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dependent ecosystems. Advanced irrigation technologies and improved fertilizer management have been promoted
as key solutions to reduce the agricultural impact on aquatic systems. However, it remains unclear how different
irrigation-fertilizer practices perform on the long-term under a highly variable climate, such as the Mediterranean
one. Here, we conduct hydrological simulations over a fifty-year period to quantify the magnitude and dynamics of

Editor: José Virgilio Cruz
groundwater recharge and nitrogen leaching under five real-case irrigation-fertilizer practices observed in Valencia
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performance of flood and drip irrigation in wet years if fertilizer inputs are similar. Third, we identify a pronounced
year-to-year nitrogen memory in the soil, whereby an enhanced (decreased) nitrogen leaching is observed after anom-
alously dry (wet) years, affecting the performance of irrigation-fertilizer practices. Overall, the study demonstrates the
highly variable nature of the performance of irrigation-fertilizer practices, and the major findings can guide future
efforts in designing sustainable water management strategies for agricultural areas with a Mediterranean climate.

1. Introduction

Agriculture uses 70% of the total freshwater withdrawals (Grafton et al.,
2017; Siebert et al., 2010) and strongly relies on the use of nitrogen fertil-
izers to secure food production (Lassaletta et al., 2016; Sutton et al.,
2013; Zhang et al., 2015). More than half of the nitrogen added to agricul-
tural land is lost to the environment (Bijay-Singh and Craswell, 2021;
Lassaletta et al., 2014; Liu et al., 2018), where it remains for many decades
(Martin et al., 2021; McMahon et al., 2006; Sebilo et al., 2013) and causes
contaminated aquifers, impure drinking water, and nutrient enrichment in
connected surface waters (Sabo et al., 2019; Sutton et al., 2013). Intensively
managed agricultural land is considered as one of the main stressors for the
quality and quantity of groundwater resources and groundwater-dependent
ecosystems (Klgve et al., 2011; Kristensen et al., 2018; Leduc et al., 2017;
Sabo et al., 2019). Developing sustainable water management strategies
for agricultural areas requires a solid understanding of the amount and dy-
namics of groundwater recharge and nitrogen leaching, their interaction, as
well as their controlling factors and memory (i.e., time lags due to the reten-
tion and subsequent release in soils; Pefia-Haro et al., 2010, 2011; Roy
et al., 2021).

The introduction of drip irrigation techniques has been widely pro-
moted as a prominent measure to save water in agriculture (Grafton
et al., 2018; Perry et al., 2017). The promotion has been largely based on
findings at the field scale, which proved that drip irrigation could increase
crop evapotranspiration while reducing unwarranted water losses through
soil evaporation and percolation below the root zone (Cavero et al., 2012;
Jin et al., 2018; Liu et al., 2012; Thoreson et al., 2013; Wang et al.,
2018). Advanced irrigation techniques are also frequently listed among po-
tential nitrogen leaching mitigation strategies (Causapé et al., 2006; Cavero
et al., 2012; Liu et al., 2014; Mack et al., 2005; Sharma and Bali, 2017;
Sutton et al., 2013). In fact, a meta-analysis on strategies to control nitrogen
leaching (Quemada et al., 2013) revealed that an improved water manage-
ment is the most effective way to reduce leaching, followed by an improved
fertilizer management, the use of cover crops, and an improved fertilizer
technology (e.g., controlled release or nitrification inhibitors). Despite the
high importance of water management for reducing nitrogen losses to the
groundwater, studies on the relevant issues are rare (Quan et al., 2021;
Quemada et al., 2013; Sharma and Bali, 2017) and direct comparisons of
different irrigation techniques under similar fertilizer applications are un-
common.

The effectiveness of water and nitrogen management strategies can
greatly depend on precipitation characteristics. An increase in annual pre-
cipitation reduces travel times in soils (Kumar et al., 2020) and therefore in-
creases groundwater recharge (Keese et al., 2005; Mohan et al., 2018) as
well as nitrogen leaching (Ballard et al., 2019; Eagle et al., 2017; Scaini
et al., 2020). Both processes can occur throughout the entire year in
humid regions with frequent rainfall; however, they are typically limited
to a few months or even a few years in drier regions (Kumar et al., 2020).
In semi-arid and arid climatic conditions, a disproportionally high fraction
of the annual recharge and leaching is produced by heavy precipitation
events (de Paz and Ramos, 2004; Jiménez-Martinez et al., 2010; Vallet-
Coulomb et al., 2017; Yahdjian and Sala, 2010; Zhou et al., 2016). Surpris-
ingly, experimental work showed that the occurrence of such intense rain-
fall events can also lead to considerable recharge and leaching under
advanced irrigation techniques, making their efficiencies comparable to
the one of traditional irrigation practices (Poch-Massegu et al., 2014).
While advanced irrigation techniques have been widely promoted in
many water scarce regions all over the world (Molle and Tanouti, 2017;

Ortega-Reig et al., 2017; Scott et al., 2014), there is still a limited under-
standing of their long-term performance under high inter-annual precipita-
tion variability.

The purpose of this study is to investigate how sensitive the perfor-
mance of irrigation-fertilizer practices is to changes in inter-annual meteo-
rological conditions. We aim to contribute new insights into this question
by applying a modeling approach which allows to systematically compare
real-case practices at regional scale and using long-term time series. Our
focus is on the Mediterranean region of the Valencia province (Spain),
which is the largest citrus producing area in Europe (European Commis-
sion, 2018; MAPA, 2019). The intensive agriculture deteriorates groundwa-
ter quality with negative implications for the aquifer of the Plana de
Valencia Sur (Escriva Benito, 2020; Ramos et al., 2002; Sanchis-Ibor
et al., 2019). It also frequently challenges water allocation during drought
periods (Rubio-Martin et al., 2020). To increase the resilience and sustain-
ability of the agricultural production, irrigation systems are transformed
from flood to drip irrigation (Sanchis-Ibor et al., 2017) and regulations
for good nitrogen management were published by the regional government
(Generalitat Valenciana, 2018). In this study, we identify five typical irriga-
tion and fertilizer schedules from local field experiments and stakeholders
interviews. We combine this information with fifty years of meteorological
data to simulate daily groundwater recharge and nitrogen leaching under
the five irrigation-fertilizer practices with a distributed hydrological
model. Three modeling experiments are conducted to quantify (i) the
long-term response, (ii) the annual sensitivity, and (iii) the memory of
groundwater recharge and nitrogen leaching under the different irrigation
and fertilizer practices. While these modeling experiments are conducted in
the Valencian Region, the resulting conclusions have implications beyond
the study region as irrigation transformations are ongoing globally in
many arid and semi-arid regions (Cavero et al., 2012; Harmanny and
Malek, 2019; Molle and Tanouti, 2017; Pfeiffer and Lin, 2014; Scott et al.,
2014).

2. Study site

The study area (913 km?) is the agricultural region south of the city of
Valencia in eastern Spain (Fig. 1a). The area includes the catchments
draining into the flood plain of the Jucar River, as well as the aquifer of
the Plana de Valencia Sur. The area is characterized by a typical semi-arid
Mediterranean climate with heavy rainfall events in fall (mean intensity
of the ten largest annual events was 30 mm d~' between 1966 and
2015), a large inter-annual variability in precipitation (mean of 529 mm
year ' and a range from 230 mm year ! to 1193 mm year ' between
1966 and 2015), and frequent multi-year droughts (Marcos-Garcia et al.,
2017). In eastern Spain, climate change is expected to increase the regional
water scarcity (Chirivella Osma et al., 2015; Ferrer et al., 2012; Marcos-
Garcia et al., 2017) while individual rainfall events may become more ex-
treme (Alpert, 2002; Moutahir et al., 2017; Pulido-Velazquez et al., 2015).

Citrus orchards are the predominant agricultural land use in the study
area. The orchards are irrigated with streamflow from the Jucar River
and occasionally with small amounts of groundwater. Irrigation frequen-
cies and depths for flood and drip irrigation (Fig. 1b and Table S1) were ob-
tained from local field experiments conducted by Ruiz Rodriguez (2017) in
two commercial citrus orchards. Daily irrigation depths in the flood-
irrigated orchard were estimated using discharge measurements in the
channel transporting the water to the orchard. Daily irrigation depths in
the drip-irrigated orchard were measured with a flow meter installed in
the hydrant from which water is supplied to the pipe system. The observed
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Fig. 1. Characteristics of the study area. a) Extent of the study area and location of the citrus orchards, which are divided in 68 irrigation sectors for irrigation and fertilizer
management. Irrigation sectors used to define typical irrigation schedules from field experiments are outlined in orange. Irrigation sectors used to define typical fertilizer
schedules from interviews with technicians are marked with hatched areas. The terrain background map was designed by Stamen (2021). b) Typical daily irrigation
schedules for flood and drip irrigation. ¢) Typical monthly fertilizer applications in flood and drip irrigation. Fertilizer application is in the form of NO3 .

annual irrigation depths are 630 mm in flood irrigation and 492 mm in drip
irrigation. To define typical fertilizer schedules for flood and drip irrigation
(Fig. 1c and Table S1), we conducted interviews with the three technicians
of the major Valencian irrigation communities and one technician from the
main cooperative of citrus producers in the study area (accounting for 90%
of the irrigated area). Each technician provided its estimate of monthly fer-
tilizer inputs (NO3 ) for flood and/or drip irrigation in 2020. These esti-
mates were complemented with fertilization schedules for 2020 that two
local irrigation communities yearly publish on their websites (Benimodo,
2021; Los Tollos, 2021), which finally resulted in five combinations of
irrigation-fertilizer practices. The five practices include flood irrigation
with 182 kgN ha ™! year ™! (Flood-182), flood irrigation with 180 kgN
ha~! year ™! (Flood-180), drip irrigation with 182 kgN ha~! year™!
(Drip-182), drip irrigation with 176 kgN ha ™! year ! (Drip-176), and drip
irrigation with 133 kgN ha ™! year ~ ! (Drip-133). The interviews further re-
vealed that irrigation schedules are comparable across years as they are
usually not adapted to meteorological forecasts. Hence, the irrigation
schedules observed in 2016 are considered as representative for the entire
study period (1966 to 2015). Instead, the fertilizer schedules have been
prone to some changes in the past and were explicitly chosen to represent
current practices.

3. Recharge and nitrogen leaching modeling experiments
3.1. Hydrological model

We used the spatially distributed, process-based hydrological model
TETIS (Francés et al., 2007; Puertes et al., 2021) to perform simulations
of groundwater recharge and nitrogen leaching for the study region. The
water balance of the model was forced with precipitation (Herrera et al.,
2012, 2016), irrigation (Fig. 1b and Table S1), as well as potential
evapotranspiration calculated with the Hargreaves-Samani equation
(Hargreaves and Samani, 1985) and corrected using local FAO Penman-
Monteith estimates (IVIA, 2019). The driving variables for the nitrogen
cycle were fertilization (NO5 ; Fig. 1c and Table S1) and atmospheric depo-
sition (NO3 and NHj ; Garcia-Gémez et al., 2014). Model parameter values
were estimated from CORINE land use maps (EEA, 2019) and the corre-
sponding FAO crop coefficients (Allen et al., 1998), soil maps from the

European soil database (ESDB, 2019) and pedotransfer functions (Puertes
etal., 2021; Schaap et al., 2001), geological maps from the Geological Sur-
vey of Spain (IGME, 2019), and a digital elevation model from the Geo-
graphical Survey of Spain (CNIG, 2019).

The measured model parameter values were adjusted through a hierar-
chical multi-process calibration, which started with the estimation of water
balance parameters, followed by the adaptation of the nitrogen cycle pa-
rameters. The water balance parameters were previously calibrated for
the study region by Pool et al. (2021a, 2021b) using the annual evaporative
index, monthly groundwater storage and dynamics, and daily soil water dy-
namics. In case of the nitrogen cycle, we largely used parameter values sug-
gested by Puertes et al. (2021) for a semi-arid, irrigated, agricultural
catchment south of our study region. We further adjusted the values of
three nitrogen parameters, namely the mineralization rate constant, the ni-
trification rate constant, and the partition coefficient for sorption using ni-
trogen leaching fractions reported for irrigated citrus orchards (Alva et al.,
2006; Castel et al., 1995; Lidén, 1994; Martinez-Alcantara et al., 2012;
Paramasivam et al., 2002; Phogat et al., 2014; Ramos et al., 2002;
Syvertsen and Sax, 1999). The Monte Carlo approach used for model cali-
bration resulted in twelve behavioral model parameterizations, which
allowed to account for model parameter uncertainty and equifinality
(Beven and Freer, 2001). A more detailed description of the model and its
calibration is provided in the supporting information (Figs. S1 and S2).

3.2. Three modeling experiments

Model simulations were performed at a 200 m by 200 m spatial resolu-
tion and on a daily time scale for the fifty-year period from 1966 to 2015.
Following a scenario-based approach, separate simulations were run for
each of the five observed irrigation-fertilizer practices assuming identical
practices for all citrus orchards within the study region. To investigate the
impact of these practices on recharge and nitrogen leaching (sum of NO3
and NHJ ) under varying meteorological conditions, we conducted three
modeling experiments.

The first modeling experiment aimed at quantifying the monthly long-
term recharge and nitrogen leaching regimes. Therefore, simulations
were run for the continuous fifty years and the resulting monthly sums of
recharge and nitrogen leaching were averaged over all simulation years.
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The year 2010, was used to define the boundary conditions, i.e., initial
water and nitrogen storages and concentrations, before starting the simula-
tions. The year 2010 has close to average annual precipitation (P) and its
use avoids the introduction of biases in the boundary conditions.

With the second modeling experiment, we evaluated the sensitivity
of annual recharge and nitrogen leaching to annual meteorological con-
ditions. Each year was simulated separately starting from the same ini-
tial boundary conditions (again related to 2010) to remove the
dependency from the meteorological conditions of previous years. The
resulting annual sum of recharge (mm) and nitrogen leaching (kgN
ha™ ') of each year was further used to calculate the recharge fraction
(—), defined as the ratio between recharge and the sum of precipitation
and irrigation, as well as the nitrogen leaching fraction (—), defined as
the ratio between nitrogen leaching and the sum of fertilizer input and
atmospheric deposition.

The third modeling experiment was used to analyze the memory of
annual recharge and nitrogen leaching. The methodology is based on
the idea of stress testing where the overarching question is “what
would have happened if the previous year was different?” (Stoelzle
et al., 2020). We therefore systematically modified the antecedent con-
ditions of each year by replacing its original preceding year with a dry
(0.5 P; 310 mm year '), average (P; 583 mm year '), and wet (1.5 P;
872 mm year ') year. Simulations for each of these modified two-
year combinations were started from the same initial boundary condi-
tions (again related to 2010). The memory, defined as the persistence
of a meteorological anomaly beyond a year (following definitions
given in D'Odorico et al., 2003; Seneviratne et al., 2006; Vero et al.,
2018), was then quantified as the ratio between annual recharge (or ni-
trogen leaching) in a wet or dry year and the annual recharge (or nitro-
gen leaching) in an average year. Please note that while simulations
were run for the entire hydrological system, results are only reported
for the area containing irrigated citrus orchards (Fig. 1a).
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4. Results
4.1. Long-term monthly recharge and nitrogen leaching

The irrigation transformation significantly modified the magnitude and
timing of recharge and nitrogen leaching (Fig. 2). On the long-term, annual
recharge in flood-irrigated orchards (230 mm year ') was 1.3 times higher
than the annual recharge in drip-irrigated orchards (174 mm year ™). Sim-
ilarly, nitrogen leaching was 1.7 times higher in flood irrigation (69 kgN
ha~! year ™! for both fertilizer practices) than in drip irrigation (mean of
all fertilizer practices was 39 kgN ha ™! year ' and values ranged from
31 to 46 kgN ha~! year ~1). However, the performance of drip-irrigated
systems was typically lower than the one of flood-irrigated systems during
the fall and winter months (September to February) due to dissimilarities in
process seasonality (see also Fig. S3). More specifically, most of the annual
recharge and nitrogen leaching in drip irrigation was generated during
large rainfall events, which occur in fall and partly in winter. Recharge in
flood irrigation peaked in spring and fall and was sustained by excess irriga-
tion in spring and summer, whereas the largest losses of nitrogen to the
groundwater happened after fertilizer applications in spring.

4.2. Sensitivity of recharge and nitrogen leaching to meteorological conditions

The meteorological conditions from 1966 to 2015 led to a wide range of
recharge and nitrogen leaching responses (Fig. 3). With increasing annual
precipitation, significantly more recharge and nitrogen leaching occurred
(Fig. 3a and c) reducing the performance (recharge and nitrogen leaching
fractions) of all irrigation and fertilizer practices (Fig. 3b and d). The gener-
ally higher sensitivity of drip irrigation to meteorological conditions (see
also Fig. S4) eventually led to a comparable performance of flood and
drip irrigation practices in relatively wet years if the total fertilizer input
was similar. This is reflected by the performance values for recharge and
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nitrogen leaching, which varied between the years from 14 to 25% (mean
19%) and 24-48% (mean 33%) in flood irrigation, but had much larger
ranges from 7 to 25% (mean 16%) and 2-47% (mean 18%) in drip irriga-
tion. The meteorological conditions further changed the importance of ni-
trogen management, in particular for drip irrigation. While lower
fertilizer applications tended to reduce total nitrogen losses to the ground-
water, the timing of fertilizer application became more critical than the
total nitrogen input for the performance of drip irrigation with increasing
annual wetness.

The large variability of meteorological conditions, in particular the
range in annual precipitation, observed between 1966 and 2015 was partly
a result of the occurrence of heavy rainfall events (Fig. 4; Spearman rank
correlation of 0.44). However, the analysis of the relative role of annual
precipitation and event intensity for recharge and nitrogen leaching sug-
gests that both processes are strongly controlled by annual precipitation
(Spearman ran correlation of 0.96 for flood irrigation and 0.93 for drip irri-
gation), whereas their sensitivity to event intensity is surprisingly low
(Spearman ran correlation of 0.28 for flood irrigation and 0.36 for drip irri-
gation). Indeed, for a given event intensity, recharge and nitrogen leaching
could be either above or below their long-term average value.

4.3. Memory of recharge and nitrogen leaching under variable climatic
conditions

The effect of different antecedent annual meteorological conditions var-
ied greatly between recharge and nitrogen leaching (Fig. 5). For recharge,
the wetness of a previous year was of limited importance for both irrigation
practices. Yet, there was a clear tendency towards an average increase in re-
charge of 1% (range from 0% to 4%) if the previous year was relatively wet,
and an average decrease in recharge of —4% (range from —12% to 0%) if
the previous year was relatively dry for both irrigation practices. For nitro-
gen leaching, annual sums of fertilizer losses could be strongly influenced
by the conditions in the preceding year with larger impacts in drip than
in flood irrigation. In contrast to recharge, a preceding dry year enhanced
nitrogen leaching on average by 2% (range from — 2% to 4%) in flood irri-
gation and 8% (range from — 10% to 24%) in drip irrigation, and wetter an-
tecedent conditions reduced nitrogen leaching on average by —12% (range
from —14% to —10%) in flood irrigation and —22% (range from — 48% to
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—10%) in drip irrigation. Although antecedent conditions had a larger im-
pact on nitrogen leaching than on recharge, both processes differed signif-
icantly the year after a dry and a wet year for all irrigation and fertilizer
practices.

5. Discussion
5.1. Meteorological controls on recharge and nitrogen leaching

5.1.1. Long-term recharge and nitrogen leaching regimes

Drip irrigation is typically associated with smaller irrigation depths and
a more frequent application of water than flood irrigation, reducing
groundwater recharge and nitrogen leaching to the aquifer (Cavero et al.,
2012; Jin et al., 2018; Liu et al., 2014; Sharma et al., 2012; Thoreson
et al., 2013). Our simulations confirm the lower recharge and nitrogen
leaching fractions after an irrigation transformation, and predict similar
mean long-term performances as previously reported from experimental
field work or plot-scale modeling in citrus orchards (e.g., Alva et al.,
2006; de Paz and Ramos, 2004; Liddn et al., 2013; Phogat et al., 2014;
Ramos et al., 2002).

5.1.2. Sensitivity of recharge and nitrogen leaching to annual meteorological
conditions

Our results show a strong variability in the performance of irrigation-
fertilizer practices between years and suggest that these inter-annual differ-
ences are largely controlled by precipitation. Similar to our findings, re-
charge (Keese et al., 2005; Mohan et al., 2018; Xu et al., 2020) and
nitrogen (Ballard et al., 2019; Eagle et al., 2017; Scaini et al., 2020) studies
across hydroclimatic regions found that wetness conditions are a key factor
to explain temporal and spatial differences in groundwater recharge and ni-
trogen leaching. By comparing the performance of flood and drip irrigation
for the same region, we are able to highlight that recharge and nitrogen
leaching in drip irrigation are more sensitive to precipitation variability
than in flood irrigation. In drip irrigation, constantly moist soils from fre-
quent irrigation in fall and the continued application of fertilizer until the
onset of the first rainfalls cause a high potential for recharge and nitrogen
leaching. Thus, the typical but highly variable rainfall events in fall have
a decisive impact on the performance of drip irrigation (Jiménez-

Nitrogen leaching
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Fig. 5. Memory of recharge (a) and nitrogen leaching (b) in the fifty years from 1966 to 2015. The memory is an indicator for the impact of meteorological conditions of a
previous year on this year's recharge and nitrogen leaching. The purple triangles show the impact of a wet year relative to the impact of an average year. The brown circles
show the impact of a dry year relative to the impact of an average year. The values represent the median of the twelve hydrological model parameterizations for each year.
The mean of all years is marked with a black triangle or circle. Differences in the mean values for each irrigation and fertilizer practice were compared with the nonparametric

Wilcoxon signed rank test and are statistically significant at p < 0.05.
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Martinez et al., 2010; Poch-Massegu et al., 2014; Pool et al., 2021a). In con-
trast to drip irrigation, the more sporadic irrigation events and the restric-
tion of fertilizer application to spring and summer in flood irrigation
reduce the sensitivity of recharge and nitrogen leaching to precipitation.
The different sensitivity of the two irrigation practices has three interesting
consequences. First, recharge and nitrogen leaching are seasonally
(September to February) higher in drip irrigation than in flood irrigation.
Second, annual recharge and nitrogen leaching in both irrigation practices
become similar for a given fertilizer input in relatively wet years. Third, the
application of considerable amounts of fertilizer in fall can lead to enhanced
nitrogen leaching in drip irrigation despite lower total fertilizer inputs.

Besides annual precipitation sums, heavy precipitation events are also
important recharge and leaching drivers (de Paz and Ramos, 2004;
Jiménez-Martinez et al., 2010; Vallet-Coulomb et al., 2017; Yahdjian and
Sala, 2010; Zhou et al., 2016). It was therefore hypothesized that increased
precipitation event intensity associated with climate change will enhance
recharge and nitrogen losses to the groundwater all over the world (Bijay-
Singh and Craswell, 2021; Xu et al., 2020; Zhou et al., 2016). Within the
Mediterranean Region, climate models project increased event intensities
together with a reduction of annual precipitation (Alpert, 2002; Moutahir
et al., 2017; Rajczak et al., 2013; Seager et al., 2019). Based on fifty-year
simulations, our results suggest that the annual sum of precipitation exerts
a stronger control on recharge and nitrogen leaching than the mean event
intensity, potentially leading to reduced future recharge and nitrogen
leaching despite higher event intensities. Our results with data from the
past are thereby in line with future recharge projections in our study area
that are based on climate models (Pool et al., 2021b). Based on our results,
there are mainly two reasons for the higher importance of annual precipita-
tion than event intensity. First, soils tend to have a larger storage potential
at the day of an intense precipitation event in dry years than in wet years
and therefore have a larger buffer potential in dry years (Fig. S5). Second,
intense precipitation events typically occur in fall, whereas the annual
sum of precipitation is distributed over a much longer time span ranging
from fall to spring continuously contributing to annual recharge and nitro-
gen leaching in both flood and drip irrigation (Fig. S3).

5.1.3. Memory of recharge and nitrogen leaching

The recharge and nitrogen leaching patterns observed under different
annual wetness conditions are further reinforced by the sum of precipita-
tion fallen in the preceding year. If the preceding year was dry instead of
wet, nitrogen leaching rates were relatively small leading to an accumula-
tion of nitrogen in the soil due to overfertilization (Fig. S5). The addition-
ally stored nitrogen contributes to leaching in the following year resulting
in an enhanced nitrogen leaching after a dry preceding year. The described
memory effect is strongest for drip irrigation and wet antecedent conditions
due to the high sensitivity of drip irrigation to annual precipitation. While it
is well-known that the memory effect (also called legacy effect) of nitrogen
within entire ecosystems holds for decades (Martin et al., 2021; McMahon
et al., 2006; Sebilo et al., 2013), our results indicate that this long-term
memory is subject to remarkable year-to-year dynamics in the unsaturated
zone. Our results thereby support the importance of considering the
transient nature of nitrogen transport processes in modeling studies
(Ascott et al., 2021; Kumar et al., 2020; Vero et al., 2018). In contrast to
nitrogen, the simulated recharge was not much affected by the wetness
conditions of the previous year due to the typically daily to seasonal
memory of soil moisture (McColl et al., 2019; Seneviratne et al., 2006;
Zhao et al., 2019).

5.2. Implications for irrigation and fertilizer management in a Mediterranean
climate

The adaptation of water and fertilizer management will be key to
increase the sustainability of agriculture in the coming decades
(Dobermann, 2016; Harmanny and Malek, 2019; Iglesias et al., 2012;
Sutton et al., 2021). In a Mediterranean climate, such adaptation strategies
are implemented in the context of large precipitation variability, a general
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water scarcity, selected crop varieties and rotations, and a long tradition of
irrigated agriculture. Explicitly considering the specific agro-environmental
context of the Mediterranean region when designing adaptation strategies
is therefore essential (Iglesias et al., 2012; Lassaletta et al., 2021). With
the focus on farmer irrigation-fertilizer practices observed in citrus or-
chards of our study region (inside the Valencian Region), we contribute
to an improved understanding of their performance in a representative
Mediterranean area. Our findings have three main implications for water
management.

First, the choice of an irrigation technique has a considerable impact on
groundwater resources, whereby a transformation from flood to drip irriga-
tion reduces both recharge and nitrogen leaching. While it is common in re-
search and practice to assign a fix performance value to an irrigation
practice (Bijay-Singh and Craswell, 2021; de Paz and Ramos, 2004;
Lassaletta et al., 2021), we encourage the use of a range of values to account
for the uncertainty arising from the substantial inter-annual performance
differences caused by precipitation variability. Second, our analysis con-
firms that water management practices have a stronger control on nitrogen
leaching than differences in currently used fertilizer schedules (Cavero
etal., 2012; Quemada et al., 2013). However, the timing of fertilizer appli-
cation, such as avoiding inputs before the onset of the rainy months, is key
for further reducing the nitrogen leaching risk. Third, recent research high-
lighted the need to integrate the decade-long legacy of nitrogen application
into the design of best management practices (Ascott et al., 2021; Martin
etal., 2021; Vero et al., 2018). Our research shows that additionally consid-
ering the year-to-year memory of nitrogen storage, e.g., through the inter-
annual adaption of fertilizer inputs, could substantially contribute to a
more sustainable agriculture and increased groundwater protection.

5.3. Relevance beyond the Valencian Region

This study was conducted at the regional scale, which is the traditional
working scale of water authorities. The regional scale allowed us to work
with five locally observed irrigation-fertilizer practices representing an av-
erage farmer behavior in the study region and providing a frame for further
discussion and analysis. With its climatic and agricultural challenges, and
the ongoing region-wide irrigation transformation, the Valencian case is
paradigmatic for many agricultural areas in the Mediterranean region
(Cavero et al., 2012; Cramer et al., 2018; Lassaletta et al., 2021; Perry
et al.,, 2017) and insights gained from this study are likely transferrable to
other places with a similar context. However, we acknowledge that differ-
ences in farmer's practices regarding irrigation schedules and fertilizer ap-
plication, and also fertilizer technology and cover crop management can
affect recharge and nitrogen leaching (Quan et al., 2021; Quemada et al.,
2013; Sharma and Bali, 2017). Given the importance of the timing of irriga-
tion and fertilization in our study area, a systematic testing of different ap-
plication dates and rates, as extensively done at plot scale (e.g., Alva et al.,
2006; Gheysari et al., 2009; Liu et al., 2014; Xu et al., 2020; Yahdjian and
Sala, 2010), would be particularly valuable for regional decision-making
in Valencia but also any other agricultural area of interest. Furthermore,
changes in irrigation and fertilizer management can affect water and nutri-
ent uptake by plants as well as crop yield (Alva et al., 2006; Martinez-
Alcantara et al., 2012; Zhang et al., 2018), which are two important factors
for the implementation of adaptation strategies (Roy et al., 2021; Sutton
et al., 2021) that were not evaluated in this study. In arid and semi-arid re-
gions, irrigation and fertilization can considerably affect crop yield indi-
rectly through secondary salinization resulting from an imbalance
between fertilizer application and fertilizer uptake or leaching. A recent
global review (Cuevas et al., 2019) of measures to cope with soil saliniza-
tion revealed an ambivalent relationship between advanced irrigation prac-
tices and soil salinization. While drip irrigation enables a more precise
timing of fertilizer magnitudes, it can also aggravate soil salinization in
arid and semi-arid regions due to reduced leaching rates. In the Valencian
Region, soil salinization has so far not become a significant challenge in
drip-irrigated orchards due to the good quality of irrigation water, the
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common practice of occasional salt flushing (Ortega-Reig et al., 2017), and
the intense rainfalls events occurring in fall.

The fifty-year time series of daily meteorological data used in this
study covers a much wider range of annual and event precipitation char-
acteristics than typically encountered in observation-based evaluations
of agricultural management practices (for recent studies in different
continents see e.g., Chilundo et al., 2018; Garcia-Garizabal et al.,
2017; Huang et al., 2017; Pfeiffer and Lin, 2014; Sharma et al., 2012).
The exceptionally long time span of this study, thereby, enables robust
estimates of recharge and nitrogen leaching for the tested irrigation
and fertilizer practices. Assuming that future climatic conditions are
represented in the historical data, our simulations can be used for
rough estimates of future trends in recharge and nitrogen leaching
(Stoelzle et al., 2020) to avoid the large uncertainties commonly associ-
ated with future projections in semi-arid regions (Blanke et al., 2017;
Niraula et al., 2017). While precipitation exerted a strong control on re-
charge and nitrogen leaching in the past, temperature could be an im-
portant factor in the future by influencing crop water demand (Fader
etal., 2016; Rodriguez Diaz et al., 2007; Tanasijevic et al., 2014) and ni-
trogen transformation processes (Doltra et al., 2014; He et al., 2018;
Teixeira et al., 2021). The impact of precipitation and temperature on
hydrological processes and crop yield is expected to be even larger if
their combined effect is evaluated (Cramer et al., 2018; Marcos-Garcia
et al., 2017; Zscheischler et al., 2017). In view of the projected future
decrease in precipitation and increase in temperature for Mediterranean
areas (Ceglar et al., 2019; Cramer et al., 2018; Tuel and Eltahir, 2020),
an evaluation of the combined temperature-precipitation effect on the
performance of irrigation-fertilizer practices would certainly provide
further valuable information for water management.

6. Conclusions

The loss of irrigation water and fertilizer to the groundwater is a
common indicator for the performance and sustainability of irrigation
and fertilizer practices. In this study, we assessed how sensitive the per-
formance of irrigation-fertilizer practices is to meteorological condi-
tions. We addressed this question using three modeling experiments
that quantify the long-term response, the annual sensitivity, and the
memory of groundwater recharge and nitrogen leaching under different
irrigation-fertilizer practices. The study was conducted in the Valencian
Region (eastern Spain), which is one of the major citrus producers in
Europe and is in the ongoing process of a transformation from flood to
drip irrigation. Our model simulations with fifty years of meteorological
data reveal that the long-term performance of irrigation-fertilizer prac-
tices is prone to substantial seasonal and year-to-year fluctuations re-
lated to precipitation variability. Considering this precipitation
variability when developing and evaluating water management strate-
gies can be beneficial in several ways. First, using a range of annual per-
formance values for flood and drip irrigation allows quantifying
climate-related uncertainty, which improves the robustness of impact
assessments. Second, knowledge on the year-to-year memory of soil ni-
trogen storage and its dependence on annual precipitation can be used
to implement a simple adaptive inter-annual fertilizer management
and to reduce nitrogen losses from potential overfertilization in the pre-
vious year. Third, long-term observations on the seasonality of precipi-
tation provide important information to refine existing best
management practices, in particular the timing of irrigation and fertil-
izer applications, and thereby provide a simple but effective tool to con-
siderably reduce environmental impacts of intense agriculture.
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