
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/182218

Petrovic, G.; Aleixandre Tudo, J.; Buica, A. (2020). Viability of IR spectroscopy for the
accurate measurement of yeast assimilable nitrogen content of grape juice. Talanta. 206:1-
7. https://doi.org/10.1016/j.talanta.2019.120241

https://doi.org/10.1016/j.talanta.2019.120241

Elsevier



 

Viability of IR spectroscopy for the accurate measurement of Yeast Assimilable Nitrogen content of grape 1 

juice 2 

Gabriella Petrovica, Jose-Luis Aleixandre-Tudoa,b, Astrid Buicaa* 3 

aDepartment of Viticulture and Oenology, P/Bag X1 Matieland, Stellenbosch 7600, South Africa 4 

bInstitute for Grape and Wine Sciences, P/Bag X1 Matieland, Stellenbosch 7600, South Africa 5 

*corresponding author: Astrid Buica, email: abuica@sun.ac.za 6 

ABSTRACT: Up to date, there have been only a few reports on the measurement of YAN and/or its 7 

components using IR spectroscopy, suffering from various limitations (number of samples, validation strategies, 8 

etc.). In this work, three IR spectral instruments measuring in different modes and ranges of the IR spectrum 9 

(FT-IR, FT-NIR, and ATR-MIR), were compared and evaluated for their accuracy to measure both total YAN as 10 

well as the components, FAN and ammonia, separately, using over 900 grape juice samples from 28 cultivars 11 

over three seasons. The global and vintage-based models were evaluated using R2
CAL/VAL, RMSEC/P, and 12 

RPDCAL/VAL. Randomization tests were used for pair-wise comparison of models. FT-IR and FT-NIR instruments 13 

gave the best results, while ATR-MIR can be used for screening purposes. Considering the accuracy, 14 

robustness, high throughput, and cost-effective nature, the models produced by both FT-IR and FT-NIR 15 

spectroscopy can provide winemakers with the opportunity to make timelier and more informed nutrient 16 

supplementation decisions, facilitating the achievement of their desired wine style and quality.  17 

 18 
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1. Introduction 23 

IR spectroscopy provides the possibility of “fingerprinting” samples and, therefore, can provide an in-depth 24 

understanding of the chemical properties of various food and beverage products [1]. However, the potential of 25 

spectroscopic techniques would not have been realised had it not been for major developments in the field of 26 

chemometrics. Chemometric techniques such as partial least squares (PLS) regression and principal component 27 

regression (PCR) allow the simultaneous consideration of multiple variables and are also able to handle highly 28 

correlated and noisy data, addressing the inherent issues related to dealing with spectroscopic data [2]. This is 29 

due to the fact that these techniques extract latent variables from the original spectral data, thereby reducing the 30 

number of X-variables (spectral data points) to a set of non-correlated variables. This set of non-correlated 31 



 

variables can then be used to explain the variation in the data [3,4] and subsequently, provide the possibility of 32 

building suitable and robust calibration models. 33 

Due to the complexity of the winemaking process and the increasing consumer demand for high quality 34 

wines, monitoring grape and wine composition has become a necessity [1]. However, timely and cost-effective 35 

analysis is not always possible using conventional methods. This is owed to the fact that often these methods 36 

cannot be carried out on-site as they require trained personnel and the use of potentially hazardous chemicals 37 

[5]. Thus, the possibility of providing simple, rapid and cost-effective methods which are non-destructive and 38 

environmentally friendly would be an indispensable asset to the modern wine industry. These properties are all 39 

characteristic of IR spectroscopy, and although there has been widespread adoption of this technology in the 40 

food industry, the use of IR spectroscopy in the wine industry is still in its infancy [6–8]. 41 

The possible reasons for this have been highlighted in a recent publication [9], the most pertinent being the 42 

lack of understanding of the technology. Robust calibrations should be capable of providing accurate results for 43 

samples which are: (i) exposed to different environmental conditions, (ii) from different varieties and (iii) from 44 

different vintages [10]. These are essential factors to consider for the successful integration of this technology 45 

into the wine industry, especially due to the notoriously complex nature of the grape juice matrix [8]. As a result, 46 

obtaining a representative calibration set becomes a particularly challenging task [11]. Furthermore, the bulk of 47 

publications currently available on spectroscopic modelling in grape and wine research generally use a limited 48 

sample set and thus, chances are that the large degree of the variation naturally present in the population is 49 

neglected [9,12] (Dambergs et al., 2015; Skoutelas, Ricardo-da-Silva, & Laureano, 2011). Moreover, more often 50 

than not, these publications do not test their models using independent validation sets but rather report values 51 

for cross-validation which are in most cases, overoptimistic [13,14]. Cross-validation (CV) entails splitting the 52 

sample set into a predetermined number of subsets. Calibrations are then obtained by removing a different 53 

subset from the calibration data until each subset has been left out once. Thus, CV may lead to overoptimistic 54 

results as the samples used to validate the model have also been used to calibrate the model [15].  55 

Yeast assimilable nitrogen (YAN) can be defined as nitrogen sources present in the grape juice matrix that 56 

can be taken up by yeast during fermentation. These sources include free amino nitrogen (FAN) and ammonia 57 

[16]. YAN is an essential component of grape juice as it plays a major role in fermentation efficiency by providing 58 

the necessary nutrients required for the growth and proliferation of yeast, thereby reducing the chances of stuck 59 

or sluggish fermentations [17]. Furthermore, YAN has been highlighted as a driver of quality by influencing the 60 

organoleptic qualities of wine [18]. This is primarily owed to the free amino nitrogen (FAN) portion of YAN, as 61 

certain amino acids (branched-chain and aromatic) have been identified as precursor molecules for the 62 

production of particular aroma compounds [19]. Thus, it is important to not only measure total YAN before the 63 

start of fermentation, but also to have knowledge of its composition. Consequently, this information will ensure 64 



 

more informed decision-making regarding nutrient supplementation strategies and assist in avoiding 65 

unnecessary prophylactic nutrient additions.  66 

In order to assess whether the models produced in this study are accurate enough for industrial use, it is 67 

important to understand the parameters, YAN, FAN and ammonia, in the context of the winemaking environment. 68 

Yeast assimilable nitrogen is an essential nutrient required by yeast during fermentation. In the absence of 69 

sufficient concentrations, yeast will not be able to produce the required amounts of biomass that is necessary to 70 

carry a fermentation through to dryness, and therefore, fermentations may become stuck or sluggish [17,20]. In 71 

addition to the large amounts of residual sugar that will be present in the wine, stuck or sluggish fermentations 72 

are normally accompanied by the formation of off-flavors, such as H2S [21]. Furthermore, insufficient 73 

concentrations of the FAN component of YAN have been reported to lead to a very neutral wine devoid of 74 

desirable fruity and floral aromas. This is because the branched-chain and aromatic amino acids (which form 75 

part of the FAN component of YAN) have been identified as the precursor molecules for the formation of these 76 

favorable aromas [19,22]. 77 

The exact amount of YAN, FAN and ammonia which is optimal for the yeast during fermentation is highly 78 

strain dependent, however, a 140 mg N/L of total YAN has been benchmarked in literature as the minimum 79 

amount required to complete fermentation [23]. The range of YAN, FAN and ammonia concentrations found in 80 

various surveys across different wine regions were reviewed in a recent publication [24]. Studies done to 81 

investigate the impact of varying concentrations of YAN, FAN and ammonia on the fermentation efficiency and 82 

organoleptic qualities of the final wine have found that, at above a certain threshold, the amount of YAN becomes 83 

redundant. For example, the production of fruity and floral esters has been observed to plateau when total YAN 84 

concentrations reach more than 250-300 mg N/L, and have even been found to decrease when YAN 85 

concentrations reach approximately 500 mg N/L [25]. Furthermore, very high total YAN concentrations (>450-86 

500 mg N/L) may result in the production of unwanted compounds such as biogenic amines, carcinogens and 87 

protein haze, as well as leading to microbial instability [16]. Therefore, having excessive concentrations of YAN 88 

will decrease the quality of the final product.  89 

These margins of concern are, however, over approximately a 50 mg N/L (total YAN) range, depending on 90 

the nitrogen demand of the particular yeast strain used. Therefore, the use of ATR-MIR may be plausible from 91 

a screening point of view but will not allow for precise decision-making regarding nitrogen supplementation. It is 92 

important to note that the RMSEP reported is an average of the errors and that, in some cases, this error may 93 

be a lot larger than the value reported as the RMSEP. Therefore, there is a chance that winemakers may be 94 

completely misguided by the prediction value given by ATR-MIR.  95 

Up until now, there have been only a few reports on the measurement of YAN and/or its components using 96 

IR spectroscopy. The first study attempted to calibrate an FT-NIR instrument for the measurement of FAN using 97 

97 settled grape juice samples from various white varieties [26]. They were, however, unsuccessful, obtaining a 98 



 

large standard error of prediction (SEP) of 272.1 mg N/L. Thus, instead, a Soft Independent Modelling of Class 99 

Analogy (SIMCA) was used to classify the samples as having either high, medium or low concentrations of FAN. 100 

In a comparison done by Dambergs et al. [27], MIR was shown to outperform NIR for the measurement of YAN, 101 

FAN, and ammonia, as higher ratio of standard error of performance to standard deviation (RPD) and lower 102 

standard error of cross-validation (SECV) values were observed using MIR. On the other hand, Shah et al. [13], 103 

investigated the viability of using ATR-MIR to measure various grape juice parameters including YAN, FAN, and 104 

ammonia. SEP values of 42.4 mg N/L, 36.7 mg N/L and 17.2 mg N/L were obtained for YAN, FAN, and ammonia, 105 

respectively. Furthermore, a RPD of approximately 2 was obtained for each of these parameters, indicating a 106 

qualitative rather than quantitative determination of these grape juice parameters. In another study, 71 grape 107 

juice samples from the Lisbon region in Portugal were used to build a calibration for YAN using FT-MIR 108 

spectroscopy. An R2 of 0.993, SEP of 5.9 mg N/L and an RPD of 7.8 was obtained [12]. These results may, 109 

however, be overoptimistic due to the limited number of samples included in the model in combination with the 110 

use of a cross-validation strategy rather than external validation. 111 

Thus, IR spectroscopy shows potential for the measurement of YAN concentration and composition. 112 

However, for this technology to become a feasible option for industry, a few key issues need to be addressed. 113 

These include building calibrations with larger data sets including different varieties, origins, and vintages, as 114 

well as independent validation to adequately test the accuracy and robustness of these models. Therefore, the 115 

aim of this study is to fully investigate the viability of various infrared spectroscopic instruments for the accurate 116 

quantification of YAN, FAN, and ammonia concentrations by incorporating independent and robust validation 117 

strategies.  118 

2. Materials and methods  119 

2.1. Sample collection  120 

A total of 905 grape juice samples were collected over three vintages (2016 – 2018) directly from 121 

commercial wineries at a ripeness level suitable for commercial winemaking. Red grape juice samples were 122 

collected after crushing and white after settling. An unsupervised strategy was employed [24]. This meant that 123 

no specific cultivars or origin was targeted. Consequently, samples were collected from 28 different cultivars, 12 124 

white and 16 red. Furthermore, these samples were collected from 14 different grape-growing districts situated 125 

in the Western Cape of South Africa, classified according to the demarcation set by the Wine of Origin System 126 

of South Africa (SAWIS, 2017). Samples were coded immediately upon collection and stored at -20°C until 127 

analysis. 128 



 

2.2. Analytical methods 129 

2.2.1. Reference method 130 

The components of YAN: FAN and ammonia, were measured separately by enzymatic assay using the 131 

Megazyme™ K-PANOPA (Ireland) for FAN and Enzytec™ Fluid Ammonia (R-Biopharm, Germany) for 132 

ammonia. This was performed on the Arena 20XT (Thermo Fisher Scientific, Waltham, MA) which provides 133 

automated spectrophotometric readings. The individual values for FAN and ammonia were then summed to 134 

determine the total amount of YAN available and were expressed as mg N/L. 135 

2.2.2. Infrared spectroscopy scanning 136 

The samples were thawed at room temperature on the day of analysis and were centrifuged at 5000 rpm 137 

for 5 min in a 7366 Hermle centrifuge (Wehingen, Germany) prior to analysis. Spectra were collected from three 138 

bench-top infrared instruments, namely: a multi-purpose analyser (MPA) FT-NIR instrument (Bruker Optics, 139 

Ettlingen, Germany), Alpha-P ATR FT-MIR spectrometer (Bruker Optics, Ettlingen, Germany), and WineScan™ 140 

FT120 (FOSS Electric, Denmark). 141 

FT-NIR spectra (12500-4000 cm-1) were collected by the MPA in transmission mode in a 1 mm cuvette. 142 

The absorbance spectrum obtained for each sample was acquired at a resolution of 2 cm-1 and at a scanning 143 

velocity of 10 kHz, averaged over 32 scans.  Air was used as background and an air spectrum was taken 144 

periodically during the scanning of the samples and was automatically subtracted from each individual sample 145 

spectrum.  146 

Spectra in the mid-infrared range (4000-600 cm-1) were collected by the Alpha-P ATR FT-MIR 147 

spectrometer. Each sample was scanned at a resolution of 4 cm-1 and at a scanning velocity of 7.5 kHz, 148 

averaged over 64 scans to give a final reading. Instrumental control of the MPA FT-NIR and the Alpha-P ATR 149 

FT-MIR were carried out using OPUS software (OPUS v. 7.0 for Microsoft, Bruker Optics, Ettlingen, Germany). 150 

The WineScan™ FT120 measures primarily in the mid-infrared region (4000-929 cm-1), however, a small 151 

section of the near-infrared region is also included (5011-4000 cm-1). This instrument recorded spectra at a 152 

resolution of 4 cm-1 in transmission mode which was then converted into a linearized absorbance spectrum. 153 

Each measurement was averaged over 20 readings to give a final measurement. Prior to analysis of the grape 154 

juice samples, the background absorbance in the grape juice sample is accounted for using the FOSS Zero 155 

Liquid S-6060 (WineScan™ manual).  156 

2.3. Data analysis and strategy 157 

Calibration models and model accuracy were evaluated using OPUS software (OPUS v. 7.2 for Microsoft, 158 

Bruker Optics, Ettlingen, Germany). This software correlates the reference values to the spectra through the use 159 

of the partial least-squares regression (PLS) algorithm. The accuracy and reliability of the models were assessed 160 



 

based on a set of performance evaluation indices which included the correlation coefficient of calibration and 161 

validation (R2
CALand R2

VAL), the root-mean square error of calibration (RMSEC) and validation (RMSEP) as well 162 

as the RPD in calibration and validation (RPDCAL and RPDVAL).  163 

The optimum number of latent variables (i.e. rank) to avoid overfitting of the model was algorithmically 164 

determined [28], Rank was, however,  not used as a criteria to compare the reliability of the models in this study. 165 

Instead, a provision was made which allowed for a maximum of 20 latent variables to be considered during 166 

model optimization. This number was considered to be low enough to avoid overfitting of the models as YAN is 167 

a minor component, producing a rather weak signal in a highly complex matrix. Moreover, the chances of 168 

overfitting were further decreased by external validation strategies in addition to the large number of samples 169 

that were gathered from a variety of different cultivars, vintages and origins – ensuring that both calibration and 170 

validation sets would be representative of the population.  171 

An untargeted-type strategy, modeling the entire spectral fingerprint followed by variable selection based 172 

in the statistical results as opposed to a variable selection based on the chemistry of the targeted compounds, 173 

was employed during the modelling process. For each instrument, the spectra from all samples were uploaded 174 

to the OPUS software with their corresponding reference values for either YAN, FAN, or ammonia. The sample 175 

set was divided into a 66/34 calibration to validation set using the Kennard-Stone algorithm by selecting the 176 

“automatic selection of test samples” feature. Thus, an external validation set was used. The models were then 177 

let to run using the “general B” option incorporated in the software package. This option automatically divides 178 

the spectra into ten sub-regions into an interval PLS strategy. The regions used for the top five models were 179 

further investigated for optimization of the calibration model. These regions were then manually selected using 180 

the “user defined optimization regions” function which allows a manual selection of ten sub-regions of any size 181 

using the “general B” option. Furthermore, pre-processing techniques such as smoothing, standardization, 182 

transformation, and normalization were used for model optimization. 183 

Once the optimum regions were identified for a specific instrument and sample parameter, a subsequent 184 

model was built using these settings, but the sample set was divided into a 50/50 ratio of calibration/test. The 185 

models including samples from all the different varieties, origins and vintages will from hereon be referred to as 186 

“global models” and differentiated based on their calibration to validation ratio (66/34 or 50/50). 187 

During the optimization of each model, outliers were removed and the pre-processing method which 188 

resulted in the lowest RMSEP and highest RPD was selected. Outliers were detected by the Mahalanobis 189 

distance for each calibration spectrum from which a threshold is calculated. This threshold determines whether 190 

the spectra of an unknown sample can be reliably predicted or not.  191 

To assess the robustness of the models, it was tested to see whether the YAN, FAN, and ammonia 192 

concentrations from samples from a new vintage (2018) could be accurately predicted by a calibration model 193 

built based on samples from the previous two vintages (2016 and 2017). In other words, 2016 and 2017 grape 194 



 

juice samples were used as the calibration set to train the model, while 2018 was used as an independent test 195 

set. These calibration models included samples from all three vintages, origins, and the respective red or white 196 

varieties.  197 

RPD values and RMSEC/V are often used to compare the accuracy of calibrations. However, this approach 198 

is simply based on a direct comparison between the reported error values and an accurate statistical evaluation 199 

of model performance is therefore not provided. A randomization test reported by Olivieri [29] has been proposed 200 

to evaluate the statistical significance of the prediction performance of two calibrations. This test may be used 201 

to compare the prediction accuracy of two instruments i.e. the performance of different spectroscopic 202 

instruments. This may also include calibrations based on different infrared regions, measuring principle 203 

(transmission or reflectance), or even different sample formats. The differences between the square errors and 204 

the mean differences are calculated from a set of predicted samples from two different calibrations. Significant 205 

differences between two calibrations are given by p-values < 0.05 as the null hypothesis (RMSE1=RMSE2) is 206 

rejected. The test was evaluated using a MATLAb code (MATLAB R2016b version, Mathworks Inc., Natik, MA) 207 

provided elsewhere [29]. 208 

3. Results and discussion   209 

3.1. Tasks and rationale  210 

The rationale of the 66/34 global model was to test the viability and subsequently, the robustness of IR 211 

spectroscopy in an industrial context – where samples originate from different varieties, growing regions and 212 

vintages. A calibration model is considered robust when the model could accurately predict the tested variable, 213 

irrespective of unknown changes occurring in the external environment [10]. Due to the innate complexity of 214 

fruits and vegetables, samples belonging to different ‘batches’ (i.e. different varieties, origins and vintages) are 215 

considered as the most important factor influencing model robustness in the application of IR spectroscopy to 216 

agricultural systems [10,30]. This is an important factor to consider in the field of spectroscopy as an inherent 217 

feature of this technology is to look at the matrix in its entirety, and subsequently the interactions occurring in 218 

the given matrix [2]. Furthermore, robustness was ensured by assessing models with an independent validation 219 

set which avoids potentially overoptimistic results that could be obtained by using a cross-validation strategy.  220 

A subsequent model was built with the calibration and independent validation set adjusted to a ratio of 221 

50/50. This was done to further assess the robustness of the models built by a particular instrument as less 222 

samples are included in the training set, as well as increasing the number of independent samples the model is 223 

required to predict. 224 

Furthermore, due to the number of environmental factors that influence the grapevine during the growing 225 

season, a specific vine may result in a substantially different grape juice matrix from one year to the next, known 226 

as the vintage effect. Practically speaking, a calibration model would be built using samples from previous 227 



 

vintages and then used to predict the concentration values of samples from a new vintage. Therefore, the next 228 

task assigned to each instrument included building a calibration model from two vintages (2016 and 2017) and 229 

using it to independently predict the samples from a new vintage (2018). Again, to ensure a realistic situation 230 

and increase the robustness, the samples from all the vintages (including both calibration and validation sets) 231 

included samples from an array of different cultivars and growing conditions.  232 

3.2. Nitrogen status of samples  233 

The 905 samples had reference concentrations which spanned over a range of 44.88-483.67 mg N/L, 234 

29.83-365 mg N/L and 1.16-344.97 mg N/L for YAN, FAN and ammonia, respectively (Supplementary Table 1). 235 

These concentrations are comparable to what has previously been published for various YAN surveys in other 236 

wine regions of the world [31–33]. Thus, another concern of spectroscopic calibration was addressed by 237 

ensuring that a large number of samples were collected over a realistic range of concentration values. This 238 

dataset is therefore regarded as representative and thus most likely capable of robust calibration of IR 239 

spectroscopic instruments for the accurate prediction of the nitrogen status of the grape juice matrix.  240 

The dataset used to test the ability of predicting the nitrogen status of a sample from a new vintage had 241 

799 samples included in the calibration set (2016 and 2017) and 106 in the validation set (2018) (Supplementary 242 

Table 2).  243 

3.3. Assessment of IR spectroscopy for the purpose of nitrogen status quantification 244 

3.3.1. Fourier-transform infrared (FT-IR) spectroscopy prediction models 245 

Strong water absorption peaks (1552-1755 cm-1; 3552-3042 cm-1) can be observed in the FT-IR spectra of 246 

grape juice. This characteristic of FT-IR spectroscopy has been reported to impede its use in quantification of 247 

various compositional parameters in the grape juice matrix [34]. For example, the peak ranging between 1552-248 

1755 cm-1 coincides with the absorption of the amino acid side-chains which absorbs between 1480-1800 cm-1 249 

[35]. Furthermore, sugar and water absorbing at 3552-3042 cm-1 overlap with the 1° N-H2 groups present in 250 

YAN. Regions related to N absorption features were commonly included in the calibrations (Supplementary 251 

Table 3). These regions (1164-1601 cm-1) are related to primary and secondary amine bending, aromatic amino 252 

acids, and oxynitrogen compounds (aliphatic and aromatic nitro compounds and organic nitrates). Other regions 253 

were also included that may correspond to absorption features of the other molecular bonds part of the nitrogen 254 

containing molecules (2993-1786 cm-1 and 4618-3977 cm-1) [36]. All the models built using FT-IR spectroscopy 255 

in transmission mode produced models suitable for quantification as all RPDVAL values were observed to be 256 

above 3.  257 

Generally, the global models for all the parameters (YAN, FAN, and ammonia) and for both tested ratios 258 

(66/34 and 50/50) (Table 1 and 2) were found to perform better than the tasks of predicting the nitrogen status 259 

of samples from a new vintage (Table 3). Furthermore, global models employing the 66/34 ratio performed better 260 



 

than the 50/50 ratio. RPDVAL values of the 66/34 approach were all found to be above 4 with a RPDVAL of 5.2 261 

obtained for the prediction of total YAN – considered appropriate for quality control purposes [13]. The 66/34 262 

ratio was found to have the lowest error in prediction for all parameters tested as a RMSEP of 13.9, 11.8 and 263 

5.07 mg N/L was observed for YAN, FAN and ammonia, respectively. The models built based on the 50/50 ratio 264 

of calibration/validation were, however, comparable to the models employing the 66/34 ratio as RPDVAL values 265 

were also generally observed to be above 4, except for FAN (RPDVAL 3.89). For both ratios, the prediction of 266 

FAN was found to be a more difficult task, resulting in a lower RPDVAL compared to YAN and ammonia. 267 

Interestingly, although a decrease in the RPDVAL was observed for FAN for the 50/50 ratio compared to the 66/34 268 

ratio, a slight improvement in the average prediction accuracy could be observed for the 50/50 global model 269 

(Table 1). The rank for the global models (66/34 and 50/50) were observed to range between 16 and 20 (Table 270 

1). 271 

A SEP of 5.9 mg N/L and an RPD of 7.8 was obtained by Skoutelas et al. [12] for the calibration of YAN 272 

using FT-IR. The higher RPD and lower error of prediction obtained in this study is most likely due to the model 273 

only receiving samples from a single vintage (n=71), the removal of a large number of samples considered to 274 

be outliers (n=28/71), as well as the model not undergoing any external validation.  275 

The models built to predict a new vintage also performed accurately, with RPDVAL and rank values of 4.24 276 

and 13, 3.84 and 17, and 4.23 and 18 for YAN, FAN and ammonia, respectively (Table 3). The error in prediction 277 

obtained by this model (17.6, 11.5 and 7.32 mg N/L, for YAN, FAN and ammonia, respectively) was comparable 278 

to what was observed for both global models. Therefore, using FT-IR spectroscopy to predict the nitrogen status 279 

of grape juice samples from a new vintage has proven to be a viable possibility. Thus, by testing the robustness 280 

of the models by adding samples from a different growing season, this study has managed to successfully 281 

address one of the major concerns regarding the application of this technology in agriculture. However, it must 282 

be kept in mind that these calibrations still need to be updated and maintained in the future to ensure that the 283 

accuracy and robustness is maintained [9].  284 

3.3.2. Fourier-transform near-infrared spectroscopy (FT-NIR) 285 

The NIR spectra, characterized by the overtones and combination bands caused by the fundamental 286 

vibrations occurring in the mid-infrared range, was dominated by the overtones of the O-H stretch (7274-6338 287 

cm-1) and a combination band of O-H stretching and bending (5417-4495 cm-1), induced by the presence of 288 

water in the grape juice matrix [37]. Despite this, NIR spectroscopy has been reported to be appropriate for 289 

quantification purposes as the band shape is often typical of a specific compound or a group of compounds [34]. 290 

A common region at 4856-4285 cm-1 was always used in the models which is related with N-H and C=H 291 

stretching modes (4397 cm-1) and proteins (4812 cm-1) (Supplementary Table 3). Additional regions were often 292 

included in the models at higher wavelengths generally excluding the water overtones (7274-6338 cm-1 and 293 

5417-4495 cm-1).     294 



 

As with FT-IR spectroscopy, the 66/34 global model performed the best when looking at both the RPDVAL 295 

and RMSEP statistics (Table 1). A better RPDVAL was, however, observed for the prediction of ammonia 296 

concentrations of samples from a new vintage (RPDVAL of 3.51 compared to 2.9 for the 66/34 model) although, 297 

the difference between the two models in terms of the RMSEP was considered irrelevant (8.47 vs 8.46 mg N/L 298 

for the 66/34 and 2016+2017/2018 model, respectively). Furthermore, RPDVAL value for the 66/34 global model 299 

to predict total YAN was also close to 5, as was the case for FT-IR spectroscopy. In terms of the other 300 

parameters, higher RPDVAL values were obtained for FAN (RPDVAL 3.43 and 3.08) compared to ammonia 301 

(RPDVAL 2.9 and 2.72), for both global models (66/34 and 50/50, respectively) for FT-NIR spectroscopy. This is 302 

in contrast to what was found for FT-IR, where ammonia was found to be more accurately predicted than FAN. 303 

As RPDVAL values for FT-NIR were found to be more than 3 for YAN and FAN for both global model ratios, this 304 

method was found to be adequate for accurate quantification of these parameters [10]. Although decreased 305 

accuracy was obtained for the quantification of ammonia (RPDVAL < 3), these values are still deemed satisfactory 306 

(RPDVAL > 2.5) [10]. Furthermore, the rank of these models was observed to range between 17-20 (Table 1).  307 

The task of predicting a new vintage (Table 3) resulted in higher RPDVAL values than for the 50/50 global 308 

models (Table 2). This may be due to the larger number of samples used to train these models in addition to the 309 

reduced number of samples tested against these models. Furthermore, this model also outperformed the 50/50 310 

global model in terms of the RMSEP for FAN and ammonia, obtaining errors of 13.7 and 8.46 mg N/L, 311 

respectively. Rank of these models ranged between 16-20. Interestingly, the prediction of total YAN of a sample 312 

from a new vintage using FT-NIR was observed to be (although marginally), better than what was found for FT-313 

IR spectroscopy (Table 3). The results for FT-NIR spectroscopy to predict the FAN and ammonia concentrations 314 

of a new vintage were also considered to be adequate for accurate quantification (RPDVAL > 3) [10]. Therefore, 315 

FT-NIR spectroscopy can be considered a viable technique for the prediction of samples from a new vintage 316 

and a feasible option for industrial use.  317 

3.3.3. Attenuated total reflectance mid-infrared spectroscopy 318 

ATR-MIR spectra of the grape juice samples were mainly characterized by a strong sharp peak at 950-319 

1100 cm-1, corresponding to water peaks, whereas peaks occurring between 1480-1800 cm-1 are related to C=N, 320 

C=C and C=O stretching and N-H bending, corresponding to bonds found in amino acids and their side chains 321 

[35]. The carboxylic acid O-H stretch produced peaks between 2800-2970 cm-1, which can be owed to amino 322 

acids as well as organic acids present in the grape juice medium and, therefore, could lead to interferences in 323 

the spectra, hampering accurate quantification. Furthermore, the presence of sugars can also interfere with 324 

accurate quantification due to the sp3 C-H stretch found in this region as well as the alcohol O-H stretch occurring 325 

between 3388-3600 cm-1, coinciding with primary and secondary amino nitrogen groups (1°N-H; 2°N-H). The 326 

regions included in the spectra cover 3991-778 cm-1 which indicates that almost the totality of the spectra was 327 

included throughout the different tested calibrations (Supplementary Table 3). The reported models included 328 



 

nitrogen related regions corresponding to primary, secondary, tertiary, aromatic and/or oxy nitrogen compounds, 329 

searching for predictive information during the interval selection optimization process. Additional regions were 330 

also sometimes included possibly overlapping with other compounds [38]. 331 

Overall, ATR-MIR was not found to be suitable for accurate quantification purposes as RPDVAL values were 332 

never observed to be more than 2.5 [10], with many found to be less than 2 (Table 1-3). Rank values for ATR-333 

MIR were generally lower than for other spectroscopies, ranging between 11-15. However, following the trend 334 

of the abovementioned spectroscopies, both global models were still found to be generally more accurate than 335 

what was observed for the other tasks. The highest RPDVAL was obtained for the prediction of YAN in the 50/50 336 

global (RPDVAL 2.3), however, a higher RMSEP was obtained for this model (26.9 mg N/L) compared to the 337 

66/34 model (24.8 mg N/L; RPDVAL 2.07). Furthermore, as with FT-NIR spectroscopy, higher RPDVAL were 338 

obtained for YAN and FAN (RPDVAL > 2) compared to ammonia (RPDVAL < 2). This trend was not only observed 339 

for the global models, but generally throughout the tasks of robustness assigned to the instrument. 340 

RPDVAL for the prediction of a new vintage ranged between 1.62 (ammonia) and 2.17 (FAN). Together with 341 

the lower RPDVAL, higher errors in prediction (RMSEP) were observed for this task (Table 3) compared to the 342 

global models (Table 1 and 4.5) as well as compared to the other spectroscopies for the same task.  Again, rank 343 

values were observed to be lower than for other spectroscopies, ranging between 7-11. 344 

3.4. Overall trends 345 

3.4.1. Comparison of the performance of the instruments 346 

Overall, for each instrument, total YAN predictions were observed to be more accurate than measuring the 347 

components separately. This was shown through the higher RPD values obtained for YAN than for FAN and 348 

ammonia separately, as well as the lower error in prediction (RMSEP) found for YAN compared to the sum of 349 

the errors obtained for FAN and ammonia (Tables 1-3). Furthermore, for all tasks (global and vintage models) 350 

FT-IR was able to predict total YAN and ammonia more effectively than FAN, whereas FT-NIR and ATR-MIR 351 

was able to predict total YAN and FAN more effectively than ammonia.  352 

FT-IR (WineScan™ FT120) outperformed both other instruments for the measurement of all three of the 353 

investigated parameters, throughout all the given tasks. This is because consistently higher RPDVAL as well as 354 

lower RMSEP were observed for this instrument compared to the other spectroscopies. However, the MPA, 355 

measuring in the NIR range in transmission mode, also produced models capable of accurate quantification, 356 

although the validation statistics were slightly less optimal than what was found for FT-IR. It would, however, be 357 

advisable to rather use FT-IR for the quantification of ammonia compared to FT-NIR as FT-IR obtained RPDVAL 358 

> 4 compared to < 3 for FT-NIR. 359 

ATR-MIR was, however, not comparable to either FT-IR or FT-NIR spectroscopy for any of the parameters 360 

or tasks assigned. This is due to the consistently lower RPDVAL and higher RMSEP obtained throughout. Thus, 361 



 

this instrument is only suitable for screening purposes and not for the accurate quantification of any of the 362 

parameters tested. It was surprising that the FT-NIR spectral instrument outperformed the ATR FT-MIR 363 

instrument as MIR spectra are produced due to the fundamental stretching, bending and rotating vibrations 364 

produced by various functional groups present in the sample. On the other hand, spectral signatures in the near 365 

infrared region are only due to the complex overtones of these fundamental vibrations. Furthermore, the 366 

combination bands, such as those produced by C-O stretch and the N-H band in protein, as well as water, which 367 

is a major component of most fruits and vegetables, can result in a highly convoluted NIR spectrum, decreasing 368 

the chances of accurate quantification and interpretation [6,10]. However, the regions that were selected for the 369 

optimization of the models for the FT-IR models primarily fell within the mid-infrared range (YAN ~4200-1200 370 

cm-1; FAN ~4600-1400 cm-1; ammonia ~3000-1200 cm-1). Thus, it is hypothesized that the mode that the spectra 371 

was collected in (reflectance vs. transmission) also played a major role in the difference in performance obtained 372 

between the instruments and thus, transmission mode was found to be more suitable than reflectance for this 373 

application. This could be explained by the minimal penetration depth of the evanescent wave in the juice 374 

absorbing medium that caused weaker spectral features in the nitrogen absorbing regions and consequently 375 

lower prediction accuracies. In other words, pathlength differences between FT-NIR and FT-IR applications 376 

(scale in millimetres) and that of the ATR-MIR technique (scale in microns) might explain the results observed. 377 

Additionally, to further evaluate model performance, a randomization test was performed. The direct 378 

comparison of the statistics (R2, RMSE, and RPD) obtained from the process of model optimization do not 379 

indicate if the performance of the reported calibration is statistically significant. The test was therefore applied 380 

with the objective of evaluating instrument performance. This includes a comparison of different regions within 381 

the infrared range as well as two different measuring principles (transmission vs. attenuated total reflectance). 382 

A pairwise comparison between instruments was thus performed (Table 4). The randomization test was explored 383 

for the global models with 66/34 calibrations/validation ratio. Samples that were used in the calibration set in all 384 

three spectroscopic techniques were included. 385 

Non-significant differences in the predictions were observed between FT-IR and FT-NIR techniques for the 386 

quantification of YAN. On the contrary, when both FT-IR and FT-NIR where compared with ATR-MIR 387 

spectroscopy, significant differences were obtained for this parameter. These results are in accordance with the 388 

lower prediction performance observed for the latter technique. Interestingly, despite very similar calibrations 389 

being reported for FAN analysis for both FT-IR and FT-NIR, significant differences were still obtained. This 390 

indicates that FT-IR is providing significantly more accurate predictions when compared to NIR. Both instruments 391 

outperformed again ATR-MIR with significant differences being observed for the comparisons. Finally, when 392 

predictions for ammonia were evaluated, significant differences were observed for the three pair-wise 393 

comparisons. FT-IR was again found to statistically outperform the other two spectroscopy instruments. These 394 

results supported the hypothesis raised earlier suggesting that spectral collection mode (transmission or 395 



 

reflectance), followed by the region of choice within the infrared are playing major roles in the ability of the 396 

different spectroscopy applications to predict nitrogen components in juice samples.    397 

4. Conclusion 398 

To the authors’ knowledge, this is the first study of its kind, incorporating such a large degree of variability 399 

for the purpose of quantifying the nitrogen status of the grape juice matrix. This variability is demonstrated by 400 

the large number of samples as well as the number of different grape varieties, origins, and vintages incorporated 401 

in both the calibration and validation sets. In addition to this, an independent validation set was used. This is a 402 

shortcoming highlighted in most other studies in this field which impedes the widespread use of this technology 403 

for routine analysis of fruits and vegetables. 404 

The results obtained in this study show that it is indeed possible to calibrate IR spectroscopic instruments 405 

for the accurate measurement of YAN, FAN, and ammonia concentrations. Transmission FT-IR spectroscopy 406 

was, however, observed to show the most promising results; however, FT-NIR spectroscopy also produced 407 

models capable of good to excellent quantification, primarily for YAN and FAN. Furthermore, both of these 408 

instruments showed sufficient robustness against samples originating from different varieties, growing 409 

conditions, and vintages, addressing the concerns of applying this technology to the agricultural industry. 410 

Therefore, applying this rapid, cost-effective, and environmentally friendly method in an industrial setup is a 411 

plausible option, despite the inherent variability and complexity of the grape juice matrix. Moreover, the possibility 412 

of measuring the YAN status of samples from a new vintage are one of the most important findings in this study 413 

as it demonstrates the feasibility of this technology in an industrial set-up. This is because calibrations will most 414 

likely be based on samples originating from previous vintages and used for analysis of subsequent vintages. 415 

In light of this, using FT-IR, or even FT-NIR spectroscopy would be more beneficial than ATR-MIR as there 416 

are lower RMSEP and higher RPDVAL values. High RPD values are important as the RPD of a model is an 417 

indicator of how reliable the model is i.e. it indicates how reliable the RMSEP of the model is. Furthermore, the 418 

RMSEP reported for these two instruments are low enough in the context of the YAN status of grape must to 419 

allow for optimal and precise nitrogen supplementation. 420 
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Table 1. Summary statistics of the global models with calibration/validation ratio of 66/34. 

Global Model: Calibration/Validation: 66/34 

  N Range (mg N/L) Pre-processing Rank R2CAL RMSEC RPDCAL R2VAL RMSEP RPDVAL Slope  Bias 

FT-IR YAN 893 53.27-470.5 None 20 94.56 14.5 4.29 96.25 13.9 5.2 0.953 1.56 

 FAN 882 32.28-342.9 First Derivative 16 92.67 11.9 3.69 94.03 11.8 4.09 0.906 0.145 

 Ammonia 886 6.63-167.1 First Derivative 20 95.79 4.95 4.87 95.32 5.07 4.63 0.953 0.269 

FT-NIR YAN 889 53.27-470.5 None 18 95.06 14 4.5 95.77 14.5 4.87 0.954 0.907 

 FAN 887 32.28-342.9 None 18 91.01 12.7 3.33 91.47 14.5 3.43 0.918 -0.755 

 Ammonia 887 8.64-127.6 Constant Offset Elimination 20 90.18 7.62 3.19 87.94 8.47 2.9 0.935 -0.984 

ATR-MIR YAN 885 63.08-438.1 None 15 87.19 22.4 2.79 82.22 24.8 2.07 0.831 2.07 

 FAN 879 32.28-267.1 Constant Offset Elimination 11 79.41 19 2.2 76.23 22.7 2.05 0.754 -0.325 

 Ammonia 871 6.09-127.6 Constant Offset Elimination 14 74.54 10.7 1.98 71.71 13.2 1.88 0.675 0.873 

 

 

 

 



 

Table 2. Summary statistics of the global models with calibration/validation ratio of 50/50. 

Global Model: Calibration/Validation: 50/50 

  N Range (mg N/L) Pre-processing Rank R2 CAL RMSEC RPDCAL R2VAL RMSEP RPDVAL Slope Bias 

FT-IR YAN 886 44.8-469.4 First Derivative 18 94.25 15.6 4.17 94.3 15.4 4.19 0.942 -0.0719 

 FAN 883 32.28-342.9 First Derivative 19 94.09 11.6 4.11 93.18 11.5 3.89 0.925 -0.499 

 Ammonia 886 1.16-167.1 None 20 95.87 4.84 4.92 94.45 5.77 4.25 0.922 0.119 

FT-NIR YAN 891 53.27-470.5 None 17 95.63 14.1 4.78 94 15.6 4.09 0.948 0.65 

 FAN 887 32.28-342.9 None 18 92.96 12.8 3.77 89.15 14.7 3.08 0.942 -2.47 

 Ammonia 883 1.16-167.1 None 20 90.23 7.61 3.2 86.43 9.12 2.72 0.849 -0.42 

ATR-MIR YAN 879 53.27-438.1 Constant Offset Elimination 15 87.33 23.5 2.81 81.06 26.9 2.30 0.885 1.5 

 FAN 877 32.28-267.1 Constant Offset Elimination 13 84.61 17.8 2.55 75.13 21.1 2.01 0.792 -1.67 

 Ammonia 879 6.09-127.6 None 13 75.2 11.8 2.01 66.55 13.1 1.73 0.72 -0.938 

 

 

 

 

 

 



 

 

Table 3. Summary statistics of the models built to predict the nitrogen status of a new vintage. 

Vintage Model: Calibration/Validation: 2016+2017/2018 

  N Range (mg N/L) Pre-processing Rank R2 CAL RMSEC RPDCAL R2VAL RMSEP RPDVAL Slope Bias 

FT-IR YAN 893 59.09-388 MSC 13 91.75 18.5 3.48 94.36 17.6 4.24 0.971 -1.86 

 FAN 882 44.31-267.9 None 17 91.74 12.7 3.48 93.11 11.5 3.84 0.904 -1.42 

 Ammonia 886 8.68-147.6 MSC 18 93.83 5.77 4.03 94.4 7.32 4.23 0.936 0.249 

FT-NIR YAN 892 59.09-388 None 16 93.8 16 4.02 94.36 17.5 4.26 0.966 -2.75 

 FAN 888 44.31-269.3 Constant Offset Elimination 17 89.64 14.3 3.11 91.49 13.7 3.43 0.94 0.268 

 Ammonia 882 8.68-135.6 Constant Offset Elimination 20 89.33 7.66 3.06 91.83 8.46 3.51 0.867 0.498 

ATR-MIR YAN 892 59.09-388 SNV 8 70.23 32.9 1.83 75.83 34.1 2.05 0.681 -4.67 

 FAN 883 44.31-267.9 Min-Max Normalization 11 75.26 21.2 2.01 77.46 21.3 2.17 0.782 -5.2 

 Ammonia 875 8.68-120.2 First Derivative + SNV 7 63.86 13.2 1.66 61.62 16.7 1.62 0.592 -1.22 

 



 

 

Table 4. Calibration statistics summary for the three studied spectroscopy techniques and the three nitrogen 

measurements evaluated. Pairwise comparison of the different spectroscopy techniques included in the study 

for the three nitrogen parameters evaluated. P-values lower than 0.05 indicate significant differences in the 

predictions delivered by the two techniques.  

 FT-IR FT-NIR ATR-MIR 

N 
FT-IR  

vs. FT-NIR 

FT-IR  

vs. ATR-MIR 

FT-NIR  

vs. ATR-MIR  RMSEC RPD RMSEC RPD RMSEC RPD 

YAN 14.5 4.29 14 4.5 22.4 2.79 415 0.342 <0.001 <0.001 

FAN 11.9 3.69 12.7 3.33 19 2.2 566 0.025 <0.001 <0.001 

Ammonia 4.95 4.87 7.62 3.19 10.7 1.98 195 <0.001 <0.001 <0.001 

 


