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Abstract: Many electric utilities currently have a low level of smart meter implementation on
traditional distribution grids. These utilities commonly have a problem associated with non-technical
energy losses (NTLs) to unidentified energy flows consumed, but not billed in power distribution
grids. They are usually due to either the electricity theft carried out by their own customers or
failures in the utilities’ energy measurement systems. Non-technical energy losses lead to significant
economic losses for electric utilities around the world. For instance, in Latin America and the
Caribbean countries, NTLs represent around 15% of total energy generated in 2018, varying between
5 and 30% depending on the country because of the strong correlation with social, economic, political,
and technical variables. According to this, electric utilities have a strong interest in finding new
techniques and methods to mitigate this problem as much as possible. This research presents
the results of determining with the precision of the existing data-oriented methods for detecting
NTL through a methodology based on data analytics, machine learning, and artificial intelligence
(multivariate data, analysis methods, classification, grouping algorithms, i.e., k-means and neural
networks). The proposed methodology was implemented using the MATLAB computational tool,
demonstrating improvements in the probability to identify the suspected customer’s measurement
systems with error in their records that should be revised to reduce the NTLs in the distribution
system and using the information from utilities’ databases associated with customer information
(customer information system), the distribution grid (geographic information system), and socio-
economic data. The proposed methodology was tested and validated in a real situation as a part of a
recent Ecuadorian electric project.

Keywords: electrical energy losses; outlier detection; data analytics; consumption patterns; machine
learning; artificial intelligence

1. Introduction

Most power utilities in Latin America and Caribean (LAC) make investments to reduce
the non-technical losses of energy (NTLs), with scarce success, as they do not properly
consider all the external macroeconomic variables, such as the local employment rate and
the level of income per family. These variables are difficult to mitigate in our countries
because of the lack of policies, laws, and regulations for power distribution systems. This
social and cultural inequality becomes a severe issue for power utilities because consumers
cannot pay for the electricity service due to lack of financial liquidity, which encourages
cheating the measurement systems to reduce the electricity bill.
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As shown in Table 1, the average rate of energy losses in LAC is 15.65% [1] concerning
the energy available in each power utility system; countries such as Honduras, Jamaica,
Paraguay, and Venezuela exceed this average. Nevertheless, Ecuador has presented a
considerable reduction from 25.04% in 2008 to 13.03% in 2018, due to public investments
of a technical nature, digitization of electrical power systems [2], and the initiative of
academia through the generation of new data analytics models. In contrast, countries like
Chile, Peru, Bolivia, and Costa Rica have the lowest energy losses in the region.

Table 1. Non-technical energy losses in LAC.

Country 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Average

Argentina 14.3 14.8 14.8 13.6 14.4 15.1 12.0 13.2 13.0 14.7 15.1 14.1
Bolivia 10.1 10.1 11.2 11.0 9.9 9.0 9.4 8.9 9.9 10.7 11.0 10.1
Brazil 15.3 15.8 15.6 15.4 15.9 15.4 14.9 15.1 15.9 15.6 15.9 15.5
Chile 8.3 8.2 5.8 6.1 2.3 6.7 6.7 5.0 3.6 5.2 5.2 5.7
Colombia 13.4 12.3 12.0 11.3 11.7 10.1 10.6 12.4 9.4 7.4 10.4 11.0
Costa Rica 10.3 10.6 10.1 10.8 10.6 10.5 10.6 12.1 10.2 9.9 9.8 10.5
Cuba 15.9 14.3 15.9 15.8 15.7 15.3 15.3 15.5 15.2 15.5 15.8 15.5
Ecuador 25.0 21.3 18.6 17.8 15.3 14.2 12.6 12.7 13.0 12.6 13.0 16.0
El Salvador 9.6 10.9 11.7 12.1 9.8 7.0 9.8 9.4 11.6 11.4 11.6 10.4
Guatemala 14.1 14.4 9.8 13.2 12.5 11.8 12.4 12.0 12.1 12.6 11.7 11.5
Honduras 20.6 21.5 27.5 26.1 28.6 28.2 16.2 14.2 14.7 31.9 30.2 23.6
Jamaica 23.3 23.2 22.5 24.5 27.2 28.0 28.5 28.5 26.6 26.3 26.0 25.9
Mexico 15.8 16.3 16.4 15.9 15.1 14.6 13.9 13.4 12.8 15.8 17.5 15.2

Panama 14.0 13.1 14.5 13.6 13.7 13.5 14.0 13.6 14.4 13.5 13.0 13.7
Paraguay 31.8 31.6 31.5 29.8 30.6 25.9 24.5 24.6 24.9 24.9 23.6 27.6
Peru 8.2 8.1 10.2 9.6 8.2 10.5 11.0 11.0 10.6 10.5 10.9 9.9
Dominican
Republic 11.9 12.7 13.2 12.8 12.8 12.7 12.7 12.8 12.9 13.0 13.0 12.8

Suriname 9.0 9.0 8.5 9.0 9.0 10.2 8.7 10.5 17.0 17.9 18.6 11.6

Uruguay 11.1 11.5 11.6 11.9 11.6 11.2 10.7 12.0 12.2 13.1 11.5 11.7
Venezuela 26.7 27.8 27.9 29.6 31.0 32.0 32.8 32.2 29.2 29.2 29.2 29.8

The research is based on applying the concepts and algorithms of data analytics,
machine learning, and neural networks to build a systematic methodology to determine
changes in consumption patterns and efficiently locating energy thefts to mitigate losses
for energy distribution companies.

The review of state-of-the-art shows in general that the techniques used in the analysis
of NTLs consider the use of a reduced amount of data with theoretical results; that is, they
do not use a combination of techniques to minimize the error in data processing [3,4].

Five different algorithms for NTL detection using Pearson’s coefficient, Bayesian
networks, and decision trees were developed and tested in [5]. They used a real database
provided by Endesa to test the models.

Nizar, A.H. et al. [6] presented a method to determine what type of data provides
the highest precision concerning NTL analysis in the electricity distribution sector. The
method identifies two popular classification algorithms, naive Bayesian and decision tree,
to detect any significant energy consumption behavior abnormality.

Leite, D. et al. [7] took the case of Brazil in their research and defined the efficient
frontier model, SFA (stochastic frontier analysis), from stochastic economic, social, and
political variables for electric power distribution utilities to provide tolerable limits on
the percentage of non-technical losses to mitigate the total cost of the transmission and
distribution infrastructure associated with these utilities as an alternative to the econometric
approach used in the rate review cycle.

Arthur, D. et al. [8] used only k-means to perform tests in different scenarios, looking
for the comparable asymptote or the best result in the evaluation.
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Sun, S et al. [9] transformed and adapted the traditional nearest neighbor algorithm
(kNN) to k (AdaNN); the value of k has a crucial influence on the performance of the
proposed algorithm; the optimal k detects the correct class label; and the experimental
results indicate that the algorithm performs better than traditional kNN.

On the other hand, Ramos, C.C.O. et al. [10] approached NTL by using artificial
intelligence techniques. However, their use can result in a high computational load in the
training and parameter optimization procedures. They showed that the pattern recognition
technique called optimal path forest (OPF) is superior to the latest artificial intelligence
techniques. Comparisons with neural networks and other methods demonstrated the
robustness of the OPF concerning the automatic identification of commercial losses.

Nagi, J. et al. [11] presented the inclusion of human knowledge and experience in the
fraud detection model based on SVM with the introduction of a fuzzy inference system, in
the form of fuzzy IF-THEN rules. It acts as a post-processing scheme to show the suspects
with a probability of fraud; the detection rate was between 60% and 72%.

Likewise, León, C. et al. [12] used an integrated experts system to analyze useful
customer information to identify the NTLs and their type. It included text mining modules,
data mining modules, and the rule-based expert system module. It was applied to real data
from the Endesa company power utility in the testing phase by human experts, providing
a tool for the inspectors to make the best decision.

Additionally, Galván, Elices, Muñoz, Czernichow, and Sanz-Bobi [12] proposed a
general methodology based on the use of radial basis function networks, with the following
steps: (1) selection of variables, (2) data filtering, (3) model fit, (4) model analysis, and (5)
model evaluation. The third step takes variables from monthly periods of each pattern
of annual consumption and active consumption. The methodology was applied to two
sectors: the low voltage residential and high-voltage irrigation sectors.

Similarly, Reference [4] presented a set of rules with a high rate of correct NTL iden-
tification based on the most relevant customer attributes available in the distribution
companies’ database. It allowed a reduction of the number of inspected clients with a fraud
identification rate between 7% and 20%.

The research presented in this paper focuses on NTLs in Ecuador since it is one of the
countries in the region with success in reducing and mitigating NTLs, with an investment
above 50 million dollars in related projects [13,14].

Electric energy supply from generation to final users implies losses in different pro-
cesses where the main component is in the distribution stage [15–17]; the losses are the
difference between the energy delivered by the generator and the energy measured and
billed by the company. They are classified into technical and non-technical losses [18,19].

Non-technical losses, also known in the specialized literature as “black losses” or
“commercial losses”, are produced by administrative errors generated by the CIS, incorrect
readings, errors in the computation of consumption, incorrect energy in end-use, and
theft or manipulation of the metering system, among others. Generally, their forecast is
uncertain (stochastic nature), since it is not known where, how, and when they occur. They
are computed as the difference between the total losses and the technical losses of the
distribution system [18,20,21].

NTLs are classified according to their cause [16,18]:

• Theft of energy: Any type of illegal connection that is made before the energy me-
ter so that the connected load consumptions are not recorded by the measurement
equipment.

• Handling of the measuring equipment: Voluntary alterations to the measuring equip-
ment resulting in the registration of less consumption than the real one.

• Measurement errors: Involuntary technical failures of measurement devices that
produce the wrong recordings, such as:

– Damage to the components of the measurement system in direct and indirect
connection,the meter, current transformers, potential transformers, terminal
blocks, and connection cables.
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– Human error in taking the reading or failure of the telemetry equipment.
– Incorrect configuration of the energy meter.
– Unintentional errors in the connection of the measurement system installation.

• Billing errors: They occur when the energy consumed is not recorded in the billing
system of the distribution company due to damage to the components of the meter-
ing system.

The traditional method used by distribution companies to mitigate this problem is
periodic random inspections on-site, a method that requires a high amount of financial and
technical resources [21–23].

The research presented here aims to ease and reduce the costs associated with this
procedure, with the following contributions:

• Development of a methodological study based on suitable indicators that integrate
and take advantage of the different technologies for data analytics, machine learning,
and neural networks. These results of the study were tested with real utility data
related to customers’ consumption patterns. This study yields a list of potentially
manipulated measurement equipment to be reviewed under the planning of the
power utility.

• The study allows identifying which technique gives the best result, denoting the
precision of each of these, with the support of data science, processed through the
use of the computational tool MATLAB® for the construction of algorithms, in such a
way that contributes to the objective of reducing non-technical losses and maximizing
economic utility incomes.
This document is structured as follows: Section 2 considers the current state-of-the-art,
providing a deep insight into the theoretical concept of the evaluated methods for
the determination of NTLs. Section 3 shows the process of data analytics and the
application of the algorithms. Section 4 presents the results of the methodology for the
proposed analytic methods’ evaluation and comparison. Section 5 shows the results
of the implementation of the methodology in a real system. Finally, in Section 6, the
technical and economic effects are discussed and concluded.

2. Techniques Applied in Data Mining

The research is based on the concept of maximizing the probability of finding in the
location of measurement systems errors in the recorded data, in such a way that the result
of the execution of the algorithm allows reviewing only suspected cases, applying various
methodologies as shown in the specialized literature in Table 2. This literature addresses
the current issues of supervised and unsupervised data analytics techniques applied to
electricity consumption variables. The new data concepts guide methods with algorithms
that yield responses with metrics whose errors allow decision-making in the proposed
approach.

The methodologies combined in the research are:

1. Theoretical study: This focuses on analyzing aspects related to energy theft through
the use of statistical techniques with socio-demographic and socio-economic variables
to build potential lists of suspected infractions for the reviewed measurement systems;
The disadvantage of theoretical studies is that they do not present specific cases of
theft or the failure of the measuring equipment [20].

2. Data-oriented methods: These methods focus on data analytics, for example the
pattern of energy consumption and demand. By applying data mining techniques,
the consumers with high error probability are identified [20,22].
Learning with data mining techniques is classified into:

(a) Supervised learning: These are algorithms that learn by example, require input
data, and provide output data with the variables that the data scientist needs;
that is, he/she must give instances on properly labeled data (positive/fraud and
negative/no fraud). This method requires a large amount of quality information
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to apply the model; the electricity distribution company must have data labeled
with the variables of fraud and not fraud [20,22].

(b) Unsupervised learning: The function of these algorithms is to determine pat-
terns to acquire training according to the available variables; generally, these
algorithms use databases whose variables do not have labels or when the sample
does not have a sufficient amount of data [20–22].

3. Network-oriented methods: These methods are based the acquisition of data through
the management of proprietary software and hardware installed in the electrical
network, in such a way as to facilitate the identification or estimation of non-technical
losses after a data analytics process through an algorithm that minimizes error and
loss of information.

4. Hybrid method: This is a combination of the two classifications mentioned above to
maximize the precision in detecting NTLs [20,22].

Table 2. Literature review of the methods used for NTL detection.

Methodology Concept Algorithm-Method Reference

Theoretical study [17,24–26]

Data-oriented methods

Supervised learning

Nearest neighbor (k-NN) [27,28]

Decision trees [4–6,27–31]

Artificial neural network (ANN) [3,31–36]

Support vector machine (SVM) [29,32,35]

Optimum path forest (OPF) [10,27,37]

Bayesian classifiers [5,6,27]

Rule induction [4,5,11,12,33,38]

Unsupervised learning

Self organizing map (SOM) [31,38]

Cluster K-means [21,38,39]

Cluster K-menoids [21]

Regression models [27,35]

Fuzzy c-means [38,40,41]

Outlier detection [38,42]

Network-oriented
methods [16,19,43–45]

Hybrid methods

Observer meter-SVM [46,47]

Smart meter-SVM [48]

Smart meter-observer meter-
maximum information
coefficient (MIC)
-clustering technique

[49]

They are also known as supervised and unsupervised techniques, which will be used
later for comparison purposes.

2.1. Unsupervised Techniques

K-means is a clustering technique that has the purpose of dividing n number of
samples into K number of groups; it is based on the entry of n number of instances, each
one defined by a vector (a group of variables) and a number K integer that indicates the
number of groups to be developed [8,50,51]. It is a technique that groups samples according
to set similarity proximity, defined by “K” or “centroid” points. The advantage of this
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technique is efficiency when handling large data sets, and as a disadvantage, it is essential
to know the number of formed groups. Another disadvantage is the sensitivity to noise
in calculating the groups referring to a center; any atypical data could alter this centroid;
therefore, low group formation can impair the response [21].

The operation of this technique is shown in Table 3 [8,50].

Table 3. Algorithm for K-means.

1. Randomly enter a value of K, these being the centroids of each group.
2. Form K clusters, setting each of data to the closest centroid.
3. Readjust the K centroids, which will be the average of the group established in Step 2.
4. Repeat Steps 2 and 3 until there is no readjustment of centroids.

It can overcome this drawback by knowing the number of groups to be developed.
For example, there are several methods, such as the “elbow method”, which is a method
that analyzes the percentage of variance as a function [50]. Another technique is the gap
method (GAP), similar to the elbow method [21,50]. However, no method determines the
exact number of clusters to develop; the number of groups is generally chosen by trial and
error, always at the discretion of the researcher [21].

2.2. Supervised Techniques
2.2.1. k-Nearest Neighbors

This is a supervised algorithm, one of the oldest and most straightforward to use for
classifying samples [9,22], which classifies the models based on their similarity with other
cases, enters a model into the characteristics field, and sets the class that is more common
among the closest neighbors. It uses a single parameter called “K”, which indicates the
number of nearest neighbors to test [9,28,52,53].

The algorithm is simple to apply; it calculates the distance between the new elements
with the training set, and depending on the K value, it gives a label to the initial value; for
example, the K value is five when calculating the closest neighbors to the original sample:
four belong to one group and the rest to another; therefore, it can be concluded that the
original model belongs to the first group [9,22].

The algorithm is presented in Table 4.

Table 4. K-nearest neighbor algorithm.

1. Enter class data C = (X1, Y1), ...(Xn, Yn).
2. Enter data to classify N = (X1, ..., Xn).
3. Enter the value of K neighbors to consider.
4. For every classified object, calculate the distance with the data to be classified.
5. Keep the K training data closest to the data to be classified.
6. Assign X the most frequent class.

2.2.2. Decision Tree

This is a process flow that shows the probable results of a series of connected decisions:
a hierarchical decision model that starts with a single node and follows a series of rule
“branches” into possible results [6,22,54].

A suitable task for the decision tree is classification [22]. It is a supervised method
since the information classification uses a predefined data set with classes, according to the
variables [6]. First, it obtains useful information from each attribute (variable), known as
information gain. The attribute with the highest information gain will be the initial node or
root node. It will divide into different branches based on the values of the node [6,28,54].

Several algorithms are used for creating decision trees, including ID3, C4.5, CART,
and CHAID. The criterion of partitioning distinguishes each one; for example, CART is
characterized by generating binary trees and uses the dosing criterion for the division of
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its nodes; ID3 uses the information gain as a division criterion; C4.5 uses the gain ratio as
the division criterion. The division stops when the number of instances divided is below a
certain threshold [54].

2.2.3. Artificial Neural Network

Inspired by the neurons in the human brain, this deals with linked layers that take the
shape of a neuron, relating input data with output data, learning from the data, looking for
patterns, classifying data, and predicting future events [22,36,55].

It is a supervised method that receives training through examples. There are many
types of neural networks, but for classification cases, multilayer perceptron is usually used,
which uses a supervised technique called backpropagation [36]. Figure 1 shows the basic
structure of this neural network, and as we can see, it consists of three layers: input layer,
hidden layer, and output layer. The connections between neurons transmit the signals.
In the input layer, it receives the signals and distributes the information to the next layer
(hidden layer). The number of neurons in the input layer will be equal to the input vector
(number of attributes). The hidden and output layers process the signals by amplifying,
attenuating, or inhibiting the signals. The number of neurons in the output layer will be
equal to the number of classes in the investigation; the number of neurons in the hidden
layer will depend on the application for which the neural network is established [32,34,36].

Input 

Layer

Hidden 

Layer

Output 

Layer

Input 1

... ... ...

Input 2

Input n

Output 1

Output 2

Output n

Figure 1. ANN structure.

Except for the input nodes, each node in the hidden and output layers is a neuron that
uses an [34,36] activation function.

The establishment of a neural network consists of three stages [36]:

1. Training stage: This is the learning stage where the input attributes (network input)
can be added and compared with the target set (label or target).

2. Validation stage: This stage is executed in conjunction with the training stage and is
carried out to avoid over-training the network.

3. Testing stage: This stage is carried out after the training stage and consists of using
a set of data other than those of the training and validation stage to investigate how
well the network learned at the end of the process.

The exposed techniques were used in the comparative analysis carried out in this
research to determine the consumption patterns and energy losses.

3. Methodological Construction of the Matrix and Data Analysis

The methodology’s objective allows establishing a comparison of the different data
analytics techniques in a systematic way to evaluate the non-technical energy losses of a
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distribution company through the recognition of the consumption patterns and to ascertain
potential thefts of energy.

The input variables used in the model come from different databases, both from the
CIS, GIS, and distribution companies. Besides, the external information corresponds to the
National Institute of Statistics and Census of Ecuador.

3.1. Data Collection and Integration

The information required for integration came from the company’s reports; these
correspond to energy losses in a period of 18 months, financial indicators, final energy
use profiles, date of the last review of the measurement systems, year of manufacture
of the energy meter, outstanding debt, outage status, and consumption range. A large
part of these variables came from the system application product (SAP). Furthermore,
related information was taken from the GIS, such as location, load density per square meter,
consumption stratum, type of electrical networks, social stratum, among other variables.

Figure 2 describes how the data matrix called the “base matrix” was obtained from
the variables used in this research.

Variable 

cleaning

Matrix [1xp]

Variable coding

Data source

Report 1
Variable analysis

Report 2
Variable analysis

Report n
Variable analysis

.

.

.

DATABASE

UTILITY 

COMPANY

Variable 

analysis

Data reporting Analysis process

Variable 

classification

Base matrix 

[nxp]

Combination 

of variables

Figure 2. Data collection and integration process.

1. Integration of the data set: In this step, this is the most important or relevant data
in the search; allows determining the NTL according to the history of consumption,
demands, consumer characteristics, and type of meter.

2. Variable analysis: The variables of each report are analyzed, understanding that they
describe the type of information each variable contains.

3. Combination of variables: All the reports are joined, obtaining 424 variables in this
investigation.

4. Variable cleaning: Variables with the same name and with different names, but with
the same information content are eliminated because they do not contribute to the
model and increase the computation time of the algorithm and the error in the result.
Once completed, these steps have 318 variables.

5. Classification of the variables: The variables are classified as follows:

• Information: Those variables that provide consumer information, such as: “con-
tracted account”, “account”, “name”, and “ID.”

• Geographic: Variables that indicate the geographic location of the customer’s
meters, such as: “Codparr”, “province”, and “canton.”
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• Economic: Variables that show the economic relationship between the customer
and the distribution company, such as: “date last paid”, “months due”, and
“debt.”

• Social: Variables that indicate a social aspect concerning the client, such as
“population.”

• Techniques: Technical variables, such as: “type consumption”, “voltage”, “con-
sumption kWh/month.”

With the classified variables, the next step corresponds to the careful review of each
variable to determine those that provide relevant information in the NTL detection
and control algorithm. Subsequently, with the correlation analysis of the variables
and the “expert’s criteria”, each variable is meticulously analyzed to establish the
number and magnitude of the variables that will provide information to this research
methodology. After completing this step, we have 68 variables: a matrix [1 × 68] that
eliminates approximately 84% of the variables that do not contribute, repeat, or have
a high variation coefficient. Steps 2, 3, 4, and 5 are developed under the supervision
of an expert.

6. Data coding: As the variables that make up the [1 × 68] matrix were obtained from
different reports, they do not have the same format; therefore, in this step, some
variables are coded for the analysis.

7. Base matrix: With the previously performed analysis, the n subscribers can be added,
and the base matrix of size [n × p] is obtained; where n represents the number of
customers; in a first approximation, a universe of 5615 consumers is taken (only for
analysis); concluding with a base data matrix of [5615 × 68].

3.2. Data Pre-Processing

This step is essential for applying any data mining technique. It allows eliminating or
separating anomalous data so that the matrix remains in optimal conditions for training
through any method, whether supervised learning or not. For the pre-processing of the
data, Variables 1 to 26 are omitted since these variables provide customer information
(name, contract, telephone). The analysis is carried out from Variable 27 onwards because
technical data refer to the consumer (consumption, demands, invoiced values).

3.2.1. Recognition of Data

The CIS tries to minimize the entry of wrong information; however, it is inevitable
to have this information in the data matrix, causing the variables to move away from the
mean and lose their nearness to reality, distorting the analysis context. The research placed
null and white values in the data matrix; these are considered in the analysis as outliers;
these are discarded in the execution of the data analytics techniques. Additionally, the
recognition of technical variables is carried out through exploratory analysis to identify
patterns that allow future actions to make decisions.

The statistical indices of the different variables are in Table 5. The Null data column
presents values with 255 errors observed in the records of a universe of 2462 consumers;
This effect begins with the migration of information from the previous AS400 (Servers
Storage Systems)system to the new SAP CIS-CRM. As indicated in the last paragraph,
outliers remain in the analysis of this investigation as they could be false positives.

From the analysis using descriptive statistics, the following are determined:

• All variables presented blank or null data.
• There exist large differences between the maximum and minimum values; there are

even high percentages of the variation coefficients, generally occurring when the
base matrix analyzed contains measurement systems with information of residential,
commercial, and industrial consumers; therefore, consumption varies considerably.
The data must be linearized and normalized to reduce these differences in values and
avoid possible errors in training and executing the algorithms; this procedure is given
in Section 3.2.3.
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• Some variables have negative values; the distribution company states that they corre-
spond to re-invoicing of the consumer due to reading errors or low application rates.

• The zero value for the mode in the consumption variables determines that there are
measurement systems with zero consumption; it is essential to physically review this
in field planning.

• There is a high difference between the maximum and minimum values; this must be
considered when applying data mining techniques.

In Figure 3a, the data dispersion of the variable “consumption” and, in Figure 3b, the
variable “debt” respectively, are given; The negative values (enclosed in red) are due to the
dispersion of the variables of the database considered in this investigation.

Table 5. Data analysis using descriptive statistics.

# Variable Null Media Median Mode Maximum Minimum Stand.
Dev.

Coeff
Variant.

V27 Third Age 255 0.05 0 0 1 0 0.22 430%
V28 HDB 255 0.02 0 0 1 0 0.33 500%
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.

.
V67 GeographStrat 255 3.94 5 5 10 0 3.03 41%
V68 Year Product 19 1998.09 2013 2015 2017 0 165.2 6%

(a) (b)

Figure 3. (a) Data dispersion of the energy consumption variable; (b) Data dispersion of the debt variable.

3.2.2. Data Cleaning

One of the main points of this research is the cleanliness of the data since the infor-
mation comes from different bases and may suffer alterations in the handling and transfer
from the source, so it is suggested to maintain greater care, or failing that, to use tools like
business intelligence (BI) for information management. The tools used for cleaning the
data were Microsoft EXCEL and MATLAB®, according to the following process:

• Null or non-existent data are verified:

– EXCEL recognizes the missing data as N/A.
– MATLAB® recognizes non-existent data as NaN (not a number).
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Those consumers that have null data in the technical variables are eliminated from
the list.

• Atypical data: Through exploratory data analysis, it is determined that the data that
should have been considered inconsistent are the negative values in the technical
variables; therefore, any consumer that has a negative value is eliminated from the list.

3.2.3. Data Normalization

The variables studied in the research present coefficients of variation with high ranges,
so it is necessary to center, scale, or linearize the data to be in the same range.

The normalizations used are:

• Maximum-minimum normalization: This is done by Equation (1).

v′ =
v−min

max−min
(1)

where:

– v′ is the new value
– v is the value to normalize
– max is the maximum value of the data
– min is the minimum data value

• Z-score normalization: This is done by Equation (2)

v′ =
v−mean

std
(2)

where:

– v′ is the new value
– v is the value to normalize
– mean is the data average
– std is the standard deviation of the data

3.3. Data Processing

In this section, the data mining techniques depend on the information available in
the matrix created in the utility database. The research objective is to identify which
techniques best respond to the data analysis, for which supervised and unsupervised
learning techniques are used.

3.3.1. Supervised Learning

For the application of supervised methods, examples require training; for this, a
database of 2462 samples was obtained, which was reviewed in situ, including 1231 proven
instances of fraud and 1231 of non-fraud. Based on the above, the variables used for
training are those shown in the following Table 6.

Table 6. Description of the variables.

# Variable Description

x1 Average 13 month average energy consumption
x2 Standard deviation Standard deviation corresponding to monthly energy data
x3 Coefficient of variation Expresses the standard deviation as a percentage of the average
x4 Minimum Minimum consumption value of the 13 values
x5 Maximum Maximum consumption value of the 13 values
x6 Range Difference between the maximum and minimum value
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Examples of fraud are labeled “1”, and non-fraud examples are labeled “0”. Of the
2461 examples, two-thousand sixty-one examples are use for training, and four-hundred
are used in the evaluation to identify which provides the best results.

The monitored methods implemented are:

1. Nearest neighbor (K-NN):
The algorithm uses the MATLAB® tool; in Figure 4, the algorithm execution response
is given. The training data represent a circular form, and the new data are in a grid
form; in red color, data classified as “fraud” and in blue color “no fraud.” The K value
is five, and the operation of this algorithm is simple; it calculates the distance of the
most frequent nearest neighbors (in this case, five) and chooses the class.
Before training this algorithm, the data are normalized with Equation (1).

Figure 4. K-nearest-neighbor (K-NN).

2. Decision tree:
The algorithm is executed with MATLAB®, generating CART-type decision trees; that
is, each node is divided into two. The data are normalized using Equation (1) before
training, and the decision tree generated is given in Figure 5.

X3 < 5.36e-05    x1 >= 5.36e-05

X1 < 0.00034    x1 >= 0.00034

1

X2 < 0.025    x2 >= 0.025

0

X3 < 4.69e-05    x3 >= 4.69e-05

1

X1 < 0.53    x1 >= 0.53

10

X3 < 8.60e-05    x3 >= 8.60e-05

X2 < 0.021    x2 >= 0.021

X3 < 8.42e-05    x3 >= 8.42e-05

0

X4 < 0.003    x4 >= 0.003

0

0

X1 < 0.006    x1 >= 0.006

X1 < 0.018    x1 >= 0.018

X1 < 0.017    x1 >= 0.017

X3 < 5.59e-05    x3 >= 5.59e-05

0 1

0 1

0

X3 < 5.53e-05    x3 >= 5.53e-05

X2 < 0.024    x2 >= 0.024

0 1

X3 < 7.04e-05    x3 >= 7.04e-05

X4 < 0.019    x4 >= 0.019

0

X2 < 0.027    x2 >= 0.027

1

X2 < 0.026    x2 >= 0.026

01

Figure 5. Decision tree.
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3. Neural network (ANN):
The creation and training of the artificial neural network occur using the Toolbox
tool of MATLAB®, in which the perceptron multilayer neural network is used. The
implemented neural network in Figure 6 shows an input layer with six variables;
a hidden layer made up of 10 neurons and an output layer with one neuron for
classification. The training algorithm is the Levenberg–Marquardt backpropagation,
and the activation function is the sigmoidal one.
The data are normalized with Equation (1) and randomly divided into three parts:
70% for training, 15% for validation, and 15% for testing.

W

b

+

Ouput

1

Input

6

W

b

+

10 1

Hidden Layer Ouput Layer

Figure 6. Artificial neural network (ANN).

3.3.2. Unsupervised Learning

Unlike previous techniques, “unsupervised methods” do not need examples for
training. The technique applied is the following:

1. K-means:
The algorithm does not require following the traceability of previous occurrences;
the variables of the base matrix is used; however, only the variables mentioned in
Table 6 are used compared with other techniques. The K-means technique is based
on grouping by similarities. The algorithm performs a pre-grouping before perform-
ing the K-means groupings to avoid bad group formation since the magnitudes of
consumption between these rates vary significantly. The data are normalized with
Equation (2).
In Figure 7, an example of the algorithm execution is given; the value of K is two,
representing the formation of two groups within the residential rate, the group of
fraudulent consumption, and the group of consumers that reflect consumption pat-
terns without alterations. In this sense, it is necessary to plan the on-site review of the
measurement systems since something is happening with these measurement systems.
An example is presented in Figure 7b. The group is selected as Fraudulent Number 2
(blue color).

(a)Data (b)Cluster K-means

Figure 7. Residential ratefor cluster K-means.
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4. Results of the Application of the Data Analytics Techniques

Data analytics techniques’ performance is analyzed with the data matrix with 400
examples of proven fraud and non-fraud measurement systems, including 200 labeled 1
(fraud) and 200 as 0 (no fraud). From this information, the metrics from the confusion
matrix shown in Table 7 are used [5].

Table 7. Confusion matrix.

Actual Values

Fraud (1) No Fraud (0)

Predicted Values Fraud (1) TP FP

No Fraud (0) FN TN

Where [20–22]:

• True positive (TP): when a consumer commits fraud and the technique classifies it
as such;

• True negatives (TN): cases correctly cited as non-fraud;
• False positive (FP): when a consumer does not commit fraud and the technique

classifies it as fraud;
• False negatives (FN): when a consumer commits fraud and the technique classifies it

as non-fraud.

From the confusion matrix presented in Table 7, the concepts of specificity and relia-
bility are derived [21,22]:

• Specificity or true positive ratio (TPR): This indicates whether a classification tech-
nique performs correctly, stating the proportion of samples cataloged as non-technical
energy losses corresponding to the total number of non-technical losses within a data
group, shown in Equation (3).

TPR =
TP

TP + FN
(3)

• Reliability or a false positive ratio (FPR): This indicates the relationship between false
alarms (consumers falsely classified as committing fraud) and the total number of
true negatives, shown in Equation (4).

FPR =
FP

TN + FP
(4)

Compliance with data analytics techniques is compared based on specificity and
reliability metrics. Table 8 shows the result of the evaluation of the K-means technique.
Intuitively, two groups should exist, that is K = 2 (fraud and not fraud); however, the results
cannot be right; that is why the technique evaluates different values of K.

Good results are obtained when forming 2, 3, 5, and 7 groups, getting high numbers
of TP and TN and low numbers of FP and FN; with this, a high percentage of the TPR and
a low percentage of FPR are obtained; while with nine groups, the result was in the middle.
The results were right, it could happen that in other cases with fewer or more groups, good
or bad results are achieved; that is, there is no precise method that determines the right
number of groups and which of them to choose as fraudulent; these depend on the amount
of data and the number of groups available. In this case, the expert, based on his/her
experience, must locate the best group.

Table 9 presents the results of evaluating the K-nearest neighbors technique with
different K values; the good results during the application of this technique are from the
group K = 10; this value applies to the corresponding analysis.
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Table 8. Evaluation with metrics of the K-means method.

N◦ of Groups TPR
(%)

FPR
(%)

2 80 17
3 80 24
5 79 24
7 79 24
9 49 24

Table 9. Evaluation with metrics of the K-nearest neighbors method.

K TPR
(%)

FPR
(%)

2 13 62
3 16 62
5 24 56
10 33 53
20 25 82

Table 10 presents the results of the evaluation with the metrics of the supervised
techniques. It shows that the technique that presented the best results in the three methods
was the neural network. The neural network obtained considerable percentages of the TPR;
however, it presented high values of the FPR (43%), indicating that there is a high number
of false positives.

Table 10. Metric evaluation of the supervised methods.

Methods TPR
(%)

FPR
(%)

K-nearest neighbors (K = 10) 40 39
Decision tree 40 63

Neural network 60 43

Comparing the results of data analytics techniques, the K-meansgrouping is the one
that delivered the best results; however, it must be taken into account that the training of
supervised techniques requires having a database with at least 30% examples.

An evaluation was performed by applying in the same analysis process an unsuper-
vised technique (K-means) and a supervised technique to determine the measurement
systems considered as fraudulent. The result of the evaluation is presented in Table 11.

Table 11. Results of combining K-means with a supervised method.

Methods TPR
(%)

FPR
(%)

K-means +
K-neighbors (K = 10)

53 34

K-means +
decision tree

55 39

K-means +
neural network

87 16

For the evaluation of the different techniques applied in this research, two groups
were used for K-means, as shown in Table 11; when combining the techniques, a better
result was obtained, where the TPR percentages increased, although the FPR decreased
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relatively. In Figure 8, the AUC of all the methods implemented in the analysis presented
shows that the K-means method was the one that gave the best results. Of the combinations
performed, K-means with the neural network turned out to be the most efficient, presenting
the highest AUC value among the classification methods.

Figure 8. AUC for all classifying methods.

The results are precise; after that information transforms into data through supervised
and unsupervised techniques, the advantages arise; these allow the distribution companies
to make profound decisions regarding the measurement systems, always focused on
economic recovery.

The result of the combination of the k-means and neural network algorithms gave us
87% true positive data; this value depends on the type of variables used in the analysis,
the quality of the information, and the percentage of NTLs that the distributor maintains
in their indicators. In the case of distribution companies with high loss rates, the results
will be better in practice. The algorithms cited in this research are the most optimal for
this analysis.

5. Case of Study—Application of the Methodology to Determine Energy Losses
5.1. Control of Measurement Systems in Utilities

Generally, utilities have a specialized department for the control and review of the
measurement systems; this work is carried out under planning to organize and optimize the
inspection of the measurement systems in such a way that establishes precisely the operation
and integrity of the measurement systems, guaranteeing correct billing to consumers.

The application of data analytics techniques in distribution companies is almost nil.
Therefore, the research proposes applying this new concept to detect fraud or damage
to measurement systems, so we applied and tested the algorithms developed with the
CENTROSUR Utility data.
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5.2. Management in the Recovery of Energy Consumed and Not Invoiced

The methodology results are evaluated based on on-site reviews to determine potential
consumers with energy theft during the trial period. In a universe of 15,000 measurement
systems, the first results obtained were 1816 reviews; of these, we detected 78 measurement
systems with damage and alterations. Under these test conditions, the efficiency of the
algorithm was 4.29%, a relatively optimistic value since the non-technical losses in the
distribution company did not exceed 0.85% of the total losses (6.25%).

While the economic incorporation with the monthly billing for the energy consumed
and not invoiced represented a total value of USD 80,869, this value is due to re-billing
processes duly protected by the Organic Law of the Public Electricity Service. In this way,
the economic flow of the specialized department can be cover by the management carried
out through the recovery of the energy consumed and not invoiced.

5.3. Examples of the Application of the Methodology for the Reduction of Non-Technical Losses

The technique’s success goes hand-in-hand with the timely revision executed in the
measurement system; we will explain some application cases that the execution of the
algorithm presents as a result.

With the support of the geographic information system tool, the analysis area was
determined using the polygon method to obtain the model’s input variables, as indicated
in Figure 9.

Figure 9. Polygon method of consumers in the group that need to be reviewed.

The measurement systems that presented anomalies in the monthly records are shown
in Figure 10. The patterns of electric energy consumption show before and after the
anomalous detection resulting from this investigation to recover the energy consumed and
not billed. Figure 10a represents the regularization of the indirect measurement system, CL
20, FM 4S, installed with medium voltage (22 kV) with a particular transformation station
of 25 kVA, which maintained a consumption pattern of close to zero since the energy meter
had not appropriately configured the current transformer transformation ratio.

In the polygon of Figure 9, there are 1809 measurement systems among residential,
commercial, and industrial rates. In this database, it was found that 11% correspond to atypical
data (erroneous and NaN), resulting in a list of 1610. The K-means grouping algorithm was
executed in this database, and then, the classification was performed using the neural network,
determining that 27 measurement systems qualified for an on-site review.
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Figure 10b refers to installing a connection without metering from of public medium
voltage network in a particular transformer station of 50 kVA. In this case, the meter was
removed for non-payment in the last few years. When starting a new project, consumers
connected directly so that once executed, the algorithm detected the violation, a measure-
ment system was installed, and energy consumption was re-invoiced. The utility recovered
around 750 kWh/month on average.

The example shown in Figure 10c represents the decrease of a consumer in a time
window (March 2017 until December 2017); the evidence is in the drop in consumption to
zero due to the installation of direct lines; this clandestine connection prevents the energy
meter from correctly registering consumption. It detected that around 750 kWh/month
were lost for 10 months.

In the execution and test of the algorithms, through the k-means cluster, we obtained
different groups of consumers; one of these is the industrial consumers, significant for the
utilities due to the consumption. For this example, Figure 10d shows industrial consumers
who kept a fault in a voltage transformer of the three existing ones in the measurement
system. This decompensation of the magnitude of the voltage in the transformer’s delta
connection caused the error computed to be more than 47%. Therefore, the window of
time to re-bill was wide, more than seven years. However, the law allows only computing
one year. In this manner, it recovered around 1950 MWh/year; in economic terms, this
corresponded to USD 156,000. In this case, these are important amounts to a utility.

The algorithm no only identifies the fault or the meter being altered, it recognizes
the variation of consumption as the function of an in-depth analysis of different variables.
Moreover, the algorithm operation allows separating the clusters not identified as altered.
The next example shows a load profile with a decrease of consumption, but without fault
or alterations; the event is produced for the season of the service zone; generally, the
commercial consumer does not use the air conditioning during these seasons, as shown in
Figure 10e.

The last Figure 10f explains another form of consumption variation. It shows a
residential consumer’s sporadic consumption; generally, his/her home is on the beach or
far from the city, and he/she visits it occasionally.

In summary, with the application of the algorithm, the recovery of energy was con-
sumed and but not invoiced was 2,021,800 kWh/year; an USD 161,744 recovery. This
information was taken from the marketing system of the energy distribution company.

Distribution companies in LAC do not have remote, real-time measurement systems
or advanced measurement infrastructure. Generally, the readings, review, and control of
the measurement systems are managed by humans, requiring considerable investments,
prolonged times in periodic reviews, and for some, even the change from conventional
conductors to pre-assembled, with low success rates.

The percentages of non-technical losses may vary from one country to another, even
between regions; for this reason, it is important to treat the information of each of the
distributors in a personalized way. This document contributes significantly to the little
exploited topic of the automatic analysis of available customer information for NTL detec-
tion. The proposed approach presents advantages in the methodology; it uses 68 variables
among technical, economic, social, linearized, and correlated data. The information is
homogeneous, to later apply supervised and unsupervised methods in the grouping ac-
cording to the similarity of the data. The different techniques applied were evaluated
through metrics to obtain the highest probability of potential energy theft events.

On the other hand, it does not require significant investments; since the data are stored
and available, the post-analysis management will use the same infrastructure resources
and existing distributor personnel. The methodology carries out continuous learning each
time the algorithm is executed; it learns from the real expert data and stores them for future
runs of the algorithm to increase certainty in detecting anomalies. Moreover, a set of rules
that are executed one-by-one is not required; the expert’s criteria are internalized in the
algorithm’s learning, separating consumers with NTLs from those with true zero or false
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intakes (typical cases). The advantage of applying this methodology is for the distributors
with very low percentages of losses 1% or 2%; therefore, detection will considerably reduce
operating costs, achieving technical efficiency.

(a) Poultry farm consumer (b) Consumer of cocoa processing plant

(c) Bar-restaurant consumer (d) Demand curve for metal industry

(e) Commercial customer (f) Residential customer

Figure 10. Errors in measurement.
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6. Conclusions

This research provides a data processing methodology that improves the detection and
identification of fraud in electricity consumption by a comprehensive analysis of consump-
tion patterns using data analytics techniques and artificial neural networks. Combining the
k-means clustering and forecasting methods with neural networks gives the smallest error
in the algorithm of 14% for the true positive data. The second method presents an error
of 18%; it uses the k-means grouping method with two groups (k = 2); the third method
that best adjusts to the detection of true positives is the combination between the k-means
algorithm and k-nearest neighbors with 40%.

Data mining techniques, accompanied by algorithms with supervised and unsuper-
vised methods and artificial intelligence models, have gained particular interest in the
electricity sector since their application depends on the efficiency and effectiveness of
the processes.

The computation time used to run the methodology was around 25 min, with approxi-
mately 15,225 clients and 64 variables, to deliver 1816 reviews. This time can be decreased
considerably with the use of supercomputers. On the other hand, it is important to stratify
the planning of potential revisions by zones to keep the revision records updated.

The analysis window in this methodology is monthly; however, it can be narrower
even in real time with advanced measurement infrastructure; the amount of data will grow
exponentially, requiring the use of servers and big data.

The methodology uses 30% of the knowledge to forecast 70% of the unsupervised
methods; the function of these algorithms is to determine patterns to acquire training
according to the available variables for a label in the analysis. However, when the sample
does not have sufficient data, numerous errors are generated in the forecast.

The methodology used to reduce NTLs is beneficial for the energy distribution sector.
It can be extended to many utilities in LAC and the rest of the world that present similar
situations; moreover, from the social point of view, a culture of efficient use of electricity
can be developed.

Using the information from CIS, GIS, and socio-economic data, multivariate data
analysis methods, classification, grouping algorithms (k-means), and neural networks can
be applied to obtain a list of possible revisions of the measurement systems, to optimize
the revisions and their routes, and to recover the most unbilled energy.

The projects that originate through this methodology will allow obtaining an economic
return in the short term. The rapid change that technological advances promote daily allows
various investigations such that more in-depth studies can be performed on distribution
systems, especially for mitigating non-technical energy losses.

This research recommends investing in electrical projects that consider applying these
techniques since financial indicators will always be positive and recovery will be obtained
in the short term.
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Abbreviations
The following abbreviations are used in this manuscript:

NTL Non-technical losses
GIS Geographic information system
CIS Customer information systems
SAP System application products
CENTROSUR Empresa Eléctrica Regional Centro Sur C.A.
TPR True positive rate
FPR False positive rate
TP True positives
TN True negatives
FP False positives
FN False negatives
k-NN k-nearest neighbor
ANN Artificial neural network
SVM Support vector machine
OPF Optimum path forest
AUC Area under the curve
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