

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/182234

Giménez-Alventosa, V.; Giménez Gómez, V.; Oliver-Gil, S. (2021). PenRed: An extensible
and parallel Monte-Carlo framework for radiation transport based on PENELOPE. Computer
Physics Communications. 267:1-12. https://doi.org/10.1016/j.cpc.2021.108065

https://doi.org/10.1016/j.cpc.2021.108065

Elsevier

PenRed: An extensible and parallel Monte-Carlo
framework for radiation transport based on

PENELOPE

V. Giménez-Alventosaa,, V. Giménez Gómezb,, S. Oliverc

aInstituto de Instrumentación para Imagen Molecular (I3M)
Centro mixto CSIC - Universitat Politècnica de València

Camı́ de Vera s/n, 46022, València, Spain
bDepartament de F́ısica Teòrica and IFIC

Universitat de València-CSIC
Dr. Moliner, 50, 46100, Burjassot, València, Spain

cInstituto de Seguridad Industrial, Radiof́ısica y Medioambiental (ISIRYM)
Universitat Politècnica de València

Camı́ de Vera s/n, 46022, València, Spain

Abstract

Monte Carlo methods provide detailed and accurate results for radiation
transport simulations. Unfortunately, the high computational cost of these
methods limits its usage in real-time applications. Moreover, existing com-
puter codes do not provide a methodology for adapting these kind of simula-
tions to specific problems without advanced knowledge of the corresponding
code system, and this restricts their applicability. To help solve these current
limitations, we present PenRed, a general-purpose, stand-alone, extensible and
modular framework code based on PENELOPE for parallel Monte Carlo simu-
lations of electron-photon transport through matter. It has been implemented
in C++ programming language and takes advantage of modern object-oriented
technologies. In addition, PenRed offers the capability to read and process
DICOM images as well as to construct and simulate image-based voxelized ge-
ometries, so as to facilitate its usage in medical applications. Our framework
has been successfully verified against the original PENELOPE Fortran code.
Furthermore, the implemented parallelism has been tested showing a significant
improvement in the simulation time without any loss in precision of results.

Keywords: Radiation transport, Monte Carlo simulation, Electron-photon
showers, Parallel computing, MPI, Medical physics

1. PROGRAM SUMMARY

Program title: PenRed: Parallel Engine for Radiation Energy Deposition.

Licensing provision: GNU Affero General Public License (AGPL).

Programming language: C++ standard 2011.

Preprint submitted to Elsevier September 10, 2021

Nature of problem: Monte Carlo simulations usually require a huge amount
of computation time to achieve low statistical uncertainties. In addition,
many applications necessitate particular characteristics or the extraction
of specific quantities from the simulation. However, most available Monte
Carlo codes do not provide an efficient parallel and truly modular structure
which allows users to easily customise their code to suit their needs without
an in-depth knowledge of the code system.

Solution method: PenRed is a fully parallel, modular and customizable
framework for Monte Carlo simulations of the passage of radiation through
matter. It is based on the PENELOPE [1] code system, from which inher-
its its unique physics models and tracking algorithms for charged particles.
PenRed has been coded in C++ following an object-oriented programming
paradigm restricted to the C++11 standard. Our engine implements par-
allelism via a double approach: on the one hand, by using standard C++
threads for shared memory, improving the access and usage of the mem-
ory, and, on the other hand, via the MPI standard for distributed memory
infrastructures. Notice that both kinds of parallelism can be combined to-
gether in the same simulation. Moreover, both threads and MPI processes,
can be balanced using the builtin load balance system (RUPER-LB [2]) to
maximise the performance on heterogeneous infrastructures. In addition,
PenRed provides a modular structure with methods designed to easily
extend its functionality. Thus, users can create their own independent
modules to adapt our engine to their needs without changing the original
modules. Furthermore, user extensions will take advantage of the builtin
parallelism without any extra effort or knowledge of parallel programming.

Additional comments including Restrictions and Unusual features: PenRed
has been compiled in linux systems with g++ of GCC versions 4.8.5, 7.3.1,
8.3.1 and 9; clang version 3.4.2 and intel C++ compiler (icc) version
19.0.5.281. Since it is a C++11-standard compliant code, PenRed should
be able to compile with any compiler with C++11 support. In addition,
if the code is compiled without MPI support, it does not require any non
standard library. To enable MPI capabilities, the user needs to install
whatever available MPI implementation, such as openMPI [3] or mpich
[4], which can be found in the repositories of any linux distribution. Fi-
nally, to provide DICOM processing support, PenRed can be optionally
compiled using the dicom toolkit (dcmtk) [5] library. Thus, PenRed has
only two optional dependencies, an MPI implementation and the dcmtk
library.

References:
[1] F. Salvat, penelope-2018: A code System for Monte Carlo Simula-
tion of Electron and Photon Transport, OECD/NEA Data Bank, Issy-les-
Moulineaux, France, 2019, available from http://www.nea.fr/lists/pene-
lope.html

2

[2] V. G. Alventosa, G. M. Mart́ınez, J. D. S. Quilis, RUPER-LB: Load
balancing embarrasingly parallel applications in unpredictable cloud envi-
ronments (2020). arXiv:2005.06361.

[3] Graham R.L., Woodall T.S., Squyres J.M. (2006) Open MPI: A Flexible
High Performance MPI. In: Wyrzykowski R., Dongarra J., Meyer N.,
Waśniewski J. (eds) Parallel Processing and Applied Mathematics. PPAM
2005. Lecture Notes in Computer Science, vol 3911. Springer, Berlin,
Heidelberg

[4] William Gropp. 2002. MPICH2: A New Start for MPI Implemen-
tations. In Proceedings of the 9th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Springer-Verlag, Berlin, Heidelberg, 7.

[5] DCMTK, https://github.com/DCMTK/dcmtk, accessed: 2019-09-28

2. Introduction

Monte-Carlo (MC) methods are widely used in most scientific applications
which involve radiation transport simulations, including electron microscopy
and microanalysis, x-ray fluorescence, detector characterisation, radiation me-
trology, dosimetry and radiotherapy, among others.

MC are statistically based methods that, among many other applications,
can be used to resolve radiation transport problems by random sampling. De-
tailed chronological MC simulations yield the same results as the solution of the
linear Boltzmann transport equation, within statistical error bars. Thus, the
Type A uncertainties associated to MC simulations are strongly dependent on
the number of sampled particle histories. On the other hand, Type B uncer-
tainties may occur because of the usage of variance reduction techniques, such
as condensed-history algorithms, particle splitting etc. Moreover, the Type A
uncertainties strongly depend on the complexity of the system geometry, and
the distance to the source, due to the decreasing of particle fluence, and other
configuration parameters. However, even if the statistical uncertainties can be
reduced by increasing the number of histories and the calculation time, they de-
crease only as 1/

√
N [1], what means that, for instance, it is required a statistics

100 times larger to reduce the uncertainty by a factor of 10. Usually, particle
transport codes based on MC methods scale their execution time linearly with
the number of histories, therefore, in the previous example, the calculation time
will be increased by a factor of 100.

Another point to take into account in MC simulation codes is their usage
field. The huge amount of possible applications and configurations of the sim-
ulation system (energy ranges, geometries, particle types and physics models,
etc.) make difficult, if not impossible, to cover all options on a single MC code
system. As a consequence, there exist different MC code system packages as
EGS [2], MCNP [3], PENELOPE [4], GEANT IV [5] or FLUKA [6] and many
adaptations for specific applications. Among them, PENELOPE stands out for
its accurate implementation of electron and positron electromagnetic physics,

3

has an open source license and its source code is relatively simple compared
with other MC codes. Furthermore, several previous works have parallelized
PENELOPE to deal with the long execution times [7], some of them focused on
medical applications using MPI parallelism [8] or GPU acceleration [9]. Some
works also use simplifications to accelerate the simulations for specific purposes
[10].

However, the existent parallelizations and optimizations of the PENELOPE
code have some disadvantages, such as loss of generality, and, for instance,
limited applicability beyond its specific purpose, or low capability for running
efficiently on heterogeneous architectures. These limitations will be discussed
in detail in section 3.

The present work is aimed to provide a general purpose, highly parallel,
efficient and flexible MC simulation framework, called PenRed (Parallel ENgine
for Radiation Energy Deposition). It contains a restructured object oriented
(OO) C++ translation of the original PENELOPE library to provide a modular,
parallel and easily extensible code system. PenRed is distributed as a free and
open source program and can be downloaded from its repository12.

The rest of the paper is organized as follows. In Section 3, a brief revision of
the state of the art is presented, and the advantages of PenRed versus already
existing PENELOPE based codes are discussed. A description of both the
translation and restructuring of the code, the PenRed capability to be easily
customised, as well as its parallelism model and implementation are discussed
in Section 4. In Section 5, the validation of our code is described in detail.
Section 6, contains a comparison of the performance of parallel executions among
PenRed, PENELOPE and PenEasy. In addition, it includes a study of the
PenRed behaviour on parallel executions. Finally, current research and future
plans of development are described in Section 7.

3. State of the art

Our revision of the state of the art of the optimisation of PENELOPE is
based on the study of the works [7, 8, 9, 10].

There are some works that optimised the code for a specific application,
targeting to increase speed but compromising its range of application. One
of these works is the DPM code [10], which uses some approximations of the
particle transport description and the underlying physics models, for instance,
simplified cross sections, to reduce the simulation run-time. The disadvantage
of this approach is that it is accurate only for low atomic numbers and in
a specific energy range, typically the one used in conventional radiotherapy
treatments. Because of its high efficiency, other works have been focused on the
optimisation of DPM, some using Message Passing Interface (MPI) [11], and

1https://github.com/PenRed/PenRed
2https://archive.softwareheritage.org/swh:1:dir:87fd3a7e44d76653486135914430a87fd60e92ac/

4

https://github.com/PenRed/PenRed
https://archive.softwareheritage.org/swh:1:dir:87fd3a7e44d76653486135914430a87fd60e92ac/

others vectorizing the code [12], or adapting it to Graphics Processing Units
(GPU) [13][14].

On the other hand, [8] presents an MPI version of PENELOPE. Although
authors are focused on medical applications, and the tests performed belong
to this field, the code should run generic simulations using the PENELOPE
library. The code has been applied to perform simulations of photon beams
using a method for treating intracranial lesions. However, this work does not
provide a multithreading implementation, which could take advantage of sharing
resources and reduce the memory usage. In addition, a modular and extensible
structure based on OO programming is unavailable.

Let us turn now to the GPU acceleration of PENELOPE. In [9] the au-
thors develop with the CUDA programming model (NVIDIA Corporation, Santa
Clara, CA), a MC simulation code which runs entirely on a GPU using the pho-
ton interaction model of the PENELOPE code. Their approach focuses on the
simulation of x-ray transport, thus neither electron nor positron transport is
considered. Through the simulation of voxel based geometries, and simplifi-
cations such as the usage of single precision operations, the authors achieve a
speed one order of magnitude faster than the CPU version. Although their GPU
computing is very efficient for their purpose, it is limited to specific applications.
A similar approach is used by [15], which develops a GPU-accelerated MC dose
calculation platform based on PENELOPE focused on commissioning of IMRT.
Moreover, the authors ensure that their approach should be applicable to nearly
any application requiring high dose accuracy.

Finally, [7] presents a package of Linux scripts for the parallelization of
MC simulations with PENELOPE. Just as [8], this work uses PENELOPE
with no approximations or limitations. However the same disadvantages apply
to this study. Furthermore, these works do not provide mechanisms to take
full advantage of heterogeneous systems, where some kind of load balancing is
required.

In addition to optimisation based works, PenEasy [16] was developed as
an easy and modular main program for PENELOPE. However, the former has
not implemented any parallelism nor takes advantage of advanced OO modular
programming.

A further shortcoming of most of the previous studies is that they use an
outdated version of the PENELOPE library. An exception is PenEasy, which is
updated frequently to use the latest PENELOPE version.

4. Material and Methods

PenRed has been organised using modules providing abstract template classes
as interfaces to facilitate their customisation. These components, or modules,
are shown in figure 1, where PENELOPE whole library, including its geometry
package, is implemented. A detailed description of each component and the im-
plementation of the corresponding derived classes can be found in the PenRed
documentation, which is distributed with the PenRed package. Briefly, kernel

5

components handle all the physics related tasks, the module geometries takes
care of particle transport across the geometry system, state samplers deter-
mines the initial state of the particle and, finally, tallies extracts information
from the simulation loop.

Moreover, PenRed provides a main program, pen main, to facilitate the
usage of the package. In order to utilize it, the user only needs to specify the
configuration of the simulation without coding anything.

Material

Context

Particle

Interaction

Particle
State

Random
Generator

Meshes

Body
Based

Spatial

Direction

Energy

Time

Specific

Kernel components Geometries

State samplers

Tallies

Figure 1: Classification of the PenRed modules.

4.1. C++ translation

The complete PENELOPE source code has been translated by hand to C++
and restructured using an OO approach to achieve a highly modular and ex-
tensible system. To this aim, some other codes with OO implementations make
an intensive use of virtual methods. However, the recourse to virtual tables to
perform calls to virtual methods involves a non negligible overhead [17], spe-
cially on methods which are called continuously during the particle transport.
To achieve a compromise between flexibility and performance, PenRed employs
template abstract classes as interfaces which allows to use final derived classes
on kernel components instead of a pointer to the abstract base class, avoiding
the requirement to perform virtual calls in most cases. Of course, custom de-
rived classes created by the user are intended to follow the same mechanism.
During the code restructuring, an analysis to identify and optimise the most
critical sections of the source code has been carried out. This analysis has been
performed for all the examples included in the PENELOPE package, using the
Valgrind [18] software with the Callgrind tool [19], which provides a detailed
information about the number of instructions required by each class, function
and line of code on a simulated hardware. We found that, as expected, the

6

most time-consuming functions for both languages (C++ and Fortran) are the
particle simulation loops, and, within them, the JUMP, STEP and KNOCK sub-
routines. Furthermore, these three functions together represent about 80−90%
of the simulation loop time in the profiled examples. As a consequence, several
optimisations have been made specially in these functions, such as grouping
specific variables and arrays into structures and structure arrays, respectively,
to improve memory access.

4.2. Extension capabilities

As mentioned above, PenRed uses template abstract classes as interfaces to
extend the code functionality by creating a derived class of the corresponding
module. The method to extend a module is explained in the documentation.
However, in this section we will focus only on the most useful for a standard
user, namely, state samplers, geometries and tallies.

4.2.1. State samplers

There are many state samplers types, as shown in figure 1. Among them,
the spatial, time, direction and energy sampler types take care of determining
the initial particle position, time of flight, direction and energy, respectively.
These groups of samplers are named generic samplers, because they can be
used for any particle regardless of the particle type. On the other hand, specific
samplers can change the whole particle state but they are particle specific.
They have been used, for example, to sample the Stokes parameters of polarised
photons.

This approach facilitates the creation of new samplers, since they can be
coded as small classes using only two mandatory methods, the configuration
and the sampling method itself. In addition, any sampler type can be combined
with any other type, allowing creating complex state sampling configurations
from simple parts.

Finally, new samplers can be easily added to the framework and they will
be automatically accessible from the provided main program, without changing
the code outside the new custom sampler class. The only required change is to
add the corresponding source file names into two include files. Further details
can be found in the PenRed documentation.

4.2.2. Geometries

As shown in figure 1, geometries are classified into two main types, meshes
and body based geometries. Although new geometry types can be created di-
rectly from the base abstract class, in order to facilitate the coding PenRed
provides two specific interfaces to create geometries based on meshes and ge-
ometries based on bodies or geometric objects. At present, PenRed implements
an optimised translation of the original PENELOPE geometry library as a body
based geometry, and additionally, a voxelized geometry, from which the PenRed
DICOM geometry has been created as a mesh based one. The voxelized geom-
etry transport is based both on the penEasy voxelized transport [16] and the
PENELOPE penCT program [20].

7

Using these intermediate interfaces, the creation of new geometries requires,
mainly, the definition of the configuration and the STEP and LOCATE methods,
i.e. the implementation of the geometry itself without taking care of framework
details. The STEP and LOCATE methods handle, respectively, the transport
of a particle across the geometry, and the localisation of a particle inside the
geometry.

Regarding how to incorporate new geometries into PenRed and how to use
them with the provided main program, the methodology is analogous to the one
used by state samplers (see section 4.2.1).

4.2.3. Tallies

PenRed implements several tallies, most of them adapted from the main pro-
gram of the original PENELOPE package. All of these are extensively described
in the PenRed documentation. The capability to extend this component, i.e.
to create new tallies, is, probably, the most valuable feature for a standard
user. As other components, tallies are implemented via derived classes. How-
ever, to provide a generic interface that does not constrain the tally creation,
their interface contains a number of virtual functions that will be called by the
main program at different locations in the simulation loop. Notice that only
the functions directly related to the information to be extracted by the tally,
need to be implemented. Figure 2 shows a simplified flow diagram where the
tally functions (yellow boxes) are called at different points of the main loop.
A complete description of the data registered by each function and when are
called in the simulation loop can be found in the documentation. Again, the
method to incorporate new tallies to the framework is the same as for samplers
and geometries.

4.2.4. Overhead

To be able to include avoiding any recoding new implementations of the
components described above, PenRed uses virtual calls. As discussed before,
these calls could produce a non negligible run-time overhead. However, since the
sampler process is usually executed once per history, the performance overhead
generated by samplers is truly negligible. Moreover, the only virtual calls carried
out by the geometry class are the STEP and the LOCATE functions. Although
these two methods are called in every loop, they are only called at most once.
In addition, they are generally computationally expensive, so the virtual call
overhead is usually negligible as compared to the total function execution cost.
Unfortunately, tally functions are called several times along the simulation loop,
leading to a non negligible time overhead. In fact, we observe in some of the
PENELOPE examples that up to 5% of the total execution time has been wasted
in virtual calls.

Obviously, the number of virtual calls due to tally functions increases with
the number of tallies invoked. Therefore, to reduce their footprint on critical
applications, one solution is to create a wrapper tally containing many other
tallies. With this approach only one virtual call per used function will be per-

8

Initialize	Particle	Sources Create	Context

Load	Materials
Load	Geometry

Program	Initialization

Sample	Particle	State

Locate

Start

Jump

No

YesNo

Knock

No

Get	State No

Yes

Yes

No

YesNo
more

sources?End

Single	source	simulation

Particle	source	class

Context	class

Material	class

Geometry	class
Particle	class

Next source

Empty stack?

Material = 0 ?

Yes

E < Eabs ?

Yes Ncross > 0 ?

Move

Step

Register	Geometry

Instantiate Particles

Save	Context

Geometry

Get	State

State	creation

Register	Geometry

Geometry

dpage softEloss

Tally	class

beginSim

Initialize	tallies

endSim

beginHist

No

Yes

jump

knock

endHist

beginPart

step

interfCross

No

Yes Material change ?matChange

Eloss

Eloss

endHist

endPart

Figure 2: Basic flow diagram of the PenRed main program including tally calls.

9

formed by the wrapper tally, while the wrapped tally functions can be called
invoking the final class without accessing to the virtual table.

Note that most examples included in the PENELOPE package use a very
simple geometry. As the complexity of the geometry grows, the influence of the
STEP function on the execution time grows too, minimising the relative weight
of the virtual call overhead.

4.3. Parallelism

To take advantage of both, multi-core processor architectures and distributed
infrastructures, PenRed implements parallelism at both levels, i.e. multithread-
ing and multiprocessing. Notice that both parallelisms are optional and can be
separately enabled or disabled during compilation. However, parallel coding is
not a trivial task and may produce several outcomes that block our program
(deadlocks), hide bugs, as race conditions, or effects that slow the whole pro-
gram, like the false sharing effect [21]. Nevertheless, two undesirable approaches
to combine high parallelism and extensibility are to limit the capability to ex-
tend the code according to the knowledge of the user on parallel programming
or limit the parallelism itself. Instead, PenRed uses another approach consist-
ing of providing a high grain parallelism completely transparent to the user. In
this way, the user can write their modules like sequential code without worrying
about parallelism and they will be able to be executed on multithreading and
multiprocess runs.

To achieve this goal, specially on multithreading executions, PenRed limits
the member functions that can change the state of the corresponding class.
For example, geometry STEP and LOCATE member functions are defined as
constant, so that they cannot change the state of the class, ensuring that the
state of the geometry remains constant once initialised until the end of the
simulation. An alternative approach could be to duplicate the whole simulation
(geometry, samplers, etc). However, this approach generates a huge amount of
duplicated memory, increasing its consume, and avoids threads to share memory
at cache level, increasing the memory fails [22].

The only module that requires a special, but quite simple, treatment to be
simulated on parallel executions are the tallies. As PenRed cannot know
how to add the partial results of a specific tally, a corresponding sum function
must be implemented. This function gets an object of the same tally type as
argument and it is supposed to sum both contributions and store the result
on the object that calls the function. Thus, the only requirement consists of
specifying how to sum the tally individual results. Other aspects as when the
sum function is called or the order to reduce the results, are handled automati-
cally by PenRed. The implemented tallies follow the guidelines described in the
PENELOPE manual [4] to calculate the uncertainties of the scored magnitudes.
That is, on sequential executions, the scored contributions of each history to a
magnitude q and its square q2 are added to independent counters. Therefore,
the estimators Q and Q2 of the magnitude and its square can be obtained as,

10

Q =
1

N

N∑
i=1

qi Q2 =
1

N

N∑
i=1

q2i (1)

where N is the number of independent histories and i indicates the history
number. Then, the corresponding standard deviation is calculated as,

σQ =
1√
N

[
Q2 −Q2

]
(2)

On the other hand, in multithreading executions, each thread uses indepen-
dent sets of counters to sum the contributions of each history (qji, q

2
ji), where i

denotes the history index of thread j. Using these counters, the final estimators
are,

Q =
1

Nt

Nth∑
j=1

Nj∑
i=1

qji Q2 =
1

Nt

Nth∑
j=1

Nj∑
i=1

q2ji (3)

where Nt is the total number of histories performed by all threads, Nth is the
number of threads, and Nj is the number of histories simulated by the thread
number j. At the end of the simulation, the partial results of all threads are
summed and the average and standard deviation are calculated using eq. 3 and
eq. 2, with N = Nt. The same methodology is used for multiprocessing and
combined multithreading and multiprocess executions.

A very important issue to take into account on parallel executions is that
we must ensure that each thread uses an independent succession of random
numbers. Otherwise, different threads may produce correlated results. Since
PenRed uses the same random number generator as the original PENELOPE
code system, developed by F. James [23], independent sequences of random
numbers are achieved using the seeds calculated by [7]. These are automatically
assigned by the PenRed main program to each thread on each process to avoid
correlated results.

Concerning the libraries employed in PenRed for parallelism, multithreading
has been implemented using the standard threads of C++11. Thus, it is not
necessary any additional external library. On the other hand, multiprocess has
been implemented via the MPI standard, hence any library that implements
that standard, such as OpenMPI [24] or MPICH2 [25], can be used to run
PenRed with MPI enabled.

Finally, it is important to notice that most modern distributed infrastruc-
tures are heterogeneous, i.e. each node has different capabilities, such as dif-
ferent processors, amount of memory, disk throughput and IOPS etc. Even if
the system is homogeneous, the usage of an infrastructure by many users could
produce a non negligible overhead. For example, modern cloud computing in-
frastructures suffer unpredictable capability fluctuations [26, 27, 28, 29]. To
take full advantage of distributed infrastructures, PenRed incorporates a load
balance system named RUPER-LB [30] which automatically handles the assig-
nation of histories to each thread in each process. Similarly to multithreading

11

and MPI features, the load balance system can be enabled or disabled during
the compilation process.

4.4. DICOMs

As can be seen from most of the works reviewed in section 3, medical appli-
cations are a field of interest that requires huge optimisations for PENELOPE
users. This is the reason why PenRed implements a special type of mesh based
geometry to be able to perform simulations directly based on DICOM (Digital
Imaging and Communications in Medicine) [31] images.

To offer support for this image format, PenRed uses the open-source library
DICOM ToolKit (DCMTK) to extract all the required data from DICOM files.
This library can be found in some linux repositories or github [32]. As other
features, DICOM support is optional, allowing to use PenRed without that
library and its dependencies.

Currently, PenRed’s DICOM module converts a CT or US DICOM image
to a voxel geometry. To transform CT Hounsfield Units (HU) to density, the
DICOM module requires a CT calibration curve to be provided by the user.
Then, the material assignation could be done using the contours included in
DICOM files or both by HU or density ranges. This approach allows users to
perform the segmentation of CT images according to the guidelines of the TG-
186 [33]. On the other hand, US images require contour information to carry
out the material and density assignations.

5. Validation

In this section, a collection of tests designed to verify the functionality of the
PenRed framework are presented. The tests consist of a comparison between
PENELOPE and PenRed of the sampling of the cross sections for all the in-
teractions included in the original PENELOPE Fortran code. In addition, all
the results of the examples distributed in the Penelope package are reproduced
with and without parallelism. Finally, to validate the processing of voxel/DI-
COM geometries, a comparison with a GATE [34] DICOM simulation example
is carried out.

For the sake of brevity, the results of the MPI tests will not be described
here because their conclusions and figures are completely equivalent to those
obtained from the multi-threading analysis (see section 5.3). Moreover, since
MPI processes communicate with each other only in the post-processing step,
and its contribution to the total simulation time is completely negligible on dis-
tributed memory infrastructures, it is useless to discuss a scalability analysis of
MPI executions. In fact, the scalability, in simulations with negligible tally sum
processing time, is determined by the slowest process and it is approximately
“perfect” on a homogeneous cluster.

Most of the implemented features for quadric geometries can be validated
by performing the simulations of all the PENELOPE examples. To reproduce
our results, the user can find all the examples with the corresponding materials,

12

geometries and configuration files, in the directory examples of the PenRed
distribution package.

As for the verification of voxel/DICOM geometries, basic tests consist of
converting quadric geometries to voxel geometries and carrying out the very
same simulation on both geometry types. The conversion can be performed
through the PenRed provided utility geo2voxel, which transforms any geometry
into a voxelised one by means of the LOCATE method. The output file contains
a voxel geometry ready to be simulated. We have verified that the results from
quadric and voxel geometries are perfectly compatible within statistical error
bars. For the purpose of brevity, we will not discuss the results of these tests
here. Our results however can be easily reproduced by the user using the tools
provided in the package distribution. Instead, a more complete test consisting
of a simulation on a DICOM image, is presented in section 5.4.

To run the tests, we used a single node with two Intel(R) Xeon(R) CPU E5-
2660 v3 @ 2.60 GHz processors, 8 TB of disk storage and 125 GB of memory
RAM. Each of these processors had 10 physical cores with hyperthreading, i.e.
a total of 20 physical and 40 logical threads. The PenRed modules and the
pen main program were compiled using the g++ GNU C++ Compiler version
7.3.1 [35], on a Centos 7.0 Linux operating system.

5.1. Cross-section sampling tests

To check the interaction sampling methods, all the differential cross sections
(DCS) of each physics model implemented in PENELOPE have been sampled
with PENELOPE and PenRed and their results compared. Notice that these
tests employ the physics routines as isolated components, i.e. no other compo-
nents such as the geometry package, tallies or a main program have been used.
These tests have been repeated for different materials and energies. The conclu-
sion is that all the sampled differential cross sections for each material, energy
and interaction for both codes match exactly. These results ensure that the
restructured physics modules implemented in PenRed are perfectly compatible
with those of the original Fortran code.

Figure 3 displays comparisons between the results from PENELOPE and
PenRed for the Compton energy differential cross section for scattered photons
sampled for aluminium (upper left graph) and gold (upper right graph) with
incident photons of 500 and 50 keV, respectively, and for the partial wave model
DCS for elastic scattering of electrons by aluminium (lower left graph) and
positrons by gold (lower right graph) with incident energies set to 100 keV for
electrons and 1 MeV for positrons. As can be seen, the cross sections from
PenRed are almost identical to those from PENELOPE.

5.2. PENELOPE example tests

In order to validate PenRed, the simulation results from all the setups of the
examples included in the PENELOPE Fortran package were reproduced. These
tests were done using a single thread. The comparison between PENELOPE and
PenRed was carried out first by plotting all output files for the corresponding

13

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

(E
/Z

)
d
σ
/d

E
'
(b

a
rn

)

E'/E (energy of the scattered photon)

Compton scattering of photons

Penelope
PenRed

 0

 0.5

 1

 1.5

 2

 2.5

 0.7 0.8 0.9 1

(E
/Z

)
d
σ
/d

E
'
(b

a
rn

)

E'/E (energy of the scattered photon)

Compton scattering of photons

Penelope
PenRed

10-22

10-20

10-18

10-16

 0 0.2 0.4 0.6 0.8 1

d
σ

e
l/d

µ
 (

cm
2
)

µ=1/2(1-cos(θ))

Elastic electron scattering DCS model: ELSEPA

Penelope
PenRed

10-24

10-22

10-20

10-18

10-16

 0 0.2 0.4 0.6 0.8 1

d
σ

e
l/d

µ
 (

cm
2
)

µ=1/2(1-cos(θ))

Elastic positron scattering DCS model: ELSEPA

Penelope
PenRed

Figure 3: Simulation results for the Compton energy differential cross section for scattered
photons by aluminium (Z = 13) with an incident photon energy of 500 keV (upper left graph)
and by gold (Z = 79) with an incident energy of 50 keV (upper right graph), and for the
partial wave model DCS for elastic scattering of electrons by aluminium (lower left graph)
and positrons by gold (lower right graph), with energies of 100 keV and 1 MeV, respectively.
Error bars enclosure a deviation of 2σ.

tallies, and second, to ensure that these codes were statistically compatible,
by a bin-by-bin analysis of the histograms of the differences. Notice that the
particle tracks generated by PENELOPE and PenRed follow in general different
paths, in spite of the fact that both the random generator and initial seeds were
the same. The reason is twofold: on the one hand, the differences in the main
program structure, such as the use in PenRed of independent stacks for each
particle type, and on the other hand, the different round-off errors that occur in
the calculation of intersections of particle trajectories with material interfaces.
We have verified that the results from PENELOPE and PenRed are perfectly
equivalent in all the cases studied and that the differences are usually less than
the data statistical uncertainties.

For the sake of clarity and easy of reading, only the results for the exam-
ple 1-disc-vr will be presented. Its setup consists of a homogeneous copper
cylinder whose radius and height can be set by the user in the geometry file
disc.geo. The source is a point-like gun that produces a uniform conical beam
of electrons with initial energy 40 keV in the direction of the Z axis and a narrow
semi-aperture of 5 degrees, as specified in the input file disc.in. The electrons
impact on the cylinder from below. This example has two variants: with and

14

5·10-9

10·10-9

15·10-9

20·10-9

25·10-9

30·10-9

35·10-9

5·103 10·103 15·103 20·103 25·103 30·103 35·103 40·1030

In
te

g
ra

te
d

 f
lu

e
n
ce

 c
m

/(
e
V

*p
a
rt

ic
le

)

E (eV)

Electron energy distribution of fluence

PENELOPE
PenRed

Figure 4: Simulation results of the electron fluence energy distribution integrated over the
detector volume of example 1-disc with variance reduction techniques. The red (dark) colour
represents results from the original PENELOPE code, while green (light) points are the results
from PenRed. Some transparency to PenRed points is applied because both curves overlap.
Error bars enclosure a deviation of 2σ.

without variance reduction (VR) techniques. The results of the former will be
presented below so as to check the PenRed implementation of VR methods.
Interaction forcing techniques used in this example increase both the electron
bremmstrahlung emission and hard inelastic collision probabilities by a factor
of 2000 and 200, respectively. In addition, a splitting factor of 2 on bremm-
strahlung and x-ray produced photons was applied. The simulation parameters
were Eabs = 1 keV, C1 = C2 = 0.05 and Wcc = Wcr = 1 keV. The cylinder itself
is defined as an energy-deposition, impact and angular detector. The pen main

program was run for about 10.9 hours to generate 8×106 histories, which corre-
sponds to a simulation speed of about 204 histories per second. Figure 4 displays
a comparison between the results from PENELOPE and PenRed of the electron
energy distribution of fluence integrated over the detector volume.

In addition, figure 5 displays another relevant quantity simulated in this
example, namely the probability energy distribution of downbound electrons,
i.e. those that escape from the material system in the negative Z direction.

As can be seen from figs. 4 and 5, the results from PENELOPE and PenRed
are perfectly compatible within statistical error bars. Moreover, the results are
bin-by-bin equivalent with differences that are smaller than statistical errors.

5.3. Multi-threading tests

In this section, the validation of the multi-threading operation of PenRed
is discussed. The same tests with the same simulation parameters, computer
setup and compiler options as those done in section 5.2, were carried out by
running the PenRed pen main program on a single thread and on 5 threads so
as to compare the results. The data of each pair of the corresponding output

15

2·10-6

4·10-6

6·10-6

8·10-6

10·10-6

12·10-6

14·10-6

16·10-6

18·10-6

5·103 10·103 15·103 20·103 25·103 30·103 35·103 40·103 45·1030

P
(E

)

(1
/e

V
)

Energy (eV)

Energy distribution of downbound electrons

PENELOPE
PenRed

Figure 5: Downbound probability energy distribution for electrons simulated in the exam-
ple 1-disc using VR techniques. The red (dark) colour represents results from the original
PENELOPE code simulations, while green (light) dots are the results from PenRed. For the
sake of clarity, some transparency to PenRed points is applied because both curves overlap.
Error bars enclosure a deviation of 2σ.

files was compared bin by bin against each other. Figure 6 shows results of the
energy deposition spectrum for the PENELOPE example 3-detector.

The material system of this example consists of a cylindrical NaI scintillator
detector with thin Fe backing. A point-like Co-60 gamma-ray source emits a
photon pencil beam in the −Z direction with equiprobable energies 1.17 and
1.33 MeV. The photons impinge on the NaI crystal from above. No VR is
applied in this example.

All comparisons carried out showed that the results from a single thread
and multiple thread simulations are statistically compatible. Therefore, we can
ensure that our multi-threading program works properly. In order to repro-
duce our results, the user only needs to change the parameter nthreads in the
provided input configuration files of any of the examples.

5.4. DICOM tests

In order to validate the PenRed DICOM capabilities, a GATE [34] internal
targeted radionuclide therapy (TRT) example has been reproduced 3. It consists
of a treatment in which 90Y radionuclides are administrated to a patient to
irradiate a liver injury. The material and density information is extracted from
a patient CT image, while its associated emitting source spatial distribution
is provided as a voxelized source generated using a patient SPECT activity
map. Since the GATE example uses the MHD format for input images, a
Python script using ITK [36] has been implemented to convert the images to
the DICOM format, which can be directly processed by PenRed.

3https://davidsarrut.pages.in2p3.fr/gate-exercices-site/docs/exercice5/

16

1.0·10-7

2.0·10-7

3.0·10-7

4.0·10-7

5.0·10-7

6.0·10-7

2.0·105 4.0·105 6.0·105 8.0·105 1.0·106 1.2·106 1.4·1060

P
ro

b
 (

1
/e

V
*p

a
rt

ic
le

)

Deposited energy (eV)

Spectrum of energy deposition detector

1 thread
5 threads

Figure 6: Energy deposition spectrum in a Na scintillator simulation (example 3-detector).
The colour blue (dark) represents results from single thread simulations, while purple (light)
dots are the results from runs on 5 threads. For the sake of clarity, some transparency to the
points corresponding to the runs on 5 threads is applied because both curves overlap. Error
bars enclosure a deviation of 2σ.

A voxel-wise comparison between the results from PenRed and Gate has
been carried out following the methodology described in [15]. In this work, the
statistical variable z-score is defined as follows,

z(~r) =
DPenRed(~r)−DGATE(~r)

DGATE(~r)× σtot
(4)

where DPenRed(~r) and DGATE(~r) are the absorbed doses at voxel ~r calculated
by PenRed and GATE, respectively, and σtot is the standard deviation of the
distribution (DPenRed(~r) − DGATE(~r))/DGATE(~r). The resulting z-scores are
compared to a standard normal distribution in the form of a normalised fre-
quency histogram, which directly indicates the distribution of dose differences
spanning all voxels.

As many voxels present a zero or zero compatible energy deposition, by tak-
ing them into account would produce a wide distribution with a spike centred
at zero, which would hide the discrepancies from voxels with a significant con-
tribution to the total deposited dose. For this reason, the comparison has been
made by considering only the voxels with a registered deposited dose of, at least,
0.1% of the maximum deposition. As the source is distributed throughout the
body of the patient, it includes all the regions of interest.

The results for the frequency distribution of z-scores compared to a Gaussian
distribution are displayed in figure 7. They indicate that the z-score distribution
is close to a normal one with a mean near zero (µ = −0.078) and a standard
deviation of approximately 1 (σ = 1.002). However, some non statistical dif-
ferences can also be observed between both distributions. These discrepancies
could be due to the variations between Gate and PenRed in the implementation

17

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

N
o
rm

a
liz

e
d

 f
re

q
u
e
n
cy

z-score

Figure 7: Frequency histogram of z-score values for voxels with a registered dose of, at least,
0.1% of the maximum deposition. The dark line represents a Gaussian fit to the histogram
with mean µ = −0.078 and σ = 1.002.

of the physics models, transport algorithms and the material database. Indeed,
discrepancies between different Monte Carlo codes have been reported in the
literature, specially when electron transport is involved [37], [38], [39], [40].

Finally, figure 8 shows the dose distributions for two Z planes generated by
PenRed (left) and GATE (right). As can be seen, they agree well within ex-
pected statistical and systematic uncertainties. This conclusion is also valid for
all planes. Therefore, considering the differences between Gate and PenRed im-
plementations mentioned above, the comparison of dose distributions together
with the z-score frequency histogram, indicate that PenRed is capable to prop-
erly process DICOM images and extended voxelized sources.

6. Results

In this section, the parallel capabilities of PenRed are discussed and tested.
Firstly, a comparison of the scalability of PenRed in multi-threaded executions
with both the PENELOPE main program and the PenEasy code is performed.
Secondly, the behaviour of PenRed speed-up is studied. Finally, in order to
maximise the efficiency of the simulations with PenRed, a performance test is
carried out by using two different compilers.

6.1. Scalability comparison

As discussed in section 4.3, the communication among threads or processes
is only required at the end of the simulation and represents a negligible amount
of time. Thus, MPI executions on different nodes, i.e. running on distributed
memory architectures, show a perfect scalability. However, in shared memory
parallel executions, the different threads or processes compete for the same
resources, which affects the simulation speed-up and scalability. Therefore, in
this section we will study the efficiency of parallel simulations running PenRed
on a shared memory system.

18

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450

 0

 20

 40

 60

 80

 100

 120

 0

 20

 40

 60

 80

 100

 120

Figure 8: Dose distribution in eV/g per history for the TRT example discussed in the text on
the z-planes 127 (top) and 156 (bottom). The left panels correspond to results obtained by
PenRed, while the right ones has been generated with GATE.

In order to evaluate the scalability and performance of our implementation,
a comparison between PenRed and the 2019 versions of the PENELOPE and
PenEasy main programs has been carried out. As the simulation speed depends
strongly on specific characteristics such as geometry or the tallies used, we
will first compare the capabilities of the different main programs involving only
the kernel components that are common to every simulation. To avoid the
performance overhead of using specific configurations, such as tallies or complex
geometry characteristics, a very simple geometry is simulated. It consists of a
single plane dividing the space into two parts, a void and a water region. The
source is a monoenergetic point-like one located in the void region and the
emitted beam is directed towards the water region perpendicularly to the plane.

Moreover, to isolate as much as possible the kernel components, we perform
three different tests using the configuration above. In the first one, the source
emits electrons with energy 40 keV and absorption energies of 1 keV for electrons
and “infinite” for photons, i.e. the tracking of photons is disabled. In the second
test, photons of 1 MeV and absorption energy of 1 keV are emitted, while
electron tracking is disabled. Finally, the third test has the same characteristics
as the second one but electron tracking is enabled up to 100 keV.

To achieve parallelism with the three codes, two different approaches have
been employed. In the case of PenRed, the builtin multithreading support has
been utilised. However, for the PENELOPE and PenEasy main programs, a
bash script to launch multiple processes in parallel has been used, as in [7].

All the simulations of the tests have been performed with the very same

19

material and geometry files for the three main programs. In order to measure
their capabilities to scale up, each simulation has been repeated with increasing
number of processes, for PENELOPE and PenEasy, or threads, in the case of
PenRed. Indeed, to scale the complexity of the execution, the total number
of histories to be simulated has been scaled with the number of concurrent
processes or threads. For example, if four processes are to be executed, the
total number of histories is four times the number of histories used for the
single process test.

The tests have been run on a single node with an AMD Ryzen 7 2700 pro-
cessor, 16 GB RAM and Fedora 30 as OS. This processor has 8 physical cores
with a total of 16 logic threads. The two FORTRAN codes have been compiled
with the GNU Fortran (GCC) version 9.3.1, while PenRed has been complied
with the gcc C++ version 9.3.1. All codes have been compiled with the -O2
and -march=native optimisation flags.

The test results are shown in figures 9 and 10. The former displays the
total execution time as a function of the number of processes or threads. The
latter presents the same quantity but relative to PenRed execution times. As
can be seen, these results suggest that the PenRed implementation of kernel
components is more efficient, specially on photon transport. Furthermore, in all
tests PenRed provides a better scalability when the number of processes/threads
is greater than the number of physical cores. Moreover, in this region, the
execution times of the Fortran codes increase with respect to those of PenRed.

To complete the scalability comparison study, a test based on the variant
without VR of the PENELOPE example described in section 5, 1-disc-novr,
has been carried out. However, being an example of the PENELOPE package,
the PenEasy main program does not implement all the involved tallies, which
should slightly affect the total execution time. On the contrary, PenRed imple-
ments all the required tallies. Notice that the choice of a non VR version of
the example is due to the fact that PenEasy and PENELOPE main programs
implement different types of VR.

This last test has been run on the same node used for the code validation (see
section 5), which consists of two processors with a total of 40 logical threads. In
this case, the number of simulation processes or threads has been increased by a
factor of 5 in each iteration. The resulting simulation times are shown in figure
11, where differences of up to 15% between PenRed and both, Penelope and
PenEasy main programs, can be noted. Furthermore, the behaviour observed
in this test is analogous to that of the previous tests, namely PenRed takes the
lead in execution time as the number of threads increases exceeding the number
of physical cores.

Thus, the suitability of using a multithreading approach rather than multi-
process executions on shared memory architectures is demonstrated, specially
on high parallel processors.

6.2. Speed-up behaviour

In this section, tests focus on the speed-up behaviour of the PenRed code
are described. Instead of scaling the problem complexity with the number of

20

 800
 1000
 1200
 1400
 1600
 1800
 2000
 2200

 0 2 4 6 8 10 12 14 16
 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

 0 2 4 6 8 10 12 14 16

PenEasy
Penelope

PenRed

Figure 9: Execution times in seconds for the electron-only (upper left), photon-only (upper
right) and combined (lower left) simulation tests as a function of the number of process-
es/threads.

 1

 1.04

 1.08

 1.12

 1.16

 1.2

 0 2 4 6 8 10 12 14 16
 1.32

 1.36

 1.4

 1.44

 1.48

 1.52

 1.56

 0 2 4 6 8 10 12 14 16

 1.02

 1.05

 1.08

 1.11

 1.14

 1.17

 0 2 4 6 8 10 12 14 16

PenEasy
Penelope

Figure 10: Execution times relative to PenRed for the electron-only (upper left), photon-
only (upper right) and combined (lower left) simulation tests as a function of the number of
processes/threads.

21

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 0 5 10 15 20 25 30 35 40

PenEasy
Penelope

PenRed

Hyperthreading region

Figure 11: Comparison of the execution times in seconds for the three codes as a function of
the number of processes/threads used.

threads, in this analysis the former remains constant as the latter increases. To
measure the speed-up, the quantity Sn is used. It is defined as

Sn =
time1
timen

(5)

where the subscript n indicates the number of threads, time1 is the simulation
time running a single thread and timen the execution time of the same simula-
tion using n threads. Ideally, Sn should tend to the number of threads n, which
is the maximum speed-up that can be achieved.

Firstly, the speed-up for the same three tests used in the scalability analysis
has been measured. The results are shown in figure 12. In all cases, a linear
speed-up has been obtained until the number of threads exceeds the number of
physical cores. A linear fit to the speed-up data in this region gives a slope of
about 0.86 for all three cases. After this point, logical threads share the avail-
able processor cores. As can be seen, the photon-only simulation shows a better
speed-up than both, electron-only and combined simulations. Nevertheless, in
all cases it is worth using all the processor logical threads as the simulation time
is reduced by 45%, 37% and 35% for the photon-only, electron-only and com-
bined tests respectively, compared to the execution times with only 8 threads.

In addition, the speed-up of the same examples as in section 5.2 has been
measured using the node with 40 logic threads. We found that all the tested
examples show a similar speed-up behaviour. In figure 13, the values of Sn for
the example 1-disc-novr as a function of the number of threads are presented.
The green line represents a linear fit to the measured speed-up data when a
maximum of one thread was executed on each physical processor core, corre-
sponding to the zone between 1 and 20 threads. In this region, as discussed
above, a linear correlation between the speed-up and the number of running
threads was obtained. The value of the slope was 0.87. Again, it is worth using

22

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 6 8 10 12 14 16

sp
e
e
d

-u
p

threads

Photons
Electrons

Combined

Hyperthreading region

Figure 12: PenRed speed-up values of the same tests as in the scalability analysis (figures 9
and 10). The figure is divided into two zones. The left one, from 1 to 8 threads, corresponds
to executions with one thread per core. The right zone, from 9 to 16 threads, corresponds to
the situation where threads share physical cores.

the full hyper-threading capabilities (40 threads) as a 28% reduction on the
total simulation time compared to that obtained employing only 20 threads is
achieved.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40

sp
e
e
d

-u
p

threads

ideal
fit

data
Hyperthreading region

Figure 13: Speed-up values of the PENELOPE example 1-disc-novr. The figure is divided
into two zones. The left one, from 1 to 20 threads, corresponds to executions with no hyper-
threading usage. The right zone, from 21 to 40 threads, corresponds to the hyperthreading
region. The black line represents a perfect ideal speed-up while the green line is a linear fit
to the speed-up data from 20 threads or less.

Thus, the speed-up tests described above demonstrate that PenRed is well
suited for massively parallel infrastructures, as takes efficiently advantage of all
the available resources.

23

6.3. Compiler tests

To maximise the program efficiency, the speed-up tests of all PENELOPE ex-
amples were repeated using the Intel C++ compiler [41] (icc) version 19.0.5.281
on the Intel processor node described in section 5. We found that the speed-
up behaviour is very similar for both compilers. However, tests performed by
running on a single thread show that the code compiled with icc is faster (by
about 50-60%). These results are partially shown in Table 1, where the simula-
tion speed of three PENELOPE examples are collected.

Example GCC icc Increase (%)
1-disc-vr 2.037 · 102 3.039 · 102 49.16

3-detector 2.623 · 103 4.167 · 103 58.88
5-accelerator 2.097 · 102 3.194 · 102 52.31

Table 1: Comparison between simulation speeds (histories/s) using the very same code com-
piled with GNU g++ version 7.3.1 and Intel icc version 19.0.5.281. Both compilations were
run on the same computer setup with a single thread. The first column specifies the example
tested. The second and third columns contain the simulation speed in histories per second for
the code compiled with g++ and icc, respectively. Finally, the last column shows the increase
in the simulation speed in percentage.

7. Conclusions and future work

PenRed provides a flexible, object-oriented, parallel and general purpose
framework for Monte Carlo simulations of radiation transport in matter based on
PENELOPE physics. As it has been verified, these features have been achieved
without compromising simulation speed. Furthermore, the efficiency has been
improved significantly. PenRed includes all the PENELOPE physics models.
It has been thoroughly tested that PenRed reproduces the cross-sections of
PENELOPE and that, within statistical errors, gives also the same results for
the complete set of PENELOPE examples. Moreover, our results can be re-
produced by the user using the input files provided in the PenRed package.
In addition, our code system includes support to simulate voxel geometries and
DICOM images, which make it suitable for performing Monte Carlo simulations
of medical treatments.

Regarding parallelism, PenRed incorporates a mixed model for handling
both distributed and shared memory parallelism via MPI and the standard
C++ thread library, respectively. We have shown that PenRed achieves good
speed-ups for both types of parallelism, which denotes that these features have
been efficiently implemented. Furthermore, a builtin load balance system has
been implemented to optimise executions on heterogeneous environments.

On the other hand, the modular structure of PenRed allows the developers to
incorporate new custom components (particle sources, geometries, tallies, etc.)
which can be included with no modification to the original PenRed code. The
new components will be automatically usable in parallel computations without
any previous knowledge of parallel programming.

24

In future versions of PenRed, we will implement new tallies and source mod-
els. In addition, we plane to improve the parallelism implementation to accel-
erate the execution time and adapt it to perform generic simulations on specific
hardware accelerators, such as GPGPUs and FPGAs.

Acknowledgements

The authors are deeply indebted to F. Salvat for many comments and sug-
gestions, for clarifying many subtleties of the simulation algorithms of the
transport of particles through matter, specially using PENELOPE, and for
his patience and understanding. The work of V. Gimenez-Alventosa was sup-
ported by the program “Ayudas para la contratación de personal investigador
en formación de carácter predoctoral, programa VALi+d” under grant number
ACIF/2018/148 from the Conselleria d’Educació of the Generalitat Valenciana
and the “Fondo Social Europeo” (FSE). V. Gimenez acknowledges partial sup-
port from FEDER/MCIyU-AEI under grant FPA2017-84543-P, by the Severo
Ochoa Excellence Program under grant SEV-2014-0398 and by Generalitat Va-
lenciana through the project PROMETEO/2019/087.

References

[1] F. Salvat, PENELOPE-2018: A code System for Monte Carlo Simula-
tion of Electron and Photon Transport, OECD/NEA Data Bank, Issy-
les-Moulineaux, France, 2019, available from http://www.nea.fr/lists/

penelope.html.

[2] EGSnrc: software tool to model radiation transport, https://github.

com/nrc-cnrc/EGSnrc, accessed: 2017-07-2.

[3] Los Alamos Scientific Laboratory. Group X-6., MCNP : a General Monte
Carlo Code for Neutron and Photon Transport. Los Alamos, N.M., Dept.
of Energy, Los Alamos Scientific Laboratory (1979).

[4] F. Salvat, PENELOPE. A Code System for Monte Carlo Simulation of
Electron and Photon Transport, Issy-Les-Moulineaux: OECD Nuclear En-
ergy Agengy (2014).

[5] GEANT4 Collaboration (Agostinelli. S. et al.), Geant4: A simulation
toolkit, Nucl.Instrum.Meth. A506 250-303 SLAC-PUB-9350, FERMILAB-
PUB-03-339 (2003).

[6] A. Ferrari, P. R. Sala, A. Fassò, J. Ranft, FLUKA: A multi-particle trans-
port code (program version 2005), CERN Yellow Reports: Monographs,
CERN, Geneva, 2005.

[7] A. Badal, J. Sempau, A package of linux scripts for the parallelization of
monte carlo simulations, Computer Physics Communications 175 (6) (2006)
440 – 450.

25

http://www.nea.fr/lists/penelope.html
http://www.nea.fr/lists/penelope.html
https://github.com/nrc-cnrc/EGSnrc
https://github.com/nrc-cnrc/EGSnrc

[8] R. Cruise, R. Sheppard, V. Moskvin, Parallelization of the penelope monte
carlo particle transport simulation package, 2003.

[9] A. Badal, A. Badano, Accelerating monte carlo simulations of photon trans-
port in a voxelized geometry using a massively parallel graphics processing
unit, Medical Physics 36 (11) (2009) 4878–4880.

[10] M. Rodŕıguez, J. Sempau, C. Bäumer, B. Timmermann, L. Brualla, DPM
as a radiation transport engine for PRIMO, Radiation Oncology (London,
England) 13 (2018).

[11] N. Tyagi, A. Bose, I. J. Chetty, Implementation of the DPM Monte Carlo
code on a parallel architecture for treatment planning applications, Medical
Physics 31 (9) (2004) 2721–2725. arXiv:https://aapm.onlinelibrary.

wiley.com/doi/pdf/10.1118/1.1786691.

[12] X. Weng, Y. Yan, H. Shu, J. Wang, S. B. Jiang, L. Luo, A vectorized Monte
Carlo code for radiotherapy treatment planning dose calculation, Physics
in Medicine and Biology 48 (7) (2003) N111–N120.

[13] X. Jia, X. Gu, J. Sempau, D. Choi, A. Majumdar, S. B. Jiang, Devel-
opment of a GPU-based monte carlo dose calculation code for coupled
electron–photon transport, Physics in Medicine and Biology 55 (11) (2010)
3077–3086.

[14] Y. Wang, T. R. Mazur, J. C. Park, D. Yang, S. Mutic, H. H. Li, Develop-
ment of a fast monte carlo dose calculation system for online adaptive ra-
diation therapy quality assurance, Physics in Medicine and Biology 62 (12)
(2017) 4970–4990.

[15] Y. Wang, T. R. Mazur, O. Green, Y. Hu, H. Li, V. Rodriguez, H. O.
Wooten, D. Yang, T. Zhao, S. Mutic, H. H. Li, A gpu-accelerated monte
carlo dose calculation platform and its application toward validating an
mri-guided radiation therapy beam model, Medical Physics 43 (7) (2016)
4040–4052.

[16] J. Sempau, PENEASY, a structured main program from PENELOPE,
Freely available from http://www. upc. es/inte/downloads/penEasy. htm
2006 (2006) 06–01.

[17] K. Driesen, U. Hölzle, The Direct Cost of Virtual Function Calls in
C++, in: Proceedings of the 11th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
’96, Association for Computing Machinery, New York, NY, USA, 1996, p.
306–323.

[18] N. Nethercote, J. Seward, Valgrind: A framework for heavyweight dynamic
binary instrumentation, SIGPLAN Not. 42 (6) (2007) 89–100.

26

http://arxiv.org/abs/https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1118/1.1786691
http://arxiv.org/abs/https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1118/1.1786691

[19] J. Weidendorfer, M. Kowarschik, C. Trinitis, A tool suite for simulation
based analysis of memory access behavior, in: M. Bubak, G. D. van Albada,
P. M. A. Sloot, J. Dongarra (Eds.), Computational Science - ICCS 2004,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 440–447.

[20] F. Salvat, PENCT: a program for the simulation of electron-photon trans-
port in voxelised structures using PENELOPE, Private communication.

[21] W. J. Bolosky, M. L. Scott, False sharing and its effect on shared mem-
ory performance, in: USENIX Systems on USENIX Experiences with Dis-
tributed and Multiprocessor Systems - Volume 4, Sedms’93, USENIX As-
sociation, Berkeley, CA, USA, 1993, pp. 3–3.

[22] H. Kwak, B. Lee, A. R. Hurson, Suk-Han Yoon, Woo-Jong Hahn, Effects
of multithreading on cache performance, IEEE Transactions on Computers
48 (2) (1999) 176–184.

[23] F. James, A review of pseudorandom number generators, Comput. Phys.
Commun. 60 (1990) 329–344.

[24] R. L. Graham, T. S. Woodall, J. M. Squyres, Open mpi: A flexible high per-
formance mpi, in: R. Wyrzykowski, J. Dongarra, N. Meyer, J. Waśniewski
(Eds.), Parallel Processing and Applied Mathematics, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2006, pp. 228–239.

[25] W. Gropp, Mpich2: A new start for mpi implementations, in: Proceedings
of the 9th European PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Springer-Verlag,
Berlin, Heidelberg, 2002, p. 7.

[26] A. Iosup, N. Yigitbasi, D. Epema, On the performance variability of pro-
duction cloud services, in: 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, 2011, pp. 104–113.

[27] P. Leitner, J. Cito, Patterns in the chaos—a study of performance variation
and predictability in public iaas clouds, ACM Trans. Internet Technol.
16 (3) (2016).

[28] J. Schad, J. Dittrich, J.-A. Quiané-Ruiz, Runtime measurements in the
cloud: Observing, analyzing, and reducing variance, Proc. VLDB Endow.
3 (1–2) (2010) 460–471.

[29] S. Shankar, J. M. Acken, N. K. Sehgal, Measuring performance variability
in the clouds, IETE Technical Review 35 (6) (2018) 656–660.

[30] V. G. Alventosa, G. M. Mart́ınez, J. D. S. Quilis, Ruper-lb: Load balancing
embarrasingly parallel applications in unpredictable cloud environments
(2020). arXiv:2005.06361.

[31] DICOM, https://www.dicomstandard.org/, accessed: 2019-09-28.

27

http://arxiv.org/abs/2005.06361
https://www.dicomstandard.org/

[32] DCMTK, https://github.com/DCMTK/dcmtk, accessed: 2019-09-28.

[33] F.Salvat, Åsa Carlsson Tedgren, Jean-François Carrier, Stephen D. Davis,
Firas Mourtada, Mark J. Rivard, Rowan M. Thomson, Frank Verhaegen,
Todd A. Wareing, Jeffrey F. Williamson, Report of the task group 186 on
model-based dose calculation methods in brachytherapy beyond the tg-43
formalism: Current status and recommendations for clinical implementa-
tion, Med. Phys. (2012).

[34] S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Fris-
son, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld,
D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra,
I. Buvat, GATE v6: a major enhancement of the GATE simulation plat-
form enabling modelling of CT and radiotherapy, Physics in Medicine and
Biology 56 (4) (2011) 881–901.

[35] GCC, https://gcc.gnu.org/, accessed: 2019-09-2.

[36] B. Lowekamp, D. Chen, L. Ibanez, D. Blezek, The design of simpleitk,
Frontiers in Neuroinformatics 7 (2013) 45.

[37] J. P. Archambault, E. Mainegra-Hing, Comparison between EGSnrc,
geant4, MCNP5 and penelope for mono-energetic electron beams, Physics
in Medicine and Biology 60 (13) (2015) 4951–4962.

[38] H. Uusijärvi, N. Chouin, P. Bernhardt, L. Ferrer, M. Bardiès, E. Forssell-
Aronsson, Comparison of electron dose-point kernels in water generated
by the monte carlo codes, penelope, geant4, mcnpx, and etran, Cancer
Biotherapy and Radiopharmaceuticals 24 (4) (2009) 461–467.

[39] J. Torres, M. J. Buades, J. F. Almansa, R. Guerrero, A. M. Lallena,
Dosimetry characterization of intravascular brachytherapy source wires us-
ing monte carlo codes penelope and geant4, Medical Physics 31 (2) (2004)
296–304.

[40] F. Malano, F. Mattea, F. A. Geser, P. Pérez, D. Barraco, M. Santibáñez,
R. Figueroa, M. Valente, Assessment of FLUKA, PENELOPE and MCNP6
Monte Carlo codes for estimating gold fluorescence applied to the detec-
tion of gold-infused tumoral volumes, Applied Radiation and Isotopes 151
(2019) 280–288.

[41] Intel C++ compiler, https://software.intel.com/en-us/cpp-

compiler-developer-guide-and-reference-introducing-the-intel-

c-compiler, accessed: 2019-09-2.

28

https://github.com/DCMTK/dcmtk
https://gcc.gnu.org/
 https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-introducing-the-intel-c-compiler
 https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-introducing-the-intel-c-compiler
 https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-introducing-the-intel-c-compiler

