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1

Density-based uncertainty quantification in a
generalized Logistic-type model

V. Bevia[,1 C. Burgos[, J.C. Cortés[ and R.J. Villanueva[

([) Instituto Universitario de Matemàtica Multidisciplinar,
Universitat Politècnica de València
Camı́ de Vera s/n, Valencia, Spain.

1 Introduction

The Logistic equation is a classical and widely used mathematical model which appears in several
areas of science such as in ecology, chemistry or artificial neural networks. However, in this
contribution the authors consider with the generalized Logistic ordinary differential equation
(ODE) model:

X ′(t) = α(t) rX(t)
(

1−
(
X(t)
K

)ν)
, t ≥ t0, X(t0) = X0. (1)

As usual, t is interpreted as the time, the parameter r is the growth rate and K is the carrying
capacity. The differential equation is generalized by adding two terms: a positive, monotonically
growing function α(·) and a constant positive term ν. The first term, α(·), allows to control the
so-called lag phase, which is the growth phase in which the population under study has not yet
achieved a fully exponential growth. The latter, ν, is a power that controls how fast the carrying
capacity K is approached and is termed as deceleration term. When ν = 1, the classical logistic
differential equation is obtained. And when ν tends to 0, the Gompertz equation is given. The
incorporation of both the function α(·) and the power ν allows for more flexible S-shaped curves
to model growth phenomena over time. Some examples of application include tumor growth [1–4],
bacterial culture growth [5] and diseases such as SARS [6,7], dengue fever [8], influenza H1N1 [9],
Zika [10], Ebola [11], and COVID-19 [12–15].
In order to represent and predict real world dynamics by means of Equation (1), it is necessary
to determine the initial state X0 and the model parameters r, K, ν and α(·) accounting for the
underlying uncertainty. Uncertainty may appear due to tolerance errors in measurement devices
when performing experiments and by the inherent uncertainty of factors such as the lag phase or
the deceleration term, which cannot be directly measured.
Since the objective is to analyze and predict real world behavior, the model is considered with
uncertainty at its parameters such as the initial condition, growth rate, etc. The first probability
density function (1-PDF) of the solution stochastic process is obtained by numerically solving its
related Liouville partial differential equation (PDE) as detailed in the following Section.

1vibees@upv.es
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2 Methods

Let (Ω,F ,P) be a complete probability space. Let X0 ∈ L2(Ω), that is, a random variable with
finite variance. Let g : Rn × [0,∞) → Rn verify a Lipschitz condition in the spatial variables.
Consider the following random ODE:{

X′(t, ω) = g(X(t, ω), t), t > 0,
X(0, ω) = X0(ω), ω ∈ Ω,

where the derivative may be interpreted in the path-wise or mean-square sense. It can be shown
(see [2,17]) that the 1-PDF of the solution stochastic process X(t, ω) verifies the Liouville equation
in the weak sense: {

∂tf(x, t) + Divx (g(x, t)f(x, t)) = 0, t > 0,
f(x, 0) = f0(x), x ∈ D ⊆ Rn.

Furthermore, at all points where the first derivatives of g are also Lipschitz continuous, a more
practical form of the equation is obtained just by computing the divergence of the product between
g and f : {

∂tf(x, t) + g(x, t) · ∇xf(x, t) = −f(x, t) Divx g(x, t), t > 0,
f(x, 0) = f0(x), x ∈ D ⊆ Rn.

In the particular case under study, the flow function and its divergence for the Liouville Equation
are, respectively,

g(x, t) = α(t) r x
(

1−
(
x

K

)ν)
, ∇x · g(x, t) = ∂xg(x, t) = α(t) r

(
1− (1 + ν)

(
x

K

)ν)
,

with x ∈ [0,K]. Despite the various choices available for α(·), the one chosen by [18] will be used:

α(t) := q

q + e−mt
, t ≥ 0, q, m > 0.

Now, in order to solve the Liouville Equation with the flow described by the generalized Logistic
Equation, the PDE will be considered through the characteristic curves:

d
dsx(s) = α(s)r x(s)

(
1−

(
x(s)
K

)ν)
, x(0) = x0,

d
dsf(x(s), s) = −f(x(s), s) ∂xg(x(s), s), f(x(0), 0) = f0(x0),

where x0 is any point of the initial discretized grid. The 1-PDF along the characteristic curves
has a closed form which can be computed by approximating an integral:

f(x(s), s) = f0(x0) exp
(
−
∫ s

0
∂xg(x(s), s)ds

)
;

Any ODE numerical solver can be employed. The authors have used a 4th order Runge Kutta
ODE solver.
Although this formulation may be not be very clarifying, it allows the use of the so-called la-
grangian numerical methods, in which initial points in a grid are treated as individual particles
whose positions and values change through time. However, not all points of a mesh are going to be
updated; a wavelet compression-based adaptive mesh refinement algorithm has been implemented
in order to select only those points that contain a higher variability and, therefore, have to be
tracked with higher precision.
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Another important question is the determination of the initial PDF from the known data at initial
time. The initial PDF has been assigned by the use of the so-called Principle of Maximum Entropy
(PME or MaxEnt):

f0 = argmax
{
−
∫
D
f(x) log(f(x))dx : f ∈ L1(D), f ≥ 0 a.e. D ⊆ R

}
When applied to this case, the constraints are given by the central moments up to any finite order
p, which is denoted by {µi}pi=1. It can be shown that the general form of the function obtained
by applying PME has the following form:

f0(x) = exp
(
−1−

p∑
i=0

λix
i

)
, x ∈ D,

where the terms {λi}pi=1, called Lagrange multipliers, are obtained by solving:∫
D f(x)dx = 1,∫
D x f(x)dx = µ1,

...∫
D x

p f(x)dx = µp,

Finally, the inverse problem of determining the parameters r, ν, K, q and m that best represent
our real world problem is tackled by making use of the Particle Swarm Optimization algorithm
(PSO) (see [19]). This optimization algorithm creates several parameter vectors and evaluates a
predefined fitness function for each of these parameter vectors. It then evolves these parameter
values according to the fitness function in the same way that a swarm of birds search for food.

3 Results

Only the case of real data is going to be shown due to the fact that it is the most interesting case.
The model consists of a biological culture growth experiment (see [20]), in which several samples
have been obtained at 28, approximately equidistant, time instants during the first 7 hours,
approximately. Tables 1 and 2 show the optimal multipliers and parameter values, respectively,
obtained by following the aforementioned techniques.

λ0 λ1 λ2
440.8872 -3112.2887 5434.2539

Table 1: Optimal multipliers

Parameters q m r ν K

Example 1 0.8085 0.001 1.1249 1 0.65

Table 2: Optimal Parameters given by PSO procedure.

As it can be seen, the simulation with optimal parameters is able to describe the microbial
growth evolution. The time step used for the numerical solution of the characteristic curves is
∆t = 0.005, and the simulation took 0.6 seconds to compute. The computation of the optimal
parameters through the PSO algorithm took around 5 minutes. All computations were performed
using MATLABő in a laptop with a Ryzen 7 5800H processor.
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Figure 1: Inital PDF obtained by PME, with the multipliers shown in Table 1. The inital grid is
4096 points. Adapted grid is obtained consisting of only 353 points.
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Figure 2: Mean and 2-standard deviations confidence interval with optimal parameters obtained
by PSO, as in Table 2.
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4 Conclusions

The random generalized Logistic equation has been studied through the time evolution of its first
probability density function, obtained as the solution of the related Liouville partial differential
equation. Several techniques, such as wavelet compression-based adaptive mesh refinement, the
principle of maximum entropy or the particle swarm optimization algorithm have been employed
in order to fine-tune the parameter values for a correct representation of a real world biological
culture growth experiment. The case of where, not only the initial condition of the equation, but
also its coefficients are considered as random variables is currently under study. Furthermore,
this same point of view can be applied to model consisting of 2 or more differential equations,
both coupled or uncoupled. Last but not least, the authors are also studying the computation of
the probability of events, by using the approximated probability density function, as well as the
computation of confidence intervals.
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