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Abstract

We develop and validate node homogenization methods, based on one and
three-dimensional node equivalent problems, that improve the volume weighted
method for the treatment of the rod cusping effect. The numerical implemen-
tation of these techniques in a numerical approach based on general spherical
harmonics, nodal collocation method, for arbitrary odd order L, and fully im-
plicit time discretization, is verified on the AECL-7236 PHWR benchmark tran-
sient, showing the validity and convergence of the P1 and P3 approximations
and the ability of the method to give accurate results for the relative power and
scalar flux when a coarse spatial mesh combined with advanced homogenization
techniques is used.

Keywords: Time-dependent neutron transport equation; Multidimensional PL
equations; Spherical harmonics method; Nodal collocation method; Rod
cusping effect.

1. Introduction

The modeling of traditional nuclear reactors has been mostly based on the
diffusion approximation to the time dependent Boltzmann neutron transport
equation, but their results may not be as accurate with the new generations
of reactor designs and new fuel elements. This motivates the need of high
order approximations to the neutron transport equation that overcomes the
limitations of the diffusion equation.

In previous works, we have developed a numerical approximation to the
time-dependent neutron transport equation, coupled to the delayed neutron
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precursors equations, that is based on the expansion of the angular dependence
of the neutronic flux in terms of spherical harmonics (Davison, 1957), resulting
into the so-called PL equations, for arbitrary odd order L, and on a fully implicit
discretization of time given by the backward Euler method. In this way, when
the odd-parity spherical harmonics coefficients of the flux are inserted into the
even-parity equations, the resulting problem can be rewritten as a set of sta-
tionary diffusive second order PL equations. The advantage of this approach
is two-fold: the reduction by half of the number of unknowns, and the use of
a nodal collocation method for the spatial discretization of the problem, using
coarse spatial grids to reduce memory requirements. These numerical devel-
opments have been implemented into a code called Spherical Harmonics-Nodal
Collocation (SHNC) (Capilla et al., 2008, 2020).

In the present work we extend the previous approximation by considering
different methodologies to treat the rod cusping problem, that appears in the
study of transients involving movement of control rods. In nodal methods,
where the nuclear cross-sections are assumed to be constant in each node, the
partial insertion of a control rod into a node divides the node into two regions: a
rodded part where the nuclear cross-sections are modified due to the effect of the
control rod and an unrodded part where the cross-sections are unaltered. This
requires an homogenization of the cross-sections of the whole node by means
of an interpolating procedure. The basic volume weighting method interpolates
cross-sections based on the volume occupied by the control rod in the node. But
this approach gives unphysical behavior of the keff and the neutron fluxes, and
the observed anomalies are known as rod cusping effects.

Different strategies (Dall’osso, 2002; Schunert et al., 2019) have been pro-
posed to reduce this effect. In González-Pintor et al. (2011), a correction is
introduced by using a flux weighted interpolation method based on high order
finite elements. In the work of Yamamoto (2004), a new approach derived from
the inverse of the spectral index from the assembly calculations is used to es-
timate the flux distribution inside the partially rodded mesh. This method is
applied only to three-dimensional static pin-by-pin calculations and not to tran-
sient analysis. Also, the solutions implemented into the MPACT transport code
for correcting the rod cusping effect are several decusping techniques such as
a polynomial decusping method, a subplane decusping method and a method
based on using the collision probabilities method to correct the homogenized
cross-sections (Graham et al., 2017).

In the work of Gehin (1992), the averaged fluxes are interpolated by us-
ing the neutron flux in three nodes, the partially rodded node, the previous
node and the next node along the rod insertion direction, estimating a weight
factor. Following Gehin’s work, in Dall’osso (2002) the analytical flux weight-
ing method with axial discontinuity factors is described. The bilinear weight-
ing method and the equivalent node methods, where the node containing the
tip of a control rod is divided into two parts (rodded and unrodded) and a
nodal expansion method is applied to a one-dimensional problem integrating
the neutron diffusion equations in the transverse directions X and Y . Pursuing
this approach, in the PARCS code (Downar et al., 2009) an axial three-node
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transverse-integrated neutron balance equation is solved by using a fine-mesh
finite difference scheme. To solve the one-dimensional second order differential
equation two boundary conditions are needed. These are specified in terms of
the neutron current available from the previous finite difference computation.

Otherwise, in Vidal-Ferrándiz et al. (2016); Vidal-Ferrándiz (2018) the rod
cusping problem is treated by using a moving mesh strategy based on a high
order finite element method and interpolating the neutron flux solution in dif-
ferent meshes that change with different time steps, following the movement of
the control rod.

To incorporate the rod cusping effect into our SHNC code, we have first con-
sidered that the largest part of this effect occurs along the direction of motion of
the control rod and that lateral leakages are neglected. Then the flux redistri-
bution in the heterogeneous regions can be modelled by a one-dimensional two-
region problem, where the partially inserted node is split into two nodes (rodded
and unrodded) with constant cross-sections each and boundary conditions given
by the averaged incoming flux from the neighbor nodes at previous time steps.
This problem is then solved using the 1D-SHNC code for any given PL angu-
lar order with odd L. To better model the flux shape along the rod insertion
direction, we consider an equivalent four-nodes one-dimensional problem con-
sisting of the rodded and unrodded nodes together with two neighboring nodes
along the rod insertion direction, again with the boundary conditions given by
the node averaged incoming flux from the neighboring nodes at previous time
steps. The 1D-SHNC code is then used to compute the PL approximation to
the neutronic flux at each node and this allows to estimate the weighting factor
in Gehin’s interpolation formula.

The flexibility of this approach allows us to consider finally an enhanced
3D model of four rectangular nodes that incorporates lateral leakages along
their boundary surfaces, that is again solved using the 3D-SHNC code with the
corresponding PL approximation. The results will quantify the validity of the
1D models and the contribution of the surface leakage.

The enhancements introduced to the SHNC code have been tested with the
AECL-7236 benchmark problem (Judd et al., 1981). This problem is a realistic
representation of a Pressurized Heavy Water Reactor (PHWR) and describes
a super-delayed critical transient by simulating a hypothetical loss of coolant
accident (LOCA) followed by an asymmetric insertion of reactivity. The rod
cusping effect is produced in this case in a radial direction instead of the typical
axial direction for transients involving the movement of control rods. This effect
and the asymmetry of the benchmark problem provide a good experiment to
validate our 3D neutron transport code for transient analysis. As the SHNC
code is able to compute accurate enough solutions using large spatial nodes, a
coarse non-uniform spatial mesh will be used first for a fast and memory-efficient
evaluation of the rod-cusping effect. Computations will also be performed with
a refined mesh that will minimize the influence of partially inserted nodes and
the cusping effect, so we can distinguish the errors caused by the transport
calculations and the errors caused by the rod-cusping treatment, showing also
the convergence of the procedure.
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The rest of the paper is organized as follows. In Section 2 we briefly review
the numerical approximations used on the Boltzmann neutron transport equa-
tion together with the neutron precursor equations, that give a system of second
order stationary differential equations for the even order fields in the spherical
harmonics expansion of the angular flux. Section 3 develops the homogeniza-
tion techniques that will be used to correct the rod cusping effect by taking into
account intranodal flux variations. The methods described in these sections will
be validated in Section 4, where stationary and transient computations of the
three-dimensional PHWR benchmark problem are obtained and compared with
reference data. The conclusions are finally established in Section 5.

2. Theoretical model and numerical methods

2.1. The Boltzmann transport equation

The dynamics of the neutron angular flux and delayed neutron precursor
concentration in a nuclear system of volume V can be described by the Boltz-
mann transport equation (Stacey, 2007)

1

v

∂Φ

∂t
+ ~Ω ~∇Φ + Σt Φ =

∫∫
Σs Φ dE′ d~Ω′

+
1

4π
(1− β)χp

∫∫
νΣf Φ dE′ d~Ω′ +

1

4π

Nd∑
j=1

χd,j λj Cj + S , ~r ∈ V , (1)

together with the neutron precursor equations

∂Cj
∂t

= −λjCj + βj

∫∫
νΣf Φ dE′d~Ω′ , j = 1, . . . , Nd , (2)

where Φ = Φ(~r, ~Ω, E, t) is the angular flux, that depends on the position ~r,

angular direction ~Ω = ~v
v , and energy E = 1

2mv
2 of the neutron, being ~v =

~v(~r,E) the (effective) neutron velocity and v(E) = |~v(E)| the neutron speed.
Cj = Cj(~r, t) is the delayed neutron precursor concentration for precursor group

j and Nd delayed neutron groups. Σt = Σt(~r, ~Ω, E, t), Σs = Σs(~r, ~Ω
′, E′ →

~Ω, E, t), Σf = Σf (~r, ~Ω, E, t) are, respectively, the total, scattering and fission
macroscopic cross-sections. ν = ν(~r,E) is the (average) number of neutrons
emitted per fission; χp = χp(~r,E) and χd,j = χd,j(~r,E) are the prompt and
delayed neutron spectra; λj and βj are the decay constant and precursor fraction

for precursor group j, with β =
∑Nd

j=1 βj the total delayed neutron fraction and

S = S(~r, ~Ω, E, t) is any internal fixed source.
The solution of equations (1) and (2) requires boundary conditions and initial

values for the angular flux and precursor concentrations. In this paper we will
consider external source boundary conditions, where the incoming angular flux
to the reactor is given by a known function T = T (~r, ~Ω, E, t) at the reactor
boundary ∂V and

Φ = T when ~Ω~n ≤ 0 and ~r ∈ ∂V ,
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with ~n the (outward pointing) normal vector to the boundary surface. Vacuum
boundary conditions correspond to zero value for T . The approximation of zero
flux boundary conditions Φ ' 0 at ∂V will also be considered.

The initial state will be taken from the solution of the stationary state where
∂Φ
∂t = 0 and

∂Cj

∂t = 0, j = 1, . . . , Nd. The stationary state is a critical config-
uration of the reactor core obtained from the initial configuration dividing the
fission cross-section by the keff eigenvalue.

2.2. Numerical approach

The dependence on seven continuous variables in the transport equation
will be approximated using the methods that will be briefly described in the
next paragraphs. A detailed description of these methods can be found in the
references to previous works.

The continuous dependence on energy E will be replaced by a dependence
on a discrete number G of energy groups each one spanning an energy inter-
val [Eg, Eg+1[, obtaining the so-called multi-group approximation. To keep the
notation simple in the following we will assume one energy group.

The angular dependence of the flux Φ (and the internal source) will be, in
the spherical harmonics method (see, for example, Henry (1975)) and for general
3D geometry, expressed as a sum

Φ =

∞∑
l=0

+l∑
m=−l

φlm(~r, t)Y ml (~Ω) (3)

of (complex) spherical harmonics Y ml (~Ω) =
√

(2l + 1)/(4π) (l −m)!/(l +m)!Pml (µ) eimϕ,
where Pml (µ) are the associated Legendre polynomials, µ = cos θ, and ϕ and θ
are the azimuthal and polar angles respectively. The angular dependence of the
macroscopic scattering cross-section will also be assumed to be on the relative
angle µ between incident and scattered directions, and will be expanded as the
Legendre polynomial series

Σs =

∞∑
l=0

2l + 1

4π
Σs,l(~r)Pl(µ) . (4)

A finite approximation is obtained when the infinite series (3) and (4) are trun-
cated to a finite order L, obtaining the PL approximation. The unknowns are
then the (complex) coefficients φlm in (3), that must satisfy the constraint
φ∗lm = (−1)mφl,−m in order to obtain a real angular flux function Φ. If we
define the real coefficients

ξlm = Reφlm , l = 0, 1, . . . , L , ηlm = Imφlm , l = 1, . . . , L ,

and the vectors X = (ξlm≥0, ηlm>0)l=even and X̄ = (ξlm≥0, ηlm>0)l=odd of co-
efficients of even/odd order l then, using the orthogonality properties of the
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spherical harmonics, it can be shown (Capilla et al., 2008) that the flux coef-
ficients and the precursor concentrations satisfy the following set of first order
PL differential equations

1

v

∂X

∂t
+

3∑
j=1

Mj
∂X̄

∂xj
+ ΣaX = (1− β)χp diag(νΣf δl0δm0)X

+
1√
4π

Nd∑
j=1

χd,jλjCj δl0δm0 + S , (5)

1

v

∂X̄

∂t
+

3∑
j=1

M̄j
∂X

∂xj
+ Σ̄a X̄ = S̄ , (6)

∂Cj
∂t

= −λjCj +
√

4πβjνΣf φ00 , j = 1, . . . , Nd , (7)

with Σa = diag(Σt −Σsl)l=even, Σ̄a = diag(Σt −Σsl)l=odd, and Mj and M̄j are
numerical matrices that come from the integration with the spherical harmonics,
see Capilla et al. (2008, 2012, 2016) for an explicit representation. We mention
also that the vectors of even/odd order l are in correspondence with the even-
parity and odd-parity neutronic flux defined in the formulation of the even-parity
transport equation (Morel et al., 2006).

From now on, we will consider PL equations with odd order L. This implies
continuity of vector X of even order coefficients and, in particular, of the neu-
tronic scalar flux

∫
Φ d~Ω =

√
4π φ00 along the reactor volume (Capilla et al.,

2016).

The time discretization of PL equations (5), (6) and (7) will be carried out
by a first order backward Euler method with constant time step ∆t. The use
of an unconditionally stable, fully implicit method is suggested by the large
relative difference between the speeds of the fast and thermal neutron groups.
If tk = k∆t, k = 0, 1, . . . , is the discrete time, and we denote with the superindex
k the variables at time tk, then the PL equations can be rewritten as (Capilla
et al., 2020)

−
3∑

i,j=1

∂

∂xi

[
MiD

k
effM̄j

∂Xk

∂xj

]
+ (Σka + (v∆t)−1)Xk − χeff νΣkfφ

k
00 δl0δm0 = Skeff ,

(8)

X̄k = Dk
eff

(
−

3∑
j=1

M̄j
∂Xk

∂xj
+ S̄keff

)
, (9)

C̃kj = (1 + λj∆t)
−1
(
C̃k−1
j + λj∆t

√
4π βj νΣkf φ

k
00) , j = 1, . . . , Nd , (10)
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where we have defined C̃kj = λjC
k
j and the following effective magnitudes

Dk
eff = [Σ̄ka + (v∆t)−1]−1 ,

χeff = χp(1− β) +

Nd∑
j=1

χd,j(1 + λj∆t)
−1 λj∆tβj ,

S̄eff = (v∆t)−1X̄k−1 + S̄k ,

Skeff = (v∆t)−1Xk−1 + Sk −
3∑
j=1

Mj
∂

∂xj

[
Dk

eff S̄
k
eff

]
+

1√
4π

Nd∑
j=1

χd,j(1 + λj∆t)
−1C̃k−1

j .

The k-th time iteration described by these equations proceeds by computing
the even order fields Xk using the implicit formula (8) from previous time step
vectors Xk−1, X̄k−1 and C̃k−1

j . The explicit formulas (9) and (10) update then

the values of X̄k and C̃kj .

The reformulation of the PL equations as a second order effective form of
stationary differential equation (8) for the even order fields (Capilla et al., 2008,
2012; Morel et al., 2006) reduces the dimension of the computational expensive
implicit problem by half and, additionally, allows the use of already developed
efficient methods of spatial discretization for differential equations of diffusive
nature. We will consider multi-dimensional rectangular geometries, where an
structured rectilinear mesh in Cartesian coordinates can be defined. A nodal
collocation method (Hébert, 1987; Verdú et al., 1994; Capilla et al., 2012) will
be used for the spatial discretization and, as we will see, this method allows
the use of large rectangular nodes giving accurate enough results, thus reducing
memory and computational time.

The reactor volume V will be discretized in N adjacent rectangular nodes
where the physical properties (speed, cross-sections, etc.) are set constant
along the node. If e = 1, . . . , N is the node index and Ne = [x1,i1 , x1,i1+1] ×
[x2,i2 , x2,i2+1]×[x3,i3 , x3,i3+1] is a node in Cartesian coordinates ((x1,i1 , x2,i2 , x3,i3)
are the node vertices with ik the node indices), the change of variables uj =
[xj− 1

2 (xj,ij +xj,ij+1)]/∆xej , with ∆xej = xj,ij+1−xj,ij , scales Ne to the canon-

ical node Ne
u = [− 1

2 ,
1
2 ]3. The spatial dependence in the unknowns in equations

(8), (9) and (10) is then approximated by a finite sum up to order M of or-
thonormal Legendre polynomials. The even order vector X, for example, at
node e and as a function of the canonical variables uj , is expressed as

Xe(~u) =

M∑
k1,k2,k3=0

xek1,k2,k3

3∏
j=1

Pkj (uj) , (11)

where Pk(u) =
√

2k + 1Pk(2u) (Pk(x) are the Legendre polynomials) satisfy∫ +1/2

−1/2
Pk(u)Pr(u) du = δkr.
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The finite Legendre series (11) is used in equation (8), together with the
orthonormality properties of the Legendre polynomials, to obtain a linear system
for the coefficients xek1,k2,k3 (Capilla et al., 2008, 2012). The corresponding
sparse matrix is real and non-symmetric, and an efficient solution for large
problems requires an iterative solver.

3. Treatment of the rod cusping effect

In numerical problems involving a moving control rod, the assignment of
a constant cross-section to each spatial node, imposed by a nodal collocation
method with fixed spatial mesh, requires an homogenization procedure for the
cross-sections associated to a partially inserted control rod into a node. Some
methods have been developed to obtain the homogenized nodal cross-sections,
usually based on averaging physical conditions on the node. One of the first
works is Joo et al. (1984). A discussion of some common approaches can be
found in Dall’osso (2002) and Schunert et al. (2019).

The basic homogenization method is of pure geometric nature and computes
averages based on the fraction of volume occupied by the control rod in the
node. For a partially inserted rod that moves in the Y -direction, see Fig. 1, the
assigned cross-section of this simple volume weighted (VWG) method is then

ΣVWG =
ΣR
∫
V R dV + ΣUR

∫
V UR dV∫

V
dV

=
(yb − yi)ΣR + (yi+1 − yb)ΣUR

∆y

= ΣUR +
yb − yi

∆y
(ΣR − ΣUR) = ΣUR + wVWG∆Σ ,

where ΣR, ΣUR, V R and V UR are the cross-section and volume of the rodded
and unrodded portion, respectively, V = V R + V UR is the total volume, ∆Σ =
ΣR − ΣUR, and the weight factor

wVWG =
yb − yi

∆y
= fins ∈ [0, 1]

is the nodal insertion fraction of the rod.

yi yb
yi+1

Σ
URR

Σ

X

Y

Z

Figure 1: Partially inserted control rod along the Y axis. The points yi, yi+1 correspond to
the fixed spatial mesh that discretizes the problem.

It is known that this purely geometrical approach suffers from cusping ef-
fects, that introduces significative errors in cross-section calculations because
it does not take into account the intranodal flux variations. An approach to
mitigate this problem is to estimate the angular averaged scalar flux Φ(r) =
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1
4π

∫
Ω

Φ(r,Ω) dΩ on each of the two regions (rodded/unrodded) of the node and
to incorporate this information into the so called flux volume weighted (FWG)
cross-sections

ΣFWG =
ΣR
∫
V R Φ dV + ΣUR

∫
V UR Φ dV∫

V
Φ dV

=
ΣRV RΦR + ΣURV URΦUR

V RΦR + V URΦUR

=
ΣRfinsΦ

R + ΣUR(1− fins)Φ
UR

finsΦR + (1− fins)ΦUR
= ΣUR + wFWG∆Σ ,

where the weight factor is now given by

wFWG =
finsΦ

R

finsΦR + (1− fins)ΦUR
. (12)

The estimation of the averaged fluxes ΦR and ΦUR in the above equation, on the
rodded and unrodded segments of the node, has given rise to some approaches
(Schunert et al., 2019). Some of these methods, and a new 3D technique that
incorporates lateral leakages along each node boundary surface, have been im-
plemented into our transport code:

1. Gehin (1992) interpolates the averaged fluxes by using the fluxes in three
nodes: the rodded node, the previous node and then next node along the
rod insertion direction, according to Fig. 2 and the formulas

ΦR =
∆ye−1Φe−1 + fins∆y

eΦe

∆ye−1 + fins∆ye
,

ΦUR =
∆ye+1Φe+1 + (1− fins)∆y

eΦe

∆ye+1 + (1− fins)∆ye
,

(13)

where the averaged flux Φe on the spatial node e is obtained from the
previous time step of the transport code computation. These estimates,
when inserted into equation (12), computes a weight factor wFWG that
results into smooth time evolution of the core flux.

yi+1 yi+2yiyi−1

yb

ye−1∆ ye+1∆ye∆

Φ
e−1 e

Φ Φ
e+1

Y

node e−1 node e node e+1

Figure 2: Three node region used to estimate averaged fluxes in Gehin’s method.

2. If we consider that most of the rod cusping effect occurs along the di-
rection of motion and neglect radial leakage, the flux redistribution in
the heterogeneous regions can be modeled by the one-dimensional two-
region problem shown in Fig. 3, where the partially inserted node is
split into two nodes (rodded/unrodded) with constant cross-sections each,
and with boundary conditions given by the node averaged incoming flux
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φe = 1
4πV e

∫
V e dV

∫
~Ω ~n≤0

d~Ω Φ(r, ~Ω) from the neighboring nodes at previ-

ous time step (or by external boundary conditions, otherwise), see Ap-
pendix A for explicit formulas, that will be solved by using the SHNC
code with given PL approximation. For this small two node problem the

yi+1yi yb

Φ=φ e+1
Φ=φ e−1

Σ
UR

Σ
R

node e

Y

Figure 3: Equivalent one-dimensional two-region problem.

associated linear system has dimension 16 for the P1 approximation with
M = 4 and 2 energy groups, and has dimension 32 for the P3 approxi-
mation. The averaged fluxes ΦR and ΦUR computed from the numerical
solution of this equivalent nodal two-nodes (E2N) method allows us to
compute the corresponding weight factor from Eq. (12), that will be de-
noted as wE2N.

3. To better model the flux shape along the direction of the rod insertion, we
will now consider an equivalent nodal four-nodes (E4N) one-dimensional
problem consisting in the partially inserted node split into two nodes (rod-
ded and unrodded) and the two neighboring nodes along the insertion
direction, again with boundary conditions given by the node averaged
incoming flux from the neighboring nodes at previous time step (or by
external boundary conditions, otherwise). The problem is described in
Fig. 4. Because the number of spatial nodes has doubled, the dimension

yi+1yi yb

Σ
UR

Σ
RΦ=φ e−2 Φ=φ e+1

Σ
R

Σ
UR

yi−1

node e

Y
y

node e−1 node e+1

i+2

Figure 4: Equivalent one-dimensional four-region problem.

of the corresponding linear system is two times the dimension of the E2N
method. The SHNC code with given PL approximation is then used to
compute the flux Φe at each node that, inserted into Gehin’s formulas
(13), allows us to estimate the weight factor from Eq. (12), that will be
denoted as wE4N.

4. A natural extension of the previous models that accounts for the 3D nature
of the problem and incorporates surface leakages consists on replacing each
one-dimensional node of the E4N model by 3D rectangular nodes, where
again two nodes are assigned to the rodded and unrodded regions, respec-
tively. The node averaged incoming fluxes from neighboring nodes will
model the leakage along boundary surfaces. This equivalent nodal four-
nodes 3D (E4N3D) method will be solved, at a given PL approximation,
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with the SHNC code resulting as in previous items into a weighting factor
wE4N3D.

4. Numerical results

The methods described in Sections 2 and 3 have been implemented into the
FORTRAN 90 computer code SHNC, that was developed by the authors for
the solution of stationary transport problems with internal and external neu-
tron source (Capilla et al., 2008, 2012) and later extended to time dependent
transport problems (Capilla et al., 2020), for multidimensional space in general
rectangular geometries. There are no restrictions to the PL approximation or-
der, for odd L, to the number of energy groups and to the number of delayed
neutron families. The formalism also deals, in a natural way, with isotropic and
anisotropic scattering and source terms.

The validity of the various rod cusping treatments has been demonstrated for
the three-dimensional kinetics benchmark problem in a pressurized heavy water
reactor (PHWR) (Judd et al., 1981). This problem simulates a hypothetical loss-
of-coolant accident followed by an asymmetric reactivity insertion in a square
3D configuration.

The reactor has dimensions 780×780×800 cm and the geometry and config-
uration are shown in Figs. 5 and 6. The model consists of two energy groups and
six delayed neutron families, with zero flux boundary conditions on external sur-
faces and initial conditions described by a critical configuration for the steady
state. The physical parameters of the problem (cross-sections, group speeds,
delayed neutron data) and descriptions of the materials used in reflector, inner
core and outer core are detailed in Judd et al. (1981).

The benchmark describes a super delayed critical transient that results from
two perturbations: a linear time decrease in the thermal absorption cross-section
with slope change at t = 0.4 s, in the pink colored regions in Figs. 5 and 6, and
an asymmetric control rods insertion at constant velocity of 520 cm/s in the Y
direction, beginning at t = 0.6 s, in regions corresponding to the blue zones in
the Figures. The transient ends at time t = 2.5 s.

Computations have been performed with the SHNC code using P1 and P3

approximations with fixed Legendre polynomial order M = 4 in Eq. (11) (mo-
tivated by the static computations in Section 4.1; see previous works in Capilla
et al. (2008, 2012) for a convergence analysis with respect to the angular or-
der L of the PL approximation and the order M). Two non-uniform spatial
discretizations have been chosen in the calculations:

1. A coarse spatial mesh consisting on 10 × 10 × 2 nodes in X, Y and Z
directions respectively, depicted by dashed lines in Figs. 5 and 6. This grid
mesh corresponds to a large discretization compatible with the geometry
of the reactor, resulting in a total of 176 rectangular material nodes with
side lengths 60 cm or 90 cm in X and Y directions, and side length 300 cm
in Z direction.
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2. A fine spatial mesh described in (Judd et al., 1981, pp. 11,12 and Figs. 4-
1,2) is considered, with 18 × 18 × 10 nodes in X, Y and Z directions
respectively, giving a total of 2760 rectangular material nodes with side
lengths 30 cm or 60 cm.
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Figure 5: Vertical cross sections at z = 0 cm (left) and z = 600 cm (right). Regions affected
by perturbations are colored. The dashed lines describe the coarse spatial mesh.
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Figure 6: Horizontal cross section at y = 390 cm. Regions affected by perturbations are
colored. The dashed lines describe the coarse spatial mesh.

4.1. Static computations

As the benchmark steady state is set to the critical state, a previous compu-
tation of the keff eigenvalue is performed for each PL approximation and each
spatial mesh, considering increasing values of the Legendre polynomial order
M in Eq. (11). In Table 1, PL keff results are shown together with the refer-
ence value (Judd et al., 1981). We observe that the criticality of the problem
is well described by a coarse mesh P1 approximation, corresponding to a diffu-
sive regime and that the choice M = 4 for the spatial approximation in further
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calculations is a good compromise between accuracy and computational work
(third row in Table 1). In the transient calculations the initial state will be
made critical using the keff corresponding to each computed PL approximation.

Table 1: Computed fundamental eigenvalue keff for PHWR problem, with PL approximations
and reference value.

SHNC P1 SHNC P3 Reference
M coarse fine coarse fine
2 1.0026685 1.0033020 1.0026729 1.0032882
3 1.0032222 1.0034570 1.0032150 1.0034365
4 1.0034325 1.0034702 1.0034169 1.0034570 1.00355
5 1.0034684 1.0034704 1.0034469 1.0034574

4.2. Transient results for 1D homogenization techniques

Given a fixed time step, the tip of the inserted rods may not coincide at
each discrete time with the spatial mesh grid. To deal with the possible rod
cusping effect, the averaging techniques described in Section 3 and modelled
by an equivalent one-dimensional problem have been used. The effectiveness of
each method has been checked by computing the time dependent relative total
power and comparing with the most favorable case from all proposed SHNC
solution methods and also with the reference result (Judd et al., 1981).

The relative total power (RTP) for a given time t is defined as

RTP(t) =
1

N

∫
V

NEG∑
g=1

νΣf,gφg dV , (14)

where the normalization factor N =
∫
V

∑NEG

g=1 νΣf,gφg dV is the total power
computed at t = 0 ; V is the core volume; NEG is the number of energy groups
and φg = (4π)−1

∫
Φg d~Ω is the scalar flux for energy group g.

First, to investigate the influence of the time step size, Fig. 7 shows the RTP
computed with the SHNC method, for the P1 approximation, using the coarse
spatial grid and two constant time steps, for each rod cusping treatment. Also,
the continuous line corresponds to the reference value (Judd et al., 1981, p. 14)
for time step ∆t = 0.0125 s. If the P3 approximation is also computed, results
are close to P1 approximation as we will see later from a study of the relative
errors. From Fig. 7 we observe that:

1. A constant time step ∆t = 0.025 s achieves convergence for the time dis-
cretized backward Euler method.

2. A volume weighted homogenization method underestimates the relative
total power. The other methods that reduce the rod cusping effect give
similar results, being the flux volume weighted Gehin’s method the compu-
tationally least expensive method. Among the equivalent nodal methods,
the four-nodes method E4N is more accurate with similar computational
effort.
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Figure 7: Relative total power computed with P1 approximation, coarse spatial mesh and
time steps ∆t = 0.1 s (left) and ∆t = 0.025 s (right). The vertical line corresponds to the rod
insertion time t = 0.6 s.

3. The agreement between the computed RTP and the reference value is very
good before the rod insertion, but after the introduction of this pertur-
bation the SHNC results are below the benchmark. This discrepancy has
been reported by other authors (Keresztúri et al., 2003; Srivastava et al.,
2018). We suggest that the cause of this deviation comes from the differ-
ent spatial discretizations schemes used by the computer codes to simulate
the transient. This also originates that small differences in the scalar flux
accumulate with time evolution.

The effect of the spatial mesh on the rod cusping effect is shown in Fig. 8, for
the fine spatial mesh with constant time steps ∆t = 0.025 s and ∆t = 0.0125 s,
obtained with P3 approximation. We observe from the Figure the convergence of
the volume weighted method to the other homogenization methods, that almost
overlap.
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Figure 8: Relative total power computed with P3 approximation, fine spatial mesh and time
steps ∆t = 0.025 s (left) and ∆t = 0.0125 s (right). The vertical line corresponds to the rod
insertion time t = 0.6 s.

Now we study in detail the numerical accuracy of the P1 and P3 results for the
RTP, for different time steps and varying the spatial mesh. To show a measure
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of the discrepancy between the methods used, in Tables 2 and 3 we display
the maximum relative errors in the RTP with respect to two different reference
values. Table 2 shows maximum relative errors from SHNC PL (L = 1, 3) RTP
with respect to results from the benchmark reference (Judd et al., 1981, p. 14)
with time step ∆t = 0.0125 s. In Table 3, the SHNC P3 computed RTP with
fine spatial mesh, time step ∆t = 0.0125 s and E4N homogenization method is
taken as the reference value. In all cases, the maximum relative error Emax

r has
been computed as follows:

Er,k =

∣∣RTP(tk)− RTPref(t
k)
∣∣

RTPref(tk)
× 100 , Emax

r = max
k

(Er,k) ,

where RTPref(t
k) is the reference relative total power at time tk.

Table 2: Maximum percent relative error for P1 and P3 relative total power with respect to
the benchmark value.

SHNC coarse mesh

∆t (s)
VWG FWG E2N E4N
P1 P3 P1 P3 P1 P3 P1 P3

0.1 19.56 19.52 12.72 12.64 12.86 12.79 12.68 12.60
0.05 19.36 19.32 12.77 12.69 12.89 12.81 12.69 12.61
0.025 19.35 19.31 12.86 12.79 12.94 12.86 12.68 12.61
0.0125 19.01 18.96 12.91 12.83 12.92 12.84 12.47 12.40

SHNC fine mesh

∆t (s)
VWG FWG E2N E4N
P1 P3 P1 P3 P1 P3 P1 P3

0.1 13.24 13.17 12.53 12.46 12.66 12.58 12.45 12.37
0.05 13.24 13.16 12.55 12.47 12.67 12.59 12.45 12.37
0.025 13.24 13.16 12.59 12.51 12.70 12.62 12.43 12.35
0.0125 13.60 13.55 12.57 12.49 12.64 12.56 12.32 12.24

We observe from Tables 2 and 3 that the error decreases and therefore con-
vergence increases when the spatial mesh is refined, the constant time step is
reduced and also when the PL approximation order increases. The P3 approxi-
mation gives a small improvement over the P1 approximation, showing that the
benchmark is well approximated by a diffusive model. As commented in previ-
ous observations to Fig. 7, there appears a bias from the reference solution with
every approximation and homogenization method. The convergence of all ho-
mogenization techniques is clear and among these techniques, the E4N method
introduces the least maximum relative error. Nevertheless, the FWG method is
a computationally cheap alternative to deal with the rod cusping effect.

Table 4 shows a comparison of point values of the RTP for a particular choice
of numerical parameters in the SHNC code together with the reference values.
It can be seen that a better treatment of the rod cusping effect can affect the
second significant figure and, on the other hand, the jump from P1 to P3 angular
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Table 3: Maximum percent relative error for P1 and P3 relative total power with respect to
the SHNC P3 solution (∆t = 0.0125 s, fine mesh and E4N method, in boldface).

SHNC coarse mesh

∆t (s)
VWG FWG E2N E4N
P1 P3 P1 P3 P1 P3 P1 P3

0.1 13.26 13.22 9.42 9.43 9.42 9.43 9.42 9.43
0.05 12.60 12.56 3.77 3.78 3.78 3.78 3.77 3.78
0.025 13.01 12.96 2.42 2.37 3.69 3.64 2.76 2.72
0.0125 13.42 13.37 2.55 2.50 3.92 3.87 3.23 3.19

SHNC fine mesh

∆t (s)
VWG FWG E2N E4N
P1 P3 P1 P3 P1 P3 P1 P3

0.1 9.42 9.43 9.42 9.43 9.42 9.43 9.42 9.43
0.05 6.60 6.54 3.77 3.77 3.77 3.77 3.77 3.77
0.025 6.79 6.73 1.78 1.71 2.77 2.71 1.22 1.23
0.0125 6.76 6.70 1.96 1.89 2.82 2.75 0.09 0.00

approximation modifies at most the fourth significant figure in the relative total
power, confirming again the diffusive nature of the problem.

Fig. 9 shows the change in criticality of the reactor with time due to the
introduction of perturbations, as computed by the SHNC code with two homog-
enization methods. Vertical lines correspond to times t = 0.4 s and t = 0.6 s,
where perturbations change. Computations were performed with coarse mesh
P1 approximation and Legendre order M = 4.
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Figure 9: Variation of keff eigenvalue with time for PHWR problem. P1 approximation, coarse
mesh, M = 4.

To quantify the performance of the method, Table 5 shows the computer
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Table 4: Relative total power results for the SHNC P1 and P3 approximations with time step
∆t = 0.0125 s and coarse spatial mesh, and benchmark solution.

t (s) VWG P1 FWG P1 E2N P1 E4N P1 E4N P3 Reference
0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000
0.1 1.05911 1.05911 1.05911 1.05911 1.05913 1.0555
0.2 1.20287 1.20287 1.20287 1.20287 1.20291 1.1982
0.3 1.44271 1.44271 1.44271 1.44271 1.44280 1.4364
0.4 1.83550 1.83550 1.83550 1.83550 1.83567 1.8252
0.5 2.31768 2.31768 2.31768 2.31768 2.31798 2.3178
0.6 2.80307 2.80307 2.80307 2.80307 2.80350 2.8126
0.7 3.20507 3.23291 3.26986 3.20951 3.21043 3.2482
0.8 3.48571 3.55725 3.58432 3.52701 3.52866 3.5960
0.9 3.42773 3.54862 3.54466 3.52046 3.52255 3.6119
1.0 3.14105 3.26971 3.25455 3.25160 3.25363 3.3463
1.1 2.73124 2.89921 2.88301 2.90207 2.90397 2.9815
1.2 2.34787 2.48904 2.47164 2.48930 2.49096 2.5803
1.3 1.85976 2.03963 2.01056 2.05661 2.05794 2.1313
1.4 1.42381 1.56894 1.54448 1.59186 1.59284 1.6611
1.5 1.00548 1.12807 1.10355 1.14219 1.14283 1.2130
1.6 0.67286 0.75840 0.74517 0.78096 0.78145 0.8365
1.7 0.47118 0.50640 0.50165 0.51197 0.51232 0.5664
1.8 0.35900 0.37360 0.37176 0.37522 0.37549 0.4207
1.9 0.31514 0.32203 0.32154 0.32186 0.32210 0.3646
2.0 0.29923 0.30595 0.30519 0.30630 0.30654 0.3470
2.1 0.29158 0.29811 0.29743 0.29831 0.29855 0.3388
2.3 0.28222 0.28828 0.28773 0.28844 0.28868 0.3289
2.5 0.27547 0.28114 0.28064 0.28127 0.28151 0.3221

running times of the SHNC code with P1 approximation, M = 4, on an AMD
Phenom 2.8GHz computer, with sequential (single-core) compiled FORTRAN
code. At each time step the ILUT/BiCGSTAB iterative solver was used with
tolerance 10−12. The computation of rod cusping corrections for the equivalent
node methods are performed by spanning, at each time step, a subprocess for the
SHNC code. This accounts for higher computational times for these methods.
It is also seen that computational times doubles, in general, when time step
halves.

Flux shape has been compared in Figs. 10 and 11, where the P1 scalar
flux distribution computed with the E4N homogenization method is plotted
together with the reference solution at different transient times in X direction
at y = 360 cm and z = 270 cm. The flux distributions are normalized to the
reference (Judd et al., 1981) total powerN at each time, see Eq. (14). The SHNC
P1 values have been computed with constant time step ∆t = 0.0125 s, for the
coarse and fine mesh discretizations, and the data from the reference solution
corresponds to the time step ∆t = 0.025 s. We observe a good agreement of
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Table 5: SHNC P1 running CPU times (in seconds), with M = 4 and tolerance 10−12.

∆t (s)
SHNC coarse mesh
VWG FWG E2N E4N

0.1 9.50 9.50 11.6 11.7
0.05 8.40 8.40 12.4 12.6
0.025 14.7 14.9 23.3 23.9
0.0125 27.5 27.6 44.9 45.5

∆t (s)
SHNC fine mesh
VWG FWG E2N E4N

0.1 197.2 197.9 199.8 200.0
0.05 373.1 374.4 378.0 379.0
0.025 659.0 682.0 689.0 690.0
0.0125 1106 1152 1169 1172

the SHNC E4N results with benchmark data for both spatial discretizations,
with discrepancies at the interval of fast changing slope when the coarse mesh
is used.
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Figure 10: Thermal group scalar flux at y = 360 cm and z = 270 cm, for P1 approximation
with time step ∆t = 0.0125 s, at t = 0.6 s (left) and t = 0.9 s (right).

Finally, Fig. 12 compares the influence of the different homogenization tech-
niques on the flux shape. The P1 thermal group scalar flux, computed with
constant time step ∆t = 0.025 s, is plotted along the Y axis (the moving rod
direction), at x = 360 cm and z = 270 cm, at times t = 0.6 s (start of rod in-
sertion), t = 0.9 s and t = 1.35 s (rod inserted at half reactor length). The flux
distribution is normalized, in all cases, to the computed total power N at initial
time t = 0. In Fig. 12, the left column of the plots corresponds to the coarse
mesh spatial discretization and shows that the VWG method underestimates
the thermal flux shape during rod insertion, thus requiring more advanced tech-
niques to accurately track this transient. This rod cusping effect is reduced by
the choice of a fine spatial mesh (right column in the Figure), showing also the
convergence of the homogenization methods when the spatial discretization is
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Figure 11: Scalar flux at y = 360 cm and z = 270 cm, for P1 approximation with time step
∆t = 0.0125 s, at t = 2.5 s (transient end): Fast group (left) and thermal group (right).

refined.
The previous results show the convergence of the numerical method, the

smoothness of the flux when the spatial mesh is refined and that the rod cusping
modeling methods effectively improve, in the same order of magnitude, the
purely geometrical volume weighted method.

4.3. Transient results for equivalent nodal four-nodes 3D technique

The accuracy of the simplifying assumptions of previous homogenization
methods (no lateral leakages and the largest effect occurs along the direction
of motion) can be finally estimated with the equivalent nodal four-nodes 3D
(E4N3D) method that incorporates the spatial (3D) nature of the transient
with surface boundary leakages simulated by external sources computed from
formulas given in Appendix A.

Table 6 shows the computed RTP for the time interval 0.6 s ≤ t ≤ 2.5 s, that
corresponds to the asymmetric control rods insertion, using a coarse spatial
mesh and different time step sizes, for P1 and P3 angular approximations. For
brevity, we omit the spatial convergence of the method with the fine spatial
mesh, that has been verified before in Subsection 4.2.

It can be seen that the computed values in Table 6 are below the values in
Table 4 for the 1D interpolatory homogenization techniques, with discrepancies
at the third decimal digit. We observe that P1 and P3 RTP results with E4N3D
method and ∆t = 0.0125 s differ from the second decimal digit in some cases
when t ≥ 0.6 s, while for t < 0.6 s the differences between P1 and P3 are less
significant. Also, the difference between E4N3D P1 and P3 results in Table 6 is
somewhat larger than in the 1D techniques because the angular dependence is
more relevant in 3D geometry.

To compare the E4N3D method with the 1D homogenization techniques,
Fig. 13 shows the maximum relative errors Emax

r for P1 relative total power,
calculated with the coarse mesh and different time steps and methods, with
respect to the P3 solution with the E4N3D method for ∆t = 0.0125 s We observe
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Figure 12: Thermal group scalar flux at x = 360 cm and z = 270 cm, for P1 approximation
with time step ∆t = 0.025 s, at times t = 0.6, 0.9, 1.35 s using coarse spatial mesh (left)
and fine spatial mesh (right). The vertical line denotes the moving rod tip position at that
particular time.

that the maximum error of the P1 E4N3D technique increases almost linearly
with the time step and it is smaller than that obtained with other methods.

The computation times needed to obtain the E4N3D P1 results, using the
coarse mesh for ∆t ≤ 0.05 s, are approximately double compared to the CPU
times needed for E4N P1 calculations with the same parameters (see last column
of Table 5, entries 2nd to 4th). This difference in running times is due to the
overhead of the computation of lateral leakages and the use of a 3D code.
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Table 6: P1 and P3 relative total power results for E4N3D method, coarse spatial mesh and
different time steps, and benchmark solution.

E4N3D P1 E4N3D P3

Reference
t (s)

∆t (s) ∆t (s)
0.1 0.05 0.025 0.0125 0.0125

0.6 2.97981 2.87254 2.82523 2.80307 2.80350 2.8126
0.7 3.35384 3.26715 3.23160 3.21560 3.21651 3.2482
0.8 3.63014 3.56683 3.54398 3.53250 3.53418 3.5960
0.9 3.51730 3.50827 3.51457 3.51845 3.52063 3.6119
1.0 3.20048 3.20803 3.22539 3.23594 3.23796 3.3463
1.1 2.79543 2.82634 2.85195 2.86585 2.86756 2.9815
1.2 2.41588 2.43377 2.45030 2.45894 2.46044 2.5803
1.3 1.94196 1.96854 1.98866 1.99928 2.00032 2.1313
1.4 1.50433 1.52725 1.54067 1.54737 1.54815 1.6611
1.5 1.08038 1.08640 1.09107 1.09355 1.09404 1.2130
1.6 0.74173 0.74591 0.74756 0.74809 0.74855 0.8365
1.7 0.51496 0.50549 0.50016 0.49714 0.49750 0.5664
1.8 0.38252 0.37513 0.37155 0.36970 0.36998 0.4207
1.9 0.32774 0.32297 0.32118 0.32037 0.32061 0.3646
2.0 0.30786 0.30537 0.30482 0.30466 0.30490 0.3470
2.1 0.29784 0.29662 0.29661 0.29670 0.29693 0.3388
2.3 0.28720 0.28664 0.28681 0.28694 0.28717 0.3289
2.5 0.28023 0.27967 0.27979 0.27988 0.28011 0.3221
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Figure 13: Maximum relative error for P1 RTP coarse mesh results with respect to the refer-
ence P3 E4N3D solution (coarse mesh and ∆t = 0.0125 s).

5. Conclusions

An accurate analysis of transient modes in reactor models involving control
rod insertion requires advanced homogenization techniques for the cross-sections
corresponding to partially inserted nodes. Our approach is based on estimates
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of the averaged scalar flux on each region (rodded/unrodded) of the node, com-
puted either by interpolation (Gehin’s approach) or by the numerical solution of
an equivalent nodal problem that can be one-dimensional or three-dimensional
incorporating lateral leakages.

These techniques have been implemented for arbitrary PL approximation
and Legendre polynomial order M . The adoption of a spatial discretization
based on a nodal collocation method and the use of node averaged values for
the scalar flux give a relative total power curve that smoothly varies with time
for each choice of spatial mesh and homogenization technique. Among these,
the E4N method, using the physical information of the one-dimensional node
neighborhood, improves the FWG method with little extra computational ef-
fort, especially for large numerical problems. The geometry of the E4N method
is adapted to the rod insertion and so it is free of any rod cusping effect. The
influence of the surrounding volume is modeled by computed averaged incom-
ing scalar fluxes. Also, for problems where the effects of lateral leakages or
strong angular anisotropies cannot be neglected, the proposed E4N3D method,
combined with a P1 or P3 angular approximation, is a natural replacement.

The computed results show the validity of the code to evaluate high order PL
approximations for each of the implemented homogenization methods, and that
in this particular problem the P3 approximation gives minor corrections to the
P1 case, confirming thus the diffusive character of the benchmark. The nodal
collocation spatial discretization with high polynomial order M allows the use of
a coarse spatial mesh and gives a numerical problem of small memory footprint
that allows fast computations while maintaining accurate enough results.

Finally, the choice of an implicit time discretization scheme allows consistent
calculations along all time steps and shows the validity of relatively large time
steps (when compared with typical neutron speeds) to faithfully reproduce the
transient evolution.
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Appendix A. Computation of the node averaged incoming scalar
flux

For a fixed spatial node e, the volume averaged angular flux at left adjacent
node e− 1 is given by

Φ̄e−1(~Ω) =
1

V e−1

∫
V e−1

Φe−1(~r, ~Ω) dV = φ̄e−1
k1=0,k2=0,k3=0(~Ω) ,

where φ̄ek1,k2,k3 are the coefficients from the orthonormal Legendre polynomial
expansion (11) at node e. The incoming flux to node e, along left boundary
surface with normal vector ~n = −~j pointing outwards, see Fig. A.14, is
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Figure A.14: Incoming flux along left Y axis boundary surface at spatial node e.

Φe,Y−(~r) =
1

2π

∫
~Ω ~n≤0

Φ̄e(~Ω) d~Ω =
1

2π

∫ π

0

∫ π

0

Φ̄e(~Ω) sin θ dϕ dθ (A.1)

that, using expansion (3) in terms of spherical harmonics for the angular de-
pendence of Φ̄e (with µ = cos θ), gives

Φe,Y− =
1

2π

∫ π

0

∫ +1

−1

∑
l,m

φ̄el,m Y
m
l (~Ω) dµ dϕ (A.2)

=
1√
4π
φ̄e00 −

2

π

∑
l=1,odd
m=1,odd

1

m
Ilm η̄

e
lm ,

where η̄elm = Imφelm and the integrals Ilm = 2
√

2l+1
4π

(l−m)!
(l+m)!

∫ 1

0
Pml (µ) dµ are

bounded by 1. The incoming flux for the rest of boundary surfaces can be
obtained in a similar fashion:

Φe,X± =
1√
4π
φ̄e00 ±

2

π

∑
l=1,odd
m=1,odd
m=2k−1

(−1)k

m
Ilm ξ̄

e
lm ,

Φe,Y± =
1√
4π
φ̄e00 ±

2

π

∑
l=1,odd
m=1,odd

1

m
Ilm η̄

e
lm ,

Φe,Z± =
1√
4π
φ̄e00 ∓

1

2

∑
l=1,odd

Il0 ξ̄
e
l0 ,

(A.3)

where ξelm = Reφelm. For example, in the particular case of the P1 approxima-
tion,

Φe,Y±,P1 =
1√
4π
φ̄e00 ∓

1

2

√
3

2π
η̄e11 . (A.4)
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