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Stability comparison of self-accelerating parameter
approximation on one-step iterative methods
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1 Introduction

The calculation of the solution of a nonlinear equation f(x) = 0, where f : D ⊂ R −→ R, is
required in many scientific and engineering processes. Let us denote this solution by x∗. Since the
resolution of these problems is often difficult and there exist few analytical methods to solve them,
we use iterative algorithms to approximate the solution. Starting with an initial approximation of
the solution, iterative methods generate a sequence of points that under certain criteria converge
to x∗. The general expression of this iterative process is

xk+1 = g(xk), k ≥ 0,

where g is the fixed point function that defines the method, and x0 ∈ R is the initial estimation.
However, if more than one previous iterate are used to obtain the following approximation to x∗,
we classify the iterative scheme as a method with memory, being its general expression

xk+1 = g(xk−m, . . . , xk−1, xk), k ≥ m,

and requires the starting points x0, x1, . . . , xm ∈ R.
In the current decades, many authors have devoted their research to the design and analysis of
new iterative methods. In [1–3] we can find extensive studies on such schemes, taking into account
their order of convergence p, and their efficiency in terms of the number of different functional
evaluations d performed in each iteration of the method. Kung and Traub conjectured in [1] that a
method without memory has at most order 2d−1. When this upper bound is reached, the method
is classified as an optimal iterative process. However, the order of convergence of methods with
memory is not limited by this value. Therefore, it is common to include more than one previous
iteration in order to design iterative schemes with higher order of convergence, resulting in methods
with memory. In this paper, starting from a family of iterative methods of order two, we use this
technique to design an iterative scheme that improves its order of convergence without including
more functional evaluations.

1neus.garrido@unir.net
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2 Introduction of memory and convergence analysis

The starting point of this study is a family of iterative methods presented in [4], whose iterative
expression is

xk+1 = xk −H(tk), k = 0, 1, 2, . . . , (1)

beingH(t) a weight function of variable tk = f(xk)
f ′(xk) . It is also proved in [4] that family (1) converges

quadratically when the weight function holds H(0) = 0, H ′(0) = 1 and |H ′′(0)| <∞. In addition,
in [5] the authors select a family of iterative methods that belongs to (1) with expression

xk+1 = xk −
f(xk)
f ′(xk)

− α

2

(
f(xk)
f ′(xk)

)2
, k = 0, 1, 2, . . . (2)

Let us note that (2) is obtained using in (1) the weight function H(t) = t+α t
2

2 , α ∈ R. The class
(2) has quadratic convergence for any α and its error equation is

ek+1 =
(
c2 −

α

2

)
e2
k +O(e3

k),

where ek = xk − x∗, ∀k, and c2 = f ′′(x∗)
2f ′(x∗) . From the lower term in the error equation, the order

of convergence of the family can increase a unit when α = 2c2. Since x∗ is unknown, different
approximations for f ′(x∗) and f ′′(x∗) are used in [5] obtaining methods with memory with order
p = 1 +

√
2 ≈ 2.4142. Mainly, these approximations use quadratic polynomials and rational

funtions.
Hereinafter, we are analyzing an approximation for f ′′(x∗) using high-order degree polynomials
in order to achieve an even greater increase in the order of convergence. In particular, we are
going to approximate f ′′(x∗) using cubic interpolation polynomials. Let us consider the general
expression of a cubic polynomial

p(x) = a+ bx+ cx2 + dx3.

Coefficients a, b, c and d are obtained imposing the following conditions:

p(xk) = f(xk), p(xk−1) = f(xk−1), p′(xk) = f ′(xk), p′(xk−1) = f ′(xk−1).

Then, we can approximate f ′(x∗) ≈ f ′(xk) and f ′′(x∗) ≈ p′′(xk), so the approximation for param-
eter α is given by:

αk = p′′(xk)
f ′(xk)

= −6f(xk) + 6f(xk−1) + 2(xk − xk−1)(2f ′(xk) + f ′(xk−1))
f ′(xk)(xk − xk−1)2 . (3)

We denote the iterative scheme obtained after replacing in (2) the parameter αk defined in (3)
as CS method. Theorem 1 shows the improvement in the quadratic order of convergence if
approximation (3) is considered.

Theorem 1. Let f : I ⊂ R −→ R be a sufficiently differentiable function in an open interval I.
If x∗ ∈ I is a simple root of f(x) = 0 and x0 and x1 are initial estimations close to enough to x∗,
then the iterative method CS converges to x∗ with order of convergence p = 1 +

√
3 ≈ 2.7321.

Therefore, the inclusion of memory by means of cubic interpolation polynomials makes it possible
to increase the order of convergence of family (2) without increasing the number of different
functional evaluations.
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3 Stability analysis: basins of attraction

In Section 2, the order of convergence of the CS method has been introduced. Moreover, the
analysis of the stability of the iterative scheme in terms of the initial estimations using a complex
dynamical study [6] is also useful. Since CS is a method with memory, we must use tools from
multidimensional real dynamics [7] to carry out this analysis .
Let us note that CS scheme is a method with memory with general expression xk+1 = g(xk−1, xk).
In order to calculate its fixed points, the authors in [7] define an auxiliar vectorial function
G : R2 −→ R2 and then the discrete dynamical system

G(z, x) = (x, g(z, x)),

where we denote z = xk−1 and x = xk. Then, the orbit of a point (z, x) ∈ R2 is the set of its
successive images by G, i.e. {(z, x), G(z, x), G2(z, x), . . . , Gm(z, x), . . .}.
We consider that the iterative scheme under study is applied on a nonlinear function f(x). Thus,
the fixed points of the associated vectorial function G satisfy G(z, x) = (z, x). In addition, when
they are different to the roots of f(x) they are called strange fixed points. The asymptotical
behaviour of the fixed points (zF , xF ) of G is classified depending on the eigenvalues λ1 and λ2
of the Jacobian matrix G′(zF , xF ). According to Robinson [8], a fixed point is attracting when
|λ1,2| < 1, repelling if |λ1,2| > 1 and (zF , xF ) is called saddle point if |λ1| > 1 but |λ2| < 1.
For an attracting fixed point x∗, its basin of attraction is defined as the set of preimages of any
order that converge to it, that is

A(x∗) = {(z0, x0) ∈ R2 : Gm(z0, x0) −→ x∗,m→∞}.

We can represent the basins of attraction of the roots of a given nonlinear function f(x) using
the dynamical planes. In this plot, the real plane is divided into a mesh of points that are taken
as initial estimates to iterate the iterative method used to approximate the roots of f(x). After
successively applying the asociated vectorial operator G to each point in the plane, if it converges
to any of the roots, it is represented in the corresponding colour and in black otherwise. In this
way, we are able to determine the stability of the iterative method in terms of the set of initial
estimations that converge to the roots of the nonlinear function.
Therefore, dynamical planes are useful for selecting the best initial estimations required to apply
an iterative method to approximate the solution of a nonlinear equation. In Section 4 we test
the performance of CS method by solving different nonlinear functions. Previously, we apply CS
method to the considered equations in order to compare its stability over different examples and
also with the classical Secant’s method, whose iterative expression is

xk+1 = xk −
(xk − xk−1)f(xk)
f(xk)− f(xk−1) , k = 1, 2, . . .

Let us note that Secant’s method is a scheme with memory with order of convergence p ≈ 2.41.
Figures 1, 2 and 3 show the dynamical planes of the nonlinear funcions in Table 1, respectively.

Function Roots
f1(x) = (x− 1)3 − 1 x∗ = 2
f2(x) = x2 − ex − 3x+ 2 x∗ ≈ 0.257530.
f3(x) = sin(x)− x2 + 1 x∗1 ≈ 1.409624, x∗2 ≈ −0.636732

Table 1: Test nonlinear functions for the stability and the numerical analysis
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The real roots of the nonlinear functions, denoted by x∗, are also fixed points of the vectorial
fixed point function associated to CS method applied to them. They are represented with white
stars in the dynamical planes and their basin of attraction with colour orange for the roots of
f1(x) and f2(x). We have depicted in orange and blue the initial estimations that belong to the
basins of attraction of the two real roots of f3(x). The convergence in the dynamical planes is set
when the difference between a point of the orbit of each initial guess and a root of the considered
function is lower than 10−5 with a maximum of 50 iterations of the method. As CS is a method
with memory, the axes in the real plane represent the current and the previous iterations, x and
z, respectively.
Figure 1 shows the dynamical planes corresponding to f1(x). For any initial guess, the most of
the points converge to x∗. However, there are points in black that do not belong to its basin of
attraction, with wider regions represented in black for Secant’s method.
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Figure 1: Basins of attraction for f1(x)

Figures 2 and 3 show that every initial guess converge to a root of the nonlinear equation. This
fact shows the stability of both Secant and CS methods. Moreover, the colour intensity denotes
that the initial estimate requires more iterations until its orbit converges to a root.
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Figure 2: Basins of attraction for f2(x)

Therefore, the dynamical planes previously shown (Figures 1-3) highlight the stability of method
CS depending on the initial estimate considered for these nonlinear test functions, even improving
the stability of Secant’s iterative scheme.
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Figure 3: Basins of attraction for f3(x)

4 Numerical experiments

In this section we will approximate the roots of the nonlinear test functions f1−3(x) in Table
1 using Secant’s method and CS iterative scheme. Based on Figures 1-3, we will take as an
initial estimation for solving the equations different points in the basins of attraction denoted in
orange or blue. This fact will guarantee the convergence to a root of the corresponding function.
Furthermore, we have choose for simplicity z0 = x0 + 0.1 in all the cases.
The numerical experiments have been carried using software Matlab R2018b. The convergence
is set when |xk+1 − xk| < 10−5 or |f(xk+1)| < 10−5, being the number of iterations lower than
50. Table 1 shows, for each nonlinear function, the initial estimation x0, the number of iterations
required to converge to the root, the approximation of x∗, the difference between the two last
iterations, the value of the funtion in the last iteration and the Approximated Computational
Order of Convergence (ACOC) defined in [9] as

p ≈ ACOC = ln(|xk+1 − xk|/|xk − xk−1|)
ln(|xk − xk−1|/|xk−1 − xk−2|)

, k = 2, 3, . . .

Table 1 gathers the performance of the numerical experiments. Let us note that the numerical
performance of both methods is acceptable, since in all cases the initial estimates converge to the
root of each function. Moreover, method CS requires in general less number of iterations than
Secant’s scheme to approximate the solution of the equation more accurately.

5 Conclusions

Starting from a family of iterative schemes with quadratic convergence, a method with memory
with order of convergence 2.7321 has been designed. This method has been obtained using a third-
degree interpolation polynomial for the approximation of the accelerating parameter that is present
in the initial family. In adddition, a stability analysis depending on the initial estimations has been
performed for different nonlinear test functions, showing wide basins of attraction corresponding
to the roots of the functions. Finally, the numerical performance of the proposed class has been
compared with Secant’s scheme, obtaining accurate approximations of the roots of the considered
test functions.
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f x0 Method iter x∗ |xk+1 − xk| |f(xk+1)| ACOC

f1(x)

1.2 Secant 18 2 3.8278e–06 5.1595e–09 1.6013
CS 16 2 5.2281e–08 7.1450e–22 2.9175

−0.5 Secant 14 2 2.1585e–07 4.9458e–11 1.6407
CS 7 2 3.1737e–07 1.5984e–19 2.8926

−4 Secant 23 2 6.9851e–06 1.3593e–08 1.5674
CS 10 2 1.0133e–11 5.2026e–33 2.9760

f2(x)

0 Secant 4 0.2575302854 5.0514e–08 2.1496e–12 2.1675
CS 3 0.2575302854 7.0601e–11 2.2390e–29 2.2410

1 Secant 4 0.2575302855 1.0718e–06 2.2724e–10 1.8087
CS 4 0.2575302854 9.2439e–15 1.9607e–39 2.8431

2 Secant 6 0.2575302854 1.2809e–08 1.7620e–13 1.7770
CS 4 0.2575302854 1.1639e–14 1.5604e–38 3.5723

f3(x)

1 Secant 6 1.409624004 3.8472e–08 2.0162e–12 1.6896
CS 4 1.409624004 3.4818e–08 7.2788e–22 3.0893

−2 Secant 6 -0.6367326508 1.6286e–07 1.1554e–11 1.6747
CS 4 -0.6367326508 3.6851e–11 5.5928e–30 2.9962

0.25 Secant 8 -0.6367326508 1.5058e–07 9.7093e–12 1.6260
CS 6 1.409624004 1.1850e–07 2.1495e-20 2.9196

Table 2: Numerical results for f1(x), f2(x) and f3(x)
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