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Abstract: Metal containers (both food and beverage cans) are made from huge steel or aluminum
coils that are transformed into two- or three-piece products. During the manufacturing process,
the metal is sprayed on both sides and the aerosol acts as insulation, but unfortunately produces
volatile organic compounds (VOCs). The present work presents a different way to manufacture these
containers using a novel prelaminated two-layer polymer steel. It was experimentally possible to
verify that the material survives all the involved manufacturing processes. Thus tests were carried
out in an ironing simulator to measure roughness, friction coefficient and surface quality. In addition,
two theoretical ironing models were developed: upper bound model and artificial neural network.
These models are useful for packaging designers and manufacturers.

Keywords: coating; ironing; VOC; upper bound; polymer; coating; can; artificial neural network
(ANN); friction; wear

1. Introduction

According to recent studies, nearly 100 billion food cans and 230 billion beverage cans
are fabricated worldwide every year [1,2]. These figures are continually increasing, espe-
cially with rapidly expanding markets in Asia, the Middle East, and South America. Given
high production volumes and fierce competition among can manufacturers, producers
need to very accurately calculate the total cost of a single can. Even the slightest rise or
drop in the cost of a single can as a result of a manufacturing change can strongly impact
the economy for can makers [3].

The metal cans for beverages manufactured in Europe and Asia are typically 45%
aluminum and 55% steel alloy, whereas practically all cans in the U.S.A. are made entirely
of aluminum, although food containers are manufactured from steel stock [4].

There are several processes involved to transform coil made of metal into cans: blank-
ing, ironing, deep drawing, seaming, doming, necking, redrawing. Of all these processes,
ironing is perhaps the most critical operation while forming the can body because of ex-
tremely high pressures, strains and strain rates associated with this manufacturing step.
The punch, which is precisely dimensioned, holds and pushes the cup through two or
three carbide ironing rings (Figure 1). Punch speed is faster than that of metal through the
ironing zone, which thus causes the desirable elongation and thinning of cans during the
process. Metal thickness is greater than the clearance between each ring and the punch.
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The punch surface generates friction that subsequently facilitates metal being pushed
through ironing rings.

Figure 1. The ironing process in can manufacture. Source: Hosford and Duncan, Scientific American [5].

To remove any residual toxic lubricants and to apply a thin layer of polymer to base
metal, cans are cleaned with water between the doming and necking processes. A spray
is applied to cans to ensure a high-quality surface for can contents. However, when the
substances in this spray are boiled, volatile organic compounds (VOC) may result due
to the presence of polymer resins like methyl ethyl ketone. These resulting VOCs imply
numerous health and environmental concerns, and one purpose of the canning industry is
to eliminate VOCs during the production process [3].

Thermoplastic precoated rolled steels are a proven suitable alternative to base stocks in
the previously described can manufacturing process. These steels are heated first, and then
compacted between some polymer sheets. After this step, the resulting sheets are quenched
to provide a very strong bond between the steel base and polymeric layers. These new
coated steel types were studied by Jaworski et al. [6] and Huang et al. [7], and proved to
be perfect materials for the forming process if some variables were carefully controlled.
Polymer layers also offer the advantage of serving as solid lubricants and have the potential
to remove VOCs during the manufacturing process.

A new polymer-coated steel with many layers, developed for use in food and beverage
industries, extends previously conducted research on polymer-coated steels during forming
processes [3,8]. Javorski and van der AA focused their research on the same material:
PET coated steel. They found that with low die angles, ironability was possible and the
polymer coating served as lubricant. The material presented in our research offers several
advantages over preceding materials, including:

• Maximizing steel–polymer interface adhesion by appropriately selecting the polymer.
• Desired permeability can be implemented on the exterior surface, which can help in

decoration.
• Formability can increase by modifying the mechanical properties of the polymer

layers.
• Different design objectives are possible by altering the thickness of each layer.

This work investigated under which conditions a polymer-coated steel must be pro-
cessed to produce food/beverage containers. It is the first time that two-layer polymer-
coated steel has been investigated for can manufacturing. It reveals that polymer layers
can survive the most critical process: ironing. If can manufacturers use this new material,
they no longer need to place polymers by spraying inner and outer can sides, which thus
avoids VOCs that are very harmful to the environment.

Any fractures of the delamination of polymer laminates can lead to subsequent cor-
rosion and may spoil contents. Therefore, this new material is only useful if it remains
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undamaged in all the forming stages of can manufacturing. To generate the new surface,
high pressures, strains and strain rates occur during ironing. Apart from the development
of two theoretical models (UBM and ANN), friction, wear, and roughness analysis have
been conducted on the material.

2. Materials and Methods
2.1. Material

The material was provided by ArcelorMittal (Chicago, IL, USA). The innovative steel
coated with two polymer layers on both the punch and die sides is illustrated in Figure 2.

STEEL SUBSTRATE

Top
layer

Tie
layer

(Die side)

(Punch side)

Figure 2. Illustration of the used material.

The two layers are the tie layer, which is the layer that bonds the steel substrate to the
top layer, externally, with a standard total thickness within the 12.5–35 µm range. Top layers
provide mechanical strength and tie layers are intended for adhesion and anticorrosion
properties. To precisely measure polymer layers, Wagner’s dis-indentation method can
be used [9]. These polymeric layers can be adapted to any conditions and are made of
PET which is more resistant than lacquer as a product barrier, bottom protection and wall
denting. It also offers new decoration possibilities (white, clear or pigmented polymer).

ArcelorMittal manufactures this new material by a compact and evolutive process
using PET as a starting point instead of laminated film. The layer coatings of both sides are
produced at the same time (Figure 3).

Pre-heating roll
(metal substrate)

2 PET extruders 2 PET extruders

Die Die

Coating roll

Quench

Figure 3. Extrusion coating process.
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A Hitachi SU-70 field emission scanning electron microscope (Japan) captured a SEM
image of part of the material. The real thicknesses of both the top and tie polymeric layers
is observed in Figure 4.

Figure 4. SEM image of the material.

2.2. Experimental Procedure

As mentioned in the Introduction, ironing is the most crucial process in can manufac-
turing. It is important to demonstrate that material survives this process. A strip ironing
simulator was used for the experimental research. Figure 5 shows five frames indicating
the exact moment the ironing simulator irons a strip. This device was developed at the
University of Notre Dame. Basically, it has a punch where a metal strip can be attached
by a bolt. Then with the help of a 22 kW motor, the punch moves to the left and forces
the strip to pass through the small space between the punch and die, which is smaller
than the workpiece’s total thickness. This movement reproduces the basic principle of the
ironing process, which is the most critical one in can manufacturing given the high stresses
involved. The maximum punch speed reached with this device is 2 m/s.

PUNCH

Clamping
bolt

DIE DIE

Test strip
Test strip

Direction of movement

Figure 5. Five frames showing the exact moment when the ironing simulator irons a strip.

Under numerous testing conditions, the two-layered polymer material displayed
excellent ironability. A design-of-experiments was prepared and the varied parameters
included punch velocity, die angle, thickness reduction and die temperature. The two
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expected results of the experiments were: good ironing process or a bad result (one or two
damaged polymer layers).

2.3. UBM Models

In order to accurately predict the possible outcomes of an ironing process using multi-
layered polymer steel coatings, a good theoretical model must be developed. Although the
Finite Element Method (FEM) is the most widespread by researchers [8,10–13], it is hard to
apply with predictive models. The Upper Bound Method (UBM) is a known methodology
that accurately models real processes, and is preferred by some researchers [3,4,14].

With the UBM, it is assumed that the given material undergoes any deformations
needed to achieve the final desired shape in a kinematically admissible flow field [15].
The principal issue encountered by using the UBM is the a priori displacement assumption
needed, but this is usually be overcome by employing the values calculated from the slip
line theory, from experimental data or by intuition.

For the present research, there were two possible outcomes: ironing successfully or
ironing under a shaving condition. If the latter is present, the material is damaged as
a result, and any of the following effects will also occur: the top polymer layer is only
damaged, or both the top and tie polymer layers are damaged.

Two UBM models were developed for the two possible results: good ironing or
shaving condition. Damage to the two polymer layers requires more power than that
required to cause damage only on the external layer of a given polymer, and models
include various assumptions used primarily for simplification purposes.

These assumptions are that the material is taken to be rigid and solids are completely
plastic. However, it is interesting that a polymer behaves like these assumptions; the mate-
rial rarely acts as entirely plastic. However, a certain number of shear planes is essential to
enhance the accuracy of power estimations. Challen et al. [16] proposed the theory of an
operational shear strength for the polymer, which would allow improved accuracy when
applying the model of strength. It is described as:

k =
1
γt

∫ γt

0
k(γ)dγ, (1)

where k is shear stress, γt is shear strain, and k is shear strength. Polymer shear strength, ki,
is described as a portion of the whole piece shear strength, kp, in both models presented in
this work.

There is a unique friction factor associated with each interface. The punch-piece
boundary is represented by m1, the metal-tie layer boundary by m2, the tie-top layers
boundary by m3 and, lastly, m4 is the friction on the die-top layer boundary. The ironing
process is ignored because tests have determined that the coating on the punch side of the
sheet persists throughout this process.

2.3.1. Model for Ironing

Figure 6 illustrates the velocity discontinuity field (VDF) associated with the successful
ironing process involving the new coated steel. The Die-G plane is assumed to continue
along the entire land length.

Angles α1–α7 and β1–β8 influence deformation planes, including the specified reduc-
tion and angles φ (die angle), µ, τ, and γ.
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Figure 6. Illustration of the VDF for good ironing.

2.3.2. Model for Shaving

Figure 7 presents the VDF associated with a bad ironing process.
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Figure 7. Illustration of the VDF for bad ironing.

The layer removed as result of shaving is region D, and its initial and final thicknesses
are the same. An estimate was used for the interaction area between the die and this layer
because the real area was very complicated to determine. With the approach presented by
Wilson [17], the contact length between the die and region D is depicted in Figure 7.

2.4. Artificial Neural Network (ANN)

In order to accurately model the process, it was also modeled by an Artificial Intelli-
gence (AI) technique by obtaining an ANN for this purpose.

An ANN is a computational model that is practically designed to imitate the function-
ing of a natural network of neurons in order to carry out learning and problem-solving
tasks, predictions and recognition, and all based on input data. It works similarly to
natural networks; information is captured by sensors, basically electronic devices, sensors,
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etc. Input data are processed by a previously prepared neural network to finally draw
conclusions, namely output data that serve to solve a specific problem. A typical ANN is
shown in Figure 8.

Input
layer

Hidden
layer

Output
layer

Figure 8. Typical ANN structure.

The image represents a neural network with its respective components. Inputs that
can be data or signals are on the left. These data enter the neurons on the input layer
to be processed. Once processed, the neurons of the input layer send information to the
next layer, in this case to the hidden layer. There is only one hidden layer in Figure 8,
but the optimal ANN for a specific process can have more hidden layers. They also process
information and send it to the output layer that will result in a solution.

So ANNs consist of neurons that can be configured and distributed in many ways
depending on their final objective. A network can vary as to the number of neurons on the
input layer, the number of hidden layers, their respective numbers of neurons on each layer
and neurons on the output layer. Neurons are connected to them with different weights,
which are modified in each learning cycle until an optimal value is reached.

The architecture and structure of an ANN largely depend on the type of function
or task it will perform. In our case, a neural network was trained, structured and coded
specifically for the ironing process in can manufacturing. In this way, someone can ensure
that the network properly operates in a real environment.

The Deep Neural Networks concept came about as a result of using many hidden
layers in networks (DNN) [18]. The ANN is trained once weights obtain the best possible
value and then a very minor error.

There are basically two types of learning for ANNs: supervised and unsupervised.
During supervised learning, examples of several problems are presented to the system
along with the corresponding solution. System parameters are then adjusted to lower
the value of a function of both the network configuration and the input/output variables
whose value is a measure of the system’s adaptation to solve the problems that arise in the
system during training.

During unsupervised learning, the system’s characteristics are modified by apply-
ing general heuristic rules without taking into account the specific characteristics of the
universe in which patterns are generated.
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The most widely used strategy to train ANNs is the algorithm known as Back Propa-
gation (BP), which is a supervised learning procedure based on reducing the total square
error at the network’s output.

During learning, patterns are placed on the input layer to propagate information to
the output layer, which allows an error signal to be obtained for each processing element
on the last layer. The resulting error signals are good feedback to the input layer. Based
on the error signals, connection weights are then updated and the network converges to a
configuration in which all the patterns in the training set are encoded.

The ANN was developed by the commercial software JustNN©. In order to perform
ANN training, the selected algorithm was BP. Table 1 shows the variables employed in the
ANN. The surface quality factor (SQF) is an output variable that was established to quantify
how visually a surface differs from a perfect reference (with no damage). The range of
possible values goes from 0 to 10, and this last value indicates that the surface is perfect.
In this way, a surface with no damage will have an SQF of 10. The SQF will take a value of
0 for another surface where damage is seen on the two polymer layers.

Table 1. Input and output variables of the ANN.

Input Variables Units Output Variables Units

Surface Quality SQF
Die angle º Longitudinal roughness um
Punch velocity m/s Transversal roughness um
Reduction % Radial force N
Temperature ◦C Ironing force N

Many different ANN configurations were tested with one, two, three, four and five
hidden layers. At the end of the process, the optimal configuration was that with two
hidden layers (Figure 9). To fully train this ANN, 76,316 cycles were required. It has four
layers (input, two hidden layers, output), and are all connected through 342 connections.
The final estimated error was very low, only 3 × 10−3.

Figure 9. The ANN created for the ironing process. The four input variables are on the left, and the five output variables on
the right. Blue columns are the two hidden layers. Different line thicknesses represent the connection weights.
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3. Results
3.1. Theoretical Results
3.1.1. UBM Models Results

The results vary depending on whether the successful ironing model or the shaving
model was implemented. The deformation mode requires less power dissipation, and the
UBM indicates that this rule will be followed by the current process. A comparison between
the resulting curves for the ironing and shaving models indicated the preferred mode for a
given set of conditions.

Whenever possible, a nondimensionalized form of the process input power was
implemented as P/kayivp; P is the total power required, k is strip shear strength, a is strip
width, yi is the workpiece thickness at the beginning of the process, and vp is punch speed.
The variable inserts allow for different process geometries to be tested.

A comparison between shaving and ironing conditions of die angle vs. optimal power
curves are seen in Figure 10. Below angle φ ≈ 4.6◦, a good ironing process needs to use less
power by the UBM, which makes it the favorite mode for these conditions. Above angle
φ ≈ 4.6◦, shaving requires less power and is thus the favorite mode. From a formability
standpoint, the critical angle, φc, is very important because it influences the die geometries
needed for the successful ironing of this new material.

16 

14 

12 

10 

Q) 
8 

Q) 

Good ironing 
4 Bad ironin 

2 

o 

0.05 O.1 O O.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

P/(ky ¡vp
a) 

Figure 10. Optimized good and bad ironing curves.

Van der AA et al. [8] developed a model for ironing a one PET layer-coated steel by
Leonov equations. They implemented these equations into a robust algorithm. The pressure
accumulation on the polymer coating was a key parameter for the ironing process of the
polymer-coated sheet metal, as well as the polymer’s strain rate dependence. Angles below
15◦ resulted in good ironings. As our research demonstrated, optimal die angles were
smaller if the metal was coated by two polymeric layers.

3.1.2. ANN Results

The software used to generate the ANN can also provide interesting analysis data.
The sensitivity analysis is defined as “the study of how the uncertainty in the output of
a model can be apportioned to different sources of uncertainty in the model input” [19].
That is, a sensitivity analysis evaluates how an output variable reacts to changes in input
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variables. For an optimal output model of good ironing, Table 2 shows the sensitivity
analysis values for each input variable.

Table 2. Sensitivity analysis results for the input variables.

Input Variables Units Sensitivity

Die angle º 0.132
Punch velocity m/s 0.063
Reduction % 0.005
Temperature ◦C 0.001

The most important input variable in the model is die angle, as shown in Table 2. Few
variations in this angle produce big differences in output variables. Punch velocity is also
extremely important as it gains insight into which variable to focus on when manufacturing
cans with this new material.

3.2. Experimental Results
3.2.1. Surface Quality Factor

The SQF shows how good the material surface is after the process. As indicated above,
a value of 10 indicates that the surface is perfect, and decoration can be applied perfectly to
it. A value of 0 means that the both top and tie layers were completely destroyed during
the process. Figure 11 shows the SQF observed values versus die angle. As the die angle
increased, the occurrence of shaving became more frequent, and the SQF had high values
at angles close to 6◦. The SQF also improved with high temperatures, as seen in Figure 11,
but there was practically no difference.

0
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D
ie

a
n

g
le

(˚
)

Avg. Surface Quality Factor

25 ˚C
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Figure 11. The average SQF vs. die angle. Ironed surfaces are adequate for can-decoration at values
over 8.

Huang et al. [7] investigated the thermal effects on a one-layer polyester-coated steel,
and found that the critical die angle at room temperature was 9◦. The two-layer PET coated
steel (our case) critical angle is 6◦, because it has more polymeric layers.
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3.2.2. Roughness

With the SJ-310 Portable Surface Roughness Device (MITUTOYO, Japan), measure-
ments were taken on the surfaces of all the samples, and data on the average roughness
in both the transverse and longitudinal directions were obtained [Figure 12]. For each
surface, three measurements were taken in each direction, and the average was calculated.
By looking at the roughness in Figure 13, we find a significant correlation between the
longitudinal roughness and die angle (in the ironing direction) compared to the average
roughness in the other direction. As Figure 13 depicts, roughness markedly decreased by
going from 8◦ to 6◦, which evidences an improved polymer surface, and if we consider
Figures 11 and 13, both the 2◦ and 4◦ angles provide good results on the top surface.

Longitudinal
direction

Transverse
direction

Figure 12. Roughness measurement directions in a strip.

Figure 14 shows a SEM image of material removal on the top layer caused by a wrong
ironing process. In the experiments conducted for this study, a bad result in the process
did not result in removing the tie layer. If greater thickness reductions were investigated,
these results could differ.

2.5 

,-..._ 2 

Q) 1.5 
o.o

ro 1 
Q) 

o 0.5 

o 
2 

Longitudinal 

Transverse 

4 6 8 10 

Average Roughness (µm) 

Figure 13. Die angle vs. roughness measured in both directions.
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Figure 14. SEM image of a damaged zone on the top layer.

3.2.3. Friction and Wear Volumes

The top layer can act as solid lubricant [20] during the forming processes involved in
can manufacturing, especially in the ironing one, which was why a tribological analysis
was run with the material with a linear tribometer (Ducom TR-282, Bohemia, NY, USA).
To carry out the experiments, tests with a ball pressed against a plate surface were done to
obtain the results of sliding wear on sample surfaces.

The coefficient of friction (COF) was obtained directly from the tribometer using a
ball with a 10 mm. diameter. The conditions employed for the different tests are shown in
Table 3. Two tests were carried out per condition.

Table 3. Selected conditions for wear tests.

Variables Values

Loads (FN) 2 N 6 N 10 N
Frequency (f) 2 Hz
Sliding stroke 10 mm
Sliding distance (cycle) 500 m (in 50,000 cycles)

Figure 15 shows the wear tracks caused by different loads on the material. An applied
force of 10 N completely shaved the top layer. Friction coefficients (Figure 16) increases as
soon as the coating layer wore out at higher loads. The 6 N load significantly increased the
COF after 900 s. approximately, but then the COF reached its highest values.

Figure 15. Wear tracks on the strip caused by forces of 2 N, 6 N and 10 N.
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Figure 16. Friction coefficients over time with forces of 2 N, 6 N and 10 N.

The wear profiles for the considered loads are shown in Figure 17. The track length is
5 mm.

Figure 17. Wear profile tracks for the 10 N, 6 N, and 2 N forces.

3.2.4. Analysis of Variance (ANOVA)

The analysis of variance was performed mainly due to RA Fisher, whose works
have greatly influenced modern statistics. It is used to analyze the data deriving from
experiments to estimate and test hypotheses by considering the variances of samples,
and from estimate and test hypotheses by considering sample means.

The ANOVA is perfect when we have three groups or more or conditions, and we
wish to know if there is a significant difference between them, as with our process variables.
Table 4 shows the ANOVA results for all four input variables. We can clearly see that the
die angle is the most important factor for the quality of samples, with a marked difference
compared to the other variables. The generated ANN also shows that the die angle is the
most influential variable.
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Table 4. The ANOVA results.

Input Variables Sum of Squares

Die angle 423.96
Punch velocity 15.20
Reduction 11.43
Temperature 16.32

In Table 4 we see how important ironing speed is and better results were given by the
process when working at higher speeds.

The final objective was to obtain a high SQF value. To do so it was necessary, as demon-
strated, to work at high speeds and temperatures, as well as slight reductions.

4. Conclusions

The present research work demonstrates that food/beverages containers can be man-
ufactured with this new material. For this to be possible, the most critical manufacturing
process (ironing) must be carried out under certain conditions. Consequently, this method-
ology allows the production of containers and significantly reduced VOCs if this material
is used.

The results shown in the previous section indicate a large correlation with the theoreti-
cal models (UBM and ANN). In fact thanks to the developed ANN, it is possible to modify
the values of the reductions, layer thicknesses and die angles, and to immediately see the
impact of these changes on the final quality of metal containers. This will certainly help
packaging designers and manufacturers.

Regarding the influence of each input variable on final quality, the die proved to be
the most important, and displayed good behavior when processing with angles below 6◦.
The other variables did no significantly influence the results.

The material friction and wear tests demonstrated that the top layer can act as a perfect
solid lubricant. At the 2 N constant load, the COF value remained at 0.24 approximately,
whereas higher loads increased this value to 0.5. The 6 N load significantly increased the
COF after 900 s, while the 10 N load increased the COF after 500 s.

This new material is able to withstand the major deformations that occur during
ironing. Consequently, it is suitable for food packaging manufacturing.
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