For this case, we
substitute the matrix by its value at time th. Thus, the vector of mo-
ments at time thþ1 can be approximated by solving the linear system

�
1
Dth

Vhþ1 þ Thþ1 � Fhþ1
�
Fhþ1 ¼ 1

Dth
VhFh þ

XK
k¼1

Mhþ1
k Ch

k ;

(53)

where the superindex h denotes the value of matrices and vectors
at time th.

This linear system is solved with the GMRES method provided
by the PETSc library [41]. Two different preconditioners are used to
solve the linear system. For the FSPN equations, the ILU(0) factor-
ization with a Cuthill McKee reordering is used from PETSc library.
For the DSPN equations, a block Gauss-Seidel preconditioner is
used. The inverses in the Gauss-Seidel method are approximated by
solving linear systems with the conjugate gradient method, the ILU
preconditioner and a residual error of 10�5 are used in this case.
This last strategy permits a partial matrix-free implementation that
avoids the full assembly of the matrices at each time-step. Seemore
details in Ref. [31].

Then, the concentration of delayed precursors equation is in-
tegrated. For that, we use a one-step implicit scheme where the
time derivative is approximated by a backward difference of first
order. The rest of the terms are approximated by their values at
time thþ1. In this way, the concentration of precursors can be
approximated by solving the linear system�

1
Dth

P þ Lhk

�
Chþ1 ¼ 1

Dth
PCh þ Rhkef0;hþ1

: (54)

This last system is solved with the GMRES method and the
ILU(0) preconditioner provided by the PETSc library.
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5. Analytical solutions of the FSP1, DSP1 and FSP3 equations
for a homogeneous slab

To compare theoretically both approximations, a homogeneous
slab is defined since an analytical solution can be obtained in this
case. One energy group is used in the approximations and neutron
precursors are no considered.

Let us consider a homogeneous slab of length L with vacuum
conditions on its boundaries where an instantaneous constant
perturbation in the fission term nSf equal to DSf is applied to obtain
a transient.
5.1. FSP1 equations

The one energy group FSP1 equations for the homogeneous slab
are of form

8>>>>>>>>>>><>>>>>>>>>>>:

1
v

v

vt
f1ðx;tÞþ1

3
v

vx
f0ðx;tÞþStf

1ðx;tÞ¼0

1
v

v

vt
f0ðx;tÞþ v

vx
f1ðx;tÞþSaf

0ðx;tÞ¼
�
nS0

f þDSf ðtÞ
�
f0ðx;tÞ

1
2
f0ð0;tÞ¼�f1ð0;tÞ; 1

2
f0ðL;tÞ¼f1ðL;tÞ

f0ðx;0Þ¼40ðxÞ f1ðx;0Þ¼41ðxÞ ; DSf ð0Þ¼0:

(55)

The solution of the steady-state problem is [44].

40ðxÞ ¼ c
�
sin
�
t
x
L

�
þ 2t
3StL

cos
�
t
x
L

��
; (56)

41ðxÞ ¼ c
3St

�
t

L
cos
�
t
x
L

�
� 2t2

3StL2
sin
�
t
x
L

��
; (57)

where t is a positive solution of the nonlinear equation

f1ðtÞ ¼
�
1� 4

9ðStLÞ2
t2sinðtÞ þ 4

3StL
tcosðtÞ

�
¼ 0;

and the constant c is chosen from a normalization of the moments
(Equation (14)).

The k-effective of the system is given by

keff ¼
nSf

Sa þ t2
.�

3StL2
�:

In the time computation, the reactor at initial state is considered
critical by dividing the Sf by keff. This satisfies

nSf ¼ Sa þ t2

3L2St
: (58)

To solve the time-dependent problem, we assume

f0ðx; tÞ ¼ n0ðtÞ40ðxÞ; f1ðx; tÞ ¼ n1ðtÞ41ðxÞ:
This can be assumed because the transient is defined from a

global perturbation in the reactor.
Equation (55) is then transformed into
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1
v
41 d

dt
n1 þ

1
3
n0

d
dx

40 þ Stn14
1 ¼ 0;

1
v
40 d

dt
n0 þ n1

d
dx

41 þ San04
0 ¼

�
nSf þ DSf

�
n04

0;

(59)

Now, the steady-state relations

41 ¼ � 1
3St

d
dx

40;
d2

dx2
40 ¼ �t2

L2
40; (60)

are substituted into Equation (59) to obtain

�1
v

1
3St

d
dx

40 d
dt
n1 þ

1
3
n0

d
dx

40 � Stn1
1

3St

d
dx

40 ¼ 0;

1
v
40 d

dt
n0 þ n1

1
3St

t2

L2
40 þ San04

0 ¼
�
nSf þ DSf

�
n04

0;

(61)

that is equivalent (if 40 s 0 and d
dx4

0s0) to

1
v

1
3St

d
dt
n1 �

1
3
n0 þ

1
3
n1 ¼ 0 (62)

1
v

d
dt
n0 þ

1
3St

t2

L2
n1 þ San0 ¼

�
nSf þDSf ðtÞ

�
n0 (63)

Then, isolating the term n1 from Equation (63) and substituting
into Equation (62) yields the second order differential equation

d2

dt2
n0 � v

�
t2

L23St
þ DSf � St

�
d
dt
n0 � v2StDSf n0 ¼ 0; (64)

whose solution is

n0ðtÞ ¼ C1e
t v2rþ þ C2e

t v2r� ; (65)

where r± ¼ ðt2 =ð3L2StÞþDSf �
StÞ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2=ð3L2StÞ þ DSf � StÞ2 þ 4StDSf

q
, and C1, C2 are constants

that are obtained by imposing n0(0) ¼ 1 and n1(0) ¼ 1.
Note that Equation (64) is similar to the telegrapher's equation.

This is a differential equation of second order for the time variable
that is the result of removing the neutronic current equation in the
P1 approximation and assuming that the Fick's law is no longer
valid for a transient [45].

5.2. DSP1 equations

Starting with the same conditions as in the previous case, the
one energy group DSP1 problem is of the form8>>>>>>><>>>>>>>:

1
v

v

vt
f0ðx;tÞ� 1

3St

v2

vx2
f0ðx;tÞþSaf

0ðx;tÞ¼
�
nS0

f þDSf ðtÞ
�
f0ðx;tÞ

1
2
f0ð0;tÞ¼ 1

3St

v

vx
f0ð0;tÞ; 1

2
f0ðxL;tÞ¼� 1

3St

v

vx
f0ðxL;tÞ;

f0ðL;tÞ¼0; f0ðx;0Þ¼4; DSf ð0Þ¼0;

(66)

The solution to the steady-state problem associated is the same
as in the previous formulation (Equation (56)).

To compute the solution of the time-dependent problem, it is
assumed that

f0ðx; tÞ ¼ nðtÞ40ðxÞ: (67)
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This can be assumed because the transient is defined from a
global perturbation in the reactor.

Thus Equation (66) can be expressed as

1
v
40

d
dt

n� 1
3St

n
d2

dx2
40 þ San40 ¼

�
nS0

f þDSf

�
n40: (68)

Making use of the second steady-state identity (60), Equation
(58) and supposing that 40 s 0, Equation (68) is equivalent to

d
dt

n ¼ vDSf n; (69)

which is a first order equation whose solution (with n(0) ¼ 1) is

nðtÞ ¼ evDSf t : (70)

5.3. Comparison between the FSP1 and DSP1 approximations
From the analytical solutions for both approximations, it can be

concluded (under some assumptions) that the difference between
these approximations will be dependent on the value of

a ¼ t2

3L2St
; (71)

such that the FSPN1 nears to DSPN1 as a goes to 0.
To check this statement, the time components of the scalar

moments, n0(t) and n(t), are compared. We start with the solution
of the FSP1 equations. If we assume that a ≊ 0, the roots of the
characteristic polynomial associated with the differential equation
(64) are equal to

r*þ ¼ 2DSf r*� ¼ �2St ; (72)

thus, the new solution for the FSP1 equations would have the form

n*0ðtÞ ¼ C*
1e

vDSf þ C*
2e

�vSt : (73)

As the value of the velocity v is usually greater than 104 for
realistic reactor problems, the second term is very close to zero.
Therefore, it is obtained that n*0ðtÞ≊nðtÞ.

Numerical results will show this statement by changing the
length of the slab L.

In [32,33] the authors got a similar result using the relaxation
time defined as 1/(Stv) for a ramp insertion and a sinusoidal
perturbation in the reactivity. Values for the relaxation time close
to zero reduce the differences between these approximations.

5.4. Point kinetics solution for the FP3 equations

Given a slab reactor with the same conditions as the previous
cases, the one energy group time-dependent FSP3 problem can be
expressed as

1
v

v

vt
f0 þ v

vx
f1 þ Saf

0 ¼
�
nSf þ Df

�
f0;

3
v

v

vt
f1 þ 2

v

vx
f2 þ v

vx
f0 þ 3Stf

1 ¼ 0;

5
v

v

vt
f2 þ 3

v

vx
f3 þ v

vx
f1 þ 5Stf

2 ¼ 0;

7
v

v

vt
f3 þ 3

v

vx
f2 þ 7Stf

3 ¼ 0:

(74)

If a point kinetics approximation is assumed, then



Table 1
Cross-section data of the homogeneous slab.

v (cm/s) St (cm�1) Sa (cm�1) Sf (cm�1) n

104 1.0 0.1 0.062464 2.0

Table 2
Evolution in the relative local error (LE) in % between the numerical and the
analytical scalar moments of the DSP1 equations with different time-steps (Dt) for
the semi-implicit time scheme.

Dt(s) t ¼ 0.0 s t ¼ 0.1 s t ¼ 0.25 s t ¼ 0.50 t ¼ 1.00 s

0.1 3.3e-04 6.1e-01 e 2.80 5.59
0.01 3.3e-04 1.3e-01 2.0e-01 3.3e-01 5.8e-01
0.001 3.3e-04 8.5e-02 9.3e-02 1.1e-01 1.3e-01
0.0001 3.3e-04 8.0e-02 8.1e-02 8.3e-02 8.7e-02
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fnðx; tÞ ¼ nðtÞ4nðxÞ ; n ¼ 0;…;3;

where 4n(x) are the solution of the steady-state equations associ-
ated. These solutions can be found in Ref. [44].

From this consideration, the system of equation (5.4) is equiv-
alent to

1
v

d
dt

n40 þ n
�
v

vx
41 þ Sa40 � nSf40

�
� Dfn40;

3
v

d
dt

n41 þ n
�
2
v

vx
42 þ

v

vx
40 þ 3St41

�
¼ 0;

5
v

d
dt

n42 þ n
�
3
v

vx
43 þ

v

vx
41 þ 5St42

�
¼ 0;

7
v

d
dt

n43 þ n
�
3
v

vx
42 þ 7St43

�
¼ 0:

(75)

As 4n(x) satisfy the steady-state equations, system (5.4) is
equivalent to

dn
dt

0BBBBBBBBBBBB@

1
v
40

3
v
40

5
v
40

7
v
40

1CCCCCCCCCCCCA
� n

0BB@
DSf40

0
0
0

1CCA ¼ 0 (76)

Finally, if Equation (76) is collapsed by the left premultiplying by
the transpose of the spatial vectors, the value of n(t) can be
computed by solving the ordinary differential equation with the
initial condition n(0) ¼ 1,

�
40;T ;41;T ;42;T ;43;T

�
$

0BBBBBBBBBBBBBB@

1
v
40

3
v
40

5
v
40

7
v
40

1CCCCCCCCCCCCCCA
dn
dt

� �40;T ;41;T ;42;T ;43;T
�
$

0BBB@
DSf40

0
0
0

1CCCAn ¼ 0:

(77)

6. Numerical results

This Section tests the performance of the FSPN and the DSPN
equations for a different type of transients. First, a homogeneous
slab is used to validate the implementation of the methods. This
problemwill also be used to study the convergence of the proposed
semi-implicit scheme for the time-discretization. Furthermore, two
transients with the TWIGL reactor are analysed to compare the
results with other types of codes and neutron approximations.
Finally, other transients for the C5G2 MOX reactor are defined to
analyse the methodology in a more realistic reactor where the
neutron diffusion equation is not very accurate.
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For the finite elementmethod, polynomials of degree 3 are used.
This value has been shown to obtain accurate enough results for
usual reactor calculations [5]. The dominant eigenvalue is
computed with a residual tolerance of 10�12.

For the semi-implicit time method, tolerances of 10�13 in the
GMRES method are required to solve the associated linear systems.
The time-steps for the semi-implicit scheme are considered con-
stant along the transient and its size will depend on the transient
analysed.

The time-dependent formulations for the spherical harmonics
equation, FSPN and DSPN, have been implemented in Cþþ language.
They have been incorporated to the open source code FEMFFUSION
as an extension of the code. This neutronic code solves the neutron
diffusion equation and the steady-state SPN equations by using a
high order finite element method. The full description and the
source code of FEMFFUSION is available in Ref. [46].

All calculations have been carried out sequentially on an Intel®
CoreTMi7-4790 3.60 GHz with 32 Gb of RAM running on Ubuntu
GNU/Linux 18.04 LTS.

6.1. A homogeneous slab benchmark

We consider a homogeneous slab to define a simple transient
whose solution for the FSP1 and DSP1 equations can be obtained
analytically as has been shown in Section 5. Moreover, the analyt-
ical solution of the FSP3 equations can be approximated with the
solution of the point kinetics formulation (Section 5.4). Table 1
contains the cross-section data for this problem. Delayed pre-
cursors are not considered. For the spatial discretization, 8 cells of
size 1.25 cm are used, and the boundary conditions are vacuum
boundary conditions at both sides of the slab. The transient is
defined from an instantaneous constant perturbation in the fission
cross-section, DSf ¼ 10�4 cm�1.

The multiplicative factor computed for the numerical steady-
state SP1 equations (with both formulations) is 0.994017 and the
analytical value is 0.9940168. The k-effective for the SP3 equations
is 0.999999 and the analytical value is 1.000000.

First, we study the convergence of the semi-implicit time
scheme. The results are given for the DSP1 equations, but analogous
conclusions are deduced for the rest of equations. Table 2 displays
the relative local error (LE) between the analytical solution and the
numerical solution computed as

LE ¼


f0

num � f0
ana





f0
ana



 $100: (78)

The relative local error decreases as the time-step Dt becomes
smaller. Values of time-step (Dt) equal to 0.01 s and smaller provide



Table 3
Evolution of the mean relative power ðP

̄
Þ and relative local error (LE) in % obtained with the numerical and analytical FSPN and the DSPN equations (N¼ 1, 3) taking Dt¼ 0.001 s

for the homogeneous reactor.

Sol. t ¼ 0.0 s t ¼ 0.1 s t ¼ 0.25 s t ¼ 0.50 s t ¼ 0.75 s t ¼ 1.00 s

P
�

FSP
1

Num. 1.0 1.10835 1.29174 1.66727 2.15197 2.77758

P
�

FSP
1

Ana. 1.0 1.10808 1.29251 1.67058 2.15926 2.79087

LEFSP1 3.3e-04 2.4e-02 5.8e-02 1.9e-01 3.3e-01 4.7e-01

P
�

DSP
1

Num. 1.0 1.10611 1.28521 1.65046 2.11951 2.72064

P
�

DSP
1

Ana. 1.0 1.10517 1.28403 1.64872 2.11700 2.71828

LEDSP1 3.3e-04 8.5e-02 9.3e-02 1.1e-01 1.2e-01 1.3e-01

P
�

FSP
3

Num. 1.0 1.10818 1.29123 1.66595 2.14941 2.77317

P
�

FSP
3

Ana. 1.0 1.11371 1.30898 1.71342 2.24282 2.93580

LEFSP3 8.2e-01 8.2e-01 8.2e-01 8.2e-01 8.2e-01 8.2e-01

P
�

DSP
3

Num. 1.0 1.10601 1.28492 1.64971 2.11806 2.71937

Fig. 1. Relative differences between the FSP1 and DSP1 scalar fluxes vs the coefficient a
for the homogeneous reactor.

Fig. 2. Analytical and numerical amplitudes n(t) for the FSP3 equations in the homo-
geneous problem.
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accurate enough results. It must be noted that the errors increase as
the transient evolves.

Now, we compare and validate the solutions for the FSPN and the
DSPN equations (N ¼ 1, 3). Table 3 displays the mean relative power

ðP
̄
Þ computed for the numerical and the analytical solution and the

relative local error (LE) at different times. For the numerical
approximation, the time-step is set to Dt ¼ 0.001 s. This
Table shows relative local errors between the analytical and nu-
merical solution of 0.1% for the approximations of first order and
0.8% in the approximation of third order. Furthermore, similar
values in the numerical relative power between the FSP1 and FSP3
are observed. However, if the diffusive and full approximations are
compared, differences of 5 $ 10�2 in the power at t ¼ 1.0 s can be
observed. In this case, the value of a (Equation (71)) is equal to 2.6 $

10�2 cm�1.
In the following, we test the influence of the value a (Equa-

tion (71)) in the difference of FSP1 and the DSP1 solutions. For that,
different sizes of the slab, L, are taken (L 2 [5, 200] cm) to obtain
different values of a. The local differences between the scalar fluxes
are obtained analytically. Fig. 1 represents the values of a and the
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differences (in %) at t¼ 1.0 s. The difference increases as the value of
a is larger, i.e. lower values of L are chosen. This dependence on the
size of the reactor can have implications for the analysis of small
reactors such as the small modular reactors (SMR) which are
simulated using transport methods that implies the use of super-
computers [24]. In nuclear reactor analysis, usually, the small ele-
ments of the reactor are replaced by a homogenized mixture with
effective averaged cross sections. In these cases, linear spatial
variation of the neutron distribution is satisfied since it appears
mean free paths away from the boundary of large (relative to the
mean free path) homogeneous media with relatively uniform
source distributions. Consequently, diffusion theory is valid and the
variation of the odd moments can be then neglected (Stacey, 1969).
For more complex analysis, where such small elements are not
homogenized, the diffusion fails and the variation of the current
must be included in the mathematical model.

Finally, we test the analytical solution of the FSP3 equations by
assuming a point kinetic behaviour. For that, Fig. 2 compares the
values of nn(t) obtained numerically for each moment fn as



Fig. 3. Geometry and material distribution of the 2D TWIGL reactor.

Table 5
k-effective and problem size (Nt) computed with the FSPN and DSPN approximations
for the TWIGL reactor. Comparison with the QUANDRY and SHNC codes.

keff Nt

FEMFFUSION FSP1 0.913238 5766
FEMFFUSION DSP1 0.913234 1922
FEMFFUSION FSP3 0.913826 11532
FEMFFUSION DSP3 0.913835 3844

QUANDRY Diffusion 0.913210 e

SHNC P3 0.913753 e

Table 6
Relative power computed with FSPN and DSPN approximations (N ¼ 1, 3) and
comparison with reference methods for TWIGL ramp perturbation.

FEMFFUSION QUANDRY SHNC

FSP1 DSP1 FSP3 DSP3 Diffusion P3

Time (s) Relative power
0.0 1.00000 1.00000 1.00000 1.00000 1.000 1.0000
0.1 1.30874 1.30872 1.31055 1.31051 1.307 1.3115
0.2 1.96053 1.96045 1.96935 1.96920 1.955 1.9746
0.3 2.07544 2.07540 2.08595 2.08583 2.075 2.0900
0.4 2.09281 2.09277 2.10358 2.10345 2.092 2.1075
0.5 2.11032 2.11028 2.12135 2.12122 2.110 2.1252
CPU time (s) 152 28 423 42
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nnðtÞ ¼

ð
U

fn�r⃗; t�dV
ð
U

fn�r⃗;0�dV
with the analytical n(t) obtained by solving equation (77). This
Figure shows that the assumption of the point kinetics approxi-
mation (i.e. n0 ¼ n1 ¼ n2 ¼ n3) is an accurate approximation for this
problem because in the numerical solution, the numerical ampli-
tudes obtained are overlapped.
6.2. 2D TWIGL benchmark

Two transients for the two-dimensional TWIGL reactor were
defined in Ref. [47]. In literature, diffusion codes have provided
accurate results for this benchmark. However, there are many other
works that provide the solutions by using higher order approxi-
mations of the neutron transport. Therefore, the numerical results
of this work can be compared with other neutronic codes. In
particular, the solution of the SHNC code expounded in Ref. [20] is
used. It is a spherical harmonics (PN) code that uses a nodal collo-
cationmethod for the spatial discretization. Also, the solution of the
diffusion equation from the code QUANDRY is considered. This is
equivalent to the DSP1 solution. This code uses an analytic nodal
method [48]. For the spatial discretization, both methodologies
have used a mesh of 10 � 10 nodes for the computations.
Table 4
Cross-section data for the TWIGL reactor.

Mat. g Stg (cm�1) Sag (cm�1)

1 and 2 1 0.238095 0.010
2 0.833333 0.150

3 1 0.256410 0.008
2 0.666667 0.050

b ¼ 0.0065 ld ¼ 0.0065
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The reactor core is composed of 3 fuel material regions. It is
defined for two energy groups and one delayed neutron precursor
family. The prompt and delayed spectrum are constant and equal
for each material. The values for each energy group are

cp1 ¼ c1;d1 ¼ 1 and cp0 ¼ c1;d0 ¼ 0. Fig. 3 shows the geometry for a
quarter of the reactor, the distribution of the materials and the
boundary conditions. Table 4 displays the material cross-section
and the delayed precursor data. For the spatial discretization a
mesh with 10 � 10 equal cells is considered. The zero boundary

conditions are approximated by imposing that n⃗f⃗n ¼ 100 cm�1s�1

for the odd moments in the Marshak's boundary conditions.
Table 5 shows the k-effective obtained with the FSPN and DSPN

equations (N ¼ 1, 3), and the reference values. We do not observe
differences between the type of the formulation since the steady-
state problem associated is the same. The small differences, of or-
der 10�6, are due to the finite element method approximation. The
keff in the approximations of order N ¼ 1 are very close to the
diffusion reference result and the keff in the approximations of or-
der N ¼ 3 are closer to the reference for the P3 approximation. This
Table also displays the size of the matrices for each problem, Nt. For
this case, the full formulation results in problems which are three
times larger than the diffusive formulation.

The full benchmark is composed of two different transients: a
ramp and a step perturbation are introduced in the assemblies with
material 1, which result in positive reactivity insertions. The time-
step for the semi-implicit time schemes selected is Dt ¼ 0.001 s
nSfg (cm�1) Ssg;gþ1 (cm�1) vg (cm/s)

0.007 0.218095 1.0eþ07
0.200 0.000000 2.0eþ05
0.003 0.238410 1.0eþ07
0.060 0.000000 2.0eþ05



Fig. 4. Evolution of the mean relative power,P
̄
, and thermal scalar flux profile, f0

2, at t ¼ 0.5 for the TWIGL ramp transient.

Table 7
Relative power computed with FSPN and DSPN approximation (N ¼ 1, 3) and com-
parison with reference methods for TWIGL step perturbation.

FEMFFUSION QUANDRY SHNC

FSP1 DSP1 FSP3 DSP3 Diffusion P3

Time (s) Relative power
0.0 1.00000 1.00000 1.00000 1.00000 1.000 1.0000
0.1 2.06179 2.06175 2.07213 2.07201 2.061 2.0765
0.2 2.07913 2.07910 2.08973 2.08961 2.078 2.0941
0.3 2.09653 2.09649 2.10739 2.10725 2.095 2.1117
0.4 2.11406 2.11402 2.12518 2.12505 2.113 2.1294
0.5 2.13175 2.13171 2.14313 2.14300 2.131 2.1473

CPU time (s) 155 29 383 43

A. Carre~no, A. Vidal-Ferr�andiz, D. Ginestar et al. Nuclear Engineering and Technology 53 (2021) 3861e3878
because we have seen convergent results in the previous case with
this value.

6.2.1. Ramp transient
The first transient is defined from a linear ramp perturbation

between the times t ¼ 0.0 s and t ¼ 0.2 s. The absorption cross-
section of the material 1 and energy group 2 linearly decrease,
from 0.15 cm�1 to 0.1465 cm�1. From t ¼ 0.2 s the material cross-
sections are constant. This can be expressed as

Sa2ðtÞ ¼
�
0:15� 0:11667$0:15$t 0 s � t � 0:2 s;
0:15 t >0:2 s: (79)

The transient is followed during 0.5 s. Table 6 displays the mean
relative powers computed with the FSPN and DSPN approximations
(N ¼ 1, 3), and these values provided by the reference codes
QUANDRY and SHNC, at different times. The numerical results show
a good agreement of FSP1 and DSP1 with the QUANDRY results and
the solutions of FSP3 and DSP3 approximations with the SHNC re-
sults in spite of the differences between the approximations of
order N¼ 1 and order N¼ 3 being from the second decimal place. If
the type of time-dependent SPN formulations are compared, the
mean relative power shows differences of 10�4 or lower between
the full and the diffusive treatments.

In order to compare the computational efficiency of each
formulation, Table 6 also includes the computational times (CPU
Time) needed to simulate the transient by using the different ap-
proximations. The CPU time to simulate the transient with diffusive
formulations is much smaller than these values with the full ap-
proximations (5 times smaller for N ¼ 1 and 10 times smaller for
N ¼ 3). In fact, it requires less time to simulate the transient with
the DSP3 formulation than if the FSP1 approximation is used.

Fig. 4(a) represents the evolution of the mean relative power
obtained for the FSPN approximation, the QUANDRY and the SHNC

solutions. Fig. 4(b) plots the thermal scalar flux at y ¼ 40 cm and
t ¼ 0.5 s for the different approximations. The solutions of the DSPN
equations are no considered because they overlap with the FSPN
curves.

6.2.2. Step transient
The second transient is defined from a step change in the

thermal absorption cross-section of material 1. This change can be
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expressed as

Sa2ðtÞ ¼
�
0:15 cm�1 ; t ¼ 0:0 s;
0:1465 cm�1 t >0:0 s:

(80)

Table 7 displays the solutions obtained with FEMFFUSION,
QUANDRY and SHNC codes. Fig. 5 shows the mean relative power
and the thermal scalar fluxes. As in the previous transient, we
observe values in FEMFFUSION results which are very close to the
reference results. Moreover, there are no relevant differences be-
tween the full and the diffusive approximations for the SPN equa-
tions, but the computational times for the full formulations are very
different when they are compared with the diffusive ones, in
particular, 5 and 9 times larger.

Comparing with the ramp transient, we observe that for the step
transient a prompt increasing of the power is produced whereas
the ramp transient produces an increasing with a gentler slope.
6.3. 2D C5G2 MOX benchmark

Finally, two C5G2 MOX transient problems are studied to vali-
date the proposedmethodology in amore realistic reactor core. The
steady-state C5G2 MOX problem was defined in Ref. [49] as a
variant of the C5 MOX fuel assembly problem described in Ref. [50].
This benchmark, in contrast to the previous one, has strong spatial
gradients that require higher approximations of the neutron
transport equation than the neutron diffusion equation [20]. Hence,



Fig. 5. Evolution of the mean relative power, P
̄
, and thermal scalar flux, f0

2, profile at t ¼ 0.5 for the TWIGL step transient.

Fig. 6. Geometry and material distribution of the C5G2 MOX reactor.
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it will be interesting to use this problem to compare the full and the
diffusive formulations of the time-dependent SPN equations.

Fig. 6 represents the core configuration that is composed of 16
squared fuel assemblies, 8 of type UO2 and 8 of type MOX. This
Fig. 7. Geometry and composition of the fue
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Figure also shows the size of each assembly and the boundary
conditions. Each fuel assembly is in turn divided into 17 � 17
squared pin cells. Fig. 7 shows the configuration for each type of
fuel assembly. For the spatial discretization, a square mesh with
84 � 84 cells is considered. Each direction is divided into 8 cells of
2.6775 cm, 68 cells of 1.26 cm and 8 cells of 2.6775 cm. Table 8
contains the homogenized two-group cross-sections for each ma-
terial. The velocities are generated in Ref. [20] by applying a volume
weighting method to collapse the seven energy-group velocities
given in the C5G7 benchmark [51] into two energy groups. The data
of the eight groups of delayed neutrons are specified in Ref. [51],

except the neutron spectra, that are taken as cp1 ¼ cd;k1 ¼ 1 and cp2 ¼
cd;k2 ¼ 0.

As reference for the steady-state problem and the Step transient,
the solution of the P3 equations from the SHNC code [44] is used. As
reference for these cases, the diffusive SP1 (Diffusion) and the
diffusive SP3 equations of the PARCS code [52]; [35] are used. In
PARCS, the fine mesh finite difference with a mesh of 510 � 510
equal cells is applied.

Table 9 displays the k-effective obtained with the steady-state
FSPN and DSPN approximations (N ¼ 1, 3) and the references. Dif-
ferences of 2 $ 10�4 in the k-effective are observed between the
l assemblies for the C5G2 MOX reactor.



Table 8
Cross-section data and velocities for the C5G2 MOX reactor.

Mat. g Stg Sag nSfg Ssg;gþ1 vg

1 - Reflector 1 0.611 0.001 0.0000 0.050 7.73247eþ06
2 2.340 0.040 0.0000 0.000 2.87886eþ05

2 - Guide Tube 1 0.611 0.001 0.0000 0.025 7.68974eþ05
2 2.340 0.020 0.0000 0.000 2.88616eþ05

3 - Fission Chamber 1 0.586 0.001 1.0e-7 0.025 8.73088eþ05
2 1.220 0.020 3.0e-7 0.000 2.62899eþ05

4 - UO2 1 0.570 0.010 0.0050 0.020 7.73247eþ06
2 1.100 0.100 0.1250 0.000 2.87886eþ05

5e4.3% MOX fuel 1 0.550 0.015 0.0075 0.015 1.22628eþ07
2 1.100 0.200 0.3000 0.000 2.88714eþ05

6e7.0% MOX fuel 1 0.550 0.015 0.0075 0.015 1.46202eþ07
2 1.010 0.250 0.3750 0.000 2.92249eþ05

7e8.7% MOX fuel 1 0.550 0.015 0.0075 0.015 1.59499eþ07
2 1.060 0.300 0.4500 0.000 2.93512eþ05

Table 9
k-effective and problem size (Nt) obtained with the FSPN and DSPN approximations
for the C5G2 MOX reactor. Comparison with SHNC and PARCS codes.

keff Nt

FEMFFUSION FSP1 0.971310 384054
FEMFFUSION DSP1 0.971310 128018
FEMFFUSION FSP3 0.970792 768108
FEMFFUSION DSP3 0.970780 256036

SHNC P3 0.970876 e

PARCS Diffusion 0.971187 e

PARCS SP3 0.970542 e
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FEMFFUSION and the reference approximations of the same order
N. This Table also shows the problem size (Nt) for each case. The
difference between the full and the diffusive approximations in-
creases as the problem becomes more complex. In this case, a dif-
ference of about 3 $ 105 degrees of freedoms appears between the
FSP3 and the DSP3 problem.
6.3.1. Step transient
The first case studied in C5G2MOX problem is a Step transient. It

is defined by replacing the guide tube material of one MOX as-
sembly (marked in Fig. 6 with a dash pattern) by the reflector
material. The transient is followed during 0.05 s. The time-step for
the semi-implicit time scheme is set equal to Dt ¼ 10�3 s.

Table 10 displays the relative power at different time values
computed with the FSPN and DSPN approximations (N ¼ 1, 3) and
references [20]. The Table also shows the CPU times needed by the
Table 10
Relative power computed with FSPN and DSPN approximation (N ¼ 1, 3) and comparison

FEMFFUSION

FSP1 DSP1 FSP3

Time (s) Relative power
0.000 1.00000 1.00000 1.00000
0.001 1.05058 1.05068 1.04655
0.002 1.09122 1.09139 1.08381
0.005 1.18585 1.18620 1.16993
0.010 1.28360 1.28415 1.25773
0.020 1.36634 1.36710 1.33041
0.050 1.40583 1.40671 1.36380
CPU time (h) 1.18 0.44 5.50
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different computations. There are no relevant differences between
the diffusive and the full formulations. However, for instance, in the
DSP3 computation, the CPU time is reduced by about 11 times with
respect to the FSP3 computation.

Fig. 8(a) represents the evolution of the mean relative power.
This graph shows that the power increases until time t¼ 0.04 s, and
then it remains almost constant. Figure shows that the mean
relative power value is overestimated by SP3 approximations in
z6.6% at t ¼ 0.05 s in comparison with the P3 solution. The SP3
approximations improve the SP1 results in a z3.0% when they are
compared with the P3 results.

Fig. 8(b) shows the thermal scalar flux profile normalized in the
line y ¼ 32.13 cm for the FSPN approximations at t ¼ 0.05 s. This
profile is representative of the fuel assembly that has been per-
turbed. This Figure shows local differences between the approxi-
mations of different order N. The solutions of the diffusive
approximations are not shown because they are overlapped with
the full results.
6.3.2. Noise transient
A second transient studied for the C5G2 MOX problem is a

simple neutron noise simulation. A sinusoidal perturbation of 1 Hz
is applied to Sa2 of the guide tube material in the MOX assembly
marked in Fig. 6 with the dash pattern. The function applied is

SGT
a2 ðtÞ ¼ SGT

a2 ð0Þ þ 0:1SGT
a2 ð0Þsinð2ptÞ; (81)

The transient is analysed during 3 s.
In this transient, we compare the relative neutron noise defined

as

df0�r⃗; t� ¼ �f0�r⃗; t�� f
�
r⃗;0
��.

f0�r⃗; t�; (82)

in the frequency domain. For that, the Fast Fourier Transform (FFT)
is numerically applied over the time domain results [53]. Only
neutron noise results at 1 Hz are shown.

Fig. 9 shows the spatial distribution of the noise amplitude
computed with DSP1 approximation. Similar distributions are ob-
tained with the rest of the approximations. A large influence of the
perturbation for the fast scalar flux can be observed. The thermal
noise is stronger around the perturbed cells.

First, the approximations of order N ¼ 1 are compared. Fig. 10
compares the amplitude of the neutron noise for the fast and
thermal groups along the line y ¼ 32.13 cm. Fig. 11 provides the
comparison for the phase of the neutron noise. These Figures show
that the DSP1 and FSP1 results are overlapped. The PARCS results
are slightly down in the amplitude graphs and slightly above in the
phase graphics.

Now, the results for the approximations of order N ¼ 3 are
compared. Fig. 12 and Fig. 13 compare the amplitude and the phase
of the neutron noise along the line y ¼ 32.13 cm. In the amplitude
with reference methods for C5G2 MOX step perturbation.

SHNC PARCS

DSP3 P3 Diffusion SP3

1.00000 1.00000 1.00000 1.00000
1.04671 1.04133 1.05651 1.05164
1.08409 1.07268 1.10116 1.09221
1.17047 1.14405 1.20199 1.18305
1.25854 1.21269 1.29713 1.26727
1.33150 1.26402 1.36611 1.32679
1.36499 1.28433 1.39197 1.34898
0.47



Fig. 8. Evolution of the mean relative power, P
̄
, and thermal scalar flux profile in the perturbed assembly at t ¼ 0.05 s and y ¼ 32.13 cm for the C5G2 MOX step transient.

Fig. 9. Noise amplitudes computed with the DSP1 approximation for the C5G2 noise transient.
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graphics, the same conclusions as for the approximations of order
N ¼ 1 are obtained. However, note that in the phase results, a
quantitative irrelevant difference is observed between the full and
the diffusive approximations, being the results of the full formu-
lation slightly above from the results of the diffusive formulation
(z0.06� at the boundaries of the reactor). In other cases, these
differences can be more relevant [33].

7. Conclusions

This paper compares the full formulation for the time-
dependent simplified harmonics equations and a diffusive
approximation of these equations that neglects the time derivatives
of the odd moments obtaining equations with second order de-
rivatives in space, which is a generalization of the neutron diffusion
equation. A high order finite element method is used for the spatial
discretization of the equations and a semi-implicit time scheme is
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applied for the implementation of these models in the code
FEMFFUSION. First, the differences between the time-dependent
SP1 equations are analytically studied for a simple case. Then, the
time-dependent SP1 and SP3 formulations are numerically studied
for more realistic transients. The performance of these methodol-
ogies are compared with other transport approximations and
neutronic codes as the QUANDRY, the SHNC and the PARCS code.

First, the numerical results show that the time-dependent SP3
formulations improve the results of the time-dependent SP1
equations. This improvement is approximately 0.4% in the relative
power for the TWIGL reactor and 3% for the C5G2 MOX reactor. It is
well known that diffusion approximation does not provide accurate
results when strong flux gradients are presented. This happens, for
instance, if the reactor consists of many small elements, some of
them highly absorbing, as it is the case of the C5G2 MOX reactor.

The numerical results also provide evidence that using the
diffusive formulation of the time-dependent SPN equations is more



Fig. 10. Noise amplitude comparison between the approximations of order N ¼ 1 in y ¼ 32.13 cm for the C5G2 noise transient.

Fig. 11. Noise phase comparison between the approximations of order N ¼ 1 in y ¼ 32.13 cm for the C5G2 noise transient.
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efficient than using the full formulation. On the one hand, the
analytical solutions of the time-dependent SP1 equations, for a
simple case, show that the differences between the full and the
diffusive formulation will mainly depend on the size of the reactor.
Only relevant spatial differences, about 0.5%, can be seen in a small
reactor of approximately 20 cm, but not longer. This statement is
numerically observed for the time-dependent SPN approximations
in more realistic transients. The differences between the relative
power with the full and the diffusive SP3 equations do not reach
0.01% in the transients defined for the TWIGL and C5G2 MOX
reactor which have dimensions of 1.6 � 1.6 m and
128.52 � 128.52 m, respectively. On the other hand, if the
computational requirements of both formulations are compared,
the full formulation of the time-dependent SPN equations spends
more resources than the diffusive formulation to obtain the solu-
tion. For a typical problem, the dimension of the matrices obtained
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from the spatial discretization of the FSPN equations can be 4 times
higher than the matrices obtained with the diffusive formulation.
Moreover, the solver for the linear systems needs more time to
reach the convergence in the case of the full formulation due to the
nature of the matrices involved. In the computational times, these
values are between 2 and 11 times higher if the full formulation is
used instead of the diffusive formulation.

Therefore, to improve the solution's accuracy in the case of
commercial reactors, the authors recommend increasing the
number of moments in the time-dependent SPN approximation and
to use the diffusive formulation due to the size of these reactors.
The CPU time needed to obtain the solution of the DSP3 approxi-
mation is about 3 times lower than the CPU time if the FSP1
equations are used, and the accuracy of the DSP3 solution is
significantly higher than the FSP1 as has been previously pointed
out. However, further studies must be performed to confirm this,



Fig. 12. Noise amplitude comparison between the approximations of order N ¼ 3 in y ¼ 32.13 cm for the C5G2 noise transient.

Fig. 13. Noise phase comparison between the approximations of order N ¼ 3 in y ¼ 32.13 cm for the C5G2 noise transient.
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especially in small reactors with complex assemblies such as the
small modular reactors (SMR).
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