
 

UNIVERSIDAD POLITÉCNICA DE VALENCIA 
 
 

 
 
 

DEPARTAMENTO DE INFORMÁTICA DE SISTEMAS Y 
COMPUTADORES 

 
 
 
 

On the design of fast and efficient wavelet 
image coders with reduced memory usage 

 
 

A thesis submitted for the degree of 
Doctor en Informática 

 
 

José Salvador Oliver Gil 
 
 

Thesis advisor 
Manuel Pérez Malumbres 

 
 
 
 
 

Valencia (Spain), February 2006 

 



 



 

 

 

 

 

 
A Silvia, y a mis padres y hermanas. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

i 

  

 

Abstract  
 

 

 

Image compression is of great importance in multimedia systems and applications because it 

drastically reduces bandwidth requirements for transmission and memory requirements for 

storage. Although earlier standards for image compression were based on the Discrete Cosine 

Transform (DCT), a recently developed mathematical technique, called Discrete Wavelet 

Transform (DWT), has been found to be more efficient for image coding.  

Despite improvements in compression efficiency, wavelet image coders significantly 

increase memory usage and complexity when compared with DCT-based coders. A major 

reason for the high memory requirements is that the usual algorithm to compute the wavelet 

transform requires the entire image to be in memory. Although some proposals reduce the 

memory usage, they present problems that hinder their implementation. In addition, some 

wavelet image coders, like SPIHT (which has become a benchmark for wavelet coding), 

always need to hold the entire image in memory.  

Regarding the complexity of the coders, SPIHT can be considered quite complex because 

it performs bit-plane coding with multiple image scans. The wavelet-based JPEG 2000 

standard is still more complex because it improves coding efficiency through time-consuming 

methods, such as an iterative optimization algorithm based on the Lagrange multiplier 

method, and high-order context modeling. 

In this thesis, we aim to reduce memory usage and complexity in wavelet-based image 

coding, while preserving compression efficiency. To this end, a run-length encoder and a 

tree-based wavelet encoder are proposed. In addition, a new algorithm to efficiently compute 

the wavelet transform is presented. This algorithm achieves low memory consumption by 

using line-by-line processing, and it employs recursion to automatically place the order in 



ABSTRACT 

ii 

which the wavelet transform is computed, solving some synchronization problems that have 

not been tackled by previous proposals. The proposed encoders perform in-place processing 

so that no extra memory is required for the coding process. Furthermore, time-consuming 

methods (such as iterative algorithms, high-order modeling and bit-plane coding) are avoided 

to reduce complexity, and we show the importance of grouping coefficients with tree 

structures as a method to reduce complexity. 

 



 

iii 

 

 

Resumen  
 

 

 

La compresión de imágenes es de vital importancia en sistemas y aplicaciones multimedia, ya 

que reduce drásticamente tanto el ancho de banda necesario para transmitir imágenes como la 

cantidad de memoria que hace falta para almacenarlas. Aunque los primeros estándares de 

compresión de imagen estaban basados en la transformada discreta del coseno, recientemente 

ha surgido una nueva herramienta matemática denominada transformada discreta wavelet que 

se considera más eficiente para la compresión de imágenes. 

A pesar de las mejoras en eficiencia, los compresores de imagen basados en esta 

transformada necesitan mucha más memoria e incrementan considerablemente su 

complejidad temporal si los comparamos con aquellos basados en la transformada discreta 

del coseno. Una razón fundamental que provoca estos elevados requerimientos de memoria es 

que el algoritmo empleado comúnmente para calcular la transformada wavelet necesita que la 

imagen entera esté en memoria. Aunque existen algunas propuestas que reducen el uso de 

memoria, éstas presentan varios problemas que dificultan su implementación. Además, 

determinados codificadores wavelet, como SPIHT (que se ha convertido en un referente para 

la codificación de imagen usando wavelets), también necesitan mantener toda la imagen en 

memoria para realizar el posterior proceso de codificación. 

Respecto a la complejidad temporal de los codificadores, SPIHT es bastante complejo 

debido al procesamiento por capas de bits con múltiples pasadas de la imagen que realiza. El 

estándar JPEG 2000, también basado en la transformada wavelet, es todavía más complejo 

porque mejora la compresión por medio de costosas técnicas, como por ejemplo un algoritmo 

iterativo de optimización basado en el método de multiplicadores de Lagrange, y el uso de un 

modelado de contextos de alto orden. 



RESUMEN 

iv 

En esta tesis, pretendemos reducir el uso de memoria y la complejidad en la codificación 

de imagen basada en wavelets, sin afectar por ello sus prestaciones en compresión. Con este 

objetivo, proponemos un codificador wavelet basado en codificación run-length y otro 

basado en árboles. Además, presentamos un nuevo algoritmo para calcular la transformada 

wavelet de forma eficiente. Este algoritmo reduce el uso de memoria por medio de un 

procesamiento línea a línea, y usa recursividad para establecer de forma automática el orden 

en el que la transformada se calcula, resolviendo de esta manera algunos problemas de 

sincronismo que no habían sido abordados en otras propuestas previas. Por otra parte, los 

codificadores presentados en esta tesis realizan un procesamiento directo de los coeficientes 

sin necesidad de memoria adicional o complejas estructuras de datos. Además, se evita el uso 

de métodos costosos (como por ejemplo, algoritmos iterativos, modelado de contextos de alto 

orden o codificación por capas de bits) para reducir así la complejidad temporal. Finalmente, 

con el mismo objetivo, también se muestra la importancia de agrupar coeficientes usando 

estructuras de árboles. 



 

v 

 

 

Resum  
 

 

 

La compressió d'imatges és de vital importància en sistemes i aplicacions multimèdia, ja que 

reduïx dràsticament tant l'ample de banda necessari per a transmetre imatges com la quantitat 

de memòria que fa falta per a emmagatzemar-les. Encara que els primers estàndards de 

compressió d'imatge estaven basats en la transformada discreta del cosinus, recentment ha 

sorgit una nova ferramenta matemàtica denominada transformada discreta wavelet que es 

considera més eficient per a la compressió d'imatges. 

A pesar de les millores en eficiència, els compressors d'imatge basats en wavelets 

necessiten molta més memòria i incrementen considerablement la seua complexitat temporal 

si els comparem amb aquells basats en la transformada discreta del cosinus. Una raó 

fonamental que provoca els elevats requeriments de memòria és que l'algoritme emprat 

comunament per a calcular la transformada wavelet necessita que tota la imatge estiga en 

memòria. Encara que hi ha algunes propostes que reduïxen l'ús de memòria, estes presenten 

diversos problemes que dificulten la seua implementació. A més, determinats codificadors 

wavelet, com SPIHT (que s'ha convertit en un referent per a la codificació d'imatge usant 

wavelets), també necessiten mantindre tota la imatge en memòria per a realitzar el posterior 

procés de codificació. 

Respecte a la complexitat temporal dels codificadors, SPIHT és prou complex a causa del 

processament per capes de bits amb múltiples passades de la imatge que realitza. L'estàndard 

JPEG 2000, també basat en la transformada wavelet, és encara més complex perquè millora la 

compressió per mitjà de costoses tècniques, com per exemple un algoritme iteratiu 

d'optimització basat en el mètode de multiplicadors de Lagrange, i l'ús d'un modelatge de 

contextos d'alt orde. 



RESUM 

vi 

En la present tesi, pretenem reduir l'ús de memòria i la complexitat en la codificació 

d'imatge basada en wavelets, sense afectar per això les seues prestacions en compressió. 

Considerant este objectiu, proposem un codificador wavelet basat en codificació run-length i 

un altre basat en arbres. A més, presentem un nou algoritme per a calcular la transformada 

wavelet de forma eficient. Este algoritme reduïx l'ús de memòria per mitjà d'un processament 

línia a línia, i usa recursivitat per a establir de forma automàtica l'orde en què la transformada 

es calcula, resolent d'esta manera alguns problemes de sincronisme que no havien sigut 

abordats en altres propostes prèvies. D'altra banda, els codificadors presentats en la tesi 

realitzen un processament directe dels coeficients sense necessitar memòria addicional o 

complexes estructures de dades. A més, s'evita l'ús de mètodes costosos (com per exemple, 

algoritmes iteratius, modelatge de contextos d'alt orde o codificació per capes de bits) per a 

reduir així la complexitat temporal. Finalment, també es mostra la importància d'agrupar 

coeficients usant estructures d'arbres per tal de reduir la seua complexitat. 

 

 



 

vii 

 

 

Agradecimientos 
 

 

 

Muchas y variadas son las circunstancias que han conducido a la realización de esta tesis 

doctoral. ¿Qué duda cabe que la vida es altamente circunstancial? Seguramente, el sólo 

lanzamiento de una moneda puede determinar tantas cosas en nuestro Universo, y quién sabe 

si en alguna que otra paracaja de Farnsworth. Sin duda, aquel momento en el que decidí 

realizar el PFC con Mels es uno de esos momentos cruciales. Tú me introdujiste en el mundo 

de la investigación, y me animaste en los momentos más delicados. Por eso y por más, 

gracias Mels y buena suerte en tu nueva andanza.  

No sería justo si no agradeciera a los grupos de investigación que me han dado la oportunidad 

de desarrollar mi formación como investigador, al Grupo de Arquitecturas Paralelas en un 

comienzo, y al Grupo de Redes de Computadores en la actualidad. A ellos, a sus integrantes, 

gracias por todo. 

A nivel personal, casi sentimental, los agradecimientos son tantos que casi sería injusto 

nombrar a unos y olvidar a otros. La motivación para escribir una tesis hubiera sido 

imposible conseguirla sin todos vosotros, sin mis amigos y mi familia, que tanto me ha dado. 

A Elena que me ayudó con el lifting, y a Silvia, por ser como es y por apoyarme y animarme 

siempre durante la tesis. A todos vosotros, gracias. 

 

 





 

ix 

  

 

Contents 
 

Abstract __________________________________________________________________ i 
Contents _________________________________________________________________ ix 
Preface _________________________________________________________________ xxv 
Chapter 1. Introduction to image coding _________________________________________ 1 

1.1 Data compression for a real world _____________________________________ 1 
1.2 Digital image coding _______________________________________________ 2 

1.2.1 Image representation and color spaces______________________________ 3 
1.2.2 Lossless and lossy image compression _____________________________ 5 

1.3 Background on data compression______________________________________ 6 
1.3.1 Entropy coding________________________________________________ 6 
1.3.2 Definition of entropy ___________________________________________ 7 
1.3.3 Huffman coding _______________________________________________ 7 
1.3.4 Arithmetic coding _____________________________________________ 8 
1.3.5 Adaptive arithmetic coding ______________________________________ 9 
1.3.6 Models for data compression ____________________________________ 10 
1.3.7 Differential encoding, run length encoding and other compression techn. _ 11 

1.4 Transform coding _________________________________________________ 11 
1.4.1 DCT-based image compression __________________________________ 13 
1.4.2 Wavelet-based image compression _______________________________ 13 

1.5 Important factors in the design of an image encoder ______________________ 14 
1.5.1 How to measure the rate/distortion performance_____________________ 15 
1.5.2 How to measure complexity ____________________________________ 17 
1.5.3 How to measure memory usage__________________________________ 18 

1.6 Other features ____________________________________________________ 18 
Chapter 2. Wavelet transform computation ______________________________________ 21 

2.1 Introduction to wavelet transform for image coding ______________________ 21 
2.1.1 Why a new transform?_________________________________________ 21 
2.1.2 Wavelet transform ____________________________________________ 24 
2.1.3 Multiresolution Analysis _______________________________________ 28 

2.2 DWT computation using filter banks __________________________________ 29 
2.2.1 1D DWT computation _________________________________________ 29 
2.2.2 Higher order wavelet transform __________________________________ 31 
2.2.3 Desired filter and transform properties ____________________________ 32 
2.2.4 Popular wavelet transforms for image coding _______________________ 37 

2.3 DWT computation using the lifting scheme_____________________________ 39 



CONTENTS 

x 

2.3.1 Inverse wavelet transform using the lifting scheme___________________ 42 
2.3.2 Integer-to-integer transform_____________________________________ 43 

2.4 Summary________________________________________________________ 46 
Chapter 3. Efficient memory usage in the 2D DWT _______________________________ 47 

3.1 Introduction _____________________________________________________ 47 
3.1.1 Previous proposals to reduce memory usage ________________________ 48 
3.1.2 The line-based scheme_________________________________________ 49 

3.2 A recursive algorithm for buffer synchronization ________________________ 51 
3.2.1 A general algorithm ___________________________________________ 51 
3.2.2 Filter bank implementation _____________________________________ 56 
3.2.3 Implementation with the lifting scheme____________________________ 57 
3.2.4 Reversible integer-to-integer implementation _______________________ 62 
3.2.5 Some theoretical considerations__________________________________ 63 

3.3 Experimental results _______________________________________________ 64 
3.4 Summary________________________________________________________ 68 

Chapter 4. Coding of wavelet coefficients_______________________________________ 71 
4.1 Introduction _____________________________________________________ 71 
4.2 Tree-based coding_________________________________________________ 73 

4.2.1 Embedded zero-tree wavelet (EZW) coding ________________________ 73 
4.2.2 Set partitioning in hierarchical trees (SPIHT) _______________________ 77 
4.2.3 Non-embedded tree-based coding ________________________________ 78 

4.2.3.1 Space-frequency quantization (SFQ)____________________________ 78 
4.2.3.2 Non-embedded SPIHT ______________________________________ 79 
4.2.3.3 PROGRES (progressive resolution decomposition) ________________ 80 

4.3 Block-based coding _______________________________________________ 81 
4.3.1 Embedded block coding with optimized truncation (EBCOT) __________ 82 

4.3.1.1 Block coding: tier 1 coding ___________________________________ 84 
4.3.1.2 Bitstream organization: tier 2 coding ___________________________ 87 
4.3.1.3 Performance and complexity analysis ___________________________ 88 

4.3.2 Set Partitioning Embedded Block (SPECK) ________________________ 89 
4.3.2.1 Subband-Block Hierarchical Partitioning (SBHP) _________________ 92 
4.3.2.2 Non-embedded SBHP/SPECK ________________________________ 92 

4.4 Other wavelet encoders ____________________________________________ 93 
4.4.1 Run-length coding ____________________________________________ 93 
4.4.2 High-order context modeling____________________________________ 94 

4.5 Tuning and optimizing the performance of the EZW algorithm _____________ 95 
4.5.1 Choosing the best filters________________________________________ 96 
4.5.2 Coefficient pre-processing ______________________________________ 97 
4.5.3 Improvements on the main EZW algorithm_________________________ 99 
4.5.4 Improvements on the arithmetic encoder__________________________ 101 

4.6 Summary_______________________________________________________ 102 
Chapter 5. Fast run-length coding of coefficients ________________________________ 103 

5.1 Introduction ____________________________________________________ 103 
5.2 A simple multiresolution image encoder ______________________________ 105 

5.2.1 Quantization method _________________________________________ 105 
5.2.2 Coding algorithm ____________________________________________ 106 
5.2.3 A simple example ___________________________________________ 108 
5.2.4 Features of the algorithm ______________________________________ 109 



CONTENTS 

xi 

5.2.5 Tuning the proposed algorithm _________________________________ 111 
5.2.5.1 Tuning the adaptive arithmetic encoder ________________________ 111 
5.2.5.2 Context modeling _________________________________________ 112 

5.2.6 Discussion _________________________________________________ 113 
5.3 Fast run-length mode _____________________________________________ 114 
5.4 Numerical results ________________________________________________ 116 
5.5 Summary_______________________________________________________ 118 

Chapter 6. Lower tree wavelet image coding____________________________________ 121 
6.1 Introduction ____________________________________________________ 121 
6.2 Two-pass efficient coding using lower trees ___________________________ 122 

6.2.1 Lower tree encoding algorithm _________________________________ 125 
6.2.2 Lower tree decoding algorithm _________________________________ 129 
6.2.3 A Simple Example ___________________________________________ 132 

6.3 Implementation considerations______________________________________ 134 
6.3.1 Analyzing the adaptive arithmetic encoder ________________________ 134 
6.3.2 Analyzing the quantization process ______________________________ 135 

6.4 Numerical results ________________________________________________ 135 
6.5 Summary_______________________________________________________ 140 

Chapter 7. Advanced coding: low memory usage and very fast coding _______________ 141 
7.1 Coding with low memory consumption _______________________________ 141 

7.1.1 Run-length coding with low memory usage _______________________ 142 
7.1.1.1 Tradeoff between coding efficiency and, speed and memory req. ____ 143 

7.1.2 Fast tree-based coding with efficient use of memory ________________ 144 
7.1.3 Numerical results ____________________________________________ 147 

7.2 Very fast coding of wavelet lower trees _______________________________ 149 
7.2.1 Proposed modifications _______________________________________ 150 
7.2.2 Efficient Huffman decoding ___________________________________ 151 
7.2.3 Numerical results ____________________________________________ 152 

7.3 Lossless coding__________________________________________________ 154 
7.4 Summary_______________________________________________________ 155 

Chapter 8. Conclusions and future work _______________________________________ 157 
8.1 Contributions of this thesis_________________________________________ 157 
8.2 Conclusions ____________________________________________________ 158 
8.3 Future lines of research____________________________________________ 159 
8.4 Publications resulting from this thesis ________________________________ 163 

Appendix A. Join scalar/bit-plane uniform quantization ___________________________ 179 
Appendix B. Rate control in the proposed algorithms_____________________________ 183 
Appendix C. Implementation of the efficient DWT ______________________________ 187 

C.1 Backward Recursion Function ______________________________________ 187 
C.2 Implementation of the Wavelet Transform_____________________________ 188 
C.3 Forward  Recursion Function _______________________________________ 189 
C.4 Implementation of the Inverse Wavelet Transform ______________________ 190 
C.5 Auxiliary Functions and Global Variables _____________________________ 190 
C.6 External Headers_________________________________________________ 193 

Appendix D. Reference images  _____________________________________________ 195 
Appendix E. Post compressed images for subjective comparison____________________ 201   
 





 

xiii 

  

 

List of figures 
 

 

 

1.1 Forward and Inverse YCoCg color transformation. In the forward transform (left), the green, blue 
and red components are input so as to compute the luminance and color components (green and 
orange) with additions and divisions. The inverse transform (right) is computed scanning the 
graph in the reverse order, and changing the sign of the operations ………………………………4 

1.2 Overview of an image coder and decoder based on transform coding. T and T -1 are the forward 
and inverse transform functions respectively. Q and Q -1 are the quantizer and dequantizer 
functions respectively. The original set of pixels is represented by P ………………………..….12 

2.1 Coefficients from a Fourier-like basis and the basis functions. For each coefficient (ci,j), the first 
subindex (i) indicates the frequency of its basis function, while the second one (j) shows its 
position from the origin. Notice that all the basis functions cover exactly the same signal portion, 
independently of its frequency…………………………………………………………………….23 

2.2 Frequency band covered by wavelet functions at various levels in a dyadic decomposition. The 
upper plot (a) reveals the need for another type of function (scaling functions) to cover the low-
frequency band as it is shown in the lower plot (b)……………………………………………….26 

2.3 Coefficients from a wavelet basis, and its basis functions (including the scaling function). For 
each wavelet coefficient (ψi,j), the first subindex (i) indicates the scale of its basis function, while 
the second one (j) shows its position. In contrast to Fourier, in the wavelet transform, basis 
functions with higher frequency have lower support, and hence higher spatial resolution……....27 

2.4 One-level wavelet decomposition of an input signal using an analysis filter bank, and signal 
reconstruction using a synthesis filter bank………………………………………………………30 

2.5 (a) One-level wavelet decomposition of an input image, (b) two-level wavelet decomposition, in 
which the LL1 subband of the decomposition in (a) is further decomposed……………………...31 

2.6 Construction of a scaling and a wavelet function using scaling functions of the previous level for 
the 5/3 wavelet transform. Figures (a) and (c) show the synthesis scaling functions that are added 
in order to form the next-level analysis scaling (b) and synthesis wavelet functions (d) 
respectively………………………………………………………………………………………..39 



LIST OF FIGURES 

xiv 

2.7 Overview of a wavelet decomposition of an input signal using the lifting scheme for the B9/7 
FWT……………………………………………………………………………………………….40 

2.8 General diagram for a wavelet decomposition using the lifting scheme………………………….42 
3.1 Overview of a line-based forward wavelet transform…………………………………………….49 
3.2 Overview of the lifting scheme for the proposed FWT………………………………………...…58 
3.3 Line processing in a buffer for the lifting scheme. The evolution of the buffer in time is shown in 

five steps…………………………………………………………………………………………..60 
3.4 Overview of the lifting scheme for the proposed IWT……………………………………………61 
3.5 Execution time comparison (excluding I/O time) between the regular transform and both 

proposals (convolution and lifting) using D9/7 and floating coefficients………………………...66 
3.6 Execution time comparison (excluding I/O time) of various implementations using float (with and 

without rounding), integer and short integer coefficients, with the B5/3 transform and the lifting 
proposal……………………………………………………………………………………………67 

3.7 Execution time comparison (excluding I/O time) of the regular wavelet transform and the lifting 
proposal, applying the B5/3 transform, with (a) short-integer coefficients, (b) integer coefficients, 
(c) floating-point arithmetic without rounding, and (d) floating-point arithmetic with rounding...68 

4.1 Definition of wavelet coefficient trees. In (a), it is shown that coefficients of the same type of 
subband (HL, LH or HH) representing the same image area through different levels can be 
logically arranged as a quadtree, in which each node is a wavelet coefficient. The parent/children 
relation between each a pair of nodes in the quadtree is presented in (b)………………………...73 

4.2 Example of division of coefficient sets arranged in spatial orientation trees. This division is 
carried out by the set partitioning sorting algorithm executed in the sorting pass of SPIHT. The 
descendants of ci,j presented in (a) are partitioned as shown in (b); if needed, the subset of (b) is 
divided as shown in (c), and so on………………………………………………………………..76 

4.3 Example of block coding in JPEG2000. In tier 1 coding, each code-block is completely encoded 
bit-plane by bit-plane, with three passes per bit-plane (namely signification propagation, 
magnitude refinement and clean up passes). Only part of each code-block is included in the final 
bitstream. In this figure, the truncation point for each code-block is pointed out with a dotted line. 
These truncation points are computed with an optimization algorithm in tier 2 coding, in order to 
match with the desired bit rate with the lowest distortion………………………………………...82 

4.4 (a) Scan order within an 8x8 code-block in JPEG2000, and (b) context employed for a coefficient, 
formed by its eight neighbor coefficients (two horizontal, two vertical, and four diagonal)……..84 

4.5 Example of convex hull formed by distortion-rate pairs from the block 1 of Figure 4.3. In a 
convex hull, the slopes must be strictly decreasing. Four rate-distortion pairs are not on the 
convex hull, and therefore they are not eligible for the set of possible truncation points. A line 
with a slope of 1/λ determines the optimal truncation point for a given value of λ………………86 

4.6 Set division in SPECK. (a) A transformed image is initially split into two sets, one of type S and 
another of type I. A set of type I is subsequently divided into four sets: three sets of type S, and 



LIST OF FIGURES 

xv 

one set of type I with the remaining coefficients, as shown in (b), except for the last set of type I, 
in which the remaining set of type I is an empty set (see (c)). This type of division is called 
octave-band partitioning. Finally, a set of type S is subsequently divided into four sets of type S as 
shown in (d)……………………………………………………………………………………….89 

4.7 Evaluating various filter-banks for (a) Lena and (b) Baboon using EZW coding………………..97 
4.8 Impact of the number of decomposition levels on performance………………………………….97 
4.9 Mean value removing option in EZW…………………………………………………………….98 
4.10 Uniform pre-quantization option introduced in EZW to shift performance peaks. This graph 

shows the PSNR for various quantization factors at constant bit rates…………………………...99 
4.11 Improvements on the main EZW algorithm: (a) Swapping dominant and subordinate passes. 

(b) Coefficient scanning order…………………………………………………………………...100 
4.12 (a) Morton scan order, in which coefficients are scanned in small blocks, and (b) Raster scan 

order, with the subbands scanned line-by-line…………………………………………………..101 
4.13 Arithmetic encoder evaluation………………………………………………………………102 
5.1 3D view of a 4×3 wavelet subband and the resulting arithmetic symbols for Algorithm 5.1…...109 
5.2 Appearance of the 3×4 subband of Figure 5.1 encoded using Algorithm 5.1…………………...109 
5.3 PSNR performance depending on the increasing factor in the adaptive model, with high, medium 

and low bit rates………………………………………………………………………………….111 
5.4 Appearance of the 3×4 subband of Figure 5.1 encoded using Algorithm 5.2, with an 

enter_run_mode parameter of 4………………………………………………………………….113 
6.1 EZW-like and (b) SPIHT-like coefficient trees, focusing on the LL subband. The only difference 

between both types of trees is that a coefficient in the LL subband has three descendants in EZW, 
while in SPIHT the coefficients have four direct descendants (including those in the LL subband, 
except one each 2×2 coefficients, which has no offspring)……………………………………..122 

6.2 2-scale wavelet transform of an 8x8 example image……………………………………………132 
6.3 Symbols resulting from applying Algorithm 6.2 to the example image of Figure 6.2…………..132 
6.4 Example image of Figure 6.2 encoded with Algorithm 6.2……………………………………..132 
7.1 Overview of the proposed tree-based encoder with efficient use of memory………………...…144 
8.1 Overview of the 3D DWT computation in a two-level decomposition, (a) following a frame-based 

scheme as an evolution of Algorithm 3.1 or (b) the regular 3D DWT algorithm……………….162 
A.1 Relation between quantization parameters and bit rate for Lena………………………………..181 
A.2 Relation between quantization parameters and PSNR…………………………………………..182 
B.1 Quantization parameter (Q) used to encode with LTW images with various entropies at different 

bit rates. The images employed are (in order of entropy of the wavelet coefficients): Zelda (3.2), 
Lena (3.58), Peppers (3.80), Boat (3.86), Goldhill (4.19), Barbara (4.31) and Baboon (5.39)…185 

 
 





 

xvii 

  

 

List of tables 
 

 

 

2.1 Bi-orthogonal Daubechies (9,7) filter bank with (1,1) normalization, and floating point 
implementation……………………………………………………………………………………36 

2.2 Bi-orthogonal (5,3) filter-bank with (1,1) normalization, for integer implementation…………...38 
2.3 (a) Weighting values for prediction and update steps, (b) and various normalization factors, for 

the bi-orthogonal 9/7 wavelet transform………………………………………………………….41 
3.1 Memory requirements (KB) comparison among our proposals and the usual algorithm for various 

image sizes using the (a) D9/7 and (b) B5/3 transforms………………………………………….66 
4.1 Filter-bank comparison with Lena and Baboon source images and EZW coding………………..96 
4.2 Optimized PSNR results after introducing a pre-quantization process to shift performance peaks in 

EZW……………………………………………………………………………………………….99 
5.1 PSNR(dB)with different bit rates and coders using Lena……………………………………….113 
5.2 PSNR (dB) with various bit rates and coders using Barbara…………………………………….118 
5.3 Execution time for coding Lena (Million of CPU cycles)……………………………………….118 
5.4 Execution time for decoding Lena (Million of CPU cycles)…………………………………….118 
6.1 PSNR (dB) with different bit rates and coders using Lena (512×512)………………………….137 
6.2 PSNR (dB) with different bit rates and wavelet-based image encoders for Café, Woman, Goldhill 

and Barbara………………………………………………………………………………………137 
6.3 Execution time comparison for Lena and Café (time in Million of CPU cycles)……………….139 
6.4 Symmetry index (decoding time/coding time) for SPIHT, Jasper/JPG2K and LTW…………...139 
7.1 PSNR (dB) comparison with different bit rates and coders for the evaluated images (Lena, 

Barbara, Woman and Café). The numbers in parenthesis correspond to the increase in 
performance if the R/D improvements discussed in Subsection 7.1.1.1 are applied…………….147 



LIST OF TABLES 

xviii 

7.2 Total amount of memory (in KB) required to encode the Woman image using several encoding 
algorithms. The numbers in parenthesis correspond to the extra memory that is necessary if the 
R/D improvements are not used……………………………………………………………….…148 

7.3 Execution time (in Million of CPU Cycles) needed to encode Woman at various bitrates. The 
numbers in parenthesis correspond to the additional complexity introduced when R/D 
improvements are applied………………………………………………………………………..149 

7.4 PSNR (dB) with different bitrates and very fast encoders………………………………………152 
7.5 Execution time comparison of the coding process for very fast encoders (excluding DWT) (time 

in million of CPU cycles)………………………………………………………………………..154 
7.6 Lossless coding comparison of various image encoders with six greyscale 8 bpp images. Results 

are given in bits per pixel (bpp) needed to losslessly encode the original image………………..155 
 



 

xix 

  

 

List of algorithms 
 

 

 

3.1 Recursive FWT computation with nlevel decomposition. The backward recursive function 
GetLLlineBwd(level) returns a line from the low-frequency subband (LLlevel) at a level determined 
by the function parameter. The first time that this function is called at a certain level, it returns the 
first line of the LLlevel subband, the second time it returns the second line, etc. If there are no more 
lines at this level, it returns the EOL tag. As the nth line of the LLlevel subband is computed and 
returned, the corresponding nth lines of the HL, LH and HH subbands at that level are also 
computed, processed and released………………………………………………………………...52 

3.2 Recursive IWT computation with nlevel decomposition. The forward recursive function 
GetLLlineFwd(level) returns a line from a low-frequency subband as Algorithm 3.1 does, but 
using forward recursion. Thus, it retrieves a line of the HL, LH and HH subbands (from the 
compressed bitstream), and an LL line from the following level, which is computed by a recursive 
subfunction called GetMergedLineFwd( ). With these lines, this function can compute two new 
lines of the following LL subband and return them alternatively………………………………...54 

3.3 Filter-bank implementation, recursive case……………………………………………………….55 
3.4 Lifting implementation, recursive case……………………………………………………………57 
5.1 Simple wavelet coding…………………………………………………………………………...108 
5.2 Run-length wavelet coding………………………………………………………………………115 
6.1 (a) Lower tree coding. General description……………………………………………………...125 
6.1 (b) Lower tree coding. Symbol computation……………………………………………………126 
6.1 (c) Lower tree coding. Output the wavelet coefficients…………………………………………127 
6.2 Lower tree decoding……………………………………………………………………………..130 
7.1 Lower tree wavelet coding with reduced memory usage………………………………………..146 





 

xxi 

  

 

List of abbreviations 
 

 

 

bpp: bits per pixel 
CALIC: Context Adaptive Lossless Image Compression 
CD: Compact disc 
CDF: Cohen/Daubechies/Feauveau 
CWT: Continuous Wavelet Transform 
DC: Direct Current 
DCT: Discrete Cosine Transform 
DPCM: Differential Pulse Code Modulation 
DSP: Digital Signal Processor 
DST: Discrete Sine Transform 
DVB: Digital Video Broadcasting 
DVD: Digital Versatile Disc 
DWT: Discrete Wavelet Transform 
EBCOT: Embedded Block Coding with Optimized Truncation 
EOL: End Of Line 
EZBC: Embedded Zero Block Coding 
EZW: Embedded Zero-tree Wavelet 
FWT: Forward Wavelet Transform 
GIF: Graphic Interchange Format 
GIS:  Geographic Information System 
HVS: Human Visual System 
iid: independent and identically distributed 
ITU: International Telecommunications Union 



LIST OF ABBREVIATIONS 

xxii 

ITU-R: ITU Radiocommunication Sector 
ITU-T: ITU Telecommunication Sector 
IWT: Inverse Wavelet Transform 
JBIG: Joint Bi-level Image Processing Group 
JPEG: Joint Photographic Experts Group 
KLT: Karhunen-Loève Transform 
LIP: List of Insignificant Pixels 
LIS: List of Insignificant Sets 
LOCO-I: LOw COmplexity LOssless COmpression for Image 
LSB: Least Significant Bit 
LSP: List of Significant Pixels 
LTW: Lower Tree Wavelet 
LZC: Layered Zero Coding 
MPEG: Moving Pictures Experts Group 
MSB: Most Significant Bit 
MSE: Mean Square Error 
NTSC: National Television System Committee 
PAL: Phase Alternate Line 
PCM: Pulse Code Modulation 
PCRD: Post-Compression Rate Distortion 
PDA: Personal Digital Assistant 
pdf: probability distribution function 
pixel: picture element 
PNG: Portable Networks Graphic 
ppm: prediction by partial matching 
PROGRES: PROGRESsive resolution decomposition 
PSNR: Peak to Signal Noise Ration 
RCT: Reversible Color Transform 
RGB: Red-Green-Blue 
RLE: Run-Length Encoding 
RLW: Run-Length Wavelet 
ROI: Region Of Interest 
SBHP: Subband-Block Hierarchical Partitioning  
SECAM: Sequential Couleur Avec Mémoire 



LIST OF ABBREVIATIONS 

xxiii 

SFQ: Space-Frequency Quantization 
SIMD: Single Instruction, Multiple Data 
SNR: Signal to Noise Ratio 
SPECK: Set Partitioning Embedded block 
SPIHT: Set Partitioning In Hierarchical Trees 
VCEG: Video Coding Expert Group 
VGA:  Video Graphics Array 
VM: Verification Model 
VQEG: Video Quality Experts Group 
xDSL: Digital Subscriber Line 
 
 





 

xxv 

 

 

Preface 
 

 

Motivation 

During the last decade, several image compression schemes emerged in order to overcome 

the known limitations of block-based algorithms that use the Discrete Cosine Transform 

(DCT). These limitations include blocking artifacts and poor coding efficiency, mainly at 

moderate to low bitrates. Some of these alternative proposals were based on more complex 

techniques, like vector quantization and fractal image coding, whereas others successfully 

proposed the use of a different and more suitable mathematical transform, the Discrete 

Wavelet Transform (DWT). 

The discrete wavelet transform is a new mathematical tool that has aroused great interest 

in the field of image processing due to its nice features. Some of these characteristics are the 

following: 1) it allows image multiresolution representation in a natural way, because more 

wavelet subbands are used to progressively enlarge the low frequency subbands; 2) we can 

analyze the wavelet coefficients in both space and frequency domains, thus the interpretation 

of the coefficients is not constrained to its frequency behavior as in Fourier; and 3) for natural 

images, the DWT achieves high compactness of energy in the lower frequency subbands, 

which is extremely useful in applications such as image compression. Therefore, the 

introduction of the DWT made it possible to improve some specific applications of image 

processing by replacing the existing tools with this new mathematical transform. Thus, while 

the popular JPEG standard for image compression uses the DCT, the new JPEG 2000 

standard proposes the use of the wavelet transform, with better rate/distortion (R/D) 

performance, and which avoids blocking artifacts because an image is not separately 



PREFACE 

xxvi 

transformed and quantized block-by-block, but the wavelet transform is applied to the entire 

image. 

Unfortunately, despite the benefits that wavelet-based image coding entails, other 

problems are introduced in these encoders, basically they are typically implemented with 

memory-intensive and time-consuming algorithms, and thereby system requirements are 

significantly higher than in other earlier image encoders like JPEG. These higher 

requirements represent a serious limitation when implementing multimedia applications like 

image compression in memory-constrained devices with relatively little computational 

power, such as digital cameras, mobile phones, PDAs and embedded devices. Actually, in 

many applications like videoconferencing (implemented with image coding if only intraframe 

redundancy is removed) features like low complexity and high symmetry are more important 

than R/D performance. 

All the wavelet image coders, and in general all the transform-based encoders, consist of 

two main stages. During the first one, an image is transformed from spatial domain to another 

domain, in the case of wavelet transform a combined spatial-frequency domain called wavelet 

domain. In the second pass, the wavelet coefficients resulting from the transform domain are 

quantized and encoded in an efficient way to achieve high compression efficiency and other 

features.  

The higher execution time and memory requirements of the wavelet coders are caused in 

both stages, due to the following reasons: 

(1) Computation of the wavelet transform. In the usual DWT, the image decomposition is 

computed by means of convolution filtering and so, complexity rises as the filter length 

increases. Moreover, in the regular DWT computation, an image is transformed first row 

by row and then column by column at every decomposition level, and hence it must be 

held entirely in memory. These problems are not as noticeable in other image transforms 

as in the DWT. For example, when the DCT is used for image compression, it is applied 

in small block sizes, and thus a large amount of memory is not specifically needed for the 

transform process. 

(2) Coding of the coefficients. Great efforts have been made in this stage to improve 

compression efficiency, achieving in this way a reduction in the bandwidth or amount of 

memory needed to transmit or store a compressed image. Unfortunately, many of these 

coding optimizations involve high complexity, requiring faster and more expensive 



PREFACE 

xxvii 

processors. For example, the JPEG 2000 standard uses a large number of contexts and an 

iterative time-consuming optimization algorithm to improve coding efficiency. 

Furthermore, many times, wavelet image coders have features that are not always needed, 

but which make them CPU and memory intensive. This way, bit-plane coding employed 

in many encoders (like EZW and SPIHT) allows SNR scalability with an embedded 

bitstream, but it results in slow coding since an image is scanned several times, focusing 

on a different bit-plane in each pass, which in addition causes a high cache miss rate.  

In this thesis, we tackle the problem of designing new wavelet-based image encoders 

with lower complexity and memory usage, but preserving compression efficiency. In order to 

reduce memory consumption, the need to store the entire image in memory should be 

removed. In addition, time-consuming techniques (such as rate/distortion optimization 

algorithms, high-order context modeling, and bit plane coding) should be avoided to 

minimize complexity. 

Objectives 

As mentioned in the motivation section, the major goal of this thesis is the design of fast 

wavelet image encoders with reduced memory usage and without loss of compression 

efficiency. To this end, specific objectives of this thesis can be detailed as follows: 

1. In-depth study of the existing algorithms to compute the wavelet transform, focusing 

on techniques to reduce complexity and memory requirements (like the lifting 

scheme and the line-based approach). Furthermore, their main drawbacks should be 

analyzed. 

2. Design of simple algorithms to compute the wavelet transform with reduced memory 

usage, overcoming the synchronization problems of the algorithms found in the 

literature. In order to minimize execution time, the proposed algorithms should take 

the lifting approach. 

3. In-depth study of the main wavelet image coders, analyzing their complexity and 

focusing on the fastest non-embedded encoders, since in the thesis we will propose 

non-embedded algorithms to reduce complexity. 

4. Design of fast wavelet coders that avoid the complex techniques found in the main 

wavelet coders, although preserving state-of-the-art coding efficiency as far as 

possible (only for very fast versions, we will admit moderate loss of efficiency). 



PREFACE 

xxviii 

These encoders should be able to work in lossy and lossless modes.  

5. Tuning the encoder parameters, mainly to improve rate/distortion performance.  

6. A study of the proposed algorithms to compute the wavelet transform with low 

memory requirements applied to the new fast encoders. We should tackle the 

problems that arise when combining both techniques, and study the performance of 

the overall encoder. 

7. We should develop efficient implementations to validate the models and algorithms 

proposed in the thesis, and to be able to compare them with other wavelet coders 

using real implementations (all of them written under the same conditions as far as 

possible). 

Thesis overview  

The thesis structure pursues the objectives presented in the previous section. In Chapter 1, a 

general introduction to image coding is given. Some general methods such as entropy coding 

(both Huffman and adaptive arithmetic coding) and run-length coding are described because 

they are used later in our proposals. Transform coding is also introduced in this chapter, and 

the structure of a general transform-based image encoder is shown. This structure will serve 

as a reference in the rest of the thesis. Finally, some guides to measure the performance of the 

image coder under study in this thesis are presented (namely, to measure coding efficiency, 

complexity and memory requirements). 

In Chapter 2, we introduce the wavelet transform as a new mathematical tool to perform a 

frequency-spatial analysis of a signal. Then, we focus on the two-dimensional wavelet 

transform computation, since it is the first stage of a wavelet-based encoder. We first present 

the classical computation with a filter bank, showing the main filter properties desired for 

image coding, and then we describe the lifting scheme as an alternative and more efficient 

method to compute the DWT. Some of the most important wavelet filter-banks for image 

coding are also given in this chapter. Afterwards, Chapter 3 tackles the problem of memory 

reduction in the two-dimensional wavelet transform computation. A line-based approach is 

presented as a method to compute the DWT without the need to store the entire image in 

memory, but we show the difficulty to derive a practical algorithm due to the existing 

synchronization problems among buffers. Thus, we propose a general recursive algorithm to 

compute the wavelet transform, also line-by-line, which automatically solves the 



PREFACE 

xxix 

synchronization problems of the earlier line-based approaches. This general algorithm is 

further developed to allow filter-bank and lifting based implementations, and regular and 

reversible transforms (with floating and integer implementations). 

Once the wavelet transform is applied to an image, the next stage in transform coding is 

coefficient quantization and coding. In Chapter 4, we introduce the main wavelet image 

coders found in the literature, including a complexity analysis. We group them into two main 

categories: tree-based and block-based, depending on the structure used to group coefficients. 

Some of the encoders presented in this chapter are the well-known EZW, SPIHT, 

SPECK/SBHP algorithms and EBCOT (on which JPEG 2000 is heavily based). Some other 

non-embedded encoders are also described, in particular SFQ, PROGRES and non-embedded 

versions of SPITH and SPECK/SBHP. Encoders based on run-length coding and high-order 

context modeling are also surveyed. Finally, in this chapter we show the importance of tuning 

the encoder parameters in an image encoder by implementing the EZW algorithm, and then 

analyzing the encoder response when varying several parameters. 

In Chapters 5 and 6, we propose various wavelet image coders to overcome the 

complexity problems addressed in the previous proposals. In these coders, we should avoid 

bit-plane coding, iterative optimization algorithms, and high-order context modeling, because 

all these methods cause an increase in complexity. First, a very simple encoder is proposed. 

This algorithm encodes one symbol for each coefficient by using arithmetic coding, and 

therefore it is still quite complex at low bitrates, because too many symbols are encoded. 

Thus, a second encoder is presented, which uses run-length coding to group large number of 

coefficients. Although this encoder is faster, coding efficiency can be improved if inter-

subband redundancy is considered. With this idea in mind, a tree-based encoder is proposed 

in Chapter 6, which achieves better compression results with still lower complexity. All the 

proposed encoders are tuned to maximize coding efficiency. A comparison with other 

wavelet encoders and among them is always included using numerical results and real 

implementations. 

In Chapter 7, we present an overall encoder that includes the efficient wavelet transform 

proposed in Chapter 3, and the run-length or tree-based encoders of Chapters 5 and 6. We 

compare this overall encoder with other reference wavelet encoders (mainly SPITH and 

JPEG 2000). Afterwards, a very fast Huffman-based variation of the tree-based encoder of 

Chapter 6 is presented. This encoder entails a small loss of compression efficiency, while 



PREFACE 

xxx 

execution time is reduced by about three times. Then, a lossless analysis of the proposed 

encoders is carried out. 

Finally, some publications resulting from the research of the thesis, future works and the 

conclusions of the thesis (also detailed in each chapter) are summarized in Chapter 8. 



 

 

 

 

 

 

 

 

 

 

All this time the guard was looking at her,  

first through a telescope, then through a microscope,  

and then through an opera glass  
 

 

Lewis Carroll, Through the looking glass 

 



 

 



 

1 

 

 

Chapter 1   

Introduction to image coding 
 

 

1.1 Data compression for a real world 

We live in a real world, with real computers and real data networks, and therefore with a 

large number of practical limitations. One of these limitations is the need to store data in 

memory. Since computer’s physical memory is finite, mass storage devices are used as a low-

cost swap memory, at the expense of higher latency and lower throughput. Even so, all these 

devices always have limited storage capacity. A similar restriction is present in computer 

networks, which have finite bandwidth. Therefore, if we find a method to reduce the required 

size of a document, we will be able to exploit the available resources (amount of memory or 

bandwidth) in a better way. The tool that performs the reduction of memory needed to store a 

document is called data compressor, while a compression technique is the process that is 

carried out by a data compressor to encode information in an efficient way. Once data is 

compressed, it can be returned to its original representation by means of a reconstruction 

algorithm executed by a decompressor.  

Although data compression is useful to improve the performance of network and storage 

technologies, one might wonder if it is really worth the use of compression techniques due to 

the capacity improvements in storage devices (such as DVD disks and larger and larger hard 

drives) and transmission lines (due to the use of optical fiber lines and xDSL technology). 

The answer to this question is yes, because as both technologies improve their performance, 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

2 

their demand is increasing a lot; mainly in multimedia networks and applications, which need 

a large amount of memory to represent multimedia data. Thus, the use of compression 

techniques allows us to take advantage of the available resources in a better way, achieving 

better performance at lower cost. For example, a regular audio CD is able to store about 15-

20 songs that are “raw coded” (uncompressed) to simplify the hardware design of stand-alone 

players. However, if we use a software player, audio compression can be introduced provided 

that the computer running the software is able to decompress it in real time. This way, 

hundred of songs can be stored on the same CD with the same perceptual audio quality. As 

time went by, when a hardware design for audio decompression is feasible at relatively low 

cost, new hardware players with decompression support can be introduced. 

Hence, there is a trade-off between the benefits of data compression and some drawbacks 

that it introduces, such as higher latency and increase in memory and hardware requirements. 

Each system designer should evaluate if compression is necessary, and determine the impact 

of compression on the system to decide if it can be accepted. 

1.2 Digital image coding 

During the last decades, digital processing has gained popularity since information can be 

processed in a more complex and complete way. Moreover, digital data can be transmitted 

over long distances without any degradation.  

One type of data that has been tremendously impacted by digital processing is 

multimedia data (mainly audio, image and video). During the 80s and 90s, there was 

significant effort from the research community focused on digital image and video 

processing, and now digital technologies have reached the mass market. Digital image and 

video processing includes daily applications such as transmission of images on the Internet, 

capture and storage of images in digital cameras, and digital video broadcasting (DVB) and 

storage (DVD).  

In Section 1.1, we addressed the need for data compression. This need is further 

highlighted in multimedia data, which require huge amount of bytes to be represented, but 

having high correlation that can be removed to reduce storage requirements. In order to 

illustrate this, let us take the example of a 1-Megapixel digital camera. If no compression is 

used, a color picture takes 3 Mbytes to be stored, while every picture takes about 250 Kbytes 

if a compression algorithm is applied (of course the size may vary depending on the 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

3 

algorithm used, and the image quality and contents). This way, with compression, the same 

memory card can store about twelve times more pictures than if no compression is applied. 

Moreover, when images are processed as a whole, they are handled faster if they are 

compressed. For example, images are downloaded from a digital camera to a computer much 

faster if they are encoded with a compression algorithm. 

1.2.1 Image representation and color spaces 

For the most part, digital images are represented as a set of pixel values, P. The simplest case 

of digital image is the monochrome one, in which a matrix of pixels of size 

{ }heightimagewidthimage ×  describes a grayscale image. This matrix is usually 

implemented as a two-dimensional array, and each element in the array (pixel) is represented 

using n bits, which is called image depth. In monochrome images, n is typically equal to eight 

because the eye does not perceive higher resolution according to the human visual system 

(HVS) model. In this array, the value of a pixel Pp ji ∈,  indicates the luminance or 

brightness of the sample that is located at the position ( )ji, , so that the higher jip ,  is, the 

brighter that sample is (a value of 0 is used for pure black color while the highest value 

( 12 −n ) shows a white pixel) 

For color images, several planes per pixel are required. Natural color images are often 

represented using three components, and implemented with an array per component. A usual 

color space is the RGB (red/green/blue), in which each pixel is described by the three 

primary colors that compose that pixel. Most display and capture devices work internally 

using the RGB color space. 

Since the R/G/B planes are highly correlated in natural images, a color transform is 

usually applied before compressing an image, so that the new color space has less 

redundancy among components. Moreover, the HVS is less sensitive to color detail than to 

brightness detail, and thus if, the employed color space is able to handle brightness and color 

information separately, we can apply higher resolution on the luminance samples than on the 

color ones. Actually, image compression standards usually sub-sample the chrominance1 

arrays by a factor of two in each dimension, which is known as 4:2:0 sub-sampling format.  

Some color spaces widely used due to their lack of correlation among components are 

YUV, YIQ and YCbCr. The former is employed in analog TV standards, such as NTSC, PAL 
                                                 
1 Chrominance is the difference between a color component and the luminance 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

4 

and SECAM composite TV. A related color space that is optionally used by the NTSC 

standard is YIQ. The YCbCr color space was developed as part of the ITU-R BT.601 

[ITU82] and is of major importance since it is used in most digital video and image standards. 

Equations for conversion from RGB to YUV, YIQ and YCbCr color spaces can be found in 

[RAO96]. 

More recently, some other color spaces have been proposed, which not only have a 

floating-point implementation but also an integer implementation. In JPEG 2000, it is 

proposed a reversible color transform (RCT) that is intended to an integer-to-integer 

transform for lossless compression (see Section 1.2.2). The H.264 standard (high profile) 

introduces another integer color transform called YCoCr [MAL03]. Instead of the classical 

blue and red chrominance planes, this color space extracts the orange and green color 

information from the image, along with the luminance samples. The Forward and Inverse 

transformations are computed as it is shown in the flowgraphs of Figure 1.1. Besides 

reversibility in integer arithmetic, YCoCb shows minimal increase in dynamic range and 

higher coding gain than the aforementioned color spaces, which is particularly interesting in 

image compression.  

A different color space is CIE Lab, which specifies colors in terms of human perception. 

CIE Lab is based on a mathematical model instead of a certain display or capture device, and 

hence it is device independent. On the contrary, every concrete device has a particular RGB 

color space, which is device dependent and thus, it has to be transformed into a device 

independent representation for general independent use. Other space color, such as CMY and 

CMYK, are more suitable for printing. 

 

 

Fig. 1.1: Forward and Inverse YCoCg color transformation. In the forward transform (left), the 
green, blue and red components are input so as to compute the luminance and color components 

(green and orange) with additions and divisions. The inverse transform (right) is computed 
scanning the graph in the reverse order, and changing the sign of the operations. 

+

+ +

+ Cg 

Y 

Co 

G 

B 

R 

+

+

+

+

G 

B 

R 

Cg 

Y 

Co 
+1/2 

+1/2 -1/2

-1/2

-1 

-1 

+1 

+1 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

5 

For the rest of this thesis, we will only deal with grayscale image processing. 

Generalization to color image processing can be performed simply by handling every 

chrominance component independently, in the same way as the luminance array. Many image 

and video compression standards, such as JPEG 2000 and H.264, also take this approach. 

1.2.2 Lossless and lossy image compression 

In lossless image compression, the decoded samples ( 'P ) are exactly the same as those that 

were encoded (P). For this reason, we consider that there is no loss of data. However, a 

compression algorithm can slightly modify a source image in order to achieve higher 

compression ratios, but trying to keep the perceived quality unaltered according to the HVS. 

This is the case of lossy image compression, in which the equality PP ='   is not usually met. 

Most lossless image coders are based on entropy coding (see Section 1.3) with various 

contexts and predictive techniques. Predictive coding schemes try to predict each sample 

from the samples that have been previously encoded, which are available to both encoder and 

decoder. In image compression, prediction is usually performed from nearby pixels. Once a 

prediction has been calculated, the residual pixel is encoded as the error committed by this 

prediction. This way, the better a prediction is, the lower it will be the entropy of the residual 

pixels. The CALIC scheme [WU96] follows this approach, becoming one of the most 

efficient lossless image coders in terms of compression performance. A simplification of 

CALIC was adopted as the JPEG-LS standard, which replaced the lossless mode of the 

original JPEG standard. This simplified version of CALIC is called LOCO-I [WEI00], and its 

performance is close to CALIC with lower complexity. Other lossless image encoders are 

PNG (proposed as a royalty-free alternative to GIF) and JBIG (intended to bi-level image 

coding and used in fax transmission). 

Medical imaging is an example of application in which lossless compression is required, 

since all the image details must be preserved so that medical analysis is not hindered. Another 

application of lossless coding is image editing. In this type of application, if lossy 

compression is employed, accumulative errors from successive editions may seriously 

damage the final image quality. However, lossless compression yields poorer compression 

ratios when compared with lossy, and hence the former is not as frequently used as the latter. 

Various approaches to lossy coding have been taken in the literature. In vector 

quantization [GER92], an image is represented by regular patterns of finer detail that are 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

6 

stored in a codebook, which is shared by both encoder and decoder. A similar scheme is 

fractal coding [BAR93], in which images use themselves as their codebook. Unfortunately, 

both methods are time intensive, due to the search for the codebook, and might produce 

blocking artifacts, i.e., the edges diving two contiguous blocks could be perceptible. A more 

successful approach to lossy compression has been achieved by transform methods. 

1.3 Background on data compression 

Data compression is not as recent as one might think. An example of efficient data coding 

can be found in the 19th century, when Samuel Morse developed a method to send letters by 

telegraph systems. Letters are encoded with dots and dashes so that the letters that occur more 

frequently are assigned shorter sequences, and thus the average time required to send a 

message is reduced. 

1.3.1 Entropy coding 

An idea similar to Morse code is used in more modern techniques based on entropy coding. 

In this context, when we talk about coding, we refer to assigning bits to represent a symbol or 

a group of symbols. In general, if X is a discrete variable representing any possible symbol 

from an alphabet A, a symbol As∈  can be encoded using a coding function C(X) that maps s 

with a finite and ordered sequence of binary symbols (bits). This sequence of bits is called 

codeword, and the table that maps each symbol into its codeword is called codebook. Of 

course, real applications usually encode more than a symbol from A, and thus, when a 

sequence of L symbols { } AssssssS LL ∈= KK ,,:,, 2121  is encoded, the main goal of data 

compression is to achieve the shortest length for the final bitstream, i.e., to minimize )(SC ′ , 

where { }),,,( 21 LXXXC K′  is the coding function for the whole sequence of symbols.  A 

possible non-optimal solution to code the sequence S is to choose a codebook that minimizes 

)()()()( 21 LXCXCXCSC +++=′ K  for all possible coding assignments. However, 

better solutions can be achieved if we do not focus on individual symbols but in groups of 

them. We will see this optimal solution later.  

Besides compact representation, the coding process must be reversible, guaranteeing that 

a decoding process can reconstruct exactly the initial symbols in the same order as they were 

encoded. 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

7 

1.3.2 Definition of entropy 

The limits of entropy coding are bounded by the concept of entropy H(S) [SHA48], which 

denotes the minimum average number of bits needed to represent every symbol of a sequence 

(i.e., the minimum bits per symbol). If we consider that S is a general source of symbols from 

a finite alphabet A that generates sequences with the form{ }LXXX ,,, 21 K , where each iX  

is a discrete variable from A, the entropy for this general source is given by:  

nn
G

n
SH 1lim)(

∞→
=  (1.1) 

where 

),,,(log),,,( 221122211

1 2

nnnn
Ai Ai Ai

n iXiXiXPiXiXiXPG
n

======−= ∑∑ ∑
∈ ∈ ∈

KKL (1.2) 

A less general definition of entropy is the first-order entropy H. It is defined on a single 

discrete random variable AX ∈ as follows: 

)(log)( 2 iXPiXPH
Ai

==−= ∑
∈

 (1.3) 

First-order entropy has the advantage of ease of computation, although it is not equal to 

the entropy of the source unless each element in the sequence is independent and identically 

distributed (iid), as it is proved in [SAY00]. If there is certain dependence among symbols in 

S, we can compute higher order entropies to approach the general definition of entropy. 

Although entropy shows the lowest number of bits needed to represent a symbol using 

entropy coding, we still have to solve the problem of how to assign bits to a set of symbols. 

In the next subsections, we will introduce some entropy coders to carry out this association.  

1.3.3 Huffman coding 

The Huffman coding algorithm [HUF52] was proposed in 1952 as a way to map each 

alphabet symbol into a codeword. It generates the shortest bitstream that can be created if 

each symbol in the alphabet is directly associated with a sequence of bits. For this type of 

entropy coding, we can say that Huffman coding is optimal (see the proof in [FAN61]). In 

order to achieve optimality, symbols are represented with a codeword whose length is 

inversely proportional to the symbol probability. Assignment of codeword is carried out by 

building a binary tree from leaves to the root, being the leaves the symbols in the alphabet. 

Least probable symbols are joined to form a new node with higher probability, and each link 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

8 

add one bit to the codeword that represents the involved symbols. A more detailed 

description and deep study of the Huffman coding algorithm and its variants can be easily 

found in the literature [LEL87] [STO88] [SAY00]. 

The entropy H bounds the average codeword length l generated by the Huffman 

algorithm. The bad news is that the average codeword length can never be below the entropy 

value, but the good news is that optimality of Huffman ensure that the average codeword 

length is lower than one bit per symbol above entropy (see the proof in [COV91]), in other 

words: 

1+<≤ HlH   (1.4) 

When the number of symbols in the alphabet is large, and their probability is about 

equally distributed, entropy is much larger than one bit per symbol, and Huffman coding is 

very efficient. However, if we have very few symbols and entropy is less than one, Huffman 

performance decreases drastically. The reason is that the theoretical optimum number of bits 

needed to represent a symbol is not usually an integer but a fraction, and Huffman coding 

only can map symbols with an integer number of bits. A way to overcome this problem is to 

group more than one symbol together, mapping in this way a block of symbols to a single 

codeword, so that )()()()( 11 LL XCXCXXXCSC ++<==′ KK . If we block N 

symbols together, the bounds are tighter, and they are given by [COV91]: 

N
HlH 1
+<≤  (1.5) 

It is easy to see that as the block size N is increased, the average codeword length tends to 

the entropy of the source. However, Huffman coding does not work well grouping symbols, 

mainly because the alphabet size becomes impracticable, and the decoding process is 

extremely inefficient. 

1.3.4 Arithmetic coding 

A more efficient entropy coding algorithm for low-entropy sources is arithmetic coding. In 

this technique, the whole source sequence { } AssssssS LL ∈= KK ,,:,, 2121  is mapped into 

only one codeword, which is associated to the probability of the sequence 

)()()()( 21 LSPSPSPSP K= . The idea in arithmetic coding is that, for all the sequences S of 

length L, the greater P(S), the shorter the codeword. This code assignment was developed by 

Pasco [PAS76] and Rissanen [RIS76] [RIS79] based on the early work of Shannon [SHA48]. 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

9 

A full explanation of arithmetic coding can be found in more recent literature [BEL90] 

[SAY00] [GHA03]. 

As it is proved in [SAY00], the average bits per symbol (l) resulting from encoding L 

symbols using this method is bounded by the expression: 

L
HlH 2
+<≤   (1.6) 

Although Huffman with blocks of L symbols may seem more efficient than arithmetic 

coding, we have to take into account that grouping symbols cannot be easily implemented 

with Huffman, most of all for large values of L. With an alphabet size of k, if L symbols are 

grouped, the size of the Huffman codebook is Lk , which becomes unfeasible for large L 

values. On the contrary, arithmetic coding does not require the construction of a codebook. 

Thereby, it can start generating bits of the final codeword since the first symbols of the 

sequence are introduced. Hence, we can encode a sequence as large as we wish, being 

asymptotically optimal for stationary sources (i.e., sources that are constant in their statistical 

parameters). To sum up, as the number of encoded symbols L goes to infinity, the average 

bits per symbol l approaches the entropy of the source, with no additional complexity. 

Despite the advantages of arithmetic coding, the original Huffman algorithm is useful in 

implementations where fast processing is necessary and coding efficiency is not a major 

issue, because it is less complex than arithmetic coding when used with single symbols. 

1.3.5 Adaptive arithmetic coding 

Besides the superior performance of arithmetic coding, one of its main advantages is its 

capability to adapt its probability model, AxxP ii ∈∀)( , directly from the symbols that are 

input. This feature is very interesting in non-stationary sources, such as natural images, which 

usually change their statistics according to the portion of image being encoded. Furthermore, 

when the encoding process begins, the probability model of the source sequence can be 

unknown, and it can be built while symbols are encoded. An alternative method can be 

performed with a two-pass algorithm, in which the statistics are collected in the first pass, and 

the source is encoded during the second one. Adaptive coding can also be implemented for 

Huffman [FAL73] [GAL78], but with higher complexity.  

A widely used C language implementation of an adaptive arithmetic encoder is described 

in [WIT87]. In this proposal, the probability model is estimated from a frequency count table 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

10 

)( ixf  that holds the number of times that each symbol has been encoded; that is to say, 

)( ixf  is a dynamic histogram. This way, the probability )( ixP  of occurring a symbol ix  

from an alphabet A is calculated as: 

∑
∈

=

Ax
n

i
i

n

xf
xf

xP
)(

)(
)(   (1.7) 

where the term ∑
∈Ax

n

n

xf )(  is known as cumulative frequency count. 

At the beginning of the coding process, since we do not have information about the 

symbol probabilities, the whole frequency count array is initialized to one, so that all the 

symbols are equally probable. Every time that a symbol ix  is encoded, )( ixf  is increased. 

Since real implementations use finite-range variables, the frequency count cannot grow 

indefinitely. In order to avoid overflow, all entries in the array are dived by two when the 

cumulative frequency count reaches a threshold value. In [WIT87], the authors suggest a 

threshold value of 1214 −  to operate with two-byte arithmetic precision, and they call this 

threshold Max_frequency. 

1.3.6 Models for data compression 

Beyond the limits established by the definition of entropy, we can extract information about 

any additional knowledge from the source, and describe it in the form of a model. In this 

way, we can use a model to modify the source sequence into another sequence with lower 

entropy. In a way, we can consider the probabilities used in entropy coding as a model 

defining the existing redundancy in the source. With adaptive coding, this model changes to 

adapt to local features. Higher order models not only consider the probability of a single 

symbol but also its correlation with other previously encoded symbols (in other words, with 

the context). For example, in adaptive arithmetic coding for image compression, we can use 

various frequency count tables depending on the value of the already-encoded neighbor 

samples, adapting the model to the context in order to improve compression performance.  

In general, we can assume that the better a model is, the higher compression we achieve. 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

11 

1.3.7 Differential encoding, run length encoding and other compression 
techniques 

As an example of model, consider the following monotonic sequence 

181614131210  

Clearly, we have more information about this sequence than its mere probability 

function. If we process these symbols as integer values, it is easy to see that there is high 

correlation among them. Hence, we can apply the model described by  iii rxx += −1 , where 

the residual is given by 1−−= iii xxr , so that if we encode the resulting residual sequence 

(assuming that 01 =−x ) 

2211210  

the entropy of this new sequence is lower than the original one. Actually, any coding scheme 

that uses this type of model is known as differential encoding. Some examples of this type of 

coding are DPCM [CUT52] and delta modulation [JAY70].  

Another method that takes advantage of high repetition of symbols is run-length 

encoding (RLE). This model was first defined by Capon in 1958 [CAP58] and it is based on 

coding each symbol along with the length of the runs of that symbol (count of symbols), 

instead of individual symbols. This model does not reduce the entropy of the source sequence 

but the number of symbols that need to be encoded (in fact, the entropy is increased due to 

the removal of repeated values). RLE is easy to implement and presents low complexity, 

although its performance is relatively poor. 

Other compression techniques, such as dictionary schemes (based on Ziv and Lempels’ 

studies [ZIV77] [ZIV78]) and the ppm algorithm [CLE84], have also been widely used, but 

they are not the focus of this thesis. 

1.4 Transform coding 

The main idea of transform coding is to change the input samples (P) into another equivalent 

set of values in which most of the information is contained in only a few elements, and this 

way, we reduce the redundancy of the components. Many of theses transform methods use 

well-known space-to-frequency transforms, in which the canonical basis is replaced by 

another basis with frequency interpretation. The transformed samples (C) are coefficients that 

multiply an element from a new basis and, therefore, they are called transform coefficients. 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

12 

This type of transform is particularly useful for natural images, because in this type of image, 

most energy tends to concentrate in the low frequency areas, and hence in a few transform 

coefficients. After conversion from space to frequency domain, we expect less correlation in 

the low-frequency coefficients than in the high-frequency ones. We can achieve larger 

reduction in entropy by applying quantization on the coefficients, given that many of them 

become 0. A quantizer usually maps an interval of real numbers to a single integer index, and 

it is the lossy part in transform lossy compression, because the exact reconstruction of the 

original coefficients is not guaranteed. An important parameter that determines the 

compression ratio and the quality lost is the length of the mapping intervals in the quantizer. 

So, the highest this interval is, the greater compression is achieved at the expense of poorer 

image quality. The last step in an image encoder is the entropy coding of the quantized 

coefficients (C q). Since these coefficients have low entropy, an entropy coder is able to 

generate a compressed bitstream from them in a very efficient way. The complete transform 

coding and decoding processes are depicted in Figure 1.2. 

 
 

Most transforms (T) used for image coding are invertible, and hence there is a T−1 

function so that ( )( )PTTP 1−= . However, in floating-point implementations, this equality is 

not ensured due to possible rounding errors, and it is necessary the use of integer arithmetic 

with reversible operations to guarantee the previous equality. On the other hand, after the 

quantization and dequantization processes, all the coefficients belonging to the same interval 

are recovered to the same value in that interval, independently of their initial value, and as a 

Fig. 1.2: Overview of an image coder and decoder based on transform coding. T and T -1 are the 
forward and inverse transform functions respectively. Q and Q -1 are the quantizer and dequantizer 

functions respectively. The original set of pixels is represented by P. 

Input 
Image Q Entropy 

encoder 

Transm
ission / Storage T -1 Q -1 Entropy 

decoder 

T 

Output 
Image 

P C=T(P) C q =Q(C)

C
om

pressed 
bitstream

 

C q  'C =Q -1(C q)'P =T -1( 'C ) 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

13 

consequence ( )( )CQQC 1−≠ . 

Although the Karhunen-Loève Transform (KLT) has been proved to decorrelate the 

energy better than any other block-based image transform, it is not used in image 

compression because it has to compute a different basis functions for each image and transmit 

it to the decoder along with the coefficients, increasing the required bandwidth. In addition, it 

is computationally very inefficient. Currently, the Discrete Cosine Transform (DCT) and the 

Discrete Wavelet Transform (DWT) are the main transforms used in image compression. 

1.4.1 DCT-based image compression 

The DCT is almost as efficient as the KLT, with the advantage that its complexity is much 

lower. Contrary to the KLT, the basis functions for the DCT are always the same cosines at 

various frequencies. This transform is usually applied to images in small block sizes 

(typically 8×8). Since it is separable, a block of pixels can be transformed using a one-

dimensional DCT transform first in columns, and then in rows (or vice versa). The JPEG 

standard [ISO92] takes this approach, with a structure similar to that shown in Figure 1.2. 

Hence, images are divided into 8x8 blocks, and each block is quantized and entropy coded 

using zigzag order and run-length encoding. 

Since the DCT is applied in small block sizes, only a reduced amount of memory is 

specifically needed for the transformation process. In addition, due to the current importance 

of DCT-based coders, the complexity of the DCT is a well-studied issue [RAO90], and some 

proposals have been done to reduce the complexity of the Inverse DCT [MUR98] and, more 

recently, of the Forward one [LEN04]. 

1.4.2 Wavelet-based image compression 

One of the lateral effects of block processing in the DCT is that blocking artifacts appear in 

moderate to high compression ratios. According to the HVS model, block edges are easily 

identified and hence, the visual image quality is highly degraded. Moreover, redundancy is 

not optimally removed from an image because each block is encoded independently, and only 

the DC component is decorrelated using differential coding. The wavelet transform is able to 

overcome these drawbacks given that it may be applied to a complete image, and hence it 

achieves better redundancy removal without blocking artifact. Thus, if the DWT is used for 

image coding, better visual quality and compression performance is achieved. For this reason, 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

14 

the JPEG 2000 standard [ISO00] replaced the use of the DCT by the DWT. In addition, 

lossless coding can be performed in JPEG 2000 by applying a reversible integer-to-integer 

wavelet transform [ADA00] with exactly the same compression algorithm as in the lossy 

case. 

On the other hand, some new problems arise when the DWT is used instead of the DCT. 

In the regular DWT computation, the entire image must be kept in memory, increasing the 

memory requirements compared with the 8x8 block of pixels needed in a DCT-based coder. 

Moreover, wavelet-based coders are typically implemented by memory-intensive and time-

consuming algorithms. In order to avoid these usual drawbacks, in this thesis, we will tackle 

these problems in the main stages of a wavelet encoder, i.e., both the wavelet computation 

and the quantization and coding stages.  

1.5 Important factors in the design of an image encoder 

The main goal of an image compression system is to reduce the amount of bytes needed to 

represent an image, and hence this has been considered the key factor in the design of an 

image encoder. This feature can be easily measured in a lossless encoder simply evaluating 

the compression ratio, but in lossy compression, it cannot be considered as a single factor but 

we should evaluate the curve relating compression ratio and image quality, usually referred to 

as rate/distortion (R/D) performance. 

Substantial reduction of finite system resources, such as bandwidth or disk space, can be 

achieved through image compression. However, the introduction of a compression module 

may establish higher requirements in other system resources, mainly in the required amount 

of physical memory (particularly RAM memory) and processor power. These new higher 

requirements were not present in the initial system and might not be acceptable. This way, 

depending on the application purpose and the available system resources, lower bandwidth 

reduction could be preferred if it entails a reduction in the encoder complexity (both 

computational and memory). This trade-off between the R/D curve, amount of memory and 

computational complexity is of major importance in the design of an image encoder. The 

degree of importance of each of these three factors depends on the final application. For 

example, when a computer is used to decode a picture, plenty of memory and CPU power are 

usually available; conversely, it is desirable that the digital camera used to take a picture is 

able to perform the coding process with as little memory and CPU power as possible, in order 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

15 

to reduce hardware costs. 

The relationship between these three factors is equally balanced in time, because while 

electronic devices are getting faster and faster, they come with more memory, and larger disk 

drives and faster networks are available. As a result, these factors are reduced by technology 

evolution but boosted by the growing demands of applications. 

Great efforts are often made to achieve slightly improvements in rate/distortion 

performance (and thus in bandwidth or disk space demand), while the reduction of memory 

consumption and complexity of image coders is a less studied issue, but of great importance 

in resource-constrained devices like mobile phones, digital cameras and PDAs. In this thesis, 

we will deal with this issue. 

In order to compare image encoders depending on the factors that we have previously 

defined, it is important to have a method to measure them. In the next subsections, we will 

address some exiting methods, and we will discuss which of them are suitable for our 

purpose. 

1.5.1 How to measure the rate/distortion performance 

For a given image and a given encoder, a rate/distortion curve can be simply computed from 

several iterations, in which the same image is encoded at various compression ratios (from 

low to high compression ratios), achieving different image quality. The compression ratio 

reached in each execution can be easily calculated as the relationship between the size of the 

compressed image and the number of pixels in the image, and it is generally known as bits 

per pixel (bpp) or bit rate (or simply rate). Rate/distortion performance is often given in the 

form of a table containing the image quality at various bit rates (typically, 0.125, 0.25, 0.5 

and 1 bpp for grayscale images). Contrarily to compression ratio, it is not easy to find a 

quality metric that is universally accepted to determine the distortion (or quality loss) 

introduced by lossy compression. Two different approaches to quality measurement are 

usually followed: subjective and objective metrics. 

Subjective quality measurement is based on the exhibition of an unimpaired image and 

the same image after compression (i.e., being coded and decoded). Non-expert viewers 

express their opinion about the quality of the decompressed image, scoring it in a range from 

1 (bad) to 5 (excellent) (sometimes referred to as Mean Opinion Scored). Non-expert 

viewers’ opinion is preferred because experts’ judgment is biased, since they know how 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

16 

compression works and how to search for artifacts that other people would not notice. This 

subjective quality evaluation, which is more detailed in ITU-R Recommendation BT.500-10 

[ITU00], presents several drawbacks. First, subjective tests are influenced by the viewer and 

viewing conditions, which leads to human judgments that vary from one person to another, 

and from one time to another. Moreover, these massive surveys are expensive and time-

consuming processes. For this reason, we need another method for a faster and more direct 

image quality evaluation, which can be helpful to decide which options are valuable (from a 

rate/distortion point of view) while an image encoder is being developed. 

Due to the problems of subjective metrics, objective measures are heavily used as an 

easier way to compare image encoders and to choose the proper parameters for optimal 

performance. This type of metric relies on mathematical calculations. We consider it an 

objective method because, for a given image and an impaired version, it always produces the 

same results. The most widely used objective metric is the Peak to Signal Noise Ration 

(PSNR), which is defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

MSE
MAXPSNR

2

10log10   (1.8) 

PSNR measures quality given that it is based on the inverse value of the Mean Square 

Error (MSE) between the original and compressed image. It is calculated relative to the 

square of the highest sample value that can be represented in the original image, and that is 

why it is called Peak SNR. Most times, for a grayscale image, image depth is 8 and so 

128 −=MAX . A logarithmic operation is used to approach the measurement to how the HVS 

perceive image errors, more logarithmically than linearly. Despite the wide use of PSNR, it 

has been often criticized because human perception of error usually differs from that exposed 

by PSNR. For instance, very high and concentrated errors, such as pixel overflow artifacts 

and blocking artifacts, slightly affect PSNR. However, this type of distortion attracts the 

viewer’s attention, and hence it severely degrades the image quality from a human 

perspective. For this reason, some proposals have been made to replace PSNR as objective 

metric [WUH01] [TAN00], and the emerging ITU-T Video Quality Experts Group (VQEG) 

is trying to develop and standardize some alternatives, although this is still an open research 

issue. Therefore, in this thesis, like in almost all the papers in the current literature, we will 

use PSNR as quality metric. In our experiments, this approach makes sense because we are 

dealing with wavelet-based encoders, in which the transform is applied to the whole image. 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

17 

Therefore, the distortion introduced by uniform quantization will not create border effects or 

will be focused on a block of pixels, but it is distributed over several areas in the image. 

Hence, we consider PSNR a valid method to compare the performance of different wavelet-

based encoders. In fact, in a recent report, the video coding expert group (VCEG) considers it 

an open problem, but they admit that PSNR is one of the best methods among those currently 

available [VCE]. 

In conclusion, we will compare rate/distortion performance using several standard 

images, with different features and detail level to characterize from low to high frequency 

images, and computing a R/D table (bpp/PSNR) for each image. 

1.5.2 How to measure complexity 

The time complexity of short algorithms, such as many ordering algorithms, is usually 

expressed as the order of the asymptotic complexity using O-notation. In these algorithms, 

each single operation is considered to be executed in constant time, and the time behavior of 

the algorithm (number of operations executed) is given as a function of the amount of data to 

be processed, typically a linear, a quadratic or an exponential function. Unfortunately, an 

image encoder is a complex algorithm that involves many types of operations with different 

execution cost. Therefore, the use of asymptotic complexity is not suitable. An example is the 

entropy coding stage in transform coding. The execution time needed to encode a set of 

coefficients greatly depends on whether a Huffman encoder is used, or a more complex 

adaptive arithmetic encoder with several contexts is applied. Moreover, asymptotic 

complexity does not evaluate the correct use of specific architectures, e.g., it does not assess 

good cache use and the lack of data dependency in computer architectures.  

Instead of asymptotic complexity, execution time measurement will be used in this thesis 

as a way to assess complexity. Actually, execution time does not measure the complexity of 

an algorithm but of an implementation of that algorithm running on a specific system. Since 

execution time is largely dependant on the optimization level (e.g., use of platform dependant 

assembly code or multimedia SIMD instructions), all the implementations evaluated in this 

thesis are written under the same conditions to be compared as fairly as possible, using 

standard ANSI C/C++ language with the same optimization level for all of them.  

Most Operating Systems provide tools to measure the execution time of a program (e.g., 

time command in UNIX), but with too low accuracy. Instead of them, we will read the time-



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

18 

stamp counter (a 64-bit register available for Intel© Processors), which is incremented in 

every clock cycle, allowing much finer-granularity for execution time measuring. 

1.5.3 How to measure memory usage 

The third parameter that we need to measure is the memory required to implement a 

compression algorithm. In transform coding, it includes the memory needed to compute the 

image transform, and additional data required to hold the state of the coding process. Recall 

that, in general, DCT-based encoders need less memory than most wavelet-based encoders, 

due to the way the DCT is computed, in blocks, compared to the DWT, in which an image is 

processed as a whole. On the other hand, the dynamic statistical model used by an adaptive 

arithmetic encoder is an example of state information to be held, which is implemented as a 

frequency count table )( ixf . 

In some algorithms, memory usage can be easily assessed through a theoretical model 

(e.g., in the transform computation only the amount of coefficients have to be counted). 

However, sometimes the memory related to state information is not always so predictable, 

because it largely depends on the features of the incoming image. Therefore, in a more 

practical manner, memory usage can be measured (in bytes) by means of a counter that is 

increased as dynamic memory is being allocated. This second approach requires modifying 

the source program under evaluation to incorporate the memory count. Another practical 

alternative to avoid this code modification consists in looking up the memory statistics 

provided by the Operating System (e.g., the “peak memory usage” column in the Windows 

XP task manager), although in this case, we have to take into account that those results may 

include additional process memory such as the program memory. In this thesis, we will 

choose one of these metric methods depending on the test conditions. 

1.6 Other features 

Besides the characteristics presented in the previous sections, other features may be 

considered of interest in an image compression scheme, depending on the application 

purpose. One of these characteristics is symmetry. If the encoder and decoder have the same 

complexity, we consider that they are symmetric. Symmetry can refer to execution time, 

memory requirements or both. Vector quantization and fractal coding are examples of 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

19 

asymmetric coding, because the search for the codebook is a time-consuming process that is 

only carried out by the encoder. Real-time multimedia applications, such as 

videoconferencing, require symmetric complexity while other applications, like video on 

demand and pre-recorded DVB, admit slower coding than decoding, since only the latter has 

real-time requirements. 

Other properties define the output bitstream and its interpretation rather than the encoder 

and decoder architecture. If the encoder generates a bitstream that defines several versions of 

the same image at different resolution levels, we say that the bitstream is resolution scalable, 

in other words, it allows multiresolution representation. If this feature is present in a 

bitstream, the decoder can decode a small-resolution version of the image from the first 

portion of the bitstream and, as it gets more information, it can reconstruct larger versions of 

the image. This property is also inherent of the wavelet transform, as we will see in the next 

chapter. 

A bitstream is SNR scalable if the decoder can reconstruct a lower-quality full-resolution 

version of an image from the first portion of the bitstream, and the image quality (measured 

as SNR) improves as more information is received. SNR scalability is usually implemented 

with bit plane coding, by transmitting first the bit planes that achieve greater quality 

improvement. Note that the term progressive coding can refer to resolution progressive or 

SNR progressive coding (or even both). 

A bitstream is said to be embedded if one can extract a smaller part of the bitstream 

achieving a characteristic that is the same as though the bitstream would have been generated 

directly with that smaller size.  

Rate control in image compression is the capability of a coding algorithm to achieve a 

target bit rate when coding an image. For a given encoder, optimal compression performance 

is demanded for the target bitrate. Although some rate control methods are very exact, many 

times, precise rate control is not needed and the achieved bitrate can differ slightly to the 

target bitrate. 

Another interesting bitstream feature is the random access. This property defines the 

ability to decode only a specific area of the image from the bitstream. In order to accomplish 

random access, some regions of the image are encoded without statistical dependence (e.g., 

using different probability models in each area for adaptive arithmetic coding). This region 

can be rectangular or arbitrary shaped. 



CHAPTER 1. INTRODUCTION TO IMAGE CODING 

20 

Finally, in some cases, it can be desirable to encode an area of the image at a higher level 

of quality (e.g., a face in a portrait). This area is called region of interest (ROI). ROI coding 

can be achieved by applying lighter quantization to the coefficients in the ROI than to those 

in the background. 



 

21 

 

Chapter 2   

Wavelet transform computation 
 

In Chapter 1, we referred to the importance of transform coding within the state-of-the-art 

image coding algorithms, being those based on the wavelet transform the most efficient in 

terms of rate/distortion performance. For this reason, we will focus on wavelet-based image 

coding. In these encoders, the computation of the wavelet transform imposes serious 

restrictions on the global memory consumption and on the entire encoder complexity. Thus, it 

is a critical part. It is even more important at very low bit-rates, since in that case, the time 

spent on entropy coding might become almost negligible, and most time is spent in the 

transform computation. In this chapter, we introduce the discrete wavelet transform (DWT) 

and various algorithms to compute it. Particularly, we will focus on the two-dimensional 

DWT for image coding, introducing some of the current proposals for efficient computation 

of the DWT. 

2.1 Introduction to wavelet transform for image coding 

2.1.1 Why a new transform? 

The main idea behind transform coding is being able to find a better representation for an 

input signal, which can be, for instance, a set of pixels P. When we pursue data compression, 

“a better representation” means that the new set of coefficients C multiplying the new basis 

has less redundancy (i.e., less correlation among their components) than the original one. 

This way, the energy of the coefficients is more compacted so that entropy coding can be 

applied more efficiently, most of all after quantization. 

In general, in a finite and discrete linear transform, we can express a discrete signal S as a 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

22 

set of N coefficients Cci ∈  multiplying each basis vector Ti as: 

i

N

i
iTcS ∑

=

=
1

  (2.1) 

For an efficient representation of the input signal, a few basis vectors should be able to 

approach S, so that only a small number of coefficients are necessary to represent the original 

signal in a compact way, or at least to approximate it in the case of lossy coding. Thus, the 

selected transform plays an important role in the coding efficiency. The efficiency can be 

improved if we choose a transform that matches the characteristics of the input signal using 

as few basis vectors as possible. Hence, we need to analyze the characteristics of the input 

signal in order to find the suitable transform.  

Since we aim at digital image compression, and pictures are size-limited, one of the 

features of the input signal is that it is limited in space. In addition, the Nyquist theorem can 

be used to prove that digital images are also limited in frequency (i.e., band-limited). In fact, 

natural images tend to concentrate most energy in low frequency components. Moreover, the 

human eye is less sensitive to high frequency components, and therefore small loss in those 

components can be accepted without visually perceptible distortion. So, we can discard high 

frequencies if they are small enough. As a conclusion, we have to search for a basis that 

matches these features, both space and band limitation.  

Fourier-based transforms1 can efficiently represent band-limited signals, but they have 

the inconvenience that the functions forming its basis (sines and/or cosines) are not space-

limited. In a practical sense, this means that we can determine all the frequencies in the input 

signal, but we cannot know where these frequencies are placed. Moreover, since these basis 

functions are not space-limited (or time-limited), the Fourier transform is useful to approach 

stationary sources, which do not vary their behavior in time. Unfortunately, this is not the 

case of natural images, which present a non-stationary behavior, and hence it would be 

preferable to perform local analyses of the signal instead of the global analysis that the 

Fourier transform performs. 

In the opposite case, an input signal can be analyzed in small portions to determine the 

existing frequencies in each area. In the extreme case, in which that area is infinitesimal, we 

                                                 
1 Examples of Fourier-based transforms are the DCT, used for highly correlated sources, or the DST, 
which is less frequently employed because it fits better highly variable sources. 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

23 

can use the Dirac1 pulse as basis function. This transform is space-limited but it has the 

drawback that it contains all the possible frequencies, and hence no practical information 

about frequencies can be extracted. In the equivalent discrete case, we can extend the pulse 

width to the sampling period, but we still cannot extract frequency but only spatial 

information (in fact, this is the case of the canonical representation). 

An intermediate solution is the short-term Fourier Transform [GAB46], in which an input 

signal is broken into fixed-length fragments, and the Fourier analysis is applied to each of 

them. However, blocking artifacts appear if this approach is applied for image coding. In 

addition, we still have to use sines and cosines as basis functions, which is not always the 

best option to approximate natural images. Another important disadvantage of this transform 

is that all the functions in the basis (and thus the transform coefficients) cover exactly the 

same area, independently of their frequency. This effect is presented in Figure 2.1, in which 

coefficients from a Fourier-based transform are given along with their corresponding basis 

functions. In this example, all the basis functions have the same support length (i.e., the 

length of the area that they cover is the same). A better image analysis can be done if higher 

frequency functions cover smaller signal pieces, which is known as a multiresolution 

representation.  

 

 

                                                 
1 We define the Dirac pulse as f(x)=1 for x=0 and f(x)=0 for the rest of x. 

Fig. 2.1: Coefficients from a Fourier-like basis and the basis functions. For each coefficient (ci,j), 
the first subindex (i) indicates the frequency of its basis function, while the second one (j) shows 

its position from the origin. Notice that all the basis functions cover exactly the same signal 
portion, independently of its frequency. 

time/space 

ƒ1,p(t) 

ƒ2,p(t) 

ƒ3,p(t) 

ƒ0,p(t) 

c2,0 c2,1 c2,2 c2,3 

fr
eq

ue
nc

y 

c1,0 c1,1 c1,2 c1,3 

c3,0 c3,1 c3,2 c3,3 

c0,0 c0,1 c0,2 c0,3 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

24 

2.1.2 Wavelet transform  

In contrast to the Fourier transform, the wavelet analysis uses a basis formed by functions 

that are finite in both the frequency and spatial domain, which are called wavelet functions 

Ψs,p(t). All these wavelet functions are generated from translation and dilation of a single 

function, called mother wavelet Ψ(t). The wavelet function generation is defined as: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=
s

p1
ps,

t
s

t ΨΨ   (2.2) 

where s is the scaling parameter and p is the translation parameter. Notice that as the scaling 

parameter gets larger, the generated function gets wider, so it covers a larger area but a 

narrower frequency band (we will prove it later with the Fourier transform). The translation 

parameter serves to shift the function support, indicating its position from the origin. We will 

refer later to Figure 2.3, but at this moment, we can compare in this figure three wavelet 

functions at different scales (Ψ1,p(t), Ψ2,p(t) and Ψ3,p(t)). This figure shows the effect of 

varying the scale parameter in a wavelet function. 

In the continuous version of the wavelet transform, a finite-energy function f(t) can be 

represented with wavelet functions as: 

( ) ( ) ( ) dpdstpstf ps,∫ ∫= Ψ,ψ   (2.3) 

where the ( )ps,ψ  function can be calculated using the continuous wavelet transform (CWT): 

( ) ( ) ( )dtttfps ps,
∗∫= Ψ,ψ   (2.4) 

Actually, the wavelet transform is not unique, but we can define a different type of 

wavelet transform (also called wavelet family) depending on the selected mother function. 

This allows us to choose the wavelet family that fits better with the signal that we want to 

compress. In the Fourier transform, this choice cannot be made. 

A mother function needs to meet several requirements to form a valid wavelet family. 

One of these requirements gives name to these functions. In particular, a valid wavelet 

function must have an average value of 0 in the time domain, i.e.: 

( ) 0=∫ dttΨ   (2.5) 

This means that it must be oscillatory, and that is why we call it a wavelet function. A related 

feature of a wavelet family is the number of vanishing moments of a function. We say that a 

function Ψ(t) has n vanishes moments if: 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

25 

( ) 1,,1,00 −=∀=∫ nidttt i KΨ   (2.6) 

The number of vanishing moments characterizes how well a wavelet basis approaches 

polynomials, so the higher the number of vanishing moments, the higher order polynomials a 

wavelet basis approaches (see admissibility condition in [SHE96]), and to a certain degree, it 

approaches better smooth functions. Since most natural images have smooth features, a 

certain degree of vanishing moments is desirable in order to approach images for 

compression purposes. 

Since we want to encode digital signals, we are more interested in the discrete wavelet 

transform (DWT), in which the s and p parameters are not continuous but discrete. In the 

DWT, an infinite but discrete number of wavelet coefficients ψs,p can decompose a finite-

energy function as follows: 

( ) ( )∑ ∑
∞

−∞=

∞

−∞=

=
s p

ps,ps ttf Ψ,ψ   (2.7) 

For a real implementation, we still need to decompose it into a finite amount of 

coefficients to be able to compute them with a computer. We can ensure that the translation 

parameter p is finite simply by limiting the set of functions that the DWT can describe to 

those that are space-limited. That is not very difficult in our case, because we handle digital 

images and this requirement is inherent to this type of data. On the other hand, although we 

deal with finite-energy functions, the finiteness of the scaling parameter is not as easily 

achieved. The reason for this difficulty can be better understood by studying the effect of the 

scaling parameter on the frequency of the input signal. For this purpose, we will take a 

different approach to the wavelet transform as a band-pass filter.  

Consider a frequency-limited input signal, with a frequency band denoted by the dotted 

area in Figure 2.2(a) (e.g., the input signal can be one sampled at a frequency 2fs, in which 

frequencies up to fs are captured according to the Nyquist theorem). One of the features of the 

DWT is that the upper half subband of the input signal can be described using first-level 

wavelet functions, as we will see in the multiresolution analysis (the following subsection). In 

addition, if the amount of functions (and therefore coefficients) needed to represent this 

upper-half subband is half the number of samples in the input signal, the transform is said to 

be non-expansive.  

The next level of wavelet functions is generated by scaling the first-level functions by a 

factor of 1/2, which results in space dilation. From the Fourier analysis, we know that dilation 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

26 

in space implies contraction and shift in frequency, as described in:1  

( )sωs
s

Ftf =
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛F   (2.8) 

Thereby, the second-level wavelet functions cover half the remaining low-band spectrum of 

the input samples. In a dyadic decomposition, as we define more wavelet levels in the same 

way, we cover the upper subband of the remaining low-bands at each level. However, the 

whole spectrum of the input signal cannot be covered using a finite number of wavelet 

functions at different levels, because we always have a remaining low frequency subband to 

be covered at any level, as it is shown in Figure 2.2(a). In the extreme case, we know that the 

DC component cannot be represented by a function or set of orthogonal functions integrating 

to 0, such as the wavelet functions. Hence, another function Φl(t) must be introduced to cover 

the remaining low-frequency subband at any given level (l), as it is depicted in Figure 2.2(b). 

This new function is called scaling function. 

 
The generation of scaling functions at several levels is similar to that explained in the 

case of the wavelet functions, i.e., dilation and translation of a generating function Φ(t). This 

function has a low-pass behavior and it has to meet some requirements, such as: 

( ) 1=Φ∫ dtt   (2.9) 

With the introduction of the scaling function, we can establish now a finite wavelet 

decomposition of a space-limited discrete signal S as: 

( ) ( )∑∑ ∑
== =

Φ+=
Ls N

p
pl,pl

L

s

N

p
ps,ps ttS

2/

1
,

1

2/

1
, φψ Ψ   (2.10) 

                                                 
1 The Fourier transform of a function )(tf is expressed as { } ( )ω)( Ftf =F  

… Ψ1 Ψ2 Ψ5 Ψ4 Ψ3 

Ψ1 Ψ2 Φ3 Ψ3 

f 

f 

Fig. 2.2: Frequency band covered by wavelet functions at various levels in a dyadic 
decomposition. The upper plot (a) reveals the need for another type of function (scaling 

functions) to cover the low-frequency band as it is shown in the lower plot (b). 

(a) 

(b)



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

27 

where N is the number of samples in the input signal, L is the decomposition level (number of 

wavelet scales), and finally ψs,p and ϕs,p are the resulting wavelet and scaling coefficients 

respectively (a non-expansive transform is being considered). 

Observe that the number of wavelet coefficients required to represent S at a level 

decreases as the scale level increases, which involves that higher frequency bands are 

represented with higher resolution (lower scales represent higher frequencies). This is a 

difference of wavelets compared with the short-term Fourier transform, in which all the 

frequency bands are represented using the same spatial resolution. This difference between 

both transforms can be seen comparing Figures 2.1 and 2.3, where the coefficients resulting 

from the Fourier and wavelet transforms are shown. In this figures, each coefficient is placed 

in a tile indicating the frequency band and the space area that it covers. In Figure 2.3, the y-

axis shows the frequency spectrum that each wavelet level covers, in a consistent way with 

Figure 2.2, while the x-axis measures the area that each coefficient covers, with higher spatial 

resolution on higher frequency bands, and hence showing the better adaptability of the 

wavelet transform to details of the image. 

In this section, we have presented an intuitive introduction to wavelets rather than a 

formal description. An approach to wavelets with more mathematical background and proofs 

of some assumptions that we have made can be readily found in the literature [DAU92] 

[VET95] [STR96]. 

 

Fig. 2.3: Coefficients from a wavelet basis, and its basis functions (including the scaling function). 
For each wavelet coefficient (ψi,j), the first subindex (i) indicates the scale of its basis function, 

while the second one (j) shows its position. In contrast to Fourier, in the wavelet transform, basis 
functions with higher frequency have lower support, and hence higher spatial resolution. 

ψ1,0 ψ1,1 ψ1,2 ψ!,3 ψ1,4 ψ1,5 ψ1,6 ψ1,7 

ψ2,0 ψ2,1 ψ2,2 ψ2,3 

ψ3,0 ψ3,1 

fr
eq

ue
nc

y 

ϕ3,0 ϕ3,1 

time/space 

Ψ3,p(t) 

Ψ2,p(t) 

Ψ1,p(t) 

Φ3,p(t) 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

28 

2.1.3 Multiresolution Analysis 

One of the main benefits of wavelets for image analysis is the introduction of a 

multiresolution representation, which was first formally described by Mallat in [MAL89]. For 

this analysis, consider V0 the space generated by a scaling function with the s parameter equal 

to 0 so that a function f(t) can be defined in V0 as: 

∑ Φ=
p

pptf ,0,0φ)(   (2.11) 

 In general, we call Vn to the space generated by the linear combination of Φn,p(t).  

Before continuing with the Multiresolution analysis, it is important to see that the scaling 

function posses the self similarity property, in other words, it can be recursively generated by 

scaled (shrunk to half) and shifted versions of itself, which is mathematically described by: 

∑ −Φ=Φ
p

p ptct )2()(   (2.12) 

This is important because it shows that any function of Vn+1 is also defined in Vn, while 

the reverse is not true. In general, it allows us to nest the subspaces Vn as follows: 

KKKK ⊂⊂⊂⊂⊂⊂⊂⊂ + 011 VVVVV nnL   (2.13) 

If we focus on an nth subspace level, the fact that nn VV ⊂+1  implies that there is a 

subspace Wn+1 that is the complement of Vn+1, so that Vn can be decomposed as: 

11 ++ ⊕= nnn VWV   (2.14) 

The Wn+1 subspace is generated by the corresponding wavelet functions at a level n+1, 

and hence both the wavelet and scaling functions should be chosen in a way that these nested 

relations and space decomposition hold. 

As a result, the multiresolution analysis in signal processing implies that a signal defined 

in V0 can be represented by two coefficient vectors: one defined in W1 and another defined in 

V1. In an intuitive way, the signal representation resulting from the scaling subspace V1 

resembles the original signal, but represented with lower spatial resolution, while the one 

from the wavelet subspace W1 captures the details that are lost by the resolution reduction. 

This process is known as one-level wavelet decomposition, while a L-level dyadic wavelet 

decomposition is achieved by recursively applying L successive decompositions on the 

scaling coefficients, so that a signal defined in V0 is decomposed in coefficients from the L 

wavelet spaces and one scaling subspace that decompose the original space as shown in the 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

29 

following expression: 

LLL VWWWWV ⊕⊕⊕⊕⊕= −1210 K   (2.15) 

2.2 DWT computation using filter banks 

2.2.1 1D DWT computation 

From the multiresolution analysis, we know that both Vn+1 and Wn+1 are subspaces of Vn, i.e., 

nn VV ⊂+1  and nn VW ⊂+1 . Then, a scaling function of Vn+1 can be computed in terms of 

functions of Vn, and so can a wavelet function of Wn+1. Thereby, there are two sets of 

coefficients { }kh  and { }kg  satisfying that: 

∑ −Φ=Φ
k

k ktht )2()(   (2.16) 

∑ −Φ=
k

k ktgt )2()(Ψ   (2.17) 

where 1)( +∈Φ nVt , 1)(Ψ +∈ nWt  and kVkttt n ∀∈−ΦΦ )2(),(Ψ),( . 

By means of these relationships from the multiresolution analysis, we can define the 

wavelet transform computation as a simple two-band filtering operation. The set of filter 

coefficients (or filter taps) { }kh  defines a scaling function and it has a low-pass behavior. On 

the other hand, the filter { }kg  defines a wavelet function and thereby, it is a high-pass filter.  

Recall that any function f(t) of V0 can be represented with functions of V1 and W1: 

∑∑∑ +Φ=Φ=
p

pp
p

pp
p

pptf ,1,1,1,1,0,0 Ψψφφ)(   (2.18) 

Consider that the input signal S is represented by the set of scaling coefficients { }p0,φ . 

The wavelet and scaling coefficients for one-level wavelet decomposition ({ }p1,ψ  and { }p1,φ  

respectively) can be computed from { }p0,φ  using the previous filter bank: 

∑ +=
k

kpkp h 0,1, φφ    (2.19) 

∑ +=
k

kpkp g 0,1, φψ   (2.20) 

This pair of low-pass and high-pass filters is known as analysis filter bank. After 

applying the filters, the resulting coefficients are redundant, and hence we use a down-



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

30 

sampling by a factor of two on each coefficient set (i.e., the odd coefficients are discarded), 

having the same number of coefficients after transformation as in the input signal (note that 

we use a non-expansive transform, also known as critical sampling). The reconstruction of 

the original scaling coefficients from the transformed coefficients can be performed with 

another pair of low-pass and high-pass filters ({ kh~ } and { }kg~  respectively), which form the 

synthesis filter bank. Before applying the synthesis filters, the transformed coefficients have 

to be up-sampled by a factor of two by inserting 0s between every two samples. Once the 

transformed coefficients are returned to their original resolution, the exact input signal { }p0,φ  

can be recovered (without quantization errors) by adding the result of applying the low-pass 

synthesis filter to the scaling coefficients ({ }p1,φ ) and the high-pass synthesis filter to the 

wavelet coefficients { }p1,ψ . The whole process is depicted in Figure 2.4. 

 

Since this algorithm involves a simple filtering operation, its asymptotic complexity is 

O(n), which is lower than the complexity of the DCT, O(nlogn). For this reason, the DWT 

can be applied on larger image pieces (or even the whole image), while the DCT is processed 

in small blocks (recall that another reason is the lack of spatial locality of the DCT). The 

exact number of operations required to execute this algorithm depends on the filter-length 

and its symmetry. Thus, the number of multiplications required to transform n input samples 

using a filter with N taps is Nn× , while it is reduced to 2Nn×  if the filter employed is 

symmetric, as we will see later. 

Because of the multiresolution analysis, this one-level wavelet computation algorithm 

can be generalized to any N-level dyadic wavelet decomposition by applying the same 

2 ↑ 

Low-pass 

{ }kh  2 ↓ 

{ }kg  2 ↓ 

{ }p0,φ  High-pass 

S 

{ }kh~  

{ }kg~  

S 

2 ↑ 

{ }p0,φ

{ }p1,φ

{ }p1,ψ

Analysis Synthesis 

Fig. 2.4: One-level wavelet decomposition of an input signal using an analysis filter bank, and 
signal reconstruction using a synthesis filter bank. 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

31 

decomposition to any intermediate scaling coefficients at a level n { }pn,φ . In the same way, 

the corresponding wavelet and scaling coefficients at the following level ({ }p1,nψ +  and 

{ }p1,nφ +  respectively) are computed. This process is repeated until the desired decomposition 

level (N) is reached. Then, the forward wavelet transform (FWT) is completed. On the other 

hand, the inverse wavelet transform (IWT) is computed by applying the synthesis filters in 

the reverse order, from the N level to the first one. 

 

2.2.2 Higher order wavelet transform 

The 1D DWT computation can be extended to higher dimensions by applying filtering on 

each dimension in a separable way. Since we are interested in the wavelet transform for 

image compression, and images are two-dimensional, we will use a filter-bank to achieve a 

one-level 2D DWT decomposition of an image by carrying out the 1D DWT both 

horizontally and vertically, i.e., first in rows and then in columns. The result of applying one-

level 2D DWT decomposition on the standard Lena image is shown in Figure 2.5(a). From 

this decomposition, we get four different image subbands, which are usually called LL, HL, 

LH and HH subbands. The first letter in the subband name identifies the filter that has been 

applied horizontally, the second letter identifies the vertical filtering, and the number 

identifies the decomposition level. In the example of Figure 2.5(a), only subbands from the 

LH1 HH1 

HL1 LL1 

LH1 HH1 

HL1 LH2 HH2 

HL2 LL2 

Fig. 2.5: (a) One-level wavelet decomposition of an input image, (b) two-level wavelet 
decomposition, in which the LL1 subband of the decomposition in (a) is further decomposed. 

(a) (b)



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

32 

first decomposition level have been computed. This way, the HL subband contains vertical 

low-pass information and horizontal high-pass information. As a result, it displays vertical 

details, since the result of a horizontal high-pass filter in an image is seen as vertical details. 

Conversely, the LH subband is the result of applying a low pass filter horizontally and a high 

pass filter vertically, and it shows horizontal details. Finally, the HH subband contains pure 

high frequency information, both horizontally and vertically, while the LL subband contains 

only low pass information, and hence it is a low-resolution version (half sized) of the original 

image. We cannot consider the LL subband as a wavelet subband because the coefficients of 

this subband multiply a basis with only scaling functions (both horizontal and vertical).  

Most energy is concentrated in the LL subband, and hence further image decorrelation 

can be achieved if the same process is applied to this subband. Thus, a second decomposition 

level is obtained the way it is presented in Figure 2.5(b). In a dyadic wavelet decomposition, 

this type of decomposition is recursively applied to the remaining low frequency subband 

(LL) until a desired decomposition level (N) is reached. Other types of wavelet 

decompositions, such as wavelet packets [COI92], recursively apply the same scheme not 

only to the low frequency subband, but also to other wavelet subbands, in order to remove 

redundancy in these subbands (most of all in images with many high-frequency components). 

However, the algorithm to determine if a wavelet subband should be refined is time-

consuming, and many times little benefit is gained. Therefore, this type of decomposition is 

not commonly used. 

Multiresolution is an important feature of the wavelet transform for image coding given 

that it provides resolution scalability in a natural way. For this type of scalability, a decoder 

receives the LLN subband in first place, which is the lowest resolution version of the original 

image. Then, the decoder can receive the wavelet subbands at that level (LHN, HHN and HLN) 

and use them along with the LLN subband to compute the following low-frequency subband 

(LLN-1), doubling the resolution of the first version of the image (LLN). As the decoder 

receives more wavelet subbands, it continue doubling the image size, until the desired image 

size is reached, or no more subband levels are available because the first-level wavelet 

subbands have been received, whatever comes first. 

2.2.3 Desired filter and transform properties 

Wavelet filter design for image coding is not within the scope of this thesis. Instead, the 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

33 

reader is referred to the available literature [VET92] [COH92] [GAL88]. However, some 

filter properties considered in the design of wavelet filter banks are also of interest in the 

design of a wavelet image encoder. Unfortunately, not all these properties can be satisfied 

simultaneously, and different filter banks are constructed to meet different requirements 

depending on the application purposes (e.g., compression in our case). 

Some of these interesting filter and transform properties are: 

• Perfect reconstruction: This property ensures that the input signal can be exactly 

recovered after transformation if no quantization error is introduced. This property 

still holds in spite of the introduction of a down-sampling by two in the scaling and 

wavelet coefficients resulting from each decomposition level. 

• Linear phase: If a filter has a symmetric response to an impulse, it is said to possess 

the linear phase property. This property can be achieved by using symmetric filters. 

In image coding, if a non-linear phase filter is employed, each pixel does not 

contribute equally to the transformed coefficients that are equally distant on each side 

of the pixel. After quantization and reconstruction, this unequal contribution 

introduces visually disturbing edge distortion in the image [LIM90].  

Another practical implication of this type of filter is their lower complexity compared 

to a non-symmetric filter of the same length, since symmetric filters can be 

implemented in a factorized form, halving the amount of multiplications that are 

necessary.  

Finally, the use of symmetric filters is crucial in order to solve the boundary 

treatment problem. When filtering a space-limited signal, we need to make up the 

values that are beyond the signal limits to be able to apply filtering on the samples 

that are close to the signal boundary. A simple assumption could be that these 

samples are 0, which is known as zero-padding. However, this approach has two 

drawbacks: 1) perfect reconstruction is only guaranteed if we generate more output 

coefficients than the number of samples in the input signal, in other words, we cannot 

apply critical sampling without error; and 2) in most cases, the introduction of zero 

padding will cause sharp discontinuities and hence large artificial high frequencies 

are generated. These consequences are harmful to image coding given that we need 

to encode extra coefficients, and in addition, the new unexpected high frequencies 

make the image more difficult to be encoded, achieving lower compression 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

34 

efficiency because most compression algorithms are based in the fact that most 

energy is concentrated in low-frequency bands. These problems can be avoided by 

using symmetric extension along with a symmetric filter [BRI95]. In symmetric 

extension, an input signal represented by abcde (where each letter represents an input 

sample) is extended as edcb|abcde|dcba, i.e., the samples for signal extension in the 

boundary are copied from the input signal in a symmetric way. This extension is 

known as whole point symmetric extension, while another variant is the half point 

extension, which includes the last input sample in the signal extension, resulting in 

the following extension: edcba|abcde|edcba. The use of linear phase filters and 

symmetric extension allows perfect reconstruction with critical sampling, and avoids 

introducing extra high frequencies. 

For all these reasons, we will always use linear phase filters for image compression in 

this thesis. 

• Orthogonality, orthonormality and bi-orthogonality: We say that a two-band wavelet 

transform is orthogonal if the high pass and low pass filters are orthogonal to each 

other, i.e.: 

∑ =
k

kk gh 0   (2.21) 

One way to build orthogonal filters is that { }kg  satisfies the following condition: 

k
k

k hg −−= 1)1(  (2.22) 

Orthogonal filters are convenient because the input signal is split into a low and a 

high frequency band without duplication of information. With this type of filter, the 

same filter pair is applied for the analysis and synthesis processes. In addition, if the 

transform is energy preserving, this transform is called orthonormal. In an energy 

preserving transform, the sum of the squares of the input samples is identical to the 

sum of the squares of the transform coefficients, which is known as the Parseval’s 

theorem [SAY00]. In our case, for one-level decomposition, at a level s, energy 

preserving means that: 
2

1,
2

,1s
2

,s )ψ()(φ)(φ ∑∑∑ ++ +=
p

ps
p

p
p

p   (2.23) 

Orthonormal transforms are of interest for image coding given that the quantization 

error introduced in the transformed coefficients is identical to the resulting error in 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

35 

the spatial domain, and hence for this type of transform, minimizing the MSE of the 

quantized coefficients is the same as minimizing it in the reconstructed image. 

Unfortunately, a two-band filter bank cannot be orthogonal and linear phase 

simultaneously (except the Haar transform, which is not useful for image coding due 

to its lack of smoothness). Only bi-orthogonal transforms have this property 

[VAI93]. In a bi-orthogonal filter bank, we do not use the same analysis and 

synthesis filter pairs, and the high and low pass filters have unequal length, achieving 

symmetric filters while preserving perfect reconstruction. The term bi-orthogonal 

stems from the fact that the low-pass synthesis filter is orthogonal with respect to the 

high-pass analysis filter, and the same happens to the high-pass analysis and low-pass 

synthesis filters, that is: 

∑ =
k

kk gh 0~   ∑ =
k

kk gh 0~
  (2.24) 

A bi-orthogonal filter bank can be designed to achieve a very close to orthonormal 

transform. Hence, we will use this type of transform because they possess the 

valuable linear-phase property being nearly orthonormal. 

• Filter normalization: The output of the analysis filters can be normalized by scaling 

the resulting coefficients by a constant factor provided that it is undone before the 

synthesis filtering. The normalization of the wavelet transform can be expressed in 

terms of the DC gain of the low-pass analysis filter, and the Nyquist gain of the high-

pass analysis filter (GDC, GNyquist), which can be computed as follows: 

∑=
k

khGDC   ( )∑ −=
k

k
k gG 1Nyquist   (2.25) 

With the use of the proper normalization ( 2 , 2 ), we can achieve an orthonormal 

transform if the original transform is orthogonal (or a close to orthonormal wavelet 

transform if a bi-orthogonal filter is used), allowing the use of the same uniform 

quantization step for all the wavelet subbands. However, a different normalization 

can be used to avoid dynamic range expansion for minimal memory usage in 

implementations using data types with low bits per sample (e.g., if we want to 

compute the DWT using 16-bit integers for images that are defined with up to 10 bpp 

[ADA00]). With a (1, x) normalization, the mean value of the low-pass band 

coefficients is the same as the mean value of the original signal. Hence, the various 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

36 

LL subbands that the decoder computes are low-resolution versions of the original 

image in approximately the same range as the original image (hence it can be 

displayed without renormalization). 

• Other filter features: Other useful filter properties are complexity and coding gain. In 

general, it can be stated that the higher the filter length, the higher the filtering 

complexity (although the filter complexity can be halved through the use of 

symmetric filters). Coding gain is a filter parameter that quantifies the benefits 

associated with the use of a filter for image coding. The coding gain of a wavelet 

transform can be computed as the relation between the MSE of the input pixels 

quantized and independently encoded at a certain bit rate, and the MSE of the 

resulting transform coefficients quantized and encoded at the same bit rate. A 

comparison of coding gain for various wavelet transforms can be found in [ADA00]. 

Some other characteristics of a wavelet transform, such as regularity1 and the number 

of vanishing moments, are employed as conditions for the design of orthonormal and 

bi-orthogonal wavelets [DAU98] [DAU92], but this issue is not analyzed in this 

thesis, while the reader is referred to the available literature [TAU02]. 

 
k Analysis low-pass, { }kh  k Analysis high-pass, { }kg  

0 + 0.602949018236360 −1 + 0.557543526228500 
± 1 + 0.266864118442875 −2, 0 − 0.295635881557125 
± 2 − 0.078223266528990 −3, +1 − 0.028771763114250 
± 3 − 0.016864118442875 −4, +2 + 0.045635881557125 
± 4 + 0.026748757410810   
    

k Synthesis low-pass, { kh~ } k Synthesis high-pass, { }kg~  
0 + 0.557543526228500 +1 + 0.602949018236360 
± 1 + 0.295635881557125 0, +2 − 0.266864118442875 
± 2 − 0.028771763114250 −1, +3 − 0.078223266528990 
± 3 − 0.045635881557125 −2, +4 + 0.016864118442875 
  −3, +5 + 0.026748757410810 

 

Table 2.1: Bi-orthogonal Daubechies (9,7) filter bank with (1,1) normalization, and floating 

point implementation. 

                                                 
1 Examples of regularity features are continuity and differentiability of the scaling and wavelet 
functions, and it is typically employed to measure smoothness. 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

37 

 

2.2.4 Popular wavelet transforms for image coding 

In Table 2.1 it is presented a near to optimal filter bank for image compression. This wavelet 

transform is known as bi-orthogonal 9/7 [COH92] [ANT92] because the low and high-pass 

analysis filters have 9 and 7 taps respectively (sometimes it is called Daubechies 9/7, 

Cohen/Daubechies/Feauveau 9/7 or simply CDF 9/7 or B9/7). From all the wavelet 

transforms compared in [ADA00], this one exhibits the highest code gain for 6-level 

decomposition. It is also considered the best transform for image compression from the filters 

analyzed in [VIL95]. This bi-orthogonal filter-bank is symmetric, and hence each coefficient 

can be computed with only 4 or 5 multiplication operations, instead of 7 or 9. In addition, due 

to its symmetric definition, it possesses the linear phase property. Therefore, it is non-

expansive with perfect reconstruction, and it does not present visual distortion after 

quantization unlike non-linear phase filters, as described in the previous section.  

The bi-orthogonal 9/7 transform, as it is defined in Table 2.1, is (1,1) normalized. 

However, this normalization is not generally employed for image coding. Tree-based 

encoders, like SPIHT [SAI96] (which we will study later), usually apply the ( 2 , 2 ) 

normalized version of this filter-bank, being { }kh2 , { }kg2 , { }kh~2  and { }kg~2  the applied 

filter-bank. With this normalization, this wavelet transform is close to orthonormal, and 

hence it is almost energy preserving. Thus, the same quantization step can be applied to all 

the subbands, simplifying the design of the bit-plane coding and the quantization process of 

the coefficient trees (see Chapter 4). The JPEG2000 standard also uses this filter-bank by 

default, being the main wavelet transform in its baseline definition (Part 1), but with a 

different normalization, a (1,2) normalization. In this normalization, the filter-bank is formed 

by { }kh , { }kg2 , { }kh~2  and { }kg~ . It is not energy preserving, therefore, each subband has to 

be independently quantized depending on the wavelet subband and the decomposition level. 

However, this type of normalization avoids dynamic range expansion at each decomposition 

level, and thus architectures with fewer bits per sample can be used to compute the DWT 

with less overflow risk. 

Another simpler bi-orthogonal filter-bank is commonly adopted for fast DWT integer 

implementation, and lossless coding. This transform is known as 5/3, and the associated 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

38 

filter-bank is described in Table 2.2. This filter-bank allows integer implementation because 

it can be implemented with integer division operations, although with loss of precision due to 

rounding. Later, we will describe how to perform reversible integer-to-integer transform with 

this filter-bank in spite of the loss of precision. The (1,2) normalized version of this wavelet 

transform also must be implemented by any standard JPEG2000 codec. 

This simple wavelet transform offers an excellent opportunity to show graphically how 

the multiresolution analysis works. From the multiresolution analysis equations, and the 5/3 

filter-bank defined in Table 2.2, we know that an analysis scaling function 1)( +∈Φ nVt  and a 

synthesis wavelet function 1)(Ψ~ +∈ nWt  can be computed from scaling functions 

nVkt ∈+Φ )2(  as: 

)12(
4
1)2(

2
1)12(

4
1)( −Φ+Φ++Φ=Φ tttt  (2.26) 

)12(
4
1)2(

2
1)12(

4
1)(Ψ~ −Φ

−
+Φ++Φ

−
= tttt  (2.27) 

The graphical analysis is shown in Figure 2.6(b), where a 5/3 scaling function of 1+nV  

has been recursively defined as the sum of three time-scaled and shifted versions of the same 

basis function of nV , multiplied by 1/4, 1/2 and 1/4, as it is given by the above equations. 

These three generating functions are depicted in Figure 2.6(a). In a similar manner, the 

wavelet function of 1+nW  shown in Figure 2.6(d) is build from the three scaling functions of 

nV  depicted in Figure 2.6(c). The synthesis scaling function and analysis wavelet function 

can be defined in the same way, but they are not shown due to the irregular nature of the 5/3 

synthesis scaling function. 
 

k { }kh  k { }kg  k { kh~ } k { }kg~  
0 + 3/4 −1 + 1/2 0 + 1/2 +1 + 3/4 
± 1 + 1/4 −2, 0 − 1/4 ± 1 + 1/4 0, +2 − 1/4 
± 2 − 1/8     −1, +3 − 1/8 

 

Table 2.2: Bi-orthogonal (5,3) filter-bank with (1,1) normalization, for integer 

implementation. 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

39 

Φ-1(t)=(1/4)Φ(2t-1)
Φ0(t)=(1/2)Φ(2t)

Φ1(t)=(1/4)Φ(2t+1)

Φ(t)=(1/4)Φ(2t-1)+(1/2)Φ(2t)+(1/4)Φ(2t+1)

 
(a)     (b) 

Φ-1(t)=(-1/4)Φ(2t-1)
Φ0(t)=(1/2)Φ(2t)

Φ1(t)=(-1/4)Φ(2t+1)

Ψ(t)=(-1/4)Φ(2t-1)+(1/2)Φ(2t)+(-1/4)Φ(2t+1)

 
(c)     (d) 

Fig. 2.6: Construction of a scaling and a wavelet function using scaling functions of the previous level 
for the 5/3 wavelet transform. Figures (a) and (c) show the synthesis scaling functions that are added 
in order to form the next-level analysis scaling (b) and synthesis wavelet functions (d) respectively. 

2.3 DWT computation using the lifting scheme 

One of the drawbacks of the DWT is that it doubles the memory requirements because it is 

implemented as a filter. A proposal that reduces the amount of memory needed for the 

computation of the 1D DWT is the lifting scheme [SWE96]. Despite this advantage, the main 

benefit of this scheme is the reduction in the number of operations needed to perform the 

wavelet transform if compared with the usual filtering algorithm (also known as convolution 

algorithm). The order of this reduction depends on the type of wavelet transform, as shown in 

[DAU98b].  

The lifting scheme implements the DWT decomposition as an alternative algorithm to the 

classical filtering algorithm introduced in the previous section. In the filtering algorithm, in-

place processing is not possible because each input sample is required as incoming data for 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

40 

the computation of its neighbor coefficients. Therefore, an extra array is needed to store the 

resulting coefficients, doubling the memory requirements. On the other hand, the lifting 

scheme provides in-place computation of the wavelet coefficients and hence, it does not need 

extra memory to store the resulting coefficients. In addition, the lifting scheme can be 

computed on an odd set of samples, while the regular transform requires the number of input 

samples to be even. 

 
Let us outline how this approach works for a one-level wavelet transform. In the lifting 

scheme, the wavelet coefficients are computed by means of several steps on the input samples  

S (see Figure 2.7). In the first step, the samples in odd positions (black squares in the figure) 

are processed from the contiguous even samples (the white ones). In particular, for the 

wavelet transform presented in Figure 2.7, each sample in an odd position is added to its 

neighboring samples (scaled by a weighting factor p1). This way, we try to predict each odd 

sample as a linear combination of the even ones, and the error from this estimation is stored 

in the same odd position, as an intermediate value represented in Figure 2.7 by the first row 

of grey samples. This step is called prediction step. In the second step, the even values are 

computed from the contiguous odd ones using a different weighting factor (u1), and it is 

called update step. In this manner, we compute successive prediction and update steps. The 

total number of steps depends on the DWT transform being computed. Finally, the odd 

values calculated in the last prediction step are normalized by a constant factor (K1) to 

achieve the normalized high-frequency wavelet coefficients. The values from the last update 

S={ }p0,φ  

× K1 

× K0 

Fig. 2.7: Overview of a wavelet decomposition of an input signal using the lifting 
scheme for the B9/7 FWT. 

p1 

u1 

p2 

u2 

{ }p1,φ  

{ }p1,ψ  



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

41 

step are normalized by a different factor (K0) to get the low-frequency scaling coefficients. 

Again, the normalization constant factors depend on the desired features of the 

transformation (close to orthonormal, preserve the dynamic range of the coefficients, etc.), 

although in the lifting scheme, a final scaling factor is usually necessary even for (1,1) 

normalization. 

This one-level wavelet decomposition using the lifting scheme can be extended to any 

decomposition level, and to higher order wavelet transform (e.g., 2D DWT for image 

compression) in the same way as it has been described for the filtering algorithm. 

The lifting scheme depicted in Figure 2.7 is for the bi-orthogonal 9/7 transformation. The 

numeric values for the weighting and normalization factors shown in this figure are given in 

Table 2.3. The general method to derivate weighting factors from a filter bank is described in 

[DAU98b] as well as the complexity reduction achieved by the lifting scheme, which is 

asymptotically twice as fast as the filtering algorithm when the filter length grows. In 

particular, for the B9/7 transform, the convolution algorithm requires 23 operations per each 

pair of scaling and wavelet coefficients, while using the lifting scheme only 14 operations are 

needed. 

 
p1 −1.586134342 u1 −0.052980119 

p2  0.882911076 u2  0.443506852 

 (a)   

(1,1) normalization 
K
1K 0 =  

2
KK1 =  

(1,2) normalization 
K
1K 0 =  KK1 =  

( 2 , 2 ) normalization 
K
2K 0 =  K

2
2K1 =

with K = 1.230174104914  
(b) 

Table 2.3: (a) Weighting values for prediction and update steps, (b) and various 

normalization factors, for the bi-orthogonal 9/7 wavelet transform. 

In Figure 2.8, we present a diagram to illustrate the general lifting process. The whole 

process consists of a first lazy transform, one or several prediction and update steps, and 

coefficient normalization. In the lazy transform, the input samples are split into two data sets, 

one with the even samples and the other one with the odd ones, corresponding with the white 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

42 

and black squares of Figure 2.7. Thus, if we consider { } { }pnix ,φ=  the input samples at a 

level n, we define: 

{ } { }ii xs 2
0 =   (2.28) 

{ } { }12
0

+= ii xd   (2.29) 

Then, in a prediction step (sometimes called dual lifting), each sample in { }0
id  is 

replaced by the error committed in the prediction of that sample from the samples in { }0
is : 

{ }( )001
iii sPdd −=    (2.30) 

while in an update step (also known as primal lifting), each sample in the set { }0
is  is updated 

by { }1
id  as: 

{ }( )101
iii dUss +=    (2.31) 

After m successive prediction and update steps, the final scaling and wavelet coefficients 

are achieved as follows:  

{ } { }m
ipn sK ×=+ 01,φ   (2.32) 

{ } { }m
ipn dK ×=+ 11,ψ   (2.33) 

 

2.3.1 Inverse wavelet transform using the lifting scheme 

A nice feature of the lifting scheme is that it is formed by very simple steps, and each of these 

steps is easily invertible, which leads to an almost trivial inverse transform. For the inverse 

transform, we only have to perform the inverse operations in the reverse order. Hence, from the 

subsets { }pn 1,φ +  and { }pn 1,ψ + , we can get { }m
is  and { }m

id  simply by dividing these 

{si
0} Lazy Transform

P1(z)

{ }pn,φ  

{xi} 

{ }pn 1,φ +

{ }pn 1,ψ +

Fig. 2.8: General diagram for a wavelet decomposition using the lifting scheme. 

U1(z) Pn(z) Un(z) 

− − 

+ + 

× K1

× K0

{di
0} 

{si
1} {si

m} 

{di
1} {di

m} 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

43 

coefficients by the scaling factors: 

{ } { } 01,φ Ks pn
m

i +=   (2.34) 

{ } { } 11,ψ Kd pn
m

i +=   (2.35) 

Then, an inverse update operation can be done from these data sets as follows: 

{ }( )m
i

m
i

m
i dUss −=−1   (2.36) 

and at this moment, we can apply the inverse prediction step: 

{ }( )11 −− += m
i

m
i

m
i sPdd   (2.37) 

After m successive inverse update and prediction steps, we get the initial sets of even and 

odd samples, { }0
id  and { }0

is . Then, we can interleave these data sets to obtain the original set 

of samples { } { }pnix ,φ= . 

This process guarantees perfect reconstruction even without signal extension. Anyway, 

symmetric extension is still recommended for image compression in order to avoid the 

introduction of high frequencies around the image boundary. 

2.3.2 Integer-to-integer transform 

With the above scheme, floating-point arithmetic is needed despite having integer input 

samples (e.g., image pixels) if the weighting factors are floating-point, and not integer or 

rational like in Table 2.3. However, integer implementation can be desirable if the DWT is 

going to be implemented in hardware architectures that only support integer arithmetic, or for 

lossless compression (see Chapter 1). Actually, even if rational filters are employed, the 

precision required to perform lossless operation with fixed-point arithmetic grows with each 

mathematical operation if we do not change the scheme described above.  

Fortunately, the lifting scheme can be slightly modified to achieve reversible integer-to-

integer wavelet transform [CAL98]. Since the lifting scheme is formed by several simple 

steps, the whole process can be reversible if we perform each single step in a reversible way.  

For the forward transform, we have seen that each prediction step has the form: 

{ }( )11 −− −= m
i

m
i

m
i sPdd   (2.38) 

In a wavelet transform for integer implementation, the prediction operation { }( )1−m
isP  

involves rational weighting factors (e.g., division by two), and hence the resulting data is not 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

44 

integer.  If a rounding operation is added after the prediction operation, an integer variable 

can be used to store the result of that operation, and hence each m
id  can be computed from 

1−m
id  and the { }1−m

is  set using integer values as follows: 

{ }( )⎣ ⎦11 −− −= m
i

m
i

m
i sPdd   (2.39) 

In the inverse transform, it can be easily seen that the exact value of each 1−m
id  can be 

recovered from m
id  and the { }1−m

is  set as follows: 

{ }( )⎣ ⎦11 −− += m
i

m
i

m
i sPdd   (2.40) 

Thereby, perfect reconstruction is guaranteed despite the rounding operation. The same 

analysis can be performed for an update operation with integer data type, being the forward 

update: 

{ }( )⎣ ⎦m
i

m
i

m
i dUss += −1   (2.41) 

and the inverse update: 

{ }( )⎣ ⎦m
i

m
i

m
i dUss −=−1   (2.42) 

Although we have used the floor operator for rounding in the above equations, any other 

rounding operation, such as ceil or rounding to the nearest integer, can be used as long as the 

same operator is employed in both the forward and inverse transforms. 

Finally, a reversible integer-to-integer transform can only be obtained if the 

normalization factors K0 and K1 are integer values. They cannot be rational factors given that 

a rounding operation in the resulting coefficients would negatively affect the reversibility of 

the transform. 

A drawback of rounding is that the new wavelet transform is no longer linear. Hence, for 

a 2D wavelet transform, the reverse column-row order of the forward transform has to be 

used in the inverse transform to achieve perfect reconstruction (e.g., if we decompose each 

LL subband first by columns and then by rows, the inverse transform has to be applied first 

by rows and then by columns). 

The 5/3 wavelet transform, which is described as a filter-bank in Table 2.2, is a typical 

wavelet for integer-to-integer transform, being part of the JPEG2000 standard for lossless 

compression. It can be computed in terms of the lifting scheme as we have described. Thus, 

after the lazy transform, in which the input signal { }ix  is split into { }0
id  and { }0

is , the dual 

lifting is calculated as: 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

45 

( )⎥⎦
⎥

⎢⎣
⎢ +−= +

0
1

001

2
1

iiii ssdd   (2.43) 

while the primal lifting is (notice the different rounding operation): 

( ) ⎥⎦
⎥

⎢⎣
⎢ +++= − 2

1
4
1 1

1
101

iiii ddss   (2.44) 

These operations can be easily performed with integer data types and integer arithmetic. 

For example, in C language, the two above equations can be efficiently computed as: 
d1[i]=d0[i]-((s0[i]+s0[i+1])>>1); 

s1[i]=s0[i]+((d1[i]+d1[i-1]+2)>>2); 

Where d0, d1, s0 and s1 are arrays of integers, and >> is the right shift operator in C 

( ba >>  is equivalent to the division of a by b2  with floor rounding). For in-place 

computation, d0 and d1 can be replaced by a single array d, and s0 and s1 by another array 

s, or even computation can be directly performed in the source array with the s and d arrays 

interleaved, like in Figure 2.7. However, if in-place computation is applied, the low-

frequency coefficients are interleaved with the wavelet coefficients, and the subsequent 

wavelet processing can be non-optimal (especially in cache-based systems), requiring more 

careful processing. We can overcome this problem with coefficient reordering, at the cost of 

increasing the complexity of the algorithm. 

For a lossless transform, the normalization factors K0 and K1 are equal to 1, achieving 

(1,2) normalization. Thus, the set { }1
id  is directly the final wavelet coefficient set, and the set 

{ }1
is  is the scaling one. If (1,1) normalization is desired, K1 should be 1/2, but in this case the 

wavelet transform would not be reversible. 

The inverse transform to recover losslessly the original samples is given by: 

( ) ⎥⎦
⎥

⎢⎣
⎢ ++−= − 2

1
4
1 1

1
110

iiii ddss   (2.45) 

( )⎥⎦
⎥

⎢⎣
⎢ ++= +

0
1

010

2
1

iiii ssdd   (2.46) 

Other reversible integer-to-integer wavelet transforms are given in [ADA00], including 

an integer version of the bi-orthogonal 9/7 transform. In this paper, an intensive analysis of 

filter features for various wavelet transforms is performed, being compared for lossy and 

lossless compression. 



CHAPTER 2. WAVELET TRANSFORM COMPUTATION 

46 

2.4 Summary 

In this chapter, we introduced some theory behind the wavelet transform, focusing on image 

compression. The use of the wavelet transform for image compression is justified not only 

due to the high compactness achieved in low frequency subbands, but also because it allows 

image multiresolution representation, adapting to image details in a natural way. In addition, 

wavelet coefficients can be analyzed in both space and frequency domains. 

Afterwards, from the multiresolution analysis, we derived how to perform both one-

dimensional and two-dimensional DWT computation using a filter-bank. After the study of 

some filter characteristics, we may conclude that one of the most interesting filter features for 

image compression is linear phase, so as to perform a non-expansive transform with 

symmetric extension, and to avoid edge distortion after quantization. Since an orthogonal 

filter cannot be linear phase, the most popular wavelet transforms for image compression are 

not orthogonal but bi-orthogonal, which can be linear-phase. In particular, the most widely 

used filter-bank for image compression is the bi-orthogonal 9/7, defined with floating-point 

taps, although for lossless compression and integer transform, a different bi-orthogonal 5/3 

filter is commonly employed. 

Finally, we presented the lifting scheme as an alternative method to perform the DWT. It 

allows in-place computation, so no extra-memory is needed, and in general, it requires fewer 

operations to be computed. With this method, the inverse transform is easily computed 

reversing the order and type of operations applied in the forward one. In addition, reversible 

integer-to-integer transform can be easily performed by rounding each prediction and update 

step. 

However, for the two-dimensional wavelet transform, the use of the lifting scheme shows 

little benefit in memory reduction because the entire image has to be kept in memory. In the 

DWT algorithms presented in this chapter (both filtering and lifting), an image is transformed 

at every decomposition level first row by row and then column by column, and for this 

reason, it must be kept entirely in memory. In the next chapter, we will reduce the amount of 

memory required to compute the two-dimensional wavelet transform. 

 



 

47 

 

 

Chapter 3   

Efficient memory usage in the 2D DWT 

 

In this chapter, the problem of reducing the memory requirements of the two-dimensional 

wavelet transform is tackled. For this purpose, a new algorithm to efficiently compute the 2D 

DWT is presented. This algorithm aims at low memory consumption and reduced 

complexity, meeting these requirements by means of line-by-line processing. In this proposal, 

we use recursion to automatically place the order in which the wavelet transform is 

computed. This way, we solve some synchronization problems that have not been tackled in 

previous proposals. Furthermore, unlike other similar proposals, our proposal can be 

straightforwardly implemented from the algorithm description. To this end, a general 

algorithm is given, which is further detailed to allow its implementation with a simple filter-

bank or using the more efficient lifting scheme.  

3.1 Introduction 

As mentioned in the previous chapter, the two-dimensional wavelet transform is typically 

implemented with memory-intensive algorithms, requiring the whole image in memory to be 

computed. Other image transforms for image coding, such as the DCT, are applied in small 

block sizes and thus, a large amount of memory is not specifically needed for the 

transformation process.  

The high memory requirement of the wavelet transform may seriously affect memory-

constrained devices that deal with digital images, such as digital cameras, personal digital 

assistants (PDA) and mobile phones. In addition, since the memory usage for the 2D DWT 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

48 

computation grows linearly with the image size, even high-performance workstations with 

plenty of memory can find it difficult to deal with the wavelet transform of large images. For 

example, in a Geographical Information System (GIS), where large digital maps are handled 

[UYT99], the uncompressed color map of the Iberian Peninsula (581,000 square meters 

approx.) needs more than 1.6 Terabytes to be stored (scale 1 pixel: 1 square meter). If a 

DWT-based coder is used, a prohibitive amount of memory is required to perform the regular 

DWT computation. Therefore, in these cases, the fact that the entire image has to be in 

memory to compute the DWT imposes a serious limitation for wavelet-based coding. 

Another disadvantage of the usual 2D DWT algorithm is the poor memory performance 

in cache-based architectures due to the way memory is accessed. Recall that this transform 

computes the 1D transform first on each row, and then on each column. This process is 

successively repeated on the low-frequency subbands. Due to the organization of images in 

memory (usually row by row), the column access does not exploit memory locality, and 

hence does not take advantage of the cache memory. If we can arrange the memory access 

strictly on rows in the DWT computation, we will be able to improve the cache performance. 

We will take this approach later in this chapter. 

3.1.1 Previous proposals to reduce memory usage 

The simplest solution to reduce the amount of memory needed to compute the wavelet 

transform of an image is to split the whole image into smaller pieces, so that the DWT can be 

calculated on each of them separately. This approach is called image tiling and is supported 

by JPEG 2000. However, it presents several problems. On the one hand, we have image 

blocks again, and then blocking artifacts may reappear, especially when we use small tile size 

and high quantization. On the other hand, we do not decorrelate the entire image, but only the 

part that is being transformed, and then the compactness achieved is lower. In JPEG 2000, 

this low compactness causes the PSNR to drop by more than 1 dB at low bit rates [RAB02]. 

Fortunately, there are other cleverer strategies to save even more memory. One of them is 

to get rid of wavelet coefficients as soon as they have been calculated. With this approach, 

we compute all the decomposition levels simultaneously, and when a coefficient is not going 

to be used anymore, it is discarded (compressed in our case, or saved or processed for a 

different purpose). 

Several proposals have dealt with low-memory DWT implementations following this 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

49 

scheme. In [VIS94], it is introduced a first solution to overcome this drawback using this idea 

for the 1D DWT. Later, one of the first approaches to reduce memory consumption for 

wavelet-based image compression was done in [COS98]. The proposed algorithm includes 

image compression by means of zerotree coding [SHA93] [SAI96] (tree-based coding will be 

reviewed in the next chapter). In order to reduce memory requirements, the encoder reorders 

the output bit-stream so that the wavelet coefficients that represent the same area in all the 

subbands are placed together. This way, when the decoder receives this group of coefficients, 

it can compute a fragment of the inverse DWT, and produce several image lines. Once this 

group of lines is decoded, the memory used by these coefficients can be released and more 

lines can be read in the same way. This line-based algorithm was further refined in [CHR00], 

where (1) reduction of memory is dealt in both the forward and inverse transform (in 

[COS98] it is done only in the decoder); (2) the order of the coefficients is rearranged with 

some extra buffers to allow efficient use of memory in the encoder and the decoder; (3) 

zerotree coding is replaced with a new entropy coding algorithm. In the next subsection, we 

will describe a general line-based approach in more detail, and we will address some issues 

that arise from this strategy hindering its implementation.  

 

3.1.2 The line-based scheme  

Recall that in the regular DWT the image is transformed level by level, using the 1D DWT 

first on rows, and then on columns, and so it must be kept entirely in memory. In order to 

1st level buffer 

2nd level 
 buffer 

HL2 

LH2

HH2

nlevel 
buffer 

LL1 

LL2 

LLnlevel−1 … 

Fig. 3.1: Overview of a line-based forward wavelet transform. 

width 

width / 2  

width / 2nlevel-1  
width / 4 

width / 2  

LL0 (input image lines) 

HL1 

LH1 

HH1 

LLnlevel 

HLnlevel 

LHnlevel

HHnlevel 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

50 

keep in memory only the part of image strictly necessary, and therefore reduce the amount of 

memory required, the order of the regular wavelet algorithm must be changed. We cannot 

compute every decomposition level successively, but this computation has to be interleaved 

amongst the different levels. In this section, we will describe the line-based DWT from a 

recursive point of view instead of the iterative approach presented in [CHR00].  

For the first level of the wavelet decomposition, the algorithm reads lines from the input 

image, one by one. On each input line, a one-level 1D wavelet transform is applied so that it 

is divided into two parts, representing the details and a low-frequency version of this line. 

Then, these transformed lines are stored in a first-level buffer. When there are enough lines in 

the buffer to perform a column wavelet transform, the vertical transform is computed and the 

first line of the HL1, LH1 and HH1 wavelet subbands, along with the first line of the LL1 

scaling subband are calculated. At this moment, for a dyadic wavelet decomposition, we can 

compress and release the first line of every wavelet subband. However, the first line of the 

LL1 subband is not part of the result but it is needed as incoming data for the following 

decomposition level. Afterward, when the lines in the first-level buffer have been used, this 

buffer is shifted twice (using a rotation operation on the buffer) so that two lines are 

discarded while another two image lines can be input at the other end. This way, once the 

buffer is updated, the same process can be repeated, obtaining the following lines of the 

wavelet subbands. 

At the second level, the buffer is filled with the LL1 lines that have been computed at the 

first level. Once this buffer is completely filled, it is processed in the very same way as we 

have described for the first level. In this manner, the lines of the second-level wavelet 

subbands are calculated, and the low-frequency lines from LL2 are passed to the third level. 

As it is depicted in Figure 3.1, this process can be repeated until the desired decomposition 

level (nlevel) is reached. 

In [CHR00], the description of a line-based strategy is given in an iterative way, but no 

detailed algorithm is described. Some major problems arise when the line-based DWT is 

implemented using an iterative algorithm. The main drawback is the synchronization among 

buffers. Before a buffer can produce lines, it must be completely filled with lines from the 

previous buffer, therefore they start working at different moments, i.e., they have different 

delays. Moreover, all the buffers exchange their result at different intervals, depending on 

their level.  



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

51 

The time in which each line is passed to the following buffer depends on several factors, 

such as the filter size, the number of decomposition levels, the level and number of line being 

computed and the image size. In a hardware implementation, with a fixed image size and a 

constant decomposition level, a pre-computed unit control can be employed to establish the 

order of the computations in the buffers for a given filter-bank. Thus, several hardware 

implementations of this line-based strategy have been proposed, and they can be found in the 

literature [ZER01] [CHA01] [DIL03] [ACH05]. However, a general case of this algorithm 

cannot be easily implemented in software or hardware due to the synchronization problems 

exposed above.  

In the next section, we propose a general recursive algorithm that clearly specifies how to 

perform this communication among buffers, solving the synchronization problem in an 

automatic way by means of a recursive definition. 

3.2 A recursive algorithm for buffer synchronization 

In this section, we present a forward and an inverse wavelet transform algorithm (FWT and 

IWT) that solve the synchronization problems that have been addressed in the introduction of 

this chapter. In order to overcome these drawbacks, both algorithms are defined with a 

recursive function that obtains the next low-frequency subband (LL) line from a contiguous 

level. The wavelet transform is implemented first with a simple filter-bank, and then using 

the lifting-scheme, which is faster and requires less memory.  

3.2.1 A general algorithm  

Let us depict our algorithm briefly. The main task of the FWT is carried out by a recursive 

function that successively returns lines of a low frequency (LLn) subband at a given level (n). 

Thus, the whole FWT is computed by requesting LL lines at the last level (nlevel). As seen in 

Figure 3.1, the nlevel buffer must be filled up with lines from the nlevel-1 level before it can 

generate lines. In order to get them, the function calls itself in a backward recursion, until the 

level zero is reached. At this point, it no longer needs to call itself since it can return an image 

line, which can be read directly from the input/output system. Although we are calculating a 

forward wavelet transform, we do it by means of backward recursion, since we go from 

nlevel to zero.  

The function that implements this recursive algorithm is called GetLLlineBwd() (see 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

52 

Algorithm 3.1). This function receives a decomposition level as a parameter, calculates a line 

of each wavelet subband (LH, HL and HH) at that level, and returns a line from the low-

frequency (LL) subband at that level. In order to get all the subband lines, the first time that 

this function is called at a certain level, it computes the first line of every subband at that 

level, the following time it computes the second one, and so forth.  

When this function is called for the first time at a level, its buffer ( levelbuffer ) is empty, 

and so it has to be recursively filled with lines from the previous level (case 3.1). Once a line 

function GetLLlineBwd( level ) 
1) First base case:  

If there are no more lines to return at this level 
return EOL 

2) Second base case: 
If level = 0 

return ReadImageLineIO( )  
3) Recursive case  
3.1) If levelbuffer  is empty  

Fill up levelbuffer  calling GetLLlineBwd(level-1) 
3.2) else if no more lines can be read from level-1  

Start cleaning levelbuffer  
3.3) else 

Update levelbuffer  calling GetLLlineBwd(level-1) 
Get subband lines from levelbuffer  
Process the high freq. subband lines{ }HHlineLHlineHLline ,,  
return LLline  

end of fuction 

Algorithm 3.1: Recursive FWT computation with nlevel decomposition. The backward 
recursive function GetLLlineBwd(level) returns a line from the low-frequency subband (LLlevel) 

at a level determined by the function parameter. The first time that this function is called at a 
certain level, it returns the first line of the LLlevel subband, the second time it returns the second 

line, etc. If there are no more lines at this level, it returns the EOL tag. As the nth line of the 
LLlevel subband is computed and returned, the corresponding nth lines of the HL, LH and HH 

subbands at that level are also computed, processed and released.  

function LowMemUsageFWT( nlevel ) 
set nlevellevelemptybufferlevel ∈∀=  
repeat  
 LLline = GetLLlineBwd( nlevel )  
 if (LLline!=EOL) Process the low freq. line( LLline ) 
until LLline=EOL 

end of function 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

53 

is input, it must be transformed using a 1D DWT before inserting it into the buffer. On the 

other hand, if the buffer is not empty, it simply has to be updated by discarding some lines 

and introducing additional lines from the previous level. We do it by means of a recursive 

call again (case 3.3). However, if there are no more lines from the previous level, this 

recursive call returns End Of Line (EOL). That points out that we are about to finish the 

computation at this level, but we still have to calculate some subband lines from the 

remaining lines in the buffer (case 3.2). We will give more details of each recursive case in 

the next subsections, since they are handled in a different way depending on whether we are 

dealing with a filter-bank approach or with the lifting scheme. However, in both convolution 

and lifting, we have computed a subband line from LH, HL and HH at the end of the 

recursive case. These lines are processed and released depending on the application purpose 

(e.g., compression), and the function returns an LL line. 

Every recursive function needs at least one base case to stop recursion. This function has 

two base cases. The first one is reached when all the lines at this level have been read. In this 

case, the function returns EOL. The second base case occurs when the backward recursion 

gets the level zero, and then no further recursive call is needed because an image line is read 

and returned directly from the I/O system. 

Once we have defined this recursive function, we can compute the wavelet transform 

with nlevel decomposition simply by using this function to compute the whole LLnlevel 

subband. This is done by the function LowMemUsageDWT(nlevel) in Algorithm 3.1, which 

calls GetLLlineBwd(nlevel) until it returns EOL. 

This algorithm can be implemented easily because the synchronization among buffers 

and the problem of different buffer delays are solved directly with recursion, which 

automatically sets the rhythm of the transformation steps. The iterative alternative is more 

complicated because a simple nested loop is not enough, and a complex control to trigger the 

operations at the correct moment for each level is required.  

The inverse DWT algorithm (IWT), which is described in Algorithm 3.2, is similar to the 

forward one, but applied in reverse order. Thus, it carries out forward recursion, from zero to 

nlevel. It computes LL lines at a certain level from an LL line recursively computed from the 

following level, along with the corresponding LH, HL and HH lines, which are input from 

the compressed bitstream.   



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

54 

 

Algorithm 3.2: Recursive IWT computation with nlevel decomposition. The forward recursive 
function GetLLlineFwd(level) returns a line from a low-frequency subband as Algorithm 3.1 
does, but using forward recursion. Thus, it retrieves a line of the HL, LH and HH subbands 

(from the compressed bitstream), and an LL line from the following level, which is computed 
by a recursive subfunction called GetMergedLineFwd( ). With these lines, this function can 

compute two new lines of the following LL subband and return them alternatively. 

function LowMemUsageIWT( nlevel ) 
set nlevellevelemptybufferlevel ∈∀=  
set nlevellevelerupdatebuffodd levellevel ∈∀== false  
repeat  
 imageLine = GetLLlineFwd( 0 )  
 if (imageLine!=EOL) WriteImageLineIO(imageLine ) 
until imageLine =EOL 

end of function 

subfunction GetMergedLineFwd( level ) 
levellevel oddodd ¬=  

if levelodd   
return { GetLLlineFwd( level ) + DecodeHLline( level ) } 

else 
return { DecodeLHline( level ) + DecodeHHline( level ) } 

end of subfunction

function GetLLlineFwd( level ) 
levelerupdatebuff = levelerupdatebuff¬  

1) First base case:  
If there are no more lines to return at this level 

return EOL 
2) Second base case: 

If level = nlevel 
return DecodeLLline( )  

3) Recursive case  
3.1) If  levelbuffer  is empty  

Fill up levelbuffer  calling GetMergedLineFwd (level+1) 
3.2) else if no more lines can be read from level+1 and levelerupdatebuff  

Start cleaning levelbuffer  
3.3) else if levelerupdatebuff  

Update levelbuffer  calling GetMergedLineFwd (level+1) 
if levelerupdatebuff    

Get the first LLline from updated levelbuffer  
else    

Get the second LLline from updated levelbuffer  
return LLline 

end of function 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

55 

Since the recursive function goes forward, the second base case is changed from the FWT 

to be reached when the parameter level is equal to nlevel, and then a line from the low-

frequency subband LLnlevel is retrieved directly from the compressed bitstream.  

In the recursive case, there are mainly two changes with respect to the backward 

function. The first modification is the introduction of a new function,  

GetMergedLineFwd(level), which is used to get buffer lines. This function alternatively 

returns the concatenation of a line from the LL and HL subbands, or from the LH and HH 

subbands, at a specified level. Contrary to the lines from HL, LH and HH, which are retrieved 

directly from the compressed bitstream, the LL line is computed recursively from the 

following level. The second difference is the introduction of a logical variable, 

levelerupdatebuff , which defines whether the buffer needs to be updated or not. In the IWT, 

two LL lines can be computed once a buffer is full or updated. Therefore, this variable shows 

if the buffer is updated, and if so, another line can be computed without updating it. More 

details on how the recursive case is implemented are given in the next subsections. 

Once the recursive function for the IWT is defined, all the image lines can be computed 

just by calling this recursive function with the level parameter set to zero, until no more lines 

are available, as it is shown in Algorithm 3.2. 

Algorithm 3.3: Filter-bank implementation, recursive case. 

3.1) if levelbuffer  is empty 
for NNi 2K=   

=)(ibufferlevel 1DFWT(GetLLlineBwd( level-1)) 
FullSymmetricExtension( levelbuffer  ) 

3.2) if  not( more_lines( level-1) ) 
repeat twice 

Shift( levelbuffer  ) 
=)2( Nbufferlevel SymmetricExt( levelbuffer ) 

3.3) else  
repeat twice 

Shift( levelbuffer  ) 
=)2( Nbufferlevel 1DFWT(GetLLlineBwd( level-1 ) ) 

For 3.1), 3.2) and 3.3) 
{ }HLlineLLline, = ColumnFWT_LowPass( levelbuffer  ) 
{ }HHlineLHline, = ColumnFWT_HighPass( levelbuffer  ) 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

56 

3.2.2 Filter bank implementation 

In the previous subsection, we described a general recursive algorithm for the DWT 

computation. Now, we will use that description to implement the DWT computation using a 

filtering algorithm. In this implementation, we insert lines into the buffer until a vertical low-

pass and a vertical high-pass filter-bank can be applied on it. Therefore, each buffer must be 

able to keep 2N+1 lines, where 2N+1 is the number of taps for the largest filter in the filter-

bank (the low-pass or high-pass filter). We only consider odd filter lengths because they have 

higher compression efficiency, however this analysis could be extended to even filters as 

well. 

Since the base cases are completely defined in Algorithm 3.1, we only have to describe 

the recursive case. In this case, when a buffer is empty (case 3.1), its upper half (from N to 

2N) is recursively filled with lines from the previous level. Once the upper half buffer is full 

of lines, the lower half is filled using symmetric extension (in which the N+1 line is copied 

into the N-1 position, the N+2 into the N−2,…, the 2N is copied into the 0 position). On the 

other hand, if the buffer is not empty, we only have to update it (case 3.3). Therefore, we shift 

it one position so that the line contained in the first position is discarded and a new line can 

be introduced in the last position (2N) using a recursive call. This operation is repeated twice 

because we are going to use two filter-banks in each step (a high-pass and a low-pass filter). 

Finally, if no more lines can be computed from the previous level (case 3.2), we fill the buffer 

using symmetric extension again. Actually, this is the same case as in 1D DWT, in which 

symmetric extension is used at both ends.  

In all the cases, once there are enough lines in the buffer to perform a vertical wavelet 

transform, the convolution process is calculated vertically twice, first using the low-pass filter 

and then with the high-pass filter. This way, we get a line of every wavelet subband. This 

whole process is described in Algorithm 3.3. 

For the inverse transform, we need to change Algorithm 3.3 slightly. We only have to 

replace every FWT() function by the corresponding IWT(), change every level−1 for level+1, 

and use GetMergedLineFwd() instead of GetLLlineBwd(). Then, we can incorporate this 

modified version of Algorithm 3.3 as the recursive case in Algorithm 3.2. However, recall 

that, as described in Algorithm 3.2, we have to use the levelerupdatebuff  variable to execute 

cases 3.2 and 3.3 only when needed, and to compute an LL line using the 

ColumnIWT_LowPass(bufferlevel) and ColumnIWT_HighPass(bufferlevel) functions 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

57 

alternatively (the low-pass filter bank is applied when levelerupdatebuff is true). 

3.2.3 Implementation with the lifting scheme 

The convolution implementation that has been presented in the previous subsection 

introduces wide benefits in memory usage, since we only keep in memory a few low-

frequency lines (2N+1) for each decomposition level instead of the whole subbands. 

However, we can still reduce the amount of memory required and speed up its execution time 

by using the lifting scheme, which was described in the previous chapter. 

Algorithm 3.4: Lifting implementation, recursive case. 

3.1) if levelbuffer  is empty 
for 0KWi =   

=)(ibufferlevel 1DFWT(GetLLlineBwd( level-1)) 
Successively predict and update the lines in levelbuffer , 

provided that the required lines are in the buffer. 
3.2) if  not( more_lines( level-1) ) 

repeat twice Shift( levelbuffer  ) 
Update and predict the remaining lines in the buffer 

3.3) else  
repeat twice 

Shift( levelbuffer  ) 
=)0(levelbuffer 1DFWT(GetLLlineBwd( level-1 ) ) 

=)1(levelbuffer )1())2()0(( 1 levellevellevel bufferpbufferbuffer ++  
=)2(levelbuffer )2())3()1(( 1 levellevellevel bufferubufferbuffer ++     

… 
=)(Wbufferlevel  )())1()1(( 2/ WbufferuWbufferWbuffer levelWlevellevel +++−  

For 3.1), 3.2) and 3.3)  
{ }HLlineLLline, = 0*)( KWbufferlevel  
{ }HHlineLHline, = 1*)1( KWbufferlevel −  



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

  W    W-1    …             0

input 
lines p1 

u1 

p2 

The main advantage of the use of the lifting scheme instead of convolution is the extra 

reduction of memory achieved. Let us define W as the total number of weighting factors 

(prediction and update) for a DWT. Then, the height of each buffer using the lifting scheme 

Fig. 3.2: Overview of the lifting scheme for the proposed FWT. 

× K0

high-freq. lines 
(LH+HH)

× K1 

u2 

low-freq. lines 
(LL+HL) 

(a) 

input 
lines p1 

u1 

p2 

× K0

high-freq. lines 
(LH+HH)

× K1 

u2 

low-freq. lines 
(LL+HL) (b) 

input 
lines p1 

u1 

p2 

× K0

high-freq. lines 
(LH+HH)

× K1 

u2 

low-freq. lines 
(LL+HL) 

(c) 

58 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

59 

has to be W+2, so it can perform the W prediction and update steps needed to compute a low 

and a high-frequency line in a segmented way, as we will see later. Observe that, despite 

computing W sample lines, we need two additional lines to calculate the first and last values. 

Later, we will see that these additional lines (the first and the last lines in the buffer) are read 

but not modified in each step. The reason why the lifting scheme can be used to save memory 

in our algorithm is that, in general, W+2 is lower than 2N+1 (see [DAU98b] for details) and 

therefore we need less lines in the buffers.  For example, for B9/7, 2N+1 is 9 while W+2 is 

only 6. For the sake of clarity, in the rest of this section, we will consider that the number of 

sample values in each decomposition level is even, and so W is (although it is not difficult to 

extend it to the general case). 

In Algorithm 3.4, we describe how to implement the recursive case of Algorithm 3.1 

using the lifting scheme. In this algorithm, when the buffer is empty (case 3.1), we fill it from 

W to 0 (W+1 is left empty) by using a recursive call. Then, we compute successive prediction 

and update steps, using only the lines in the buffer. This way, we compute fewer lines in 

every step, since the rest of lines rely on information that still has not been input. Finally, we 

get a low frequency line (with the first line of the LL and HL subbands) and a high frequency 

line (with one line of LH and HH). The lines that have been handled in this step are shown in 

the highlighted area on the left of Figure 3.2(a). In this figure, every square represents a 

subband line, unlike Figure 2.7, in which a square represented a sample value (a pixel). The 

samples at the top of Figure 3.2 are input lines (or LL lines from the previous level), the grey 

samples in the middle of the figure are intermediate states of those lines, while those at the 

bottom are the concatenation of LH and HH lines (black squares), or LL and HL lines (white 

squares).  



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

60 

At this moment, we can see in Figure 3.2(a) that all the lines in a diagonal (on the 

hypotenuse of the triangle that defines the left area) are intermediate states for the following 

lines of the wavelet subbands (i.e., are predicted or updated lines). Hence, if we introduce 

two more lines, and discard other two lines (recall that the line in W was processed and 

encoded, and W+1 was empty), we can compute two more lines in a segmented way (see case 

3.3 of Algorithm 3.4). Every time that we introduce two lines in the buffer, the lines are 

processed as described in Figure 3.3 (for a B9/7 transform). The first column in this figure 

indicates the initial state, in which we have two new lines (white and black squares) at the top 

of the figure. Then, the new odd line is predicted from its two contiguous even lines, and this 

square becomes grey because it is an intermediate value storing the error of the prediction. 

Afterwards, we update the third line in the buffer from the contiguous even lines, and so 

forth. At the end of this process, we have computed two new lines, which represent four 

subband lines. The new high-frequency line is not released because it is necessary for the 

following pass. Thus, we normalize and release the new low-frequency line, and the high-

frequency line that was computed in the previous pass. The computation of these four 

subband lines is represented in the middle of Figure 3.2(b) as the pass from the left dotted 

area, which represents the initial state in Figure 3.3 (first column), to the right dotted area, 

which is the final state in Figure 3.3 (last column).  

K0

p2 

p2 

u1

u1

u2

u2

p1 

p1

K1

Fig. 3.3: Line processing in a buffer for the lifting scheme. The evolution of the 
buffer in time is shown in five steps. 

t1 t2 t3 t4 t5 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

Finally, the highlighted area on the right of Figure 3.2(c) shows the lines that are 

processed when no more lines can be read from the previous level (case 3.2 of Algorithm 

output  
lines 

(LH+HH) 

(b) 

× (1/K0)
× (1/K1) 

(LL+HL) 

-u2 

-p2 

-u1 

-p1 

output  
lines 

(LH+HH) 

× (1/K0)
× (1/K1) 

(LL+HL) 

-u2 

-p2 

-u1 

-p1 

Fig. 3.4: Overview of the lifting scheme for the proposed IWT. 

(c)

(a) 

output  
lines 

high-freq.lines

low-freq. lines 
(LL+HL) × (1/K0)

× (1/K1) 

-u2 (LH+HH) 

-p2 

-u1 

-p1 

61 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

62 

3.4). In this case, we use the remaining intermediate lines to generate more subband lines 

while we are cleaning the buffer by shifting it two positions in each call.  

Although symmetric extension is not as necessary in the lifting scheme as in a filter-bank 

implementation, because the lifting scheme is non-expansive even if no signal extension is 

performed, the use of signal extension is preferred to improve the coding efficiency. A simple 

way to apply symmetric extension in this algorithm is to double the weighting factor when 

there is only a line available to predict/update another line, in other words, if the 

predicted/updated line is on an edge in Figure 3.2(a) or 3.2(c). The advantage of performing 

signal extension by doubling the weighting factors as we propose is that no extra memory is 

needed to place the extended part, while the result of the wavelet transform is exactly the 

same as though it were computed with true signal extension. 

As we described in the previous chapter, for the inverse transform with the lifting 

scheme, we have to perform the same operations as in the forward DWT but in the reverse 

order. Moreover, the sign of the weighting factors have to be changed, and the scaling factors 

are inverted. These modifications are shown in Figure 3.4, (a) for the case 3.1, (b) for the 

general case 3.3, and (c) for the case 3.2. In these figures, the input data are compound 

subband lines (LL+HL and LH+HH interleaved), and the output data are low-frequency lines 

of the previous level. The IWT algorithm is similar to the one given for the forward 

implementation (Algorithm 3.4), but considering the same changes that were described in the 

filter-bank implementation. Recall that two lines are computed in every step, and thus the 

levelerupdatebuff  variable is used to know if there is a line available in the buffer from the 

previous pass, or the buffer needs updating to compute two more lines. Also consider that the 

order and sign of the weighting factors has to be changed, i.e., instead of applying the 

constants as in Algorithm 3.4, ranging form p1 to uw/2, we have to use them from uw/2 to p1. 

3.2.4 Reversible integer-to-integer implementation 

The lifting scheme can be employed to perform a reversible wavelet transform with integer 

coefficients as described in the previous chapter. However, due to the rounding operator 

included in the transform to make possible the use of integer operations and variables, the 

wavelet transform is no longer linear, and hence it is important the order in which the one-

dimensional DWT is applied to perform a higher order transform. Thus, a reversible 

transform is only achieved by following the reverse row-column order in the inverse 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

63 

transform with respect to the one applied in the forward one.  

Despite not having the whole image in memory, which could seem a problem at first 

sight, we still can take this reversible approach. In the description of the proposed wavelet 

transform given in the previous section, in both the forward and inverse transforms, the 

separable 1D transforms are performed first horizontally, when a line is input  (or a 

compound line in the IWT), and then vertically, by applying one step of the wavelet 

transform in a segmented way. Thereby, for a reversible transform, the order of the inverse 

transform has to be changed. The horizontal 1D IWT is not applied once a compound line is 

read (with the GetMergedLineFwd() function) and introduced into the buffer, but it is 

delayed until the end of the GetLLlineFwd() function (see Algorithm 3.2). Therefore, just 

before the execution of the return order at the end of this function (and thus after the vertical 

transform), we apply the horizontal 1D inverse transform. This way, we follow the correct 

order (i.e., horizontal FWT, vertical FWT, vertical IWT, horizontal IWT) and the transform is 

fully reversible. 

A consequence of the use of integer coefficients is that we can represent coefficients with 

smaller data types. For instance, if the wavelet transform avoids dynamic range expansion of 

the coefficients, we can use 16-bit integer coefficients instead of 32-bit float data types, 

halving the memory usage. Furthermore, if the applied transform is the bi-orthogonal 5/3 for 

integer transform instead of Daubechies 9/7, the W parameter mentioned in the previous 

subsection is reduced from 4 to 2, reducing every buffer height in two lines, and so the global 

memory requirements, although at the expense of coding efficiency. 

3.2.5 Some theoretical considerations 

The main advantage of line-based algorithms is their lower memory requirements compared 

with the regular wavelet transform. In the filter-bank implementation, every buffer contains 

2N+1 lines, so it needs to store hBufferWidtN ×+ )12(   coefficients. If the image width is 

w, the width of the first-level buffer is w coefficients, and this width is halved at every level. 

So the memory requirements for all the buffers are 
12)12(2)12()12( −×+++×++×+ nlevelwNwNwN L    (3.1) 

coefficients, which is asymptotically (as nlevel approaches infinity) wN ×+× )12(2  

coefficients. Memory reduction is even better when the lifting scheme is used, because only 

wW ×+× )2(2   coefficients are needed (the relationship between the 2N+1 and W is shown 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

64 

in [DAU98b], and asymptotically 2N+1 is twice W). We can compare these memory 

requirements with the regular wavelet transform, which requires widthheight ×  coefficients 

to be computed. Since for efficient filter banks heightNW <<+×<+× )12(2)2(2  (i.e., 

twice the buffer height is considerably lower than the image height), a line-based approach 

uses much less memory than the regular one.  

The reduction of memory has another beneficial side effect when the algorithm is 

implemented in a cache-based system. The subband buffers are more likely to fit in cache 

memory than the whole image, and thus the execution time is substantially reduced. 

Moreover, we have replaced the column access of the regular wavelet transform, which 

clearly affects the cache performance, with a more sophisticated access, which is arranged in 

line buffers. In addition, the lifting scheme version reduces the computational cost of the 

algorithm since it performs fewer floating-point operations per sample. 

A drawback that has not been considered yet is the need to reverse the order of the 

subbands, from the FWT to the IWT. The former starts generating lines from the first levels 

to the last ones, while the latter needs to get lines from the last levels before getting lines 

from the first ones. This problem can be solved using some additional buffers at both ends to 

reverse the coefficients order, so that data are supplied in the right order [CHR00]. Other 

simpler solutions are: to save every level in secondary storage separately so that it can be 

read in a different order and, if the WT is used for image compression, to keep the 

compressed coefficients in memory. For the sake of simplicity, we will use the last option in 

this thesis, although any of them could be used. 

3.3 Experimental results 

In order to compare the regular wavelet transform and our proposals, we have implemented 

them, using standard ANSI C language on a regular PC computer (with a 500 MHz Pentium 

Celeron processor with 256 KB L2 cache). These implementations are available at 

http://www.disca.upv.es/joliver/thesis.  

For these test, we have used the well-known Daubechies 9/7 and bi-orthogonal 5/3 

wavelet transforms presented in the previous chapter. Moreover, the coefficients for the B5/3 

transform are implemented as floating-point, integer and short integer values in order to 

assess the effects of employing different data types for the transform computation. 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

65 

In the tests, we have used the standard Lena (512x512) and Woman (2048x2560) images. 

With six decomposition levels using D9/7, the regular WT needs 1030 KB for Lena and 

20510 KB for Woman, while the filter-bank implementation proposed in this section requires 

41 KB for Lena and 162 KB for Woman, i.e., it uses 25 and 127 times less memory. Our 

proposal using the lifting scheme still needs less memory, requiring 26 KB for Lena and 102 

KB for Woman, which means that it only requires 60% of memory with respect to the filter-

bank algorithm.  

If the B5/3 transform is used instead of D9/7, in the regular transform the entire image is 

also kept in memory and therefore it requires exactly the same amount of memory, unless 

short-integer data type is employed, in which case it requires half memory (short-integer 

variables are 16-bit while integer and float variables are 32-bit). When the lifting scheme is 

used along with the B5/3 transform, fewer lines need to be introduced in every buffer. As a 

result, the memory usage is reduced to 19 KB for Lena and 79 KB for Woman (or even to 9 

KB and 39 KB respectively for short-integer coefficients). 

In addition, Table 3.1 shows that our proposals are much more scalable than the usual 

DWT. In Table 3.1(a), we present the amount of memory needed to apply the D9/7 transform 

to images ranging from low-resolution VGA to 20-Megapixel, using the regular algorithm, 

and the proposed convolution and lifting algorithms. In all cases, floating-point arithmetic is 

used. Table 3.2(b) shows the same comparison, applying the B5/3 transform instead, and 

working with different data types. 

 
Image size 

(megapixel) 
Regular 

WT 
Proposed 

convolution 
Proposed 

lifting 
20 (4096 x 5120) 81,980 324 205 
16 (3712 x 4480) 65,013 293 186 
12 (3200 x 3968) 49,647 253 160 
8 (2560 x 3328) 33,319 202 128 
5 (2048 x 2560) 20,510 162 103 
4 (1856 x 2240) 16,266 147 93 
3 (1600 x 1984) 12,423 127 80 
2 (1280 x 1664) 8,340 101 64 

1.25 (1024 x 1280) 5,125 81 51 
VGA (512 x 640) 1,288 41 26 

(a) 

 

 

 



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

66 

Image size 
(megapixel) 

Regular WT (float 
and integer) 

Regular WT 
(short integer) 

Proposed lifting 
(float and integer) 

Proposed lifting 
(short integer) 

20 (4096 x 5120) 81,980 40,990 158 79 
16 (3712 x 4480) 65,013 32,506 143 71 
12 (3200 x 3968) 49,647 24,823 123 62 
8 (2560 x 3328) 33,319 16,659 98 49 
5 (2048 x 2560) 20,510 10,255 79 39 
4 (1856 x 2240) 16,266 8,133 71 36 
3 (1600 x 1984) 12,423 6,211 61 31 
2 (1280 x 1664) 8,340 4,170 49 24 

1.25 (1024 x 1280) 5,125 2,562 39 19 
VGA (512 x 640) 1,288 644 19 9 

(b) 
Table 3.1: Memory requirements (KB) comparison among our proposals and the usual 

algorithm for various image sizes using the (a) D9/7 and (b) B5/3 transforms. 
 

In Figure 3.5, we present an execution time comparison between our proposals and the 

regular DWT for D9/7. It shows that, while our algorithms display linear behavior, the 

regular wavelet transform approaches to an exponential curve. This behavior is mainly due to 

the ability of our algorithms to fit in cache for all the image sizes (162 KB and 102 KB for 

the 5-megapixel image with convolution and the lifting scheme respectively). On the 

contrary, the usual wavelet transform rapidly exceeds the cache limits (e.g., it needs 1287 KB 

for the VGA resolution). This figure shows that the lifting scheme implementation is about 

40% faster than the convolution algorithm because fewer floating-point operations are 

performed, and both are faster than the usual wavelet transform, due to their better use of the 

cache memory.  

 

Fig. 3.5: Execution time comparison (excluding I/O time) between the regular transform 
and both proposals (convolution and lifting) using D9/7 and floating coefficients. 

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
xe

cu
tio

n 
tim

e 
(M

ill
io

n 
of

 C
P

U
 c

yc
le

s)

Megapixel

Regular Wavelet Transform
Proposed with convolution

Proposed with lifting



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

67 

In Figure 3.6, we present an execution time comparison of different data types using our 

proposal with the B5/3 transform and the lifting scheme. The most noticeable result in this 

graph is the high execution time of the floating-point implementation that uses the floor 

operator, that is to say, with rounding (see section 2.3.2 for definitions), due to the temporal 

complexity of this operation. If we avoid using rounding (we can simply omit it if the target 

variable of the operation is floating-point), the execution time of the floating-point 

implementation is significantly reduced, although being still above the implementations with 

integer or short-integer coefficients. Anyway, these three implementations are faster than the 

proposal with the lifting scheme that is shown in Figure 3.5, because in Figure 3.6 we are 

dealing with a smaller filter size, requiring fewer operations per sample. 

Finally, in Figure 3.7, an execution time comparison between the regular wavelet 

transform and the lifting proposal (both with the B/5 transform) is given for different data 

types. Figure 3.7(b) (integer implementation) and 3.7(c) (floating-point without rounding) are 

similar to Figure 3.5, displaying an exponential behavior for the regular transform. In the 

short-integer implementation, the lower memory usage of the regular wavelet transform 

prevents the exponential behavior. In the last graph, where floating-point arithmetic is used 

with floor operations, the cost of rounding causes both the regular and proposed transform to 

be highly complex. 

Since the forward and inverse transform are symmetric, further experiments have shown 

that the IWT has similar results in memory requirements and execution time. 

 

Fig. 3.6: Execution time comparison (excluding I/O time) of various implementations 
using float (with and without rounding), integer and short integer coefficients, with the 

B5/3 transform and the lifting proposal. 

0

50

100

150

200

250

300

350

400

450

500

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
xe

cu
tio

n 
tim

e 
(M

ill
io

n 
of

 C
P

U
 c

yc
le

s)

Megapixel

Float rounding
Float no rounding
Reversible integer

Reversible short integer



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

68 

 

3.4 Summary 

In this chapter, we have introduced a recursive line-by-line wavelet transform algorithm, 

which presents very low memory requirements and reduced execution time. The execution 

order of the wavelet transform is automatically placed by recursion and this way, the 

problems about different delay and rhythm among buffers are solved. A first general 

description has been further detailed to allow two different implementations (filter-bank and 

lifting algorithms), being the former simpler to implement but the latter more efficient in 

terms of complexity and memory requirements. 

When a 5-Megapixel image is transformed with Daubechies’ 9/7, experimental results 

show that the proposed wavelet transform using the lifting scheme requires 200 times less 

memory and it is five times faster than the regular one. Memory usage and complexity can be 

reduced if integer arithmetic is used with a bi-orthogonal 5/3 transform, although at the 

expense of less coding gain. For example, the regular reversible integer-to-integer B5/3 

wavelet transform requires 260 times more memory and it is ten times slower than the 

Fig. 3.7: Execution time comparison (excluding I/O time) of the regular wavelet 
transform and the lifting proposal, applying the B5/3 transform, with (a) short-integer 

coefficients, (b) integer coefficients, (c) floating-point arithmetic without rounding, and 
(d) floating-point arithmetic with rounding. 

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
xe

cu
tio

n 
tim

e 
(M

ill
io

n 
of

 C
P

U
 c

yc
le

s)

Megapixel

Regular reversible integer
Proposed reversible integer

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
xe

cu
tio

n 
tim

e 
(M

ill
io

n 
of

 C
P

U
 c

yc
le

s)

Megapixel

Regular float no rounding
Proposed float no rounding

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
E

xe
cu

tio
n 

tim
e 

(M
ill

io
n 

of
 C

P
U

 c
yc

le
s)

Megapixel

Regular float rounding
Proposed float rounding

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
xe

cu
tio

n 
tim

e 
(M

ill
io

n 
of

 C
P

U
 c

yc
le

s)

Megapixel

Regular reversible short integer
Proposed reversible short integer

(a) (b)

(c) (d)



CHAPTER 3. EFFICIENT MEMORY USAGE IN THE 2D DWT 

69 

proposed new one. 

Our proposals can be used as part of a compression algorithm such as JPEG 2000, 

speeding up its execution time and reducing its memory requirements. However, in the next 

chapters, we will design new wavelet encoders to be used along with this recursive wavelet 

transform, displaying state-of-the-art compression performance with lower complexity. 

As a conclusion, the main contribution of the proposed wavelet transforms is their lower 

memory requirements with a straightforward implementation, which makes them good 

candidates for many embedded systems and other memory-constrained applications (such as 

digital cameras and PDAs) or for large scale images (such as those used in GIS).  

 

 





 

71 

 

 

Chapter 4   

Coding of wavelet coefficients 

 

The wavelet transform described in Chapter 2 is able to decorrelate the image pixels in a 

linear way. However, more complex dependencies exist in natural images. Therefore, we still 

need a good coding model, beyond simple entropy coding, in order to reduce these high-order 

statistical dependencies and so improve compression efficiency. The way in which wavelet 

coefficients are encoded establishes this model and it is the main difference among different 

encoders. In this chapter, we survey some of the most important wavelet-based image 

encoders that have been reported in the literature. We group them into tree-based and block-

based, according to the coefficient structure that is used. In the performance analysis of each 

proposal, we not only focus on their coding efficiency but also on their complexity, since 

reduced complexity is one of the objectives of this thesis. Finally, we show the importance of 

properly tuning the parameters of a wavelet encoder, with a thorough analysis of a classic 

wavelet encoder, the EZW algorithm.   

4.1 Introduction 

In the two previous chapters, we introduced the discrete wavelet transform and various 

algorithms to improve its computation speed and reduce its memory requirements. However, 

as it was shown in Figure 1.2, the transform computation represents only the first step in 

transform coding, and it is employed to decorrelate the input samples (pixels in the case of 

image coding), achieving a less redundant smaller area of coefficients, which concentrates 

most energy, whereas the rest of coefficients are reduced and, in many cases, become zero or 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

72 

very close to zero. Therefore, the DWT is a common point in wavelet coding, and there is 

almost no difference in this part from one wavelet-based encoder to another one. In this step, 

almost the only degree of freedom for an encoder is the wavelet family and the type of 

wavelet decomposition. Although most schemes are based on the B9/7 transform [ANT92] 

with a dyadic decomposition, other wavelet families and wavelet decompositions (such as 

wavelet packets [COI92] [RAM93]) have been employed [XIO98] [MEY00] [SPR02] 

[RAJ03].  

Following the scheme depicted in Figure 1.2, after the DWT computation, an encoder 

must define the way in which rate/distortion is modified through quantization, and how to 

encode the quantized coefficients. For the latter step, the applied method seldom differs from 

a type of entropy coding. However, the way quantization and coding is applied defines a 

specific model for each wavelet encoder, and it is probably the main difference among 

different encoders.  

Some wavelet encoders apply in combination the quantization and entropy coding steps, 

so as to improve coding performance by means of optimization algorithms (such as the 

Lagrange multiplier method [SHO84] [RAM93]), or to allow other features, like SNR 

scalability (e.g., by applying quantization through successive approximation [SHA93] 

[SAI96]). Actually, the model employed not only establishes the compression performance 

but also other additional features of the output bitstream. E.g., depending on the order in 

which coefficients are encoded, an image can be decoded with resolution or quality 

scalability. In addition, the availability of other features mentioned in Section 1.6 also 

depends on the coding model. 

A wide variety of wavelet-based image compression schemes have been reported in the 

literature, ranging from simple entropy coding to more complex techniques such as vector 

quantization [DAS96] [MUK02], tree-based coding [SHA93] [SAI96], block-based coding 

[TAU00] [PEA04], edge-based coding [MAL92], joint space-frequency quantization schemes 

[XIO97] [XIO98], trellis coding [JOS95], etc.  

The early wavelet-based image coders [WOO86] [ANT92] were designed in order to 

exploit the ability of the wavelet transform to compact the energy of an image in a simple 

way. They employed scalar or vector quantizers and variable-length entropy conding, 

showing little improvement with respect to popular DCT-based algorithms, like JPEG. In 

fact, in [HIL94], some early wavelet encoders were compared with JPEG, concluding that 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

73 

these encoders obtained better results than JPEG only when very low bit rates were used 

(below 0.25 bpp for an original grey-scale 8 bpp image). However, despite a not very brilliant 

beginning, the DWT has been successfully employed later in the field of image coding. 

In this chapter, some of the most relevant and efficient wavelet coding techniques that 

have been proposed recently are surveyed. We will group them into two main types of 

wavelet encoders: tree-based and block-based. Among the wide variety of efficient encoders 

available in the literature, we highlight the non-embedded proposals and the fastest 

coding/decoding schemes. The reason why we focus on this type of encoder is that we are 

interested in models with low computational requirements; thus in the following chapters, we 

will propose several encoders that meet these requirements through non-embedded 

techniques. 

 

4.2 Tree-based coding 

4.2.1 Embedded zero-tree wavelet (EZW) coding 

In the early 90s, there was the general idea that more efficient image coding would only be 

achieved by means of sophisticated techniques with high complexity, or by the combination 

Fig. 4.1: Definition of wavelet coefficient trees. In (a), it is shown that coefficients of the same 
type of subband (HL, LH or HH) representing the same image area through different levels can be 
logically arranged as a quadtree, in which each node is a wavelet coefficient. The parent/children 

relation between each a pair of nodes in the quadtree is presented in (b).  

LH1 HH1 

HL1 LH2 HH2 

HL2 

(a) 

(b)

HL3 

HL2 

HL1



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

74 

of some of them. The embedded zero-tree wavelet encoder (EZW) [SHA93] can be 

considered the first wavelet image coder that broke that trend. This encoder exploits the 

properties of the wavelet coefficients more efficiently than the rest of early techniques and 

thereby, it considerably outperforms their coding performance.  

The EZW algorithm is mainly based on two basic ideas: (a) the similarity between the 

same type of wavelet subband, with higher energy as the subband level increases, and (b) a 

type of quantization based on a successive-approximation scheme that can be adjusted in 

order to get a specific bit rate in an embedded way. The former idea is exploited by means of 

coefficient trees, whereas the latter is usually implemented with bit-plane coding. In addition, 

the encoder includes an adaptive arithmetic encoder to encode the generated symbols. 

Although the EZW technique never became a standard, it is of great historical importance in 

the field of wavelet-based image coding because the aforementioned two principles were later 

used and refined by many other coding methods. 

Let us define the coefficient trees employed in EZW. In a dyadic wavelet decomposition 

(e.g., the one shown in Figure 2.5), there are coefficients from different subbands 

representing the same spatial location, in the sense that one coefficient in a scale corresponds 

spatially with four coefficients in the correspondent previous subband. This connection can 

be extended recursively with these four coefficients and the corresponding direct descendants 

(sometimes called offspring) at the previous levels, so that coefficient trees can be defined as 

shown in Figure 4.1. Since each node in a tree has four direct descendants (except the 

coefficients at the first level, corresponding with the leaf nodes), this type of tree is 

sometimes called quadtree. Note that a quadtree (or subquadtree) can be built from each 

coefficient by considering it as the root node of a tree.  

The key idea employed by EZW to perform tree-based coding is that, in natural images, 

most energy tends to concentrate at coarser scales (i.e., higher decomposition levels). Then, it 

can be expected that the closer to the root node a coefficient is, the larger magnitude it has. 

Therefore, if a node of a coefficient tree is lower than a threshold, its descendant coefficients 

are likely to be lower as well. In other words, the probability for all four children to be lower 

than a threshold is much higher if the parent is also lower than that threshold. We can take 

advantage of this fact by coding the subband coefficients by means of trees and successive-

approximation, so that when a node and all its descendant coefficients are lower than a 

threshold, just a symbol is used to encode that entire branch. 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

75 

The EZW algorithm is performed in several steps, with two stages per step: the dominant 

pass and the subordinate pass. Successive-approximation can be implemented as a bit-plane 

encoder, so that the method can be outlined as follows (note that an implementation 

perspective is taken). Consider that we need n bits to represent the highest coefficient of the 

image (in absolute value). Then, the first step will be focused on all those coefficients that 

need exactly n bits to be coded (ranging from 2n−1 to 2n−1)), which are considered to be 

significant with respect to n. In the dominant pass, each coefficient falling in this range (in 

absolute value) is labeled and encoded as significant positive/negative (sp/sn), depending on 

its sign. These coefficients will no longer be processed in further dominant passes, but in 

subordinate passes. On the other hand, the rest of coefficients (those in the range [0, 2n−1[) are 

encoded as zero-tree root (zr) if all its descendants also belong to this range, or as isolated 

zero (iz) if any descendant is significant. Note that no descendant of a zero-tree root needs to 

be encoded in this step, because they are already represented by the zero-tree root symbol. In 

the subordinate pass, the bit n of coefficients labeled as sp/sn in any prior step is coded. In the 

next step, the n value is decreased in one, so that we focus now on the following bit (from 

MSB to LSB). This compression process finishes when the desired bit rate is reached, and the 

decoder can partially use the incoming bitstream to reconstruct a progressively improved 

version of the original image. That is why this coder is called embedded. 

In the dominant pass, four types of symbols need to be coded: sp, sn, zr, and iz, whereas 

in the subordinate pass only two are needed (bit zero and bit one). In order to get higher 

compression, an adaptive arithmetic encoder is used to encode the symbols computed during 

the dominant pass. 

Due to its successive-approximation nature, EZW is SNR scalable, although at the 

expense of sacrificing spatial scalability. In addition, line-based wavelet transforms are not 

suitable for this encoder (see previous chapter), because the whole image is needed in 

memory to perform several image scans focusing on different bit planes and searching for 

zero-trees. Moreover, it needs to compute coefficient trees and performs multiple scans on the 

transform coefficients, which involves high computational time, most of all in cache-based 

architectures due to the higher cache miss rate. 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

76 

 

Fig. 4.2: Example of division of coefficient sets arranged in spatial orientation trees. This division 
is carried out by the set partitioning sorting algorithm executed in the sorting pass of SPIHT. The 
descendants of ci,j presented in (a) are partitioned as shown in (b); if needed, the subset of (b) is 

divided as shown in (c), and so on. 

(a)

… … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … …

(b)

(c)

ci j 

O(ci,j) 

L(ci,j) 

D(ci,j) 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

77 

4.2.2 Set partitioning in hierarchical trees (SPIHT) 

Said and Pearlman [SAI96] proposed a variation of EZW, called SPIHT (set partitioning in 

hierarchical trees), which is able to achieve better results than EZW even without arithmetic 

coding. SPIHT is based on the same principles as EZW. However, improvements are mainly 

due to the way it searches for significant coefficients in the quadtrees, by splitting them with 

a novel partitioning algorithm. 

Like in EZW, SPIHT encodes the wavelet subbands in successive steps, focusing on a 

different bit-plane in each step. For a certain bit-plane (n), the set partitioning sorting 

algorithm included in SPIHT identifies the insignificant coefficients in the transformed 

image. This algorithm encodes the coefficient significance by means of significance tests, 

which query each set to know if it has at least one significant coefficient. If so, it divides that 

set into more subsets and it then repeats the same question, otherwise we have identified a 

group of insignificant coefficients with respect to the current bit plane. The result of each 

query is encoded with a simple binary symbol, so that the decoder can reconstruct the same 

groups of insignificant sets. The subsets with significant coefficients are successively divided 

until each single significant coefficient is identified. When all the subsets are found to be 

insignificant with respect to the current bit-plane, all the significant coefficients have been 

located, and the sorting pass is over for this step. The algorithm then encodes the 

corresponding bit (n) of those coefficients found significant in previous steps, which is called 

refinement pass. Afterwards, it focuses on the following bit-plane (n−1) and repeats the same 

process until the desired bitrate is reached. Note that the sorting and refinement passes of 

SPIHT are equivalent in concept to the dominant and subordinate passes of EZW 

respectively. 

SPIHT uses spatial orientation trees (which are basically the quadtrees of Figure 4.1) to 

construct the initial set of coefficients and to establish the rules to divide them in the sorting 

algorithm. The notation employed in the algorithm is shown in Figure 4.2(b). For a given 

coefficient ci,j, D(ci,j) is the set of all the descendant coefficients of ci,j. This set can be split 

into direct descendants (or offspring) O(ci,j) and non direct descendants L(ci,j).  

In the SPIHT algorithm, the initial sets of coefficients are defined as )c( ji,D  NLLc ji, ∈∀ . 

The way a set D(ci,j) is partitioned in a sorting pass is shown in Figure 4.2. Each set D(ci,j), 

such as the one shown in Figure 4.2(a), is partitioned into its four direct descendants 

{ } )c(d,d,d,d ji,4321 O∈  as four single coefficients, and its non direct descendants L(ci,j) as a 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

78 

new subset (see Figure 4.2(b)). Later, if the L(ci,j) subset has to be partitioned, it is divided 

into four subsets formed by D(d1), D(d2), D(d3) and D(d4), as shown in Figure 4.2(c). Each of 

these subsets can be further partitioned as we have just described. 

The detailed coding and decoding algorithms is described in [SAI96]. In these 

algorithms, the sorting pass includes two lists to identify single coefficients: a list for the 

significant coefficients (called list of significant pixels, LSP) and another for the insignificant 

ones (list of insignificant pixels, LIP). On the other hand, the insignificant subsets are 

identified with another list (called list of insignificant sets, LIS), in which each subset can be 

of type D(ci,j) or L(ci,j) (an extra tag is needed to specify it). Note that there is no list of 

significant subsets because when a subset is found to have a significant coefficient, it is 

successively partitioned until the significant coefficient or coefficients are refined to the 

granularity of a single coefficient. 

The coding efficiency of SPIHT can be improved by using adaptive arithmetic coding to 

encode as a single symbol the significance values resulting from the significance tests 

(queries). 

The SPIHT algorithm has been considered a reference benchmark for wavelet image 

coding in a large number of papers. In addition, many papers have been published based on 

the tree-based SPITH algorithm, including video coding [MAR99] [KIM00], hyperspectral 

image coding [TAN03] and a generalization of the set partitioning algorithm [HON02]. A 

block-based version of SPIHT [PEA04] will be described later. 

Due to its similarities to EZW, the features of SPIHT are the same as those mentioned for 

EZW in the last paragraph of the previous subsection, except for the improvements in coding 

performance. 

4.2.3 Non-embedded tree-based coding 

4.2.3.1 Space-frequency quantization (SFQ) 

Not all the tree-based algorithms in the literature are based on successive quantization 

implemented with bit-plane coding, leading to an embedded bitstream. In [XIO97], a non-

embedded tree-based image encoder called space-frequency quantization (SFQ) encoder is 

presented. In order to minimize distortion for a target bitrate, this algorithm relies on: (1) the 

construction of trees of zero-coefficients (which is considered a space quantization) and, (2) a 

single common uniform scalar quantization applied to the wavelet subbands (this is the 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

79 

frequency quantization). The join application of (1) and (2) is performed in an optimal 

manner, with the Lagrange multiplier method [EVE63]. To this end, the algorithm tries to 

identify the optimal subset of coefficients to be discarded by encoding them as a quadtree, 

and the optimal step-size to quantize the rest of coefficients by applying a uniform scalar 

quantizer. In order to determine the best option for the space quantization, the algorithm 

considers not only entire quad-trees, like the one shown in Figure 4.1, but also different 

shapes of trees, by pruning tree branches. Information about tree pruning and the rest of 

quantized coefficients, along with the employed step-size, are encoded with entropy coding 

and sent to the decoder as part of the compressed bitstream. 

Despite not being embedded, SFQ achieves precise rate control due to the use of an 

iterative rate/distortion optimization algorithm for a given bit rate. As a result of this 

algorithm, the coding performance of SFQ is slightly better than SPIHT. However, this 

iterative optimization algorithm is time-consuming and causes the SFQ encoder to be about 

five times slower than SPIHT. 

4.2.3.2 Non-embedded SPIHT 

In [PEA01], Pearlman introduces the discussion about the general necessity of embedding in 

image coding. As we have mentioned in subsection 4.2.1, bit plane coding slows the 

execution of both the encoder and decoder, and sometimes it gives no benefit to the 

application, or even worse, it is not feasible. In particular, a line-based wavelet transform 

cannot be employed along with bit plane coding unless further rearrangement of the bit 

stream is performed, needing at least the entire bit stream in memory. On the other hand, we 

may just want to encode an image at a constant quality. In this case, successive 

approximation is not strictly required, except eventually to improve coding efficiency.  

The variation of SPIHT introduced in [PEA01] is to send all the bits down to a given bit 

plane (r) once a single coefficient has been found significant, so as to avoid the refinement 

passes. In this version, the coding process finishes when that bit plane (r) is reached in a 

sorting pass. Another option is to pre-quantize all the coefficients with a uniform scalar 

quantizer, and then encode all the bit-planes (again without refinement passes). The desired 

distortion level (or compression level) is controlled by modifying the r parameter in the first 

variation, or the quantization step in the second one. Note that in both approaches, the LSP 

list of SPIHT is no longer needed. 

Although this version is faster than the original one, neither multiple image scan nor bit-



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

80 

plane processing of the sorting passes is avoided. Hence, the problems addressed in 

subsection 4.2.1 still remain.  

4.2.3.3 PROGRES (progressive resolution decomposition) 

The modification of SPIHT described in the previous subsection is neither SNR nor 

resolution scalable. Recently, the authors of SPIHT have proposed a new version of SPIHT 

[CHO05] for very fast resolution scalable encoding, based on the principles of decreasing 

energy of the wavelet coefficients along the subband levels, and the fact that the energy is 

quite similar for coefficients at the same level. Since it supports resolution scalability with 

great speed, the authors consider that it is an excellent choice for remote sensing and GIS 

applications, where rapid browsing of various scales of large images is necessary. 

PROGRES uses a pre-defined constant quality factor, just like the non-embedded SPIHT 

algorithm. In order to reduce complexity, bit plane coding is avoided and each coefficient is 

visited only once. Entropy coding is also avoided.  

For each coefficient, the goal is to encode the sign and the bits below the most significant 

non-zero bit. To this end, the number of bits required for each coefficient must be known in 

advance. Basically, at a subband level, for each coefficient ci,j in that subband, the PROGRES 

algorithm identifies the number of bits needed to encode the highest coefficient in a SPIHT-

like subset D(ci,j) (let us call this value r), and then it encodes each coefficient contained in 

O(ci,j) with that number of bits. In order that the decoder can reconstruct the original 

coefficients, r is also encoded. In the next subband level, PROGRES repeats the same 

operation for each D(dm,n) )(cd ji,nm, O∈∀ . This algorithm is repeated through the successive 

subband levels, from the LLN subband down to the first subband level. However, when the 

number of bits needed to encode a subset is found to be zero, a group of insignificant 

coefficients has been identified, and then this subset is no longer partitioned and encoded. 

In order to improve coding efficiency, each r for a given subset is not encoded as a single 

value, but as the difference between that value in this subset and in its parent subset (i.e., the 

direct subset from which a subset stems). Since this difference is always positive (or zero), 

and its probability distribution is higher as it approaches zero, unary coding1 is employed. 

Some other implementation details and the complete encoding algorithm are given in 

[CHO05]. 

Experimental results show that PROGRES is up to two times faster in coding and four 
                                                 
1 In unary coding, a number n is represented with n ones followed by a zero. 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

81 

times faster in decoding than the binary version of SPIHT (i.e., SPIHT without entropy 

coding). However, its coding efficiency is relatively poor, being slightly worse than binary 

SPIHT. The low coding performance is not only due to its lack of entropy coding, but also 

because it always employs the number of bits required by the highest coefficient in a subset. 

This problem especially affects highly detailed images. These images are more likely to have 

high descendant coefficients, which could cause their parents to use more bits than actually 

needed. 

4.3 Block-based coding 

A drawback of tree-based coding is that the tree structures hinder the bitstream organization 

for advanced scalability features. E.g., in EZW and SPIHT, when a tree is identified at a bit-

plane level (for a certain quality level), we not only encode information about insignificant 

coefficients in the image resolution corresponding to that subband level but also about all its 

descendant coefficients in larger scales (i.e., in the previous subband levels). On the other 

hand, PROGRES encodes entire coefficients as a unit and no SNR scalability is provided.  

For advanced scalability, we would like to be able to rearrange the generated bitstream to 

attain both spatial and SNR (quality) scalability. The former can be attained by encoding 

whole coefficients, subband-by-subband, in decreasing order of level, while the latter can be 

implemented with bit-plane coding, and it is attained by encoding the bit-planes according to 

their importance for distortion reduction (namely, from the most significant bit-plane to the 

least one). A combination of these techniques provides both scalabilities at the same time. 

None of the tree-based coding techniques described so far are suitable to provide 

advanced scalability. To this end, we need to remove the inter-subband dependency 

introduced by the coefficient trees. 

Another disadvantage of tree-based coding is that errors propagate through subbands, due 

to the inter-band dependency. E.g., in EZW, if a zero-tree root symbol is not correctly 

decoded due to an error in the bitstream (for example, a transmission error), this error is not 

only reflected in that subband level but also in all the descendant levels. 

In order to overcome the above drawbacks, new coding techniques have been proposed 

based in coding independent coefficient blocks. Due to the lack of dependency among blocks, 

these methods ease the bitstream reorganization and avoid error propagation. However, the 

coding efficiency decreases because only the intra-subband dependency is exploited, and not 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

82 

the inter-subband dependency. In fact, the actual dependency granularity is even finer, since 

each block is usually encoded with an independent coding model, not only to improve 

robustness but also to allow random access when decoding. In addition, it is a known fact that 

statistics of wavelet coefficients vary noticeably from one spatial region to another (i.e., 

natural images are non-stationary), and therefore it makes sense to encode each subband 

region with a different statistic model. 

 

4.3.1 Embedded block coding with optimized truncation (EBCOT) 

The EBCOT [TAU00] encoder is certainly the most important block-based wavelet encoder 

reported in the literature. This encoder is a refined version of the layered zero coding (LZC) 

technique proposed by Taubman and Zakhor in [TAU94]. The importance of EBCOT lies in 

the fact that it was selected to be included as the coding subsystem of the JPEG 2000 

standard [ISO00]. EBCOT achieves most requirements of JPEG 2000, such as a rich 

embedded bitstream with advanced scalability, random access, robustness, etc., by means of 

block-based coding for the reasons given above. Furthermore, the decrease in coding 

efficiency caused by the lack of inter-band redundancy removal is compensated by the use of 

more contexts in the arithmetic encoder, a finer-granularity coding algorithm (with three 

Fig. 4.3: Example of block coding in JPEG2000. In tier 1 coding, each code-block is completely 
encoded bit-plane by bit-plane, with three passes per bit-plane (namely signification propagation, 
magnitude refinement and clean up passes). Only part of each code-block is included in the final 
bitstream. In this figure, the truncation point for each code-block is pointed out with a dotted line. 
These truncation points are computed with an optimization algorithm in tier 2 coding, in order to 

match with the desired bit rate with the lowest distortion. 

…

block 1 block 3 block 2 block 4 block 5 

magnitude refinement pass 

significance propagation pass 

clean up pass 

bit-plane 1 
(LSB) 

bit-plane 2 

bit-plane 3 

bit-plane 4 

bit-plane 5 

part of the encoded 
bit-stream for a 

desired target bit rate 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

83 

passes per bit-plane instead of two), and a post-compression rate distortion (PCRD) 

optimization algorithm based on the Lagrange multiplier method. 

Due to the importance of EBCOT in the JPEG 2000 standard, we will describe it in some 

detail. For a more complete and general description, there are many other references such as 

[TAU02], [ACH05], [RAB02] or even the standard document [ISO00]. Note that the EBCOT 

algorithm originally published by Taubman in [TAU00] was slightly changed for the JPEG 

2000 standard in order to reduce complexity and other issues. We will focus on this adapted 

version. 

After applying the DWT to the image, the EBCOT algorithm encodes the wavelet 

coefficients in fixed-size code-blocks. In this first step, called tier 1 coding, each code-block 

is completely and independently encoded, getting in this manner an independent bitstream for 

each code-block. Then, in the second step, tier 2 coding, fragments of bitstream of each code-

block are selected to achieve the desired target bitrate (rate control) in an optimal way (i.e., 

minimizing distortion), and it is arranged in such a way so that the selected scalability is 

accomplished. 

Prior to EBCOT, a uniform scalar quantization with deadzone is applied to the wavelet 

coefficients. All the code-blocks in the same subband are quantized with the same step-size 

so that blocking artifacts are avoided. Therefore, in general, this quantization has little rate 

control meaning, which is performed later in tier 2 coding. Rather, it is used to balance the 

importance of the coefficient values (recall that the DWT employed in JPEG 2000 avoids 

dynamic range expansion but is not energy preserving, as described in see Section 2.2.4), and 

in a practical way, to convert the floating point coefficients resulting from most wavelet 

transforms (e.g., the one described in Table 2.3) into integer data. Another way to select the 

quantizer step size is depending on the perceptual importance of each subband to improve 

visual quality based on the human visual system [ALB95] [ZEN02] [MAR02]. 

Regarding the code-block size, the total number of coefficients in a block should not 

exceed 4096, and both width and height must be an integer power of two. Thereby, the 

typical code-block size is 64x64, although other smaller sizes can be used (e.g., for memory 

saving or complexity issues). Of course, once a block size is determined, smaller code-blocks 

can appear on the subband boundary or in subbands smaller than a regular block.  



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

84 

 

4.3.1.1 Block coding: tier 1 coding 

Once the wavelet subbands are divided into blocks, an independent bitstream is generated 

from each code-block in the tier 1 coding stage. Each bitstream is created with a special 

adaptive binary arithmetic encoder with several contexts called MQ-coder [SLA98]. The 

MQ-coder is a reduced-complexity version of the usual arithmetic encoder [WIT87], limited 

to coding binary symbols. The JPEG 2000 standard document [ISO00] gives a detailed 

flowchart description of this encoder. 

In this stage, each code-block is encoded bit-plane by bit-plane, starting from the most 

significant non-zero bit-plane. For each bit-plane, several passes are given in order to identify 

the coefficients which become significant in this bit-plane, and to encode the significant bits 

of those coefficients found significant in previous bit-planes (see Section 4.2.1 for a 

definition of significant coefficient). This working philosophy is shared by many others well-

known encoders like EZW and SPIHT. However, unlike these encoders, three passes (instead 

of two) are given for each bit-plane1. In the first pass, called significance propagation pass, 

the significance of the coefficients that were insignificant in previous bit-planes but are likely 

to become significant in this bit-plane is encoded. Then, in the second pass, called magnitude 

refinement pass, a significant bit is encoded for each coefficient found significant in a 

previous bit-plane. Finally, the significance of the rest of coefficients (i.e., those that were 

insignificant and are likely to remain insignificant in this bit-plane) is encoded in the third 

pass, called clean up pass.  

                                                 
1 The original EBCOT algorithm [TAU00] had four passes instead of three. 

Fig. 4.4: (a) Scan order within an 8x8 code-block in JPEG2000, and (b) context employed for a 
coefficient, formed by its eight neighbor coefficients (two horizontal, two vertical, and four diagonal) 

(b)

(a) 

h h 

v

v

d 

d d

d



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

85 

In tier 2 coding, the bitstream resulting from several contiguous full passes are selected 

from each code-block to build the final bitstream. Therefore, the bitstream generated from 

each pass is the lowest granularity for the final bitstream formation. In each code-block, the 

point in which its bitstream is truncated to contribute to the final bitstream for a given bit rate 

is called truncation point. Figure 4.3 illustrates the encoding process and gives an example of 

truncation points. 

The order of the passes has been decided according to their contribution to rate/distortion 

improvements, so that a pass that is more likely to introduce more reduction of distortion 

with lower rate increase is encoded in first place. Of course, after encoding the three passes, 

the same reduction of distortion and the same bit rate is reached independently of the order of 

the passes. However, the proposed order yields more benefits if the truncation point is not at 

the end of a bit-plane coding (i.e., it is not between a clean up pass and a significance 

propagation pass), but in the middle of it. 

If we compare this algorithm with EZW or SPIHT in broad terms, we see that the main 

difference (apart from the lack of trees) is that the pass employed to identify new significant 

coefficients (called dominant pass in EZW and sorting pass in SPIHT) has been split into two 

passes in order to have more passes from which to choose a truncation point. 

For implementation convenience, the order in which coefficients are scanned in a code-

block is in stripes formed by columns of four coefficients, as shown in Figure 4.4(a). 

Let us see more details of each coding pass. In the significance propagation pass, a 

coefficient is said to be likely to become significant if, at the beginning of that pass, it has at 

least one significant neighbor. Certainly, this condition does not guarantee that it will become 

significant in this bit-plane, and therefore its significance still has to be encoded. In order to 

improve coding efficiency, nine contexts are used according to the significance of its eight 

immediate neighbors (see Figure 4.4(b)). The exact context assignment, mapping from the 

28−1 possible contexts to nine contexts, can be found in [TAU00]. In addition, when a 

coefficient eventually becomes significant, its sign is also arithmetically encoded with five 

different contexts.  

In the case of the magnitude refinement pass, a significant bit is arithmetically encoded 

with two contexts if it has just become significant in the previous bit-plane (i.e., it is the first 

bit encoded for this coefficient). For the rest of bits, they are considered to have even 

distribution and thereby another single context is used without dependence of the neighboring 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

86 

values. 

The clean up pass is implemented in a similar manner to the signification propagation 

pass, with the same nine contexts employed to encode the significance of a single coefficient. 

However, the clean up pass includes a novel run mode, which serves to reduce complexity, 

rather than improve coding efficiency. Observe that most coefficients are insignificant in this 

pass, and therefore the same binary symbol is encoded many times. We can reduce 

complexity if we take advantage of this fact and reduce the number of encoded symbols. To 

this end, when four coefficients forming a column have insignificant neighbors, a run mode is 

entered. In this mode, we do not encode single coefficients but a binary symbol that specifies 

if any of the four coefficients in a column is significant. This binary symbol is encoded with a 

single context. 

Note that, for the most significant non-zero bit-plane (i.e., the first bit-plane that is 

encoded), neither a significance propagation pass nor a magnitude refinement pass is 

performed, because there is no previous significant coefficient (see example in Figure 4.3). 

Finally, it is also worth to mention that, from the above description, we can deduce that 

the MQ-coder must be able to support (at least) eighteen contexts.  

 

Fig. 4.5: Example of convex hull formed by distortion-rate pairs from the block 1 of Figure 4.3. In 
a convex hull, the slopes must be strictly decreasing. Four rate-distortion pairs are not on the 

convex hull, and therefore they are not eligible for the set of possible truncation points. A line 
with a slope of 1/λ determines the optimal truncation point for a given value of λ. 

D
is

to
rti

on
 (e

.g
., 

M
SE

) 

Rate (e.g., bytes)

bit-plane 1 (LSB)

Rate-distortion 
pairs not on the 

convex hull 
magnitude refinement pass 

significance propagation pass 

clean up pass 

bit-plane 2

bit-plane 3 

bit-plane 4 

1/λ



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

87 

4.3.1.2 Bitstream organization: tier 2 coding 

In tier 2 coding, the bitstreams generated from each code-block are multiplexed using a 

specific file format to accomplish the desired scalability. Rate control tasks are also 

performed in this second stage. 

In order to determine the optimal truncation point in each code-block for a desired bit 

rate, EBCOT proposes a post-compression rate distortion (PCRD) optimization algorithm, 

which is basically a variation of the Lagrange multiplier method [EVE63]. This algorithm 

computes a convex hull (where slopes must be strictly decreasing) for each code-block from a 

set of distortion-rate pairs (see Figure 4.5 for an example of convex hull). Each pair defines 

the contribution of a coding pass to reduce image distortion (e.g., measured as MSE 

reduction) and the cost of that pass (e.g., the number of bytes required to encode that pass). 

For an optimal bitstream formation, the rate-distortion pairs in the interior of the convex hull 

cannot be selected as truncation points.  

Given the set of convex hulls for each code-block, an optimal bitstream can be achieved 

as follows. Consider a factor λ that defines a straight line with 1/λ slope. The optimal 

truncation point for each convex hull is given by the point to which that line is “tangent-

like”1. In other words, it is the point at which the rate/distortion slope changes from being 

greater than 1/λ to less than it (see example in Figure 4.5). In this way, we can compute an 

optimal bitstream by calculating a truncation point for each code-block with a given λ. 

However, no rate control is performed. In order to achieve a target bit rate, the value of λ is 

iteratively changed and the optimal set of truncation points are recomputed with each value 

of λ. From all the sets of truncation points iteratively computed that do not exceed the desired 

bit rate, the one that yields the highest distortion reduction is selected. In other words, we 

select the largest bitstream that does not exceed the target bitrate. 

Quality (SNR) scalability can be achieved if this rate control algorithm is executed 

several times, once for each partial target bitrate (R1, R2… Rn). Therefore, the selected coding 

passes that optimally lead to a bitrate R1 are said to form the quality layer 1; then, the added 

coding passes that lead to a bitrate R2 form the quality layer 2, and so on. In this way, 

EBCOT produces an embedded bitstream, but with a coarser granularity than the one of EZW 

                                                 
1 Formally speaking, the given convex hulls are not curves and then we cannot consider a line tangent 
to it. Here, we actually mean a line that touches a convex hull and does not intersect it. Note that in the 
case of a curve, there is only a line tangent to each point, whereas in our convex hulls, there are many 
“tangent-like” lines for each possible truncation point. 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

88 

and SPIHT. On the other hand, for resolution scalability, we just have to arrange the selected 

code-blocks depending on the subband level, from the LLN to the first-level wavelet 

subbands. A wide variety of types of scalability is accomplished by combining various 

quality layers and the suitable code-block arrangement in the final bitstream. 

4.3.1.3 Performance and complexity analysis 

Although EBCOT only exploits intra-block redundancy, it generally performs as well as 

SPIHT, or even better than it, in terms of coding efficiency, mainly due to (1) the use of more 

contexts, (2) the introduction of a third pass to encode the most important information in first 

place, and (3) the PCRD optimization algorithm. In addition, if we consider artificial images 

or highly detailed natural images, EBCOT clearly outperforms SPIHT, because in this type of 

image, SPIHT can establish fewer coefficient trees, and also due to the use of more contexts 

in EBCOT, which allows it a better and more precise adaptation of its probability model.   

Let us perform a complexity analysis of EBCOT. Recall that the main complexity 

problem in SPIHT is introduced by bit-plane coding. Nonetheless, although both EBCOT and 

SPIHT use bit-plane coding, EBCOT avoids the locality problems that increase the cache 

miss rate by encoding an image block-by-block. Moreover, the set of code-block bitstreams is 

more likely to fit into cache, and therefore further post-processing does not cause so many 

cache misses. In spite of this, the EBCOT algorithm can be considered more complex than 

SPIHT (except for very large images in cache-based systems). There are several reasons for 

this. First, bit plane coding is still present, and for each bit-plane, it must be performed for all 

the coefficients in a block. Compare it with EZW and SPIHT, where the coefficients in a tree 

are neither encoded nor scanned. Second, the significance analysis is more complex in 

EBCOT, since more contexts are used. Third, in a regular implementation of EBCOT, each 

coefficient is fully encoded, bit-plane-by-bit-plane, despite that fact that some bit-planes will 

not be included in the final bitstream due to rate control restrictions, although some advanced 

implementations of JPEG 2000 perform a conservative heuristic for incrementally estimating 

the number of coding passes that will be included in the final bitstream, and determine those 

bit-planes that do not need to be computed. Finally, the PCRD optimization algorithm is very 

time-consuming due to its iterative nature.  



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

89 

 

4.3.2 Set Partitioning Embedded Block (SPECK) 

In Section 4.2.2 we described SPIHT, which is an image encoder based on the successive 

division of coefficient sets according to their significance with respect to a threshold, which 

is determined by the current bit-plane. Since the partitioning process is carried out according 

to the significance of the coefficients, it is said to be based on a significance test. In SPIHT, 

the initial set of coefficients and the consequent rules to divide them make use of a typical 

quadtree structure, which is characteristic of tree-based coding. The SPECK algorithm 

[ISL99] [PEA04] is similar to SPIHT, in the sense that it also performs significance tests to 

identify significant coefficients in a set, but it differs from SPIHT in that it makes use of sets 

in the form of blocks instead of quadtrees. Therefore, it can be thought of as a block-based 

version of SPIHT. 

Instead of trees, in SPECK there are two different types of coefficient sets: sets S and sets 

I. The sets of type S form a rectangular area of coefficients, while the sets of type I are a 

rectangular area in which a smaller rectangular portion of this area has been removed from 

Fig. 4.6: Set division in SPECK. (a) A transformed image is initially split into two sets, one of type S 
and another of type I. A set of type I is subsequently divided into four sets: three sets of type S, and 
one set of type I with the remaining coefficients, as shown in (b), except for the last set of type I, in 

which the remaining set of type I is an empty set (see (c)). This type of division is called octave-band 
partitioning. Finally, a set of type S is subsequently divided into four sets of type S as shown in (d). 

(b) (a) 

(d) (c) 

X I I
I

S 

S 

S 

S 

S
S S

S S

S

SS
I 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

90 

the top left corner. Examples of S and I sets can be found in Figure 4.6. 

Let us see the partition rules for SPECK. First, a transformed image X is initially 

partitioned into two coefficient sets: a set of type S, which corresponds to the low-frequency 

subband (LL), and the rest of wavelet subbands, forming a single set I. This initial partition is 

presented in Figure 4.6(a). Then, as in SPIHT, the SPECK algorithm is executed in 

successive sorting and refinement passes, going from the most significant bit to the zero bit-

plane, until all the coefficients are encoded or the target bitrate is reached. However, the main 

difference between SPIHT and SPECK lies in the partitioning algorithm employed in the 

sorting pass.  

In SPECK, when a set S is found to be significant in the current step (in other words, it 

has at least one significant coefficient), it is further partitioned into four sets of type S, and 

the significance of each new subset is encoded. The partition of a set S can be seen in Figure 

4.6(d). This process is repeated on each new set S that remains significant, until each single 

significant coefficient is located (when a pixel-level is reached). 

After all the sets of type S are refined until they are left insignificant, the significance test 

is applied on the set I. If the set I is significant, it is partitioned into four sets: three sets of 

type S, which corresponds to the following wavelet subbands, and a set I containing the 

remaining wavelet subbands. Therefore, for an N-level wavelet transform, the first time that 

the set I is divided, the resulting sets S correspond to the LHN, HLN and HHN wavelet 

subbands, and the remaining coefficients form the new set I. Then, the second time that the 

set I is partitioned, the new sets S are LHN−1, HLN−1 and HHN−1, and so on, until the set I is 

formed by the LH1, HL1 and HH1 subbands. At this moment, the set I is partitioned into only 

three sets S, because there are no more wavelet subbands that can be assigned to the set I (in 

other words, we can consider the set I empty). The partition of the set I is shown in Figures 

4.6(b) for the general case, and 4.6(c) for the final partition. Note that when a set I is found to 

be significant and as a result it is subsequently divided, the significance of the four new sets 

is encoded, and if any of the new set S is significant, it should be further partitioned as well, 

by following the partitioning rules of the sets of type S.  

The way the set I is partitioned exploits the hierarchical pyramidal structure of the 

wavelet transform in natural images, where energy is usually concentrated at the subbands of 

higher level (i.e., those of lower frequency). Thereby, when the set I is significant, it is likely 

to have many or all its significant coefficients in the wavelet subbands of higher level, and 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

91 

that is why they are the ones being decomposed in first place as set S. Note that this is 

roughly the same assumption used by EZW and SPIHT. In addition, with the way the sets of 

type S are partitioned, we try to exploit the clustering of energy of the transformed images in 

a better way. 

Although SPECK can be considered a block-based encoder, due to its partitioning 

algorithm in blocks instead of trees, each block is not independently encoded as it happens 

with EBCOT. Later, a variant of SPECK that really processes blocks of coefficients in a 

separate way will be introduced. This method is called SBHP [CHY00] and was a serious 

alternative candidate to EBCOT for the JPEG 2000 standard. 

Some details about the SPECK algorithm can be found in [PEA04]. The implementation 

proposed in this paper uses one list for significant coefficients (for further refinement passes), 

and another list for insignificant sets S, named as in SPIHT, list of significant pixels (LSP) 

and list of insignificant sets (LIS) respectively. For the insignificant sets, the size of each set 

S should be included in the list. A minor change with respect to SPIHT is that the elements of 

the LIP list (list of insignificant pixels) of SPIHT are now included in the LIS list, 

considering each single coefficient as a set with only one element. In addition, the sets in LIS 

are tested and partitioned in increasing order of their size (i.e., smaller sets first), since 

smaller sets are more likely to possess significant coefficients, and hence they are more 

valuable to reduce distortion. Finally, as in SPIHT, the result of the significance tests can be 

arithmetically encoded instead of binary encoded to improve efficiency. 

The basic SPECK algorithm is only SNR scalable. However, an extension of SPECK, 

called S-SPECK, was introduced in [XIE05] as a version of SPECK with additional features, 

such as resolution scalability and region of interest (ROI), but with similar complexity and 

compression efficiency as the basic SPECK algorithm. 

If we analyze the coding performance of SPECK, in general, its PSNR results are slightly 

worse than SPIHT, in a range of 0.1-0.4 dB at 1 bpp. Only in highly detailed images SPECK 

performs better than SPIHT, due to the reasons given in the performance analysis section of 

EBCOT. A higher complexity encoder, called embedded zero block coding (EZBC) [HSI00], 

was proposed as a combination of SPECK and EBCOT. It uses the SPECK algorithm to 

locate the significant coefficients, and then it employs the context-based adaptive arithmetic 

coding of EBCOT to encode the information, achieving in this way almost 1 dB more than 

SPECK at 1 bpp, at the expense of higher complexity. 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

92 

In terms of complexity, the authors of SPECK reported in [PEA98] that SPECK was 

several times faster than an early verification model of JPEG 2000 based on EBCOT 

(particularly, VM3.2A). However, bit-plane coding is still present in SPECK. Furthermore, 

although a significance test can be performed very fast on a coefficient set by maintaining 

information about the highest coefficient in the set, once a set has to be partitioned, a more 

complex search for the highest coefficient in each new set is needed to evaluate the 

significance of the new sets. Observe that this search can be implemented faster if an analysis 

of partial results is performed before starting coding, at the expense of higher memory 

requirements. 

4.3.2.1 Subband-Block Hierarchical Partitioning (SBHP) 

SBHP [CHY00] is a low-complexity implementation of SPECK that was introduced in the 

JPEG 2000 framework as an alternative to tier 1 coding to reduce its complexity. Contrary to 

SPECK, this algorithm is applied directly and independently to square blocks as it happens in 

EBCOT, with code-blocks no larger than typically 64×64 or 128×128.  

The partitioning method of each code-block is pretty similar to that used by SPECK to 

encode an entire transformed image. A code-block is initially partitioned into two coefficient 

sets, a set S, formed in this case by 2×2 coefficients in the upper left corner, and a set I, 

formed by the rest of coefficients. Then, when a set is significant, it is further partitioned with 

the rules of SPECK (see Figure 4.6). In order to reduce complexity, instead of arithmetic 

coding, a Huffman code with 15 symbols is chosen to encode the result of the significance 

tests. Once the code-blocks are independently generated, the final bitstream is reorganized 

with EBCOT’s tier 2 coding, achieving rate control and the desired scalability.  

The use of Huffman instead of arithmetic coding, and the introduction of block 

processing, causes a slight decrease in coding performance but entails a reduction of 

complexity. 

4.3.2.2 Non-embedded SBHP/SPECK 

As we mentioned in the description of SPIHT, sometimes embedded bit plane coding is not 

needed. Hence, to speed up coding and decoding, a non-embedded variant of SPECK or 

SBHP can be introduced if one bypasses the refinement passes and output the binary code of 

a coefficient immediately upon its being found significance. As in SPIHT, if this approach is 

taken, there is no need to maintain an LSP list. Experimental results in [CHY00] led to the 

conclusion that a non-embedded implementation of an SBHP decoder was approx. 35% faster 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

93 

than the embedded one. 

4.4 Other wavelet encoders 

4.4.1 Run-length coding 

Obviously, not all the wavelet encoders proposed so far have grouped insignificant 

coefficients in trees (such as EZW and SPIHT) or blocks (as SPECK does). Another group of 

wavelet encoders is formed by those based on run-length coding.  

One of the first image encoders that employed run-length coding was proposed by Tsai, 

Villasenor and Chen in [TSA96], and it is known as stack-run coding. This algorithm has a 

similar structure to the baseline JPEG standard. That is, after the transform decomposition, 

the wavelet coefficients are quantized using a classic scalar quantization scheme. Then, 

quantized coefficients are encoded using a run-length encoder (RLE) and, finally, an 

arithmetic encoder is used. The originality of this algorithm resides on the use of a 4-symbol 

set {0, 1, +, −} that employs the symbols {0, 1} to binary encode the value of each non-zero 

coefficient, and the {+, −} symbols to separately represent the sign of a coefficient or the 

binary representation of a run-length count. This type of symbol assignation is made so that 

once a coefficient is decoded, using a binary representation (0 and 1 symbols) and its sign, 

the decoder can distinguish according to the type of the following symbol if there is another 

non-zero coefficient (if the next symbol is 0 or 1) or a run-length count (if it is a + or − 

symbol).  

The coding efficiency of stack-run coding is half-way between EZW and SPIHT. As for 

complexity, although bit-plane coding is not performed in various steps with several scans 

through the image, the stack-run encoder is not very fast because each bit is separately stored 

with arithmetic coding, which is much slower than the raw coding of the significant bits (and 

sign) employed in other encoders, such as EZW, SPIHT and SPECK. 

Note that the stack-run algorithm is not SNR scalable. Another run-length wavelet-based 

coder, which encodes coefficients bit-plane by bit-plane providing quality scalability, was 

presented in [BER01]. The authors state that this proposal is faster than the typical tree-based 

encoders due to the lack of computation needed to define coefficient-trees, but it also leads it 

to poorer R/D performance. Experimental results show that its coding efficiency is similar to 

SPIHT only in highly detailed images in which SPIHT performs poorly, otherwise it is 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

94 

worse. Moreover, bit plane processing is still present, limiting the speed-up of the encoder. In 

fact, the encoder is only about 30% faster than SPIHT, and the decoder is even slower than 

SPIHT at 1 bpp. 

Note that run-length coding is included even in the clean-up pass of EBCOT’s tier-1 

coding, but with the objective of reducing complexity rather than improving coding 

performance. 

4.4.2 High-order context modeling 

Most wavelet encoders that we have described so far (namely tree, block, or run-length 

based) are effective to remove data redundancy in the form of a long-term trend (i.e., for not 

very detailed images), but not for short-term signals (like edges in an image). The reason is 

that these encoders impose artificial structures, such as trees or blocks, and only context of 

this shape can be used, whereas wavelet coefficients from natural images can form areas of 

many arbitrary and complex shapes. Furthermore, most previous encoders largely ignore the 

sample dependency between neighboring structures (i.e., different trees or blocks).  

In addition, a wavelet transform does not achieve total decorrelation between the input 

pixels because other complex nonlinear correlations exit, maintaining high-order statistical 

dependencies between the computed wavelet coefficients. 

For the aforementioned reasons, best R/D performance in wavelet coding is achieved by 

high-order context modeling techniques, like those presented in [WU98] [WU01]. In fact, the 

high number of contexts used in JPEG 2000 is an approach to these techniques, to improve 

coding efficiency in more detailed or artificial images. In these coders, not only contiguous 

coefficients are considered for context formation, but also coefficients that are more distant 

are evaluated (including some in other subbands).  

In this type of coder, it could seem that the higher the order of the model, the higher 

compression. However, this is not true in general. The problem is that natural images are non-

stationary and we do not have prior knowledge of the source. Hence, statistics for a model are 

generally learned in a dynamic way using adaptive coding. In order to fit a statistical model 

to the source, a large number of samples are needed. Therefore, if we use many contexts, an 

image might not provide sufficient samples to reach a good model, or even worse, correlative 

coefficients in the same context could be so distant in the image that the statistics could have 

changed. This problem is known as context dilution [RIS84].  



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

95 

In order to reduce the number of contexts, the encoder presented in [WU01] takes 

advantage of the fact that HL subbands exhibit predominantly vertical samples structures, 

while LH subbands exhibit more horizontal structures. Hence, for the former subbands, a 

vertically prolonged modeling context is employed, while for the latter subbands, the 

neighbor samples for context formation are consider in a horizontal structure. This way, the 

number of contexts is reduced and hence the context dilution problem is mitigated. Note that 

inter-subband dependency is also exploited because parent coefficients (and even their 

neighbors) are also considered for context modeling. The exact context formation and more 

details on this encoder can be found in [WU01].  

Despite its excellent compression performance (in PSNR, 0.5 dB above SPIHT for 

natural images, and more than 1 dB above it with highly detailed images), a main drawback 

arises from this type of coder. High-order context computation in which these coders lie is 

time intensive, especially the texture pattern extraction from neighboring samples and the 

linear combination of them, which results in a great increase of the encoder complexity. 

4.5 Tuning and optimizing the performance of the EZW algorithm 

In general, when a new wavelet coder is proposed, the corresponding algorithm needs a set of 

optimizations in order to be competitive in performance. These optimizations are mainly 

related to the final algorithm implementation. Therefore, it is very important to evaluate the 

different implementation choices when developing the final version of the wavelet coder, in 

order to improve performance. In the following chapters, we will propose several wavelet-

based image encoders, and then we will study some implementation options to improve their 

performance. In this section, we will perform a similar analysis with one of the classic 

wavelet image encoders that we have presented in this chapter, namely the EZW algorithm. A 

partial analysis of this encoder was performed in [ALG95], but a deeper study and more 

parameters can be examined.  

In order to perform this study, we have implemented a version of the EZW wavelet still 

image coder based on Shapiro’s descriptions [SHA93]. Then, we will test different 

implementation choices in order to show their impact on the overall coder performance. Also, 

we will compare the results obtained with our implementation with those published by the 

author of the EZW in order to check its correctness. 

Shapiro's EZW is a relatively complex algorithm, with several stages and parameters that 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

96 

can be optimized. Our first task was to implement the EZW algorithm to be able to identify 

the main parameters of this algorithm and in this way get the best performance by tuning 

them. Hence, in this section, we present different implementations alternatives that we can 

establish in the algorithm, some of them mentioned by Shapiro and others not, and we 

evaluate their contribution to the performance of EZW. We have grouped all these options in 

four categories: (a) wavelet family, (b) coefficient pre-processing, (c) improvements on the 

EZW, and (d) improvements related to the adaptive arithmetic encoder.  

Note that, when results are presented (in tables or curves), all configuration options are 

assumed to be set to its default value (which will be given in each subsection) with the 

exception of those explicitly mentioned, and that the default image to perform this study will 

be the standard Lena (unless something different is mentioned). 

4.5.1 Choosing the best filters 

In Chapter 2, we saw that choosing a good filter set is crucial to achieve good compactness of 

the image in the low frequency subband, this way we reduce the amount of non-zero 

coefficients and its magnitude, and therefore the image entropy. Shapiro uses an Adelson 9-

tap QMF filter-bank. With this filter and the standard image Lena, he obtains the results 

shown in Table 4.1 (Orig column). Our implementation, with the same image and filter (Adel 

column), shows similar results. We think that these results validate our implementation. 

However, other bi-orthogonal filters, in particular B9/7 and Villasenor 10/18 (Vil), make a 

better energy compactness and consequently provide better results. Simpler filter-banks, like 

Daubechies 4-tap filter (D4), get poorer compactness and hence lower PSNR values. Similar 

results are obtained with the standard image Baboon. However, with this image, Villasenor 

10/18, with a higher filter size (and thereby complexity), achieves remarkably better 

performance, showing a great capability to efficiently decompose highly detailed images. All 

these results are also shown in Figure 4.7. 

 
 PSNR Lena Image PSNR Baboon image 

rate Orig Adel Vil B9/7 D4 Adel Vil B9/7 
2 N/A 44.03 44.05 44.18 43.90 31.86 32.46 32.02 
1 39.55 39.53 39.64 39.63 39.17 27.46 27.83 27.39 

0.5 36.28 36.28 36.59 36.49 35.54 23.84 24.50 23.88 
0.25 33.17 33.18 33.50 33.43 32.23 22.37 22.54 22.70 

 
Table 4.1: Filter-bank comparison with Lena and Baboon source images and EZW coding. 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

97 

 

Another important aspect in wavelet processing is the number of decomposition levels. It 

mainly depends on the image size and the number of filter taps. As we can see in Figure 4.8, 

for a 512×512 image and a 9-tap QMF filter, it is highly interesting decomposing the 

successive LL subbands up to four times. However, less improvement is attained with more 

than four decomposition levels. By default, we, as Shapiro does, will perform a six-level 

dyadic decomposition with Adelson 9-tap QMF filter on the 512×512 standard image Lena. 

 

 

4.5.2 Coefficient pre-processing 

Shapiro proposes that the image mean can be removed before the EZW algorithm is applied, 

and transmitted to the decoder separately. Figure 4.9 shows the effect of this idea. It was 

performed in two different manners: (a) removing simultaneously the mean of all the bands, 

and (b) removing it only from the LL band (similar to remove the original image mean). As 

wavelet subbands are expected to be zero-mean, trying to remove the mean of these bands 

Fig. 4.8: Impact of the number of decomposition levels on performance. 

37

37.5

38

38.5

39

39.5

40

1 2 3 4 5 6 7 8 9

PS
N

R

decomposition level

Rate=1 bpp
Rate=0.9 bpp
Rate=0.8 bpp

 

Fig. 4.7: Evaluating various filter-banks for (a) Lena and (b) Baboon using EZW coding. 
(a) 

24

26

28

30

32

34

36

38

40

42

44

46

0 0.5 1 1.5 2

PS
N

R

rate

Villasenor 10/18
Biorthogonal 9/7

9-tap QMF (original EZW)
Daubechies 4

 
20

22

24

26

28

30

32

34

0 0.5 1 1.5 2

PS
N

R

rate

Villasenor 10/18
Biorthogonal 9/7

9-tap QMF (original EZW)
Daubechies 4

(b) 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

98 

does not seem to be a good idea, as Figure 4.9 shows. On the other hand, the effect of 

removing the mean of the LL band is nearly negligible (thus, the default value will be no 

mean removed).  

An important effect that appears in all the Rate/Distortion curves based on the EZW 

algorithm is its scalloped aspect; it can be easily noticed the peaks in the performance, which 

correspond with the end of a full EZW iteration. This is due to its embedded nature: the EZW 

presents the best performance when the algorithm finishes its bit budget just at the end of a 

subordinate pass. A uniform pre-quantization of the wavelet coefficients before applying the 

EZW could move these peaks along different rates. This effect is shown in Figure 4.10, 

where at established bit rates, different quantization factors (q values) have been used. In this 

case, with 1 bpp, best performance is obtained at q=0.2×2k, being k integer. These peaks are 

shifted to the right as the bit rate decreases, until a 0.5 bpp value is reached. Then, a full pass 

is completed and peaks repeat again at q=0.2×2k.  

Therefore, with the suitable value of q, results from Table 4.1 can be significantly 

improved (almost 1 dB with respect to the original EZW results when combined with 

Villasenor 10/18). These results are shown in Table 4.2 (from now on, we will consider that 

no uniform pre-quantization is used as default value). 

 
 

Fig. 4.9: Mean value removing option in EZW. 

26

28

30

32

34

36

38

40

0 0.2 0.4 0.6 0.8 1

PS
N

R

rate

No mean removed
Mean removed for LL band
Mean removed for all bands

 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

99 

 
 

 PSNR 9-tap QMF filter PSNR Villasenor 10/18 filter 
rate Orig No quant. q = 0.8 No quant. q = 0.4 
2 n/a 44.03 44.49 44.05 44.79 
1 39.55 39.53 39.83 39.64 40.20 

0.5 36.28 36.28 36.87 36.59 37.04 
0.25 33.17 33.18 33.52 33.50 33.97 

 

Table 4.2: Optimized PSNR results after introducing a pre-quantization process to shift 

performance peaks in EZW. 

4.5.3 Improvements on the main EZW algorithm 

Some options can be established in the main EZW algorithm. The curve "no reduce & no 

swap", in Figure 4.11(a), shows the different gradient existing between a dominant and a 

subordinate passes. This means that bits from subordinate passes are more valuable than 

those from dominant passes. Hence, performing a swap between the order of these stages 

could be a good idea. The curve "no reduce & swap" shows the results of performing the 

subordinate pass first, and then the dominant pass for every EZW iteration. In this way, when 

we run out of bits, no bit from the dominant pass is processed prior than one from the 

subordinate pass (with the same threshold). In fact, we have seen in this chapter that this type 

of improvement was also carried out in other encoders like JPEG 2000, encoding the most 

valuable pass first, and SPECK, testing the subbands in increasing order of their size. 

Another improvement on EZW consists in reducing the uncertainty interval at the 

decoder. The decoder must predict the bits that the encoder could not send because it finished 

its bit budget. It can assume that the rest of bits are 0, or maybe that all are 1. But the best 

Fig. 4.10: Uniform pre-quantization option introduced in EZW to shift performance peaks. This 
graph shows the PSNR for various quantization factors at constant bit rates. 

35.5

36

36.5

37

37.5

38

38.5

39

39.5

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4
PS

N
R

q

rate=1
rate=0.9
rate=0.8
rate=0.7
rate=0.6
rate=0.5

 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

100 

option seems to suppose that, for every coefficient, the more significant predicted bit is 1 and 

the rest 0, so we would have a lower uncertainty interval and, as consequence, a lower mean 

error. The curves "reduce" from Figure 4.11(a) shows the improvement of this action, and 

how performing a swap is not actually significant when the uncertainty interval is already 

reduced. 

Other options on the EZW coder are shown in Figure 4.11(b). One of them is the 

scanning order of the coefficients in the dominant pass. We can see that a Morton order (see 

example in Figure 4.12), which performs the scan in small groups, improves the performance 

of the algorithm if compared with a typical raster scan order (line-by-line in each subband), 

due to the best adaptivity to local features achieved in the arithmetic encoder. Another 

improvement is not to encode the first bit of a coefficient, because the decoder can deduce it 

from the significant symbols in the dominant pass. The last option is to sort the coefficients in 

the subordinate pass according to their magnitude, so that bigger coefficients are coded 

before smaller ones. This option was originally proposed by Shapiro in [SHA93], but it 

increases the coder complexity with almost no improvement in efficiency. In fact, Figure 

4.11(b) shows that, after evaluating these options, only the scan order seems to be really 

important, being the Morton order better than regular raster order. 

 
Fig. 4.11: Improvements on the main EZW algorithm: (a) Swapping dominant and subordinate 

passes. (b) Coefficient scanning order. 

(a) 

26

28

30

32

34

36

38

40

0 0.2 0.4 0.6 0.8 1

PS
N

R

rate

reduce & swap
reduce & no swap (default)

no reduce & swap
no reduce & no swap

 
38

39

40

41

42

43

44

0.8 1 1.2 1.4 1.6 1.8 2

PS
N

R

rate

Default (no reorder, skip, Morton order)
Reorder

No skip first bit 1
Scan order

(b) 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

101 

 

4.5.4 Improvements on the arithmetic encoder 

Several actions can be tackled on the adaptive arithmetic encoder. A regular adaptive encoder 

uses a dynamic histogram (context) in order to estimate the current probability of a symbol. 

To improve this estimation we can use a different histogram depending on the significance of 

the previously coded coefficient and its parent coefficient in the current pass. For example, if 

we code a coefficient with a significant parent, and the previous coefficient is insignificant, 

we would use a different histogram from the one used if the parent is insignificant or the 

previous coefficient is significant. Therefore four histograms can be used, depending on the 

significance of the parent and the previous coefficients. 

In addition, all the histograms can be restarted at the end of a full pass, to improve their 

adaptivity. Finally, since the last subband levels do not have offspring, we do not need to use 

a four-symbol alphabet for these bands, and another arithmetic encoder (without the isolated-

zero symbol) can be used. By default, all these improvements are used. Figure 4.13 shows the 

contribution of each option to the performance of the algorithm by removing them one by 

one. Only the use of contexts seems to be of really interest (notice the smaller scale of this 

graph). 

It is also important to consider the maximum frequency count in the adaptive arithmetic 

encoder (see more details in Section 1.2.5 and [WIT87]) and how much the histogram 

increases with each symbol (the default values that we have used are 512 and 6 respectively). 

Note that although most results have been presented for the Adelson 9-tap QMF filter 

Fig. 4.12: (a) Morton scan order, in which coefficients are scanned in small blocks, and (b) Raster scan 
order, with the subbands scanned line-by-line. 

(b)(a) 



CHAPTER 4. CODING OF WAVELET COEFFICIENTS  

102 

bank, because it was the one used by Shapiro, the rest of filters from subsection 4.5.1 behave 

similarly for most options. 

 

4.6 Summary 

In this chapter, we have described the main wavelet-based image encoders, some of them 

tree-based (such as EZW, SPIHT, SFQ and PROGRES), others block-based (e.g., EBCOT, 

SPECK and SBHP), and also encoders using run-length coding or high-order context 

modeling. In the coding efficiency assessment, we can conclude that rate-distortion 

optimization algorithms, and the use of more complex contexts provide the best results, but 

they imply time-consuming processes. In addition, many wavelet encoders achieve SNR 

scalability through bit plane coding, which slows the encoder (most of all in cache-based 

architectures). Some alternatives have been proposed to avoid bit plane coding in parts of the 

encoders (like for example in the refinement passes of SPIHT and SPECK), speeding up the 

execution, but bit plane coding still remains in other passes of these coders (namely, in the 

sorting passes).  

In addition, in the last section we have performed a deep study of an implementation of 

EZW, evaluating many alternatives (up to 15) in the different stages of the encoder. Also, we 

have shown that it is possible to get better results (about half dB) than those published by the 

author under the same conditions, and if more efficient filter banks are used, the EZW 

performance significantly increases (up to 0.8 dB), which stresses the importance of a proper 

parameter tuning when a new encoder is proposed. 

Fig. 4.13: Arithmetic encoder evaluation. 

41

41.5

42

42.5

43

43.5

44

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85

PS
N

R

rate

Default
Not use three symbols

Not restart
Not use four histograms

 



 

103 

 

 

Chapter 5   

Fast run-length coding of coefficients 

 

In the previous chapter, we presented some of the most important wavelet-based image 

encoders. In general, these algorithms are moderate to high complex, because they achieve 

good coding performance with quite complex techniques such as bit-plane coding, 

rate/distortion optimization algorithms and high-order context modeling. Apart from 

compression efficiency, other features, like SNR/resolution scalability and error resilience, 

are also usually considered.  In this chapter, we introduce a new wavelet image encoder that 

is extremely simple and faster than most of the previous proposals, most of all with a run-

length mode. Despite its simplicity, real implementations have shown that its coding 

performance is within the state-of-the-art. Thus, we will show that the proposed encoder has 

the same rate/distortion performance as SPIHT and Jasper (an official implementation of 

JPEG 2000) while they are several times slower. Moreover, our proposal is resolution 

scalable and is more robust than SPIHT (and other tree-based encoders), due to its lack of 

inter-subband dependency. In addition, it performs in-place processing and therefore, it does 

not require additional lists or complex data structures, so there is no memory overhead. 

5.1 Introduction 

In Chapter 2, we described several strategies that have been proposed in order to speed-up the 

computation time of the discrete wavelet transform (e.g., the lifting scheme and line-based 

approaches, which are faster in cache-based systems). Furthermore, in this thesis we have 

proposed a complete line-based algorithm to recursively compute the bi-dimensional DWT 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

104 

using the lifting scheme. 

However, the coding stage is not usually improved in terms of computational cost and 

memory requirements. When designing and developing a new wavelet image encoder, the 

most important factor to be optimized is usually the rate/distortion (R/D) performance, while 

other features like embedded bit-stream, SNR scalability, spatial scalability and error 

resilience may be also considered. In fact, many times, wavelet-based image encoders have 

additional features that are not really needed for many applications, but which make them 

both CPU and memory intensive. Often fast processing is preferable. An example of an 

application with real-time restrictions is intra-frame video capturing, where compression must 

be performed in a limited time slot. Low complexity may also be desirable for image 

compression in high-resolution digital camera shooting, where high delays could result 

annoying and even unacceptable for the final user (even more for modern digital cameras, 

which tend to increase their resolution). 

In this chapter, we propose an algorithm aiming to achieve similar rate/distortion 

performance to current state-of-the-art image coders, and considerably reduce the required 

execution time. Moreover, due to the in-place processing of the wavelet coefficients 

performed in the proposed encoder, there is no memory overhead. It only needs memory to 

store the source image (or even a part of it) to be encoded. In addition, our algorithm is 

naturally spatial scalable, and it is possible to achieve SNR scalability, and certain degree of 

error resilience, due to its lack of inter-subband dependency. 

In order to speed up the execution time of the coding and decoding processes, a run-

length mode will be used. Furthermore, for a really low-complexity implementation, bit-plane 

coding existing in many wavelet coders [SHA93] [PEA96] [TAU00] [CHY00] [BER01] 

[WU01] [PEA04] must be avoided so that multiple scan of the transform coefficients, which 

leads to high cache miss rate in cache-based systems, is not performed. In addition, 

rate/distortion optimization algorithms (like those employed in [XIO97] [TAU00]) are really 

time-consuming processes and must be avoided as well. Finally, the use of high-order 

contexts (like in [TAU00] [WU01]) also should be avoided to reduce complexity. 

In this chapter, we first propose a simple coding algorithm that will be used as a starting 

point for the proposed run-length encoder, which is explained in detail later. In addition, we 

tune the algorithm later, similarly to that proposed for the EZW algorithm in the previous 

chapter. Finally, we assess the performance of the proposed algorithm, focusing on its 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

105 

complexity, which is compared using real implementations. 

5.2 A simple multiresolution image encoder 

As we have seen in Chapter 4, one of the main drawbacks in many wavelet image encoders is 

their high complexity. Many times, that is mainly due to the bit plane coding, which is 

performed along different iterations, using a threshold that focuses on a different bit plane in 

each iteration. This way, it is easy to achieve an embedded bit-stream with progressive 

coding, since more bit planes add more SNR resolution to the recovered image. 

Although embedded bit-stream is a nice feature in an image coder, it is not always needed 

and other alternatives, like spatial scalability, can be more valuable depending on the final 

purpose. In this section, we propose a very simple algorithm that is able to encode the 

wavelet coefficients without performing one loop scan per bit plane. Instead of it, only one 

scan of the transform coefficients is needed. 

5.2.1 Quantization method 

In this algorithm, the quantization process is performed by two strategies: one coarser and 

another finer. The finer one consists in applying a scalar uniform quantization to the 

coefficients, and it is performed just after the DWT is applied. If the lifting scheme is used to 

compute the wavelet transform, this fine quantization can be applied with the filter 

normalization (see Chapter 2), simply by combining both scaling (K1) and quantization 

(1/2Q) parameters in only one scaling factor (K1/2Q). In this way, no additional 

multiplications are needed for the finer quantization. 

On the other hand, the coarser quantization is based on removing bit planes from the least 

significant part of the coefficients, and it is performed while our algorithm is applied. Related 

to this bit plane quantization, we define rplanes as the number of less significant bits to be 

removed. This parameter is useful to implement a fast quantization method, or for 

quantization in hardware architectures that only support integer arithmetic. 

Note that we will use this combined finer and coarser quantization in all the coding 

algorithms proposed in this thesis. For this reason, more explanation about this joint scalar/bit 

plane quantization process is given separately in Appendix A. 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

106 

5.2.2 Coding algorithm 

Let us explain now the proposed encoder. In the initialization of the encoder, the maximum 

number of bits needed to represent the highest coefficient is calculated. We call this 

parameter maxplane. As an alternative, this value can be obtained while computing the DWT, 

in order to avoid a second scan of the wavelet coefficients. Note that this parameter can be 

computed very efficiently with a simple bitwise OR operation. To this end, all the 

coefficients should be successively combined using the OR operator, and the maxplane 

parameter is given by the number of bits required to represent the result of the successive OR 

operations. 

Afterwards, the maxplane and rplanes parameters are output to the decoder. Then, an 

adaptive arithmetic encoder that is used to encode the exact number of bits required by each 

coefficient is initialized. In our proposal, those coefficients ( Cc ji ∈, ) that require more than 

rplanes bits to be coded (in other words, those |ci,j|≥2rplanes) are output using this type of 

symbol. Thus, only 2maxplane−2rplanes symbols are needed to represent this information. 

However, an additional symbol is required to indicate those coefficients that are lower than 

the established threshold (2rplanes). This symbol is called LOWER.  

Note that the maxplane parameter is required to compute the number of symbols 

employed by the arithmetic encoder. Nevertheless, this parameter and its search could be 

omitted if the arithmetic encoder is initialized with enough symbols to encode the highest 

coefficient that is estimated that can appear in the transformed image, which basically 

depends on the image size, the number of decomposition levels, the wavelet normalization, 

and the frequency behavior of the image. In this case, the coding algorithm is slightly faster 

(since the bitwise OR operations are not needed), but the coding performance is lower, and 

there is a risk of overflow if the estimated number of symbols is not large enough. 

Here, we have introduced another feature of our wavelet encoder: it represents the 

significance map of the wavelet coefficients with a single symbol per coefficient, encoded 

with arithmetic coding. Recall that the significance map is the way an encoder locates the 

significant coefficients (i.e., those coefficients different to zero) and their magnitude. A 

critical aspect of a wavelet encoder is how to represent this map. We saw in Chapter 4 that in 

the EZW algorithm, the significance map is encoded with successive dominant passes. 

Similarly, both SPIHT and SPECK represents this information in the sorting passes. Finally, 

in EBCOT, the significance map is represented in a more efficient way, with two different 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

107 

passes per bit-plane: the signification propagation pass and the clean up pass.  

In the coding algorithms presented in this thesis, we say that ci,j is a significant coefficient 

when it is different to zero after discarding the least significant rplanes bits, in other words, if 

|ci,j|≥2rplanes. Otherwise, it is insignificant. 

After the initialization stage, the wavelet coefficients are encoded as follows. For each 

subband, from the N level to the first one, all the coefficients are scanned in Morton order 

(i.e., in medium-sized blocks, such as Figure 4.12(a) shows). For each coefficient in that 

subband, if it is significant, a symbol indicating the number of bits required to represent that 

coefficient is arithmetically encoded. Since coefficients in the same subband have similar 

magnitude, and due to the order we have established to scan the coefficients (in small blocks 

to cluster local features), an adaptive arithmetic encoder is able to represent very efficiently 

this information. However, we do not have enough information to correctly reconstruct the 

coefficient; we still need to encode its significant bits and sign. 

On the other hand, if a coefficient is not significant, we transmit a LOWER symbol so 

that the decoder can determine that it has been absolutely quantized. Thereby, it does not 

have associated information, neither coefficient bits nor sign. 

Note that when encoding the bits of a significant coefficient, the first rplanes bits and the 

most significant non-zero bit are not coded. The decoder can deduce the most significant non-

zero bit through the arithmetic symbol that indicates the number of bits required to encode 

this coefficient. Moreover, in order to speed up the execution time of the algorithm, the bits 

and sign of significant coefficients are “raw encoded” (binary encoded), which results in very 

small lost in R/D performance. 

The proposed encoding algorithm is described in Algorithm 5.1. 

 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

108 

 

5.2.3 A simple example 

Figure 5.1 shows how this algorithm can be applied to a small 4×3 example subband. The 

coefficients of this figure have already been scalar quantized, and their unsigned binary 

representation is given in a heap, representing their sign along with their most significant 

non-zero bit. The selected rplanes parameter for the coarser quantization is two bit-planes, so 

that all coefficients under this threshold are discarded. The maxplane parameter is directly 

computed from the highest coefficient, and it is the number of bits needed for its unsigned 

binary representation. In our example, it is equal to six. On the left part in this figure, we can 

see boxes with the arithmetic symbols that result from encoding each line. In these boxes, 

significant coefficients are represented by their length (in number of bits), while the symbol L 

(LOWER) is used for those insignificant values. 

 
function SimpleWaveletCoding( ) 
1) Initialization: 

output rplanes 

output ( )⎡ ⎤{ }jiCc
cmaxplane

ji
,2logmax

, ∈∀
=  

2) Output the coefficients: 
Scan the subbands in the established order.  
For each jic ,  in a subband  

( )⎡ ⎤jiji cnbits ,2, log=  

if rplanesnbits ji >,
 

arithmetic_output jinbits ,  

binary_output  ( ) ( )jirplanejinbits cc
ji ,1,1 bitbit
),( +− K  

binary_output  sign( jic , ) 
else 

arithmetic_output LOWER 
end of fuction 

 
Note: ( )cnbit  is a function that returns the nth bit of c. 

Algorithm 5.1: Simple wavelet coding.  



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

109 

 

 
The bitstream obtained after encoding this subband is illustrated in Figure 5.2. In this 

example, coefficients are scanned row-by-row, from the lowest left corner. As we have seen, 

for the significant coefficients, not only the arithmetic symbol is necessary, but also their sign 

and significant bits are “raw encoded” (except the most significant bit, which is always 1). 

5.2.4 Features of the algorithm 

The proposed Algorithm 5.1 is resolution scalable due to the selected scanning order (in 

decreasing order of subband level) and the nature of the wavelet transform. This way, the first 

subband that the decoder attains is the LLN, which is a low-resolution scaled version of the 

original image. Then, the decoder progressively receives the remaining subbands, from lower 

frequency subbands to higher ones, which are used as a complement to the low-resolution 

image to recursively double its size, which is know as Mallat decomposition (see Chapter 2). 

Note that spatial and SNR scalability are closely related features. Spatial resolution allows 

us to have different resolution images from the same image. Through interpolation 

techniques, all these images could be resized to the original size, so that the larger an image 

is, the closer to the original it gets. Therefore, to a certain extent, this algorithm could also be 

used for SNR scalability purposes. 

The robustness of this algorithm lies in the low dependency among the encoded 

6, +, 
{011B} L L 3,+, 

{} L L 4, -, 
{0B} L L L L L 

Fig. 5.2: Appearance of the 3×4 subband of Figure 5.1 encoded using Algorithm 5.1. 

 
 

0 
0 1 

1 
-1 
0 -1

0 
0 

+1 
0 
1 
1 

-1 
0

+1

m
ax

pl
an

e=
6 

Fig. 5.1: 3D view of a 4×3 wavelet subband and the resulting 
arithmetic symbols for Algorithm 5.1. 

rplanes=2 

6 L L 3 
L L 4 L 
 

L L L L



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

110 

information, since there is no inter-subband dependency. Dependency among the encoded 

information is only present in consecutive symbols, and thus the use of synchronism marks 

and independent probability models between marks would increase the error resilience, at the 

cost of slightly decreasing the R/D performance. However, the lack of dependency that yields 

higher robustness also causes lower compression performance in the encoding process. The 

correlation among coefficients and subbands can be exploited in a more efficient way, if 

inter-subband redundancy is removed, as we will see in the next chapter, which takes this 

algorithm as a starting point to define a more efficient tree-based encoder, with similar 

characteristics to the one presented in this section (except robustness). 

A disadvantage of this simple algorithm is its higher complexity when working at low bit 

rates. Observe that one symbol is always encoded with arithmetic coding for every 

coefficient. The cost of this operation is not negligible, most of all if it is repeated many 

times. At low bit rates, most of the encoded coefficients are represented by the LOWER 

symbol. An arithmetic encoder is able to take advantage of this redundancy and achieves 

good coding performance. However, a simple grouping algorithm is needed in order to 

decrease the total number of encoded symbols, and thus the computational cost of Algorithm 

5.1. We will tackle this problem later in this chapter. 

Another drawback of this algorithm, and the rest of encoders that we propose in this 

thesis, is that it is not embedded (in SNR), and no iterative optimization algorithm is applied, 

and hence precise rate control cannot be achieved. Actually, most fast encoders have this 

problem, like for example, the original baseline JPEG, PROGRES and the non-embedded 

SPITH and SPECK algorithms. In these coders, a quality parameter is employed to achieve 

greater or smaller compressed files, varying the image quality. However, when compressing 

an image with a constant quality factor, the final image size is unknown a priori because it 

depends on the image features. In our algorithms, although there are two quantization 

parameters available to indicate the desired image quality, we can achieve rate control to a 

certain degree by analyzing the characteristics of the input image (mainly the first-order 

entropy of the wavelet coefficients). This analysis is general for all the image encoders 

proposed in this chapter and in the next one, and it is performed in Appendix B. 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

111 

 

5.2.5 Tuning the proposed algorithm 

Despite the simplicity of the proposed algorithm, its rate/distortion performance is 

competitive with the state-of-the-art image coders, provided the suitable tuning of the 

encoder parameters is applied. In this section, we present some details on the algorithm, 

which make it more efficient. In fact, in the previous chapter, we saw the importance of 

parameter tuning with the EZW encoder.  

In order to perform the desired tests, we have selected the standard Lena image as a basis 

pattern.  

5.2.5.1 Tuning the adaptive arithmetic encoder 

In Algorithm 5.1, an adaptive arithmetic encoder is used to efficiently encode the symbols 

that are output in the coding process. As we saw in Chapter 1, a regular adaptive arithmetic 

encoder uses a dynamic histogram to estimate the current probability of a symbol. In order to 

update this probability, a frequency count associated to a symbol is increased each time that it 

44.95

45

45.05

45.1

45.15

45.2

45.25

45.3

0 100 200 300 400 500 600 700

P
S

N
R

(d
B

)

Increasing factor

rate=2 bpp

36.98

37

37.02

37.04

37.06

37.08

37.1

37.12

37.14

0 100 200 300 400 500 600 700

P
S

N
R

(d
B

)

Increasing factor

rate=0.5 bpp

 

33.88

33.9

33.92

33.94

33.96

33.98

34

34.02

34.04

0 100 200 300 400 500 600 700

P
S

N
R

(d
B

)

Increasing factor

rate=0.25 bpp

30.82

30.84

30.86

30.88

30.9

30.92

30.94

30.96

30.98

0 100 200 300 400 500 600 700

P
S

N
R

(d
B

)

Increasing factor

rate=0.125 bpp

 
Fig. 5.3: PSNR performance depending on the increasing factor in the adaptive model, with high, 

medium and low bit rates. 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

112 

is encoded. Thus, we can consider a new parameter regarding how much the histogram is 

increased with every symbol; we call this parameter increasing factor.  

In the original adaptive arithmetic encoder [WIT87], a value of one was used for this the 

increasing factor parameter. We have observed that if this value is greater than one, the 

adaptive arithmetic encoder may converge faster to local image features, leading to higher 

compression ratios. Recall that, in general, images are non-stationary, and therefore they 

change their statistics. As a consequence, a higher increase may cause a faster convergence 

from a transient state to a steady state when an image changes its statistics. However, 

increasing it too much may turn the model (pdf estimation) inappropriate, leading to poorer 

performance.  

In addition, this parameter must be evaluated along with a maximum frequency count 

(sometimes called Max_frequency). When this value is exceeded by the sum of all the counts 

in the arithmetic encoder histogram (this count is called cumulative frequency count in 

Section 1.2.5), all these counts are halved and thus overflow is prevented (again, see more 

details in [WIT87] and Chapter 1). The original proposal for this parameter is 16384 (when 

using 16 bits), but experimental tests have led us to use a slightly lower value, 12500, so the 

model is normalized more often. 

In Figure 5.3, we have evaluated the PSNR performance for several increasing factors, 

using low, medium and high compression rates (2bpp, 0.5bpp, 0.25 and 0.125bpp). This 

figure shows that, for the proposed maximum frequency count (12500), an optimal increasing 

factor is located around 200 for all the bit rates, achieving an improvement of about 0.1-0.3 

dB when it is compared to the original proposal (i.e., increasing only one). 

5.2.5.2 Context modeling 

As we mentioned previously, coefficients in the same subband have similar magnitude. In 

order to take better advantage of this fact, different histograms may be handled according to 

the magnitude of previously coded coefficients, i.e., according to the context of the 

coefficients. In particular, we propose the use of two different contexts according to the 

significance of the left and upper coefficients (which is already encoded if a Morton scan 

order is performed with each block scanned in raster order). In this way, if both coefficients 

are insignificant, the coefficient being encoded is likely to be also insignificant, and thus a 

specific probability model is used. 

 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

113 

coder / 
rate (bpp) 

Proposed 
algorithm 

Proposed 
with context 

Jasper/ 
JPEG 2000 SPIHT 

2 45.30 45.30 44.62 45.07 
1 40.24 40.32 40.31 40.41 

0.5 36.95 37.13 37.22 37.21 
0.25 33.79 34.02 34.04 34.11 

0.125 30.79 30.97 30.84 31.10 
 

Table 5.1: PSNR (dB) with different bit rates and coders using Lena. 

 

The benefit of using contexts is shown in Table 5.1, where the R/D performance is 

presented for both cases (first and second columns), attaining a profit of up to 0.2 dB (mainly 

at low bit rates). On the other hand, in this table, we see that our coder is within the state-of-

the-art in terms of rate/distortion performance, displaying similar PSNR results to SPIHT 

[SAI96] and Jasper [ADA02], an official implementation of JPEG 2000 included in the 

ISO/IEC 15444-5 standard. 

5.2.6 Discussion 

Although our algorithm executes faster than SPIHT and Jasper (it will be shown in Section 

5.4), it presents a major drawback for low bit rate images. If we analyze the description of 

Algorithm 5.1, we can observe that all the symbols are explicitly encoded, i.e., width×height 

symbols are arithmetically encoded. We know that the adaptive arithmetic encoder is one of 

the slower parts of an image coding system (most of all in simple encoders like this). In our 

algorithm, experimental results have shown that, for low bit rates, more than 3/4 part of time 

is spent in the arithmetic encoder. In addition, most symbols being encoded have been 

absolutely quantized, and are always represented by the same symbol: LOWER. 

In order to overcome this problem and to reduce the complexity in these cases, a way of 

grouping large streams of LOWER symbols seems necessary. It will be introduced in the next 

section. 

 

6, +, 
{011B} L L 3,+, 

{} L L 4, -, 
{0B} 

R, 3, 
{01B}  

Fig. 5.4: Appearance of the 3×4 subband of Figure 5.1 encoded using Algorithm 5.2, with 
an enter_run_mode parameter of 4. 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

114 

5.3 Fast run-length mode 

In this section, a run mode is introduced in the algorithm proposed in the previous section. 

This run mode serves to reduce complexity when a large number of consecutive LOWER 

symbols appear, which usually occurs in moderate to high compression ratios. Minor 

improvements in compression performance are expected, due to the fact that we are replacing 

many likely symbols by a symbol or symbols that indicate the count of LOWERs, which will 

be less likely. Therefore, although less number of symbols are encoded, the probability 

dispersion affects adversely the adaptive arithmetic encoder, since it works better with 

probability concentration. 

In this new version, a run length count of LOWER symbols is performed. However, this 

run mode is only applied when the LOWER count passes a threshold value (called 

enter_run_mode parameter). Otherwise, the compression performance of the algorithm would 

decrease due to the large number of less likely run-length symbols introduced, replacing short 

streams of LOWER symbols. 

In this new version of the algorithm, when the run count is interrupted by a significant 

symbol, and the run count value is high enough (that is, it is greater than the enter_run_mode 

parameter), the value of the run length count must be output to the decoder, and the run count 

is reset.  

At this point, a new symbol is introduced: the RUN symbol. This symbol is used to 

indicate that a run value is going to be encoded. After encoding a RUN symbol, the run count 

is stored in a similar way as the significant values. First, the number of bits needed to encode 

the run value is arithmetically output (using a different context to those used to encode a 

significant coefficient), afterwards, the bits are raw output. 

The new run-length version of the simple encoder presented in the previous section is 

detailed in Algorithm 5.2.  



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

115 

 
Note that Algorithm 5.2 is also resolution scalable, again due to the selected scanning 

order of the subbands (from higher levels to lower ones), and the nature of the wavelet 

transform. 

Let us give some details on the algorithm. This algorithm uses the variable run_length to 

count the number of consecutive LOWER symbols that appear in the transformed image. 

 

function RunLengthWaveletCoding( ) 

1) Initialization: 

output rplanes 

output maxplane ( )⎡ ⎤{ }ji
LLc

c
Nji

,2logmax
, ∈∀

=  

run_length=0 

2) Output the coefficients: 

Scan the subbands in the established order.  
For each ci,j  in a subband 

( )⎡ ⎤jiji cnbits ,2, log=  

if rplanesnbits ji ≤,  
increase run_length 

else 
if 0_ ≠lengthrun  

if modeenter_run_run_length <  
repeat run_length times  

arithmetic_output LOWER 
else 

arithmetic_output RUN 
( )⎡ ⎤run_lengthrbits 2log=  

arithmetic_output rbits 
output  ( ) ( )run_lengthrun_legthrbits 11 bitbit K−  

run_length=0 
arithmetic_output jinbits ,  

output ( ) ( )jirplanejinbits cc
ji ,1,1 bitbit
),( +− K  

output  sign( jic , ) 

end of fuction 
 

Note: ( )cnbit  is a function that returns the nth bit of c. 

Algorithm 5.2: Run-length wavelet coding.  



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

116 

When a significant coefficient appears, and this run count is broken, the run_length value 

must be encoded if it is different to 0, but it is encoded in the form of several consecutive 

LOWER symbols if it does not exceed the threshold value pointed out by the enter_run_mode 

parameter. For this reason, an auxiliary array is needed to temporally retain the context value 

of each LOWER symbol that is not encoded, because in case that the run length count does 

not reach the threshold value, the context to encode each single LOWER symbol must be 

known. 

Furthermore, a detail not described in Algorithm 5.2 (for simplicity) is that, once the 

algorithm finishes encoding a subband, if the run count is different to zero (that is, if at least 

the last coefficient is insignificant), this count also has to be encoded, because there is no 

symbol to indicate the end of a subband. 

Another detail to consider is the scanning order of the coefficients in each subband. In 

Chapter 2 and Section 4.4.2, we saw that the HL subbands exhibit predominantly vertical 

samples structures, while LH subbands exhibit more horizontal structures. Therefore, it seems 

clear that in order to get a greater amount of consecutive LOWER symbols, coefficients 

should be scanned horizontally in the LH subbands, and vertically in the HL subbands. A 

more detailed analysis about the scan path for run length coding of wavelet coefficients can 

be found in [BER01]. 

Finally, Figure 5.4 shows an example of applying Algorithm 5.2 to encode the subband 

of Figure 5.1. For this example, we have used a value of 4 for the enter_run_mode parameter. 

The main difference between this example and the one shown in Figure 5.2 is that the 

sequence of 5 LOWER symbols is encoded with a RUN symbol (represented with an R in the 

example) along with the number of bits needed to encode the run count (3 in this case), and 

the significant bits of its binary representation (in this example, we encode the bits 01b to 

represent 101b). 

5.4 Numerical results 

We have implemented these algorithms in order to evaluate their compression efficiency and 

complexity. The reader can easily perform new tests by using the win32 version of these 

coders, available at http://www.disca.upv.es/joliver/thesis. All the simulation tests have been 

carried out on a regular Personal Computer (with a 500 MHz Pentium Celeron processor with 

256 KB L2 cache), generating image files that contain the compressed images, with the 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

117 

required file headers.  

In order to compare our algorithm with other wavelet encoders, the standard Lena (which 

is a quite smooth image) and Barbara (which is much more highly detailed) images are used. 

In the next chapter, we will give more results for this run-length algorithm with other images 

(namely, Café, Woman and Goldhill). 

 The coding results for Lena using a run-length mode are practically the same as those 

shown in Table 5.1, version with contexts. With the correct selection of the enter_run_mode 

parameter (128 in our tests), the compression performance for high bit rates is certainly the 

same in Algorithm 5.1 and 5.2 (+/− 0.01dB), and at low bit rates, very small improvement is 

achieved with the run-length mode (+0.03 dB).  

Table 5.2 shows similar compression performance comparison using a more detailed 

image, Barbara. In this case, our algorithm is clearly better than SPIHT, but it is unable to 

reach the performance of JPEG 2000, due to the high number of contexts and the 

optimization algorithm (PCRD) employed in this standard. 

We have shown that including a run-length mode has not significantly improved 

compression performance. However, the main goal of this mode was reducing the complexity 

of the algorithm, most of all at low bit rates. We can see in Tables 5.3 and 5.4 the execution 

time for coding and decoding the Lena image with various encoders and decoders. These 

tables show that this objective has been accomplished. In fact, the number of symbols 

arithmetically encoded at 0.125 bpp has passed from 512×512 (262,144) to only 27,485 and 

then, the execution time spent in the arithmetic encoder has decreased from 3/4 to less than 

1/3 part of the total compression time. 

In these tables, we also can compare both proposals with Jasper/JPEG 2000 and the 

official implementation of SPIHT (implemented by the authors of SPIHT, and which was 

originally downloaded from ftp://ipl.rpi.edu/pub/EW_Code at the time it was available)1. 

Note that we exclude the DWT computation time from this comparison, since all the 

compared encoders employ exactly the same bi-orthogonal 9/7 wavelet transform (see 

                                                 
1 In Chapter 1, we saw that measuring the complexity of algorithms is a hard issue. Execution time of 
their implementation is largely dependant of the optimization level. This way, there are commercial 
implementations of JPEG 2000 not included in the ISO/IEC 15444-5 that are faster than Jasper, 
however they are usually implemented using platform dependant piece of code (in assembly language) 
and multimedia SIMD instructions. In our tests (in this chapter and in the next chapter), SPIHT, JPEG 
2000 and LTW implementations are, as far as possible, written under the same conditions, using plain 
C/C++ language for all them. 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

118 

Chapter 2). 

Our final run-length proposal (Algorithm 5.2) is up to ten times faster than Jasper/JPEG 

2000 when encoding, and up to twice when decoding. In addition, compared with SPIHT, our 

algorithm is approx. twice faster in the coding process, and about 35 % faster in the decoding 

process at 1 bpp. In the next chapter, we will give execution time results of this run-length 

algorithm for larger images (5-Megapixel). 

 

coder/ 
rate(bpp) 

Proposed 
run-length 

Jasper/ 
JPEG2000 SPIHT 

2 42.63 43.13 42.65 
1 36.54 37.11 36.41 

0.5 31.66 32.14 31.39 
0.25 27.95 28.34 27.58 

0.125 25.12 25.25 24.86 
 

Table 5.2: PSNR (dB) with various bit rates and coders using Barbara. 
 

codec\ 
rate SPIHT Jasper / 

JPEG 2000 
Proposed 

(with ctxt.) 
Proposed 

(run-length) 
2 210.4 278.5 91.2 95.4 
1 119.4 256.1 64.3 61.2 

0.5 72.3 238.2 52.7 37.0 
0.25 48.7 223.4 47.0 25.9 

0.125 36.8 211.3 44.0 20.3 
 

Table 5.3: Execution time for coding Lena (Million of CPU cycles). 
 

codec\ 
rate SPIHT Jasper / 

JPEG 2000 
Proposed 

(with ctxt.) 
Proposed 

(run-length) 
2 180.9 108.8 91.3 93.7 
1 92.8 72.3 70.2 63.0 

0.5 48.7 51.4 60.3 36.3 
0.25 29.5 38.1 55.4 24.5 

0.125 20.5 31.3 53.0 18.3 
 

Table 5.4: Execution time for decoding Lena (Million of CPU cycles). 

5.5 Summary 

In this chapter, we have presented a new simple wavelet algorithm with a run-length mode. 

This coder is simpler than previous proposals, but its compression performance is within the 

state-of-the-art. Although the complexity of a simple version of this algorithm is lower (in 



CHAPTER 5. FAST RUN-LENGTH CODING OF COEFFICIENTS  

119 

general) than others (like JPEG 2000 and SPIHT), a run-length mode is introduced in order to 

decrease it, especially at low bit rates. This way, we have shown that our proposal is up to 10 

times faster than Jasper, and 2 times faster than SPIHT.  

Due to its lower complexity, the lack of memory overhead (contrary to SPIHT/SPECK and 

EBCOT, no extra memory is needed for auxiliary lists or partial bitstreams), the possibility of 

robustness (there is no inter-subband dependency), and high symmetry in coding and 

decoding execution times, it can be considered a good candidate for real-time interactive 

multimedia communications, allowing implementations both in hardware and software. 

On the other hand, if inter-subband dependency is removed, higher coding efficiency is 

expected. In the next chapter, we will introduce the use of a quadtree structure as a faster and 

more efficient way of encoding wavelet coefficients. 





 

121 

 

 

Chapter 6   

Lower tree wavelet image coding 

 

In this chapter, a new image compression algorithm is proposed based on the efficient 

construction of wavelet coefficient lower trees (a type of quadtree in which all the 

coefficients are lower than a threshold). The main contribution of this lower-tree wavelet 

(LTW) encoder is that it utilizes coefficient trees, not only as an efficient method of grouping 

coefficients and removing inter-subband dependency, but also as a fast way of coding them. 

Thus, it presents state-of-the-art compression performance, while its complexity is lower than 

that of other wavelet encoders, like SPIHT and JPEG 2000. This fast execution is achieved 

by means of a simple two-pass coding and one-pass decoding algorithm. In addition, as in the 

algorithms proposed in the previous chapter, it does not need additional lists and therefore no 

memory overhead is introduced. A formal description of the algorithm is provided, so that an 

implementation can be performed straightforwardly. Numerical results show that our codec is 

faster than SPIHT and JPEG 2000 (up to three times faster than SPIHT and fifteen times 

faster than JPEG 2000), it achieves similar coding performance and presents higher 

symmetry.   

6.1 Introduction 

In the previous chapter, we used run-length coding as a fast method of grouping insignificant 

coefficients to encode them. Other wavelet-based encoders have previously used run-length 

coding with the same purpose (e.g., EBCOT [TAU00] uses run-length coding to reduce 

complexity). In this chapter, we propose a different structure, namely coefficient quadtrees 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

122 

(similar to those described in Chapter 4), to accomplish the same objective more effectively, 

while coding efficiency is also improved by introducing inter-subband redundancy removal.  

The key idea of the proposed algorithm is the use of wavelet coefficient trees as a fast 

method of efficiently grouping coefficients. In Chapter 4, we saw that tree-based wavelet 

coders have been widely used in the literature [SHA93] [SAI96] [XIO97] and they have 

evidenced good rate/distortion performance. However, we think that their excellent 

possibilities for fast processing of quantized coefficients has not been clearly shown so far. 

Coefficient trees are a simple way of grouping coefficients, reducing the total amount of 

symbols to be coded. This way, they not only achieve good compression performance but 

also fast processing. However, in the aforementioned encoders, coefficient trees are 

established with bit-plane coding (like in [SHA93] and [SAI96]), or the encoder introduces 

an optimization algorithm (such as [XIO97]) that hinder fast execution. As we did in the 

previous chapter, both strategies must be avoided in order to reduce complexity 1. 

 

6.2 Two-pass efficient coding using lower trees 

We saw in Chapter 4 that tree-based wavelet image encoders are proved to efficiently store 

                                                 
1 Although the PROGRES encoder [CHO05] described in Chapter 4 is a low complexity tree-based 
image encoder, with neither bit plane coding nor optimization algorithms, it is a later work than the 
LTW algorithm presented in this chapter, and it borrows these principles from LTW (which in fact is 
referenced in  that paper). 

Fig. 6.1: (a) EZW-like and (b) SPIHT-like coefficient trees, focusing on the LL subband. The only 
difference between both types of trees is that a coefficient in the LL subband has three descendants in 

EZW, while in SPIHT the coefficients have four direct descendants (including those in the LL 
subband, except one each 2×2 coefficients, which has no offspring). 

(b) (a) 

LLN HLN 

HHN LHN

LHN-1 HHN-1

HLN-1

LLN HLN 

HHN LHN 

LHN-1 HHN-1

HLN-1



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

123 

the wavelet transform coefficients in a dyadic decomposition, achieving good coding 

performance. In these algorithms, two stages can be established. The first one consists in 

encoding the significance map, i.e., the location and amount of bits required to represent the 

coefficients that will be encoded (significant coefficients). In the second stage, the significant 

coefficients are encoded, i.e. their sign and significant bits are stored. In Chapter 4, we 

referred to the first stage as dominant pass in EZW or sorting pass in SPIHT, and to the 

second stage as subordinate pass in EZW or refinement pass in SPIHT. However, both tree-

based wavelet encoders use bit plane processing in the two stages, resulting in higher 

complexity.  

The algorithm presented in this chapter is an extension of the one-pass algorithm 

described in the previous chapter (Algorithm 5.1). In this new algorithm, a tree-based 

structure is introduced in order to reduce inter-subband data redundancy. We call this 

structure lower-tree, since it is a quadtree in which all its coefficients are lower than a 

threshold. Actually, this structure is not different to that employed in EZW/SPIHT or SFQ. In 

EZW/SPIHT, a zero-tree is formed by coefficients that are insignificant at a certain bit-plane 

level, being considered 0 at that level. However, we can also consider that the coefficients in 

the zero-tree are lower than a threshold established by the bit-plane level. In SFQ, a zero-tree 

is somewhat different. It is formed by coefficients that have been quantized to 0 in a previous 

scalar quantization, although we can consider again that a coefficient is quantized to 0 when 

it is lower than a threshold value. 

The use of coefficient trees not only reduces the redundancy among subbands but also is 

a simple and fast way of grouping coefficients. Therefore, it is presented in this section as an 

alternative to the run-length mode introduced in Algorithm 5.2. 

As in the rest of tree-based coding techniques, coefficients from C are logically arranged 

as trees. In these trees, the direct descendants (or offspring) of a coefficient bac ,  can be 

computed as follows: 

if { } { } ZkkkbkaLLc Nba ∈∈∧∈∧∈ 2121, ,:22  

{ }φ=)( ,bacoffspring  

if { } { } )(,,:212 2121, NNba LLwidthwZkkkbkaLLc =∈∈∧+∈∧∈  

{ }1,11,,1,, ,,,)( +−+++−++= bwabwabwabwaba cccccoffspring  



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

124 

if { } { } )(,,:122 2121, NNba LLheighthZkkkbkaLLc =∈+∈∧∈∧∈  

{ }1,11,,1,, ,,,)( −++−++++= hbahbahbahbaba cccccoffspring  

if { } { } )(),(,,:1212 2121, NNNba LLheighthLLwidthwZkkkbkaLLc ==∈+∈∧+∈∧∈  

{ }1,11,,1,, ,,,)( −+−+−+++−+++= hbwahbwahbwahbwaba cccccoffspring  

if 1,1,1,, HHcLHcHLcLLc bababaNba ∉∧∉∧∉∧∉   

{ }12,1212,22,122,2, ,,,)( ++++= bababababa cccccoffspring  

if 1,1,1, HHcLHcHLc bababa ∈∨∈∨∈    

{ }φ=)( ,bacoffspring  
The first four expressions define the offspring of a coefficient belonging to the LLN 

subband; the fifth expression indicates that coefficients in a first-level subband are leaves and 

thereby have no offspring; and finally, the last expression gives the general case. This tree 

definition is introduced in SPIHT [SAI96] so that, if a coefficient has offspring, they always 

form a quadtree (in other words, it always has four children coefficients). The early tree 

definition employed by EZW [SHA93] differs in the way children coefficients are defined in 

the LLN subband, with only three children per coefficient. Therefore, in EZW, the first four 

expressions are replaced by the following: 

if )(),(,, NNNba LLheighthLLwidthwLLc ==∈  

{ }hbwahbabwaba ccccoffspring ++++= ,,,, ,,)(  

The difference between both types of trees is illustrated graphically in Figure 6.1. 

In our algorithm, we will use SPIHT-like trees, in which if a coefficient has offspring, the 

direct descendants always form a 2×2 block of coefficients, and the rest of descendant levels 

are attained by successively calculating the offspring of these direct descendants. This type of 

tree is chosen for our proposal because we want a 2×2 block of coefficients to share the same 

parent coefficient in all the subbands (except in LLN, which has no parent coefficient) in 

order to ease significance propagation as we will see later. 

The quantization used in this new algorithm is the same as in Algorithm 5.1 (see 

Appendix A for more details). This type of quantization allows constant quality, and in 

addition, a method to achieve approximate rate control from the quantization parameters is 

given in Appendix B.  



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

125 

In this tree-based algorithm, a coefficient is called lower-tree root if this coefficient and 

all its descendants are lower than 2rplanes. The set formed by all these coefficients forms a 

lower-tree. In the new algorithm, we use the label LOWER with a different meaning. It points 

out that a coefficient is the root of a lower-tree, and not simply an insignificant coefficient. 

The rest of coefficients in the lower-tree are labeled as LOWER_COMPONENT. On the other 

hand, if a coefficient is lower than 2rplanes but it does not belong to a lower-tree (because it has 

at least one significant descendant), it is considered as an ISOLATED_LOWER.  

6.2.1 Lower tree encoding algorithm 

Once we have defined the basic concepts to understand the algorithm, we are ready to 

describe the encoding process. It is a two-pass algorithm. During the first pass, the wavelet 

coefficients are properly labeled according to their significance, and all the lower-trees are 

identified and formed. This coding pass is new with respect to Algorithms 5.1 and 5.2. In the 

second image pass, the coefficient values are coded in a similar way as in the second stage of 

Algorithm 5.1, although taking into account the new symbols introduced in this algorithm. 

Note that both the significance map and significant coefficients are encoded in the second 

pass in only one iteration. 

The coding algorithm, Algorithm 6.1, is described in three parts, with the main body in 

Algorithm 6.1(a), and the first and second passes in 6.1(b) and 6.1(c) respectively. 

 

 

function LowerTreeWaveletCoding( ) 
1) Initialization: 

output rplanes 

output ( )⎡ ⎤{ }jiCc
cmaxplane

ji
,2logmax

, ∈∀
=   

2) First image pass: 
LTWCalculateSymbols( ) 

 
3) Second image pass: 

LTWOutputCoefficients( ) 
end of fuction 

Algorithm 6.1(a): Lower tree coding. General description. 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

126 

 

subfunction LTWCalculateSymbols( ) 
Scan the first level subbands (HH1, LH1 and HL1) in 2×2 blocks.  
For each block nB  

if rplanes
jic 2, <  

nji Bc ∈∀ ,
 

set jic , =LOWER_COMPONENT 
nji Bc ∈∀ ,
 

else  
for each 

nji Bc ∈,
 

if rplanes
jic 2, <   

set 
jic ,
=LOWER 

Scan the rest of subbands (from level 2 to N) in 2×2 blocks.  
For each block nB  

if  ( ∧< rplanes
jic 2,  descendant(

jic ,
)=LOWER_COMPONENT ) 

nji Bc ∈∀ ,
 

set jic , =LOWER_COMPONENT nji Bc ∈∀ ,  
else  
for each 

nji Bc ∈,
 

if ∧< rplanes
jic 2,

descendant(
jic ,
)=LOWER_COMPONENT  

set 
jic ,
=LOWER 

if ∧< rplanes
jic 2,

descendant(
jic ,
)≠ LOWER_COMPONENT 

set 
jic ,
=ISOLATED_LOWER 

end of subfuction 

Algorithm 6.1(b): Lower tree coding. Symbol computation. 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

127 

 
If we analyze the first pass (subfunction LTWCalculateSymbols()), we observe that 

labeling of lower-trees is performed in a recursive way, building lower-trees from leaves to 

root. In the first level subbands, coefficients are scanned in 2×2 blocks and, if the four 

coefficients are insignificant (i.e., lower than 2rplanes), they are considered part of the same 

lower-tree, being labeled as LOWER_COMPONENT. Then, when scanning higher level 

subbands, if a 2×2 block has four insignificant coefficients, and all their descendants are 

LOWER_COMPONENT, the coefficients in that block are also labeled as 

LOWER_COMPONENT, increasing the size of the lower-tree. 

However, when at least one coefficient in a block is significant, the lower-tree cannot 

continue growing. In that case, each insignificant coefficient in the block is labeled as 

LOWER if all its descendants are LOWER_COMPONENT, otherwise the insignificant 

coefficient is labeled as ISOLATED_LOWER (note that significant coefficients do not need to 

be labeled). 

In order to reduce memory overhead, labels are applied by overwriting the coefficient 

value by an integer value associated to the corresponding label, which must be outside the 

subfunction LTWOutputCoefficients( ) 
Scan the subbands (from N to 1, in 2×2 blocks) 
For each jic ,  in a subband  

if 
jic , ≠ LOWER_COMPONENT  

if jic , =LOWER  
arithmetic_output LOWER 

else if jic , =ISOLATED_LOWER  
arithmetic_output ISOLATED_LOWER 

else 

( )⎡ ⎤jiji cnbits ,2, log=  

if descendant(
jic ,
)≠ LOWER_COMPONENT 

arithmetic_output jinbits ,  
else 

arithmetic_output LOWER
jinbits ,  

output ( ) ( )jirplanejinbits cc
ji ,1,1 bitbit

, +− K  

output sign( jic , ) 

 end of subfuction 
 

Note: ( )cnbit  is a function that returns the nth bit of c. 

Algorithm 6.1(c): Lower tree coding. Output the wavelet coefficients. 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

128 

possible range of significant coefficients (typically, by reusing the values in the quantized 

range [0.. 2rplanes]). 

In the second pass (subfunction LTWOutputCoefficients()), all the subbands are explored 

from the Nth level to the first one. This is the order in which the decoder requires the 

coefficients in the input bitstream, and in addition, this order allows spatial scalability. 

Within a subband, all the coefficients are scanned in 2×2 blocks, and following a Morton 

order (in medium-sized clusters) to take advantage of data locality.  

For each coefficient in a subband, if it is a lower-tree root or an isolated lower, the 

corresponding LOWER or ISOLATED_LOWER symbol is output. On the other hand, if the 

coefficient has been labeled as LOWER_COMPONENT no output is needed because this 

coefficient is already represented by the lower-tree to which it belongs. 

A significant coefficient is coded in a similar way as in Algorithm 5.1. A “numeric 

symbol” indicating the number of bits required to represent that coefficient is arithmetically 

coded, and the significant bits and sign are raw coded. However, two types of “numeric 

symbols” are used according to the coefficient offspring. (a) A “regular numeric symbol” 

( jinbits , ) shows the number of bits needed to encode a coefficient, (b) and a special “LOWER 

numeric symbol” ( LOWER
jinbits , ) not only indicates the number of bits of the coefficient, but also 

the fact that all its descendants are labeled as LOWER_COMPONENT, and thus they belong 

to a lower-tree not yet codified. This type of symbol is able to represent efficiently some 

special lower-trees, in which the root coefficient is significant and the rest of coefficients are 

insignificant1. The number of symbols needed to represent both sets of numeric symbols is 

2×(2maxplane−2rplanes), therefore the arithmetic encoder must be initialized to handle at least this 

amount of symbols, along with two additional symbols: the LOWER and 

ISOLATED_LOWER symbols (recall that a LOWER_COMPONENT coefficient is never 

encoded). 

An important difference between our tree-based wavelet algorithm and others like EZW 

[SHA93] and SPIHT [SAI96] is how the coefficient tree building process is detailed. 

                                                 
1 Cho and Pearlman formalize in [CHO05b] the definition of a tree in which the root coefficient is 
significant and the rest are insignificant, as a degree-1 zerotree. At the same time, if all the coefficients 
in a tree are insignificant, it is considered a degree-0 zerotree. In EZW, only degree-0 zerotrees are 
encoded with a single symbol, while in LTW both degree-0 and degree-1 zerotrees can be encoded 
with a single symbol. For a study about a general degree-k zerotree model, and the coding benefits and 
limits of higher degree zerotrees, the reader is referred to [CHO05b]. 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

129 

Algorithm 6.1 includes a simple and efficient recursive method (the LTWCalculateSymbols() 

function) to determine if a coefficient has significant descendants in order to form coefficient 

trees. However, EZW and SPIHT leave it as an open and an implementation dependent 

aspect, which increases drastically the algorithm complexity if it is not carefully solved (for 

example, if searches for significant descendants are independently calculated for every 

coefficient whenever they are needed). Anyway, an efficient implementation of EZW and 

SPIHT would increase their memory consumption due to the need to store the maximum 

descendant coefficient for every coefficient, which can be obtained during a pre-search stage. 

6.2.2 Lower tree decoding algorithm 

The decoding algorithm performs the reverse process in only one pass, without the need to 

calculate the coefficient symbols, which are directly input from the encoder side.  

The decoder is described in Algorithm 6.2; however, in order to understand how this 

algorithm works, some explanations should be made. 

 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

130 

 
In the decoder, the wavelet subbands are recovered in decreasing order of level (i.e., from 

N to 1), providing spatial scalability if the inverse wavelet transform is applied as soon as an 

entire subband is decoded. The coefficients in each subband must be scanned in the same 

order used on the encoder side. The finer granularity of this scan is 2×2 coefficient blocks, so 

function LowerTreeWaveletDecoding( ) 
1) Initialization: 

input rplanes, maxplane 
2) Input coefficients (in a single pass): 

Scan the subbands (from N to 1, in 2×2 blocks) 
For each 2×2 block nB  

if 0)(ascendant)(ascendant =∧∃ nn BB  
set njiji Bcc ∈∀= ,, 0  

else if )(ascendant)(ascendant nn BB ∧∃  is ROOT-MARKED 
set njiji Bcc ∈∀= ,, 0  
remove ROOT-MARK from ascendant( nB ) 

else  
{ 

if )(ascendant)(ascendant nn BB ∧∃ = ISOLATED_LOWER 
ascendant( nB ) = 0 

for each nji Bc ∈,  
arithmetic_input jinbits ,  
if =jinbits ,  ISOLATED_LOWER 

set jic , = ISOLATED_LOWER 
else if =jinbits ,  LOWER 

set jic , = 0 
else 

setbit ( )jinbits c
ji ,,

bit  

input ( ) ( )jirplanejinbits cc
ji ,1,1 bitbit

, +− K  

setbit ( )jirplane c ,bit  

input  sign( jic , ) 
if jinbits , has LOWER mark (i.e., it is LOWER

jinbits , ) 
insert ROOT-MARK to jic ,  

} 
end of subfuction 
Note: setbit bitn(c) is a function that sets the nth bit of c 

Algorithm 6.2: Lower tree decoding.  



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

131 

that coefficients that share the same parent (i.e., sibling coefficients) are handled together. 

Note that all the 2×2 coefficient blocks have ascendant (parent) except those in the LLN 

subband. 

For all the insignificant coefficients, we set its value to 0, since their order of magnitude 

is unknown, and we only know that they are lower than 2rplanes. In our decoding algorithm, 

insignificant coefficients in a lower-tree are automatically propagated. When the parent of 

four sibling coefficients has been set to 0, all the descendant coefficients are also assigned a 

value of 0, so lower-trees are recursively generated.  However, if an isolated lower coefficient 

has been decoded, it must not be propagated as a lower-tree. Hence, a different value must be 

assigned. For this case, we keep this coefficient as ISOLATED_LOWER until its 2×2 

offspring coefficients are scanned. At that moment, we can safely update its value to 0 

without risk of unwanted propagations because no more direct descendants of this coefficient 

will be scanned (in quadtrees, a parent only has four children). 

On the other hand, if there is no tree propagation (the parent coefficient is not 0), a 

symbol is input for each coefficient in the 2×2 block. This symbol indicates the significance 

of that coefficient. If the decoded symbol indicates that a coefficient is significant ( jinbits , ), 

its sign and significant bits are also input, and its most significant non-zero bit is set to one. 

The bit in the position rplanes is also set to one in order to reduce the error interval of the 

recovered significant coefficients (see Appendix A). 

Recall that there is a special “LOWER numeric symbol” ( LOWER
jinbits , ) for those trees in 

which the root coefficient is significant (similar to a degree-1 zerotree). When a symbol of 

this type is decoded, the coefficient must be marked (with ROOT-MARK) so that its offspring 

can spread correctly the lower-tree. To represent this mark, the least significant bit of a 

significant coefficient may be used, provided that rplanes >1 (because the first rplanes bits 

are decoded to 0, and hence the least significant bit is always 0). 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

132 

 

 

 

6.2.3 A Simple Example 

Figure 6.2 shows a small 8×8 image that has been transformed using a 2-level DWT. In this 

section, we are going to apply our tree-based encoding algorithm using this very simple 

example. The wavelet coefficients have been previously quantized, and the rplanes parameter 

has been selected to be equal to 2.  Regarding the maxplane parameter, it can be easily 

6, 
{100B} 

6, 
{010B} 

5, 
{10B} 

5L, 
{00B}

4, -,
{0B} L 4L,+,

{0B}
4, +,
{0B}

4, +,
{1B} L 4L, -, 

{0B} I 
 

 
 3,+, 

{} 
3,+, 
{} L L 3, -,

{} L L L 3, -,
{} L L L L L L 4,-, 

{1B}
 

Fig. 6.4: Example image of Figure 6.2 encoded with Algorithm 6.2. 

LL2 Second level wavelet subbands 

First level wavelet subbands

Fig. 6.3: Symbols resulting from applying Algorithm 6.2 to the example image of Figure 6.2.

6 6 4 L 3 3 * *
5 5L 4L 4 L L * *
4 L * * * * 3 L
4L I * * * * L L
3 L * * * * * *
L L * * * * * *
* * L L * * * *
* * L 4 * * * *

51 42 -9 2 4 4 0 -1
25 17 10 11 3 1 0 2
12 3 3 -2 2 -2 -5 3
-9 -3 3 -3 0 3 -1 2
-4 1 1 -2 0 2 1 3
2 -3 0 2 1 -1 -1 -2
1 3 2 1 1 2 -3 1
-2 -3 3 -12 2 0 2 1

Fig. 6.2: 2-scale wavelet transform of an 8x8 example image. 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

133 

computed as ( )⎡ ⎤ 651log 2 ==maxplane .  

When the coarser quantization is applied with rplanes = 2, the values within the interval 

]22…−(22)[ are absolutely quantized. Thus, all the significant coefficients can be represented 

using from 3 to 6 bits, and hence, the symbol set needed to represent the significance map is 

{3, 4, 5, 6, 3L, 4L, 5L, 6L, L, I }. In this symbol set, special “LOWER numeric symbols” are 

marked with a superscript L, an I symbol represents an isolated lower coefficient, and an L 

indicates a regular lower symbol (the root of a lower-tree). Those coefficients that belong to a 

previously encoded lower-tree (i.e., those labeled as LOWER_COMPONENT) are not 

encoded and, in our example, they are represented with a star (*). 

Figure 6.3 shows the symbols resulting from applying our algorithm to the example 

image. In the first image pass, the symbols are calculated. The scanning process begins with 

the first-level subbands in 2×2 blocks. When all the coefficients in a block are insignificant 

(in other words, they belong to the interval ]22…−(22)[), they are marked with the 

LOWER_COMPONENT symbol (*), and they will not be encoded in the second pass. On the 

contrary, if a coefficient in the block is significant, those significant ones are encoded with a 

symbol that indicates the number of bits needed for its representation, whereas an 

insignificant coefficient is represented by a LOWER symbol.  

In the second level, three special cases should be remarked. We label a coefficient as 

ISOLATED_LOWER when this coefficient is insignificant but its descendants are not 

LOWER_COMPONENT. In our example, an insignificant coefficient (−3) is labeled as 

isolated lower for this reason. On the other hand, if a coefficient is insignificant and its 

descendants are LOWER_COMPONENT, but it belongs to a block with at least one 

significant element, it is the root of the growing tree, and therefore it is labeled as LOWER, as 

it is shown in the second tree depicted in Figure 6.3. The last tree marked in the example is a 

significant coefficient whose descendants are all LOWER_COMPONENT. This type of lower 

tree with a significant root must be distinguished using the 4L symbol instead of a regular 4 

symbol. 

In our example, the HH1 subband has been absolutely quantized and all their components 

are pointed out with a star. The following level, HH2, is formed by only one 2x2 block. Since 

all the coefficients in this block are insignificant, and all their descendants are 

LOWER_COMPONENT, the tree continues growing, and the coefficients in this block are 

also marked with stars. Finally, the symbol 5L in the LL2 subband will be used to represent 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

134 

the entire lower-tree. 

In the second image pass, the significant bits and signs, and all the symbols previously 

calculated (except LOWER_COMPONENTs) are output.  

If we scan the subbands from the highest level (N) to the lowest one (1), in 2x2 blocks, 

from left to right and top to bottom, the resulting bitstream is the one illustrated in Figure 6.4. 

Note that the sign is not necessary for the LL subband since its coefficients are always 

positive. 

6.3 Implementation considerations 

As we have studied in previous chapters, implementation details and further adjustments can 

improve the performance of a compression algorithm. In this section, we give some guides 

for a successful implementation of the proposed Algorithms 6.1 and 6.2. Note that all the 

coding improvements introduced in this section should preserve fast processing and vice 

versa. 

6.3.1 Analyzing the adaptive arithmetic encoder 

Context coding has been widely used to improve the rate/distortion performance in image 

compression by creating different probability models depending on the already encoded 

neighbor coefficients. Although high-order context modeling presents high complexity 

[WU01], simpler context coding can be efficiently employed without noticeable increase in 

execution time. As we did in Algorithm 5.1, we propose the use of two contexts based on the 

significance of the left and upper coefficients, thus if they both are insignificant or close to 

insignificant, a different model is used for coding.  

Adding a few more models in order to establish more significance levels (and thus more 

number of contexts) could improve compression efficiency. However, it would slow down 

the execution of the algorithm in a real implementation, mainly because of the context 

formation evaluation, and due to the higher memory requirements causing higher cache miss 

rate due to the introduction of new statistical tables. 

Recall that maxplane indicates the number of bits needed to represent the highest 

coefficient in the wavelet decomposition. This value (along with rplanes) determines the 

number of symbols needed for the arithmetic encoder. However, coefficients in different 

subbands tend to be different in magnitude order, so this parameter can be set specifically for 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

135 

every subband level. In this manner, the arithmetic encoder is initialized exactly with the 

number of symbols needed in every subband, which increases the coding efficiency. 

Slight improvement can be attained by arithmetically encoding the significant bits and 

sign of the wavelet coefficients (instead of raw encoding). In order to reduce the overhead 

impact in the execution time, a faster binary entropy coder employed by JPEG 2000, called 

MQ-coder [SLA98], can be used. This fast-approximation can be applied not only for 

encoding the coefficient bits, but also for storing the rest of symbols, using the extension 

from binary to general coding purpose proposed in [TAU02], at the cost of lower 

compression performance. Observe that none of these optimizations have been performed in 

our implementation, and a regular arithmetic encoder has been used. 

6.3.2 Analyzing the quantization process 

Some considerations can be made related to the quantization process. The scalar uniform 

quantization can be applied within the first image scan so that the cache efficiency is 

improved, or even within the filter normalization if the DWT is computed using the lifting 

scheme. This quantization (or filter normalization in lifting) implies a floating-point 

multiplication for every wavelet coefficient, and a rounding operation. However, this 

multiplication and rounding can be avoided for the insignificant coefficients, since they are 

going to be discarded anyway. Equations from Appendix A can be used to determine the 

necessary threshold value to avoid scalar quantization of the insignificant coefficients. 

Related to the coarser quantization, consider the case in which three coefficients in a 

block are insignificant, and the fourth value is very close to insignificant. In this case, we can 

consider that the entire block is insignificant and all its coefficients can be labeled as 

LOWER_COMPONENT. The slight error introduced is compensated by the saving in bits. 

Another similar strategy is saturating some coefficient values, from a perfect power of two to 

the same value decreased in one (for example, from 0010 0000b to 0001 1111b). In this 

manner, the error introduced for that coefficient is in magnitude only one, whereas it needs 

one less bit to be stored, resulting in higher compression efficiency. 

6.4 Numerical results 

We have implemented the Lower-Tree Wavelet (LTW) encoder and decoder algorithms in 

order to test their performance. They have been implemented using standard C++ language 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

136 

(without using assembly language or platform-dependant features), and all the simulation 

tests have been performed on a regular Personal Computer (500 MHz Pentium Celeron 

processor with 256 KB L2 cache), generating real images files that contain the compressed 

images, including all the file-headers needed for self-containing decompression. The reader 

can easily perform new tests using the LTW implementation available at 

http://www.disca.upv.es/joliver/thesis. 

In order to compare our algorithm with other wavelet encoders, the classical Lena, 

Goldhill and Barbara images (monochrome, 8bpp, 512x512) and other two images from the 

JPEG 2000 test bed, Café and Woman (monochrome, 8bpp, 2560x2048), have been selected. 

On the one hand, the widely used Lena image (from the USC) allows us to compare the LTW 

with practically all the published algorithms, since results are commonly expressed using this 

image. On the other hand, the Café and Woman images are less blurred and more complex 

than Lena and represent pictures taken with a 5-Megapixel high definition digital camera. 

Table 6.1 provides R/D performance when compressing the Lena image with several 

wavelet-based image encoders. We can see that LTW achieves better results than the other 

coders do, including the JPEG 2000 standard, whose results have been obtained using Jasper 

[ADA02], an official implementation used as reference software in the ISO/IEC 15444-5 

standard. When LTW is compared with the run-length wavelet (RLW) encoder described in 

the previous chapter (Algorithm 5.2), we see that the inter-subband removal introduced by 

lower-trees causes a PSNR increase of about 0.25 dB. 

Results for the rest of images are shown in Table 6.2. In this Table, only SPIHT, SPECK 

and Jasper have been compared with RLW and LTW, since the compiled versions of the rest 

of coders have not been released, or results are not published for these images.  

We can observe that R/D performance for Café is still higher using our algorithm, 

although Jasper performs similarly to LTW. For Woman and Goldhill images, we can see that 

our algorithm exceeds in performance the rest of encoders. 

On the other hand, Jasper encodes high-frequency images, like Barbara, better than LTW 

(and in general the rest of tree-based encoders) at high bit rates. Two reasons may explain 

this.  

First, note that when high-frequency images are encoded at high bit rates, many 

coefficients in high-frequency subbands are significant, and hence our algorithm is not able 

to build large lower-trees. This effect is even more serious in SPIHT, because many groups 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

137 

are partitioned very early in the coding process in order to find significant coefficients in 

these subbands, and in later passes, the significance test has to be encoded for each group, 

increasing the size of the compressed image.  

Second, in Chapter 4 we mentioned that JPEG 2000 includes many contexts, and it 

results in higher performance for very detailed images. In our experiments, we have observed 

that if more than two contexts are used in LTW, the R/D performance for Barbara is close to 

the results shown with Jasper, but at the cost of higher execution time. 

 

codec\
rate EZW SPIHT Stack 

Run 
Embedded 
Run-length SPECK Jasper/ 

JPEG2000 RLW LTW 

2 n/a 45.07 n/a n/a n/a 44.62 45.30 45.47 
1 39.55 40.41 n/a 40.28 40.25 40.31 40.31 40.50 

0.5 36.28 37.21 36.79 37.09 37.10 37.22 37.12 37.35 
0.25 33.17 34.11 33.63 34.01 34.03 34.04 34.02 34.30 

0.125 30.23 31.10 n/a n/a n/a 30.84 31.00 31.26 
 

Table 6.1: PSNR (dB) with different bit rates and coders using Lena (512×512). 

 

 Café (2560×2048) Woman (2560×2048) 

codec\ 
rate SPIHT SPECK Jasper/ 

JP2K RLW LTW SPIHT SPECK Jasper/ 
JP2K RLW LTW 

2 38.91 38.75 39.09 38.75 39.09 43.99 43.73 43.98 44.05 44.15 
1 31.74 31.47 32.04 31.62 32.02 38.28 38.07 38.43 38.28 38.49 

0.5 26.49 26.31 26.80 26.51 26.85 33.59 33.46 33.63 33.53 33.80 
0.25 23.03 22.87 23.12 23.01 23.24 29.95 29.88 29.98 29.91 30.14 
0.125 20.67 20.61 20.74 20.62 20.76 27.33 27.34 27.33 27.32 27.50 

 Goldhill (512×512) Barbara (512×512)  

codec\ 
rate SPIHT SPECK Jasper/ 

JP2K RLW LTW SPIHT SPECK Jasper/ 
JP2K RLW LTW 

2 42.02 n/a 41.92 41.85 42.17 42.65 n/a 43.13 42.63 42.87 
1 36.55 36.36 36.53 36.49 36.74 36.41 36.49 37.11 36.54 36.72 

0.5 33.13 33.03 33.19 33.08 33.32 31.39 31.54 32.14 31.66 31.76 
0.25 30.56 30.50 30.51 30.47 30.67 27.58 27.76 28.34 27.95 28.07 
0.125 28.48 n/a 28.35 28.43 28.60 24.86 n/a 25.25 25.12 25.24 

 

Table 6.2: PSNR (dB) with different bit rates and wavelet-based image encoders for Café, 

Woman, Goldhill and Barbara. 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

138 

 

The main advantage of the LTW algorithm is its lower complexity. Table 6.3 shows that 

our algorithm greatly outperforms SPIHT and Jasper in terms of execution time. For medium 

sized images (512×512), our encoder is from 3.25 to 11 times faster than Jasper, whereas 

LTW decoder executes from 1.5 to 2.5 faster than Jasper decoder, depending on the bit rate. 

In the case of SPIHT, our encoder is from 2 to 2.5 times faster, and the decoding process is 

from 1.7 to 2.1 times faster.  

With larger images, like Café (2560×2048), the advantage is greater. The LTW encoder 

is from 5 to 16 times faster than Jasper and the decoder is from 1.5 to 2.5 times faster. With 

respect to SPIHT, our algorithm encodes Café from 1.7 to 3 times faster, and decodes it from 

1.5 to 2.5 times faster.  

We also have included in this table execution times for RLW, showing that the use of 

lower-trees, not only improves compression efficiency, but also reduces the execution time, 

due to the simple algorithm proposed to propagate the significance of the trees. Moreover, the 

decoder is even faster because the first pass to compute symbols is not needed. 

As in the previous chapter, in these tables we have only evaluated the coding and 

decoding processes, and not the transform stage, since the wavelet transform used is the same 

in all the cases: the popular Daubechies 9/7 bi-orthogonal wavelet. Other wavelet transforms, 

like Daubechies 23/25, have shown better compression performance. However, this 

improvement is achieved by using more filter taps, and thus increasing the execution time of 

the wavelet transform. 

Fast execution is not the only desirable feature related to the complexity of an 

encoding/decoding algorithm, also the symmetry of both processes is an important issue, 

most of all in real time applications involving both processes. Table 6.4 shows the high 

symmetry of LTW. It is more symmetric than SPIHT and much more symmetric than Jasper. 

Only at very low bit rates, the LTW is slightly asymmetric, due to the computation of the 

symbols, which is performed only at the encoder side. Although other operations are 

performed only on the decoder side (e.g., evaluating the marks of the parent coefficient), they 

are less complex. 

 
 
 
 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

139 

 Lena coding (512×512) Lena decoding (512×512) 
Codec\ 

rate SPIHT Jasper / 
JP2K RLW  LTW SPIHT Jasper / 

JP2K RLW LTW 

2 210.4 278.5 95.4 86.2 180.9 108.8 93.7 85.0 
1 119.4 256.1 61.2 51.3 92.8 72.3 63.0 47.1 

0.5 72.3 238.2 37.0 32.9 48.7 51.4 36.3 27.1 
0.25 48.7 223.4 25.9 24.0 29.5 38.1 24.5 17.4 

0.125 36.8 211.3 20.3 19.1 20.5 31.1 18.3 12.3 

 Café coding (2560×2048) Café decoding (2560×2048) 
codec\ 

rate SPIHT Jasper / 
JP2K RLW LTW SPIHT Jasper / 

JP2K RLW LTW 

2 4368.7 7393.1 1651.2 1494.7 3775.7 2373.0 1721.1 1505.6 
1 2400.1 6907.6 1138.5 963.4 1935.3 1475.2 1178.0 911.6 

0.5 1399.3 6543.9 808.1 654.3 1024.1 991.8 815.2 569.5 
0.25 889.8 6246.2 597.5 476.7 586.9 763.6 570.0 366.6 

0.125 624.5 6058.2 460.6 378.8 372.1 635.3 409.9 253.4 
 

Table 6.3: Execution time comparison for Lena and Café (time in Million of CPU cycles). 
 

 Lena (512×512) Café (2560×2048) 
codec\

rate SPIHT Jasper / 
 JPEG 2000 LTW SPIHT Jasper / 

 JPEG 2000 LTW 

2 0.86 0.39 1.00 0.86 0.32 1.00 
1 0.78 0.28 0.92 0.81 0.21 0.95 

0.5 0.67 0.22 0.82 0.73 0.15 0.87 
0.25 0.61 0.17 0.73 0.66 0.12 0.77 

0.125 0.56 0.15 0.65 0.59 0.10 0.67 
 

Table 6.4: Symmetry index (decoding time/coding time) for SPIHT, Jasper/JPG2K and LTW. 
 

Besides compression performance and complexity, the third major issue that we consider 

in an image encoder is its memory requirements. Our wavelet encoder and decoder presented 

in this chapter and in the previous chapter are able to perform in-place processing of the 

wavelet coefficients, and thus they do not need to handle extra lists or other memory 

consuming structures. This way, only 21 Mbytes are needed to encode the Café image using 

LTW (notice that 20 Mbytes are needed to completely store the image in memory using 

integer type in a 32-bit processor), whereas SPIHT and Jasper require 42 Mbytes and 64 

Mbytes respectively1. 

                                                 
1 Results obtained with the Windows XP task manager, peak memory usage column. 



CHAPTER 6. LOWER TREE WAVELET IMAGE CODING 

140 

6.5 Summary 

In this chapter, we have presented a new wavelet image encoder based on the 

construction and efficient coding of wavelet lower-trees (LTW). Its compression performance 

is within the state-of-the-art, achieving better results than other popular algorithms (SPIHT is 

commonly improved in 0.2-0.4 dB, SPECK in 0.3-0.5 dB, and JPEG 2000 with Lena in 0.35 

dB as mean value).  

However, we have shown that the main contribution of this algorithm is its lower 

complexity. Depending on the image size and bit-rate, it is able to encode an image up to 15 

times faster than Jasper and 3 times faster than SPIHT. Moreover, other wavelet encoders, 

like SFQ and high-order context modeling coders, are even slower than the ones compared 

here. 

If we compare the lower-tree algorithm introduced in this chapter with the run-length 

encoder proposed in the previous chapter, this new algorithm is more efficient (0.25 dB with 

Lena, and 0.1-0.4 dB in general, depending on the features of the image, and the compression 

ratio), since it takes advantage of the parent-children dependency occurring in coefficient 

trees. In addition, both the new encoder and decoder are faster than the run-length version 

because coefficient trees are built in a very fast way, and coding of coefficients is performed 

straightforwardly. 

Although memory consumption is reduced to the amount of memory needed to store the 

original image, without additional lists (like in SPITH) or partial bitstreams (like in JPEG 

2000), it can be greatly reduced if this algorithm is applied along with the DWT algorithm 

proposed in Chapter 3. On the other hand, execution time can be reduced if adaptive 

arithmetic coding is replaced by Huffman coding, at the expense of lower compression 

efficiency. All these alternatives (and some others) are studied and assessed in the next 

chapter. 



 

141 

 

 

Chapter 7   

Advanced coding: low memory usage 
and very fast coding 
 

 

Reduced memory usage and fast image coding are two of the main objectives of this thesis. 

The wavelet encoders proposed in the two previous chapters perform in-place processing. 

Therefore, only the amount of memory required to hold the image in memory is used, and no 

extra memory is needed. However, a much more efficient use of memory can be made if an 

image is input line-by-line, being transformed with the algorithm presented in Chapter 3, and 

encoded as soon as the wavelet coefficients are obtained. A complete image encoder that 

combines the LTW algorithm with the DWT of Chapter 3 is presented in this chapter.  

Afterwards, we introduce a very fast Huffman-based modification of LTW, which largely 

reduce the execution time, at the expense of loss in coding efficiency. This variation is faster 

and more efficient than other very fast wavelet encoders described in Chapter 4, like 

PROGRES (our proposal is from 4 to 9 times faster in coding, and surpasses it in up to 0.5 

dB in PSNR). Finally, we evaluate the coding efficiency of our encoder used in lossless 

coding, and we compare these results with JPEG 2000 operating in lossless mode, and 

LOCO-I, a lossless compression algorithm used within the JPEG-LS standard.    

7.1 Coding with low memory consumption 

In Chapter 3, we presented an algorithm to compute the wavelet transform with very low 

memory requirements. Although this wavelet transform is general-purpose, some wavelet 

encoders cannot use it, because an important restriction introduced by the line-based wavelet 



CHAPTER 7. ADVANCED CODING 

142 

transforms is that only a part of each subband is available at every moment, and therefore we 

needed coding schemes that do not require global knowledge of the image and do not 

perform several image scans. Hence, some of the wavelet encoders described in Chapter 4 

cannot be used with this efficient wavelet transform (e.g., EZW, SPIHT and SPECK) and 

thus, these encoders do not allow low memory implementations. Some other encoders, like 

EBCOT, can employ this DWT but require post-processing of the coefficients (in particular, 

an optimization algorithm and coefficient reordering). On the other hand, the run-length 

(RLW) and tree-based (LTW) image encoders presented in Chapter 5 and 6 can be easily 

used along with the wavelet transform of Chapter 3, because coefficients can be encoded as 

soon as they are visited, in only one pass. In this section, we will see how to adapt both 

proposals to greatly reduce their memory usage. Then, some numerical results are given in 

order to evaluate the amount of memory reduction, and how it affects the coding efficiency 

and the execution time of the algorithms. 

7.1.1 Run-length coding with low memory usage 

In the wavelet transform proposed in Chapter 3, once a subband line is calculated, it has to be 

encoded as soon as possible in order to release memory and reduce memory consumption. 

However, entropy coders need to exploit local similarity in the image to be efficient. 

Therefore, better compression performance can be achieved if we group subband lines in an 

encoder buffer. These buffers store the lines released by the DWT and group them before the 

coding stage. This way, when we consider that there are enough lines in a buffer to perform 

an efficient compression, the run-length algorithm proposed in Chapter 5 is called (Algorithm 

5.2). 

However, some changes must be done in this algorithm so that it can be incorporated in 

this efficient wavelet transform. The main changes are: 

(1) Global knowledge of the image is no longer available, and therefore the maxplane 

parameter cannot be computed in an initialization stage. Instead, an estimation of the highest 

coefficient that may appear should be made, mainly depending on the type of wavelet 

normalization and the pixel resolution of the source image (in bpp). Finally, to ensure the 

correctness of the encoder, an escape code should be used for values outside the predicted 

range.  

(2) Whole subbands cannot be encoded at once. The encoding process is now interleaved, 



CHAPTER 7. ADVANCED CODING 

143 

and fragments of various subbands at various levels are progressively encoded. Therefore, a 

different run count (run_length variable) must be hold for each subband level to be able to 

continue run counts at the same level. Furthermore, the adaptive arithmetic encoder must 

handle several probability models simultaneously, one for each subband level. Therefore, 

when the encoder buffer is full, the wavelet transform algorithm calls the run-length encoder 

in order to encode the lines from the buffer and release them. In this call, two function 

parameters are needed: the buffer to be encoded and the corresponding subband level (to 

determine the probability model and the run_length variable to be used). 

(3) Now, in the run-length encoder, the coefficients in the buffer are scanned column by 

column to exploit their locality.  

(4) Since coefficients from different subband levels are interleaved (due to the 

computation order of the proposed wavelet transform), instead of a single bitstream, we 

should generate a different bitstream for every subband level. These bitstreams can be held in 

memory or saved in secondary storage, and are employed to form the final ordered bitstream. 

(5) The rate control method of Appendix B cannot be directly used in this encoder due to 

the lack of global knowledge of the image (including the entropy of the entire image). 

However, a partial analysis of each encoder buffer (including the entropy of this part) is still 

possible, allowing an adaptive quantization process to achieve the target bitrate. Note that 

with this adaptive method, the image quality is not constant. 

7.1.1.1 Tradeoff between coding efficiency and, speed and memory requirements 

The proposed algorithm can be tuned depending on the final application requirements. Thus, 

some parameters can be adjusted to improve the compression efficiency at the expense of 

slightly higher memory requirements or execution time. This way, the number of lines in 

every encoder buffer can be 8 for a good R/D performance, but coding efficiency can be 

improved with 16 lines, increasing the memory requirements. Another parameter that can be 

tuned is the enter_run_mode variable of Algorithm 5.2. When this parameter is increased, 

larger run-lengths are encoded by successive LOWER symbols, which results slower but a bit 

more efficient in R/D performance. Another tradeoff between compression efficiency and 

complexity is the use of arithmetic coding (with contexts) instead of raw coding to encode the 

sign of the coefficients, since a dependence among the sign of the wavelet coefficients exists 

inside a subband. In general, each of these improvements may increase the PSNR of an image 

encoded at 1 bpp in about 0.1 dB, while the last two improvements increase the execution 



CHAPTER 7. ADVANCED CODING 

144 

time in about 20% each one. 

 

 

7.1.2 Fast tree-based coding with efficient use of memory 

The wavelet transform proposed in Chapter 3 can also be applied with the lower-tree 

algorithm presented in Chapter 6, although the tree structure of this encoder requires a more 

careful treatment, and therefore, this adapted algorithm is described with more detail in this 

section.  

Figure 7.1 shows our overall system. It is similar to the run-length encoder described in 

the previous section, and the changes aforementioned must be made as well. But in addition, 

a binary significance map (that will be described later) is needed at each level. In this scheme, 

when the DWT releases subband lines, they are inserted into an encoder buffer, which is 

passed to the tree-based encoder once it is full.  

An important different between this version and the LTW presented in Chapter 6 is that 

the new adapted encoder must process coefficients in only one-pass, and therefore symbols 

must be computed and output at once. However, in this case, it is not an important drawback 

because the order of the wavelet coefficients is later arranged for the decoder with an 

HH1 buffer

LH1 buffer

HL1 buffer

image lines (LL0) 
  (INPUT) 

nlevel 
buffer 

…
 

width / 2nlevel-1  

width / 2  

HH2 buf

LH2 buf 

HL2 buf 

buffer 
height 

T
ree-based Subband E

ncoder 

1st level bitstream 

2nd level bitstr. 

LLnlevel bits. 

Final bitstream 
  (OUTPUT) 

…
 

width / 4  

S 2 

width / 8  

S 1 

L
ine-based D

W
T

 
Fig. 7.1: Overview of the proposed tree-based encoder with efficient use of memory. 

width / 4  

buffer 
height  



CHAPTER 7. ADVANCED CODING 

145 

independent bitstream generation at each level (see the fourth change in the previous section). 

The adapted encoding algorithm is formally described in Algorithm 7.1. Let us see it with 

some detail. The encoder has to determine if each 2×2 block of coefficients in the buffer is 

part of a lower-tree. If the four coefficients in the block are lower than the quantization 

threshold 2rplanes, and their descendant offspring are also insignificant, they are part of a 

lower-tree and do not need to be encoded. In order to know if their offspring are significant, 

we need to hold a binary significance map of every encoder buffer (SL in the figure) because 

the encoder buffer is overwritten by the wavelet transform once it is encoded, and hence the 

significance for their ascendant coefficients is not automatically held. Obviously, this 

significance map was not needed in the original LTW because the whole image was available 

for the encoder.  

The width of each significance map is sized half the width of the encoder buffer that it 

represents, since the significance is held for each 2×2 block. The height is not the half but the 

same as the buffer height because each buffer at a level l is encoded with double frequency 

compared to the l+1 level. Therefore, the fist half of the buffer at level l (the lines from 0 to 

buffer height/2) and the second half (from buffer height/2 to buffer height) are used 

alternatively to encode the significance of the encoder buffers at level l, and this complete 

buffer is used later as a reference to encode level l+1. 

The significance of a block can be held with a single bit. Therefore, the memory required 

for these significance maps is almost negligible when compared with the rest of buffers. 

As in Algorithm 6.1, when there is a significant coefficient in the 2×2 block or in its 

descendant coefficients, we need to encode each coefficient separately. Recall that in this 

case, if a coefficient and all its descendants are insignificant, we use the LOWER symbol to 

encode the entire tree, but if it is insignificant, and the significance map of its four direct 

descendant coefficients shows that it has a significant descendant, the coefficient is encoded 

as ISOLATED_LOWER. Finally, when a coefficient is significant, it is encoded with a 

numeric symbol along with its significant bits and sign. 

It is important to note that trees are built from leaves to roots, spreading the significance 

of the coefficients. Fortunately, this is exactly the order in which the line-based DWT 

algorithm described in Chapter 3 generates the wavelet coefficients. For example, the first 

two lines released by the wavelet transform are from the first subband level, and then, the 

following line is computed from the second level. Observe that the coefficients in this line are 



CHAPTER 7. ADVANCED CODING 

146 

exactly all the ascendant coefficients of those computed in the two first lines. This order 

remains for the rest of the wavelet transform computation at all the levels, i.e., as we get two 

lines at a level l, we then get its parents at l+1 before getting two more lines at l.  

At the last level (N), the tree cannot be propagated upward, and for this reason, we 

always encode all the coefficients at this level. Moreover, as in the previous section, we can 

keep the compressed bit-stream in memory, which allows us to invert the order of the 

bitstream for the inverse procedure.  

 

 

function SubbandCode( level , Buffer, 1−levelS , levelS  ) 
Scan the Buffer in 2×2 blocks (Bx,y) (and column by column) 
for each block },,,{ 12,1212,22,122,2, ++++= yxyxyxyxyx ccccB  

if  ( 1
,, 2 −∧<∧≠ level
ji

rplanes
ji ScNlevel is Insignif. )yxji Bc ,, ∈∀  

set =level
yxS ,  Insignif. 

else 
set =level

yxS ,  Signif. 

for each yxji Bc ,, ∈  

if  rplanes
jic 2, <  

if 1
,

−level
jiS is Insignif. 
arithmetic_output LOWER 

else 
arithmetic_output ISOLATED_LOWER 

else 

( )⎡ ⎤jiji cnbits ,2, log=  

if  1
,

−level
jiS is Insignif. 

arithmetic_output LOWER
jinbits ,  

else 
arithmetic_output jinbits ,  

output ( ) ( )jirplanejinbits cc
ji ,1,1 bitbit

, +− K  

output  sign( jic , ) 
endif 

endif 
end of function 

 
Note: ( )cnbit  is a function that returns the nth bit of c. 

Algorithm 7.1: Lower tree wavelet coding with reduced memory usage.  



CHAPTER 7. ADVANCED CODING 

147 

7.1.3 Numerical results 

As in the rest of this thesis, we have implemented the proposed encoders in ANSI C language 

to compare them with the rest of proposals and with the state-of-the-art wavelet image 

encoders SPIHT and JPEG 2000/Jasper. These implementations were compiled with Visual 

C++ 6.0 and are available at http://www.disca.upv.es/joliver/thesis. 

 

 Lena (512x512) 
Codec\ 

rate SPIHT Jasper/ 
JP2K 

Original 
RLW 

Modified 
RLW 

Original 
LTW Modified LTW

1 40.41 40.31 40.31 40.23 (+0.14) 40.50 40.45 (+0.07) 
0.5 37.21 37.22 37.12 37.05 (+0.10) 37.35 37.29 (+0.05) 

0.25 34.11 34.04 34.02 33.95 (+0.08) 34.30 34.23 (+0.03) 
0.125 31.10 30.84 31.00 30.93 (+0.04) 31.26 31.23 (+0.00) 

 Barbara (512x512) 
Codec\ 

rate SPIHT Jasper/ 
JP2K 

Original 
RLW 

Modified 
RLW 

Original 
LTW Modified LTW

1 36.41 37.11 36.54 36.47 (+0.35) 36.72 36.58 (+0.23) 
0.5 31.39 32.14 31.66 31.61 (+0.29) 31.76 31.63 (+0.16) 

0.25 27.58 28.34 27.95 27.90 (+0.22) 28.07 27.95 (+0.06) 
0.125 24.86 25.25 25.12 25.11 (+0.08) 25.24 25.16 (+0.03) 

 Woman (2560x2048) 
Codec\ 

rate SPIHT Jasper/ 
JP2K 

Original 
RLW 

Modified 
RLW 

Original 
LTW Modified LTW

1 38.28 38.43 38.28 38.28 (+0.21) 38.49 38.46 (+0.11) 
0.5 33.59 33.63 33.53 33.57 (+0.15) 33.80 33.77 (+0.05) 

0.25 29.95 29.98 29.91 29.96 (+0.08) 30.14 30.13 (+0.02) 
0.125 27.33 27.33 27.32 27.36 (+0.04) 27.50 27.52 (-0.03) 

 Café (2560x2048) 
Codec\ 

rate SPIHT Jasper/ 
JP2K 

Original 
RLW 

Modified 
RLW 

Original 
LTW Modified LTW

1 31.74 32.04 31.62 31.63 (+0.26) 32.02 31.96 (+0.12) 
0.5 26.49 26.80 26.51 26.51 (+0.16) 26.85 26.82 (+0.06) 

0.25 23.03 23.12 23.01 22.98 (+0.12) 23.24 23.24 (+0.03) 
0.125 20.67 20.74 20.62 20.61 (+0.06) 20.76 20.79 (+0.01) 

 

Table 7.1: PSNR (dB) comparison with different bit rates and coders for the evaluated images 

(Lena, Barbara, Woman and Café). The numbers in parenthesis correspond to the increase in 

performance if the R/D improvements discussed in Subsection 7.1.1.1 are applied. 



CHAPTER 7. ADVANCED CODING 

148 

 

Table 7.1 shows a compression comparison for the images Lena, Barbara, Woman and 

Café. This table indicates that the need to encode each subband in fragments (determined by 

the size of the encoder buffer) causes a very slight decrease in PSNR, from the original RLW 

and LTW algorithms to the new versions proposed in this section. This decrease is less than 

0.05 dB in most cases. Furthermore, this small loss in R/D performance can be avoided if the 

improvements discussed in Subsection 7.1.1.1 are applied. In this table, the increase in PSNR 

introduced by these improvements is shown in parenthesis. With respect to the rest of the 

table, a comparison between RLW/LTW with SPIHT and JPEG 2000 was already made in 

the previous two chapters and thus, the reader is referred to these chapters for an analysis. 

 

codec\ 
rate 

Compres-
sed 

image 
SPIHT Jasper/ 

JP2K 
Original 

RLW 
Modified 

RLW 

Modified 
RLW with 
bitream in 
memory 

Original 
LTW 

Modified 
LTW 

Modified  
LTW with 

bitstream in 
memory 

1 640 42,888 62,768 21,180 1,017 1,657 (+180) 21,188 1,096 1,736 (+216)

0.5 320 35,700 62,240 21,180 953 1,273 (+180) 21,188 1,032 1,352 (+216)

0.25 160 31,732 61,964 21,180 953 1,113 (+180) 21,188 1,032 1,192  (+216)

0.125 80 28,880 61,964 21,180 937 1,017 (+180) 21,188 1,016 1,096  (+216)

 

Table 7.2: Total amount of memory (in KB) required to encode the Woman image using 

several encoding algorithms. The numbers in parenthesis correspond to the extra memory that 

is necessary if the R/D improvements are not used. 

 

As expected, the comparison in which our modified encoders clearly outperform both 

SPIHT and the evaluated implementation of JPEG 2000 (Jasper) is the memory consumption. 

Table 7.2 shows that for a 5-Megapixel image, both proposals require between 25 and 40 

times less memory than SPIHT, and more than 60 times less memory than Jasper/JPEG 2000. 

When comparing both modified versions between them, the tree-based version requires 

somewhat more memory (about 100 KB) due to the need to hold the significance map.  

In this table, the sixth and the last columns refer to the cases in which the entire bitstream 

(i.e., the compressed image) is held in memory while it is generated. Recall that having a 

different bitstream for each level eases the decompression process, since the order in the 

inverse transform is just the reverse of the order in the forward one. Note that we have 



CHAPTER 7. ADVANCED CODING 

149 

estimated that the amount of memory needed for a single process (written in C and running 

under Windows XP) is about 650 KB, and therefore the data memory employed by each 

encoder is just the remaining memory to the total amount shown in Table 7.2.  

 

Codec\ 
rate SPIHT Jasper/ 

JP2K 
Original 

RLW 
Modified 

RLW 
Original 

LTW 
Modified 

LTW 
1 3,669 23,974 1,832 1,214 (+587) 1,563 1,067 (+325) 

0.5 2,470 23,864 1,490 860 (+377) 1,257 760 (+183) 
0.25 1,939 23,616 1,289 657 (+259) 1,087 591 (+114) 

0.125 1,651 23,563 1,169 532 (+197) 993 503 (+75) 
 

Table 7.3: Execution time (in Million of CPU Cycles) needed to encode Woman at various 

bitrates. The numbers in parenthesis correspond to the additional complexity introduced 

when R/D improvements are applied. 

 

Finally, in table 7.3 we compare the second main issue that concerns us in this thesis, the 

complexity of these algorithms. Now, the execution time includes the wavelet transform 

computation since it is not separable from the coding algorithm in the new modified 

proposals. Only the encoding time is given because the decoding time is very similar for our 

modified proposals due to the high symmetry of both methods. This table shows that our 

proposals are faster than SPIHT and JPEG 2000, for the reasons given in the previous 

chapters. Compared with the original versions, the new variations are able to encode an 

image, line-by-line, in only one-pass, applying the DWT and the coding stage interleaved. 

Thus, memory access is optimized (mainly in the wavelet transform computation) and 

thereby these versions are up to two times faster than the original ones. If both proposals are 

compared, the tree-based encoder is still faster than the run-length version. Finally, observe 

that if the improvements of Subsection 7.1.1.1 are applied, the execution time increases 

(mainly at higher bit rates), most of all in the run-length encoder, since the enter_run_mode is 

increased, and then, more single LOWER symbols are arithmetically encoded. 

7.2 Very fast coding of wavelet lower trees 

In this section, a very fast Huffman-based variation of the Lower-Tree Wavelet (LTW) image 

encoder is presented. This alternative encoder serves to largely reduce the execution time, at 



CHAPTER 7. ADVANCED CODING 

150 

the expense of loss in coding efficiency. Furthermore, this encoder could be used along with 

the modifications described in the previous section, achieving an extremely fast encoder with 

reduced memory usage.  

7.2.1 Proposed modifications 

The main change proposed for Algorithm 6.1 is the replacement of arithmetic coding 

[PAS76] by Huffman coding [HUF52], which is much faster because each symbol is directly 

encoded with a binary representation of that symbol using a previously precomputed table 

(see Chapter 1 for details). So it is almost as fast as “raw coding”. 

This fast modified algorithm consists of three stages. In the first one, all the symbols 

needed to efficiently represent the transform image are calculated. This stage is equivalent to 

Algorithm 6.1(b). During this stage, statistics are collected in order to compute a Huffman 

table in a second stage. Finally, the last stage consists in encoding the symbols computed 

during the first one by using Huffman coding, and it is equivalent to Algorithm 6.1(c). 

During the first stage, all the symbols must be computed (this time including the 

“numeric symbols”: jinbits ,  and LOWER
jinbits , ) because the probability model is now built during 

this stage and not while coding in the last stage. As an optimization in this first pass, in order 

to increase the appearance of 2×2 blocks of LOWER_COMPONENT, whenever the four 

coefficients have insignificant descendants, the threshold to compare these four coefficients 

to assign them a LOWER_COMPONENT label is increased from  2rplanes to 2rplanes+1, so as to 

extend an existing lower-tree more easily (see details in Algorithm 6.1(b), lines 4 and 12). 

In the second stage, Huffman codes are built with the probability model from the source 

(i.e., the symbols computed in the first stage), once this probability model has been acquired. 

A different Huffman code set is computed for each subband level, since statistics vary from 

one level to another. The computed tables containing the Huffman codes are output so that 

the decoder can use them to decode the symbols. The rplane parameter is also output in this 

stage, which actually replaces the initialization stage of Algorithm 6.1(a). 

Finally, in the third stage, the symbols computed in the first stage are Huffman encoded 

using the codes computed in the second stage. Recall that no LOWER_COMPONENT is 

encoded, and that significant bits and sign are needed, and therefore binary encoded, for each 

significant coefficient. 

Observe that since no adaptive coding and context-modeling is performed, the order in 



CHAPTER 7. ADVANCED CODING 

151 

which coefficient blocks are scanned in each subband does not affect compression efficiency, 

and therefore, a typical raster scan order is followed because it avoids cache misses, being 

faster. In the original LTW, a scan in clusters was used in order to take advantage of spatial 

locality with an adaptive arithmetic encoder with two-contexts, increasing the PSNR but 

being a bit slower. 

Contrary to the original RLW and LTW algorithms, which mainly group coefficients to 

reduce complexity (most of all in the run-length Algorithm 5.2 compared with the simpler 

Algorithm 5.1) without a significant increase in coding efficiency, in this new fast LTW, the 

tree structure used to efficiently group coefficients becomes essential to achieve good 

compression efficiency. It is easy to see the importance of grouping coefficients in this 

algorithm if we recall that the length of the shortest Huffman code is one bit. Therefore, if a 

symbol is encoded for each coefficient (as in Algorithm 5.1), the minimum achievable target 

bitrate is 1 bpp, and we still have to add the significant bits and sign, and consider that many 

encoded symbols will be longer than one bit. 

Fortunately, LTW works quite well with Huffman coding (as we will see later in the 

coding results), because there are many different symbols (in particular, a lower symbol, an 

isolated symbol, and all the “regular numeric symbols” and “LOWER numeric symbols”), but 

the probability is highly concentrated in a few symbols, which is the best condition for 

Huffman coding. 

7.2.2 Efficient Huffman decoding 

Although Huffman encoding is very simple, because it only requires looking up in a table, 

that is not the case of the usual Huffman decoding, which is performed bit by bit, following a 

binary tree as each bit from the bitstream is input. A faster alternative is to use a lookup table 

of length 2L, being L the length of the largest generated Huffman code. In this table, each 

entry in a position P stores a symbol. This symbol corresponds to the Huffman code C that is 

equal to the N most significant bits of the binary representation of P. This correspondence is 

unique for each entry if full codes are considered, since two different symbols never have the 

same code (although they can be partially the same, in the most significant bits). The length 

of the Huffman code (N) is also stored in that entry. This table can be built very easily as 

follows: for each symbol S with a Huffman code C of length N, we fill this table with (S, N) 

in the positions ranging from C×2L−N to (C+1)×2L−N−1 (i.e., in the positions with C in the N 



CHAPTER 7. ADVANCED CODING 

152 

most significant bits, and ranging from “all 0s” to “all 1s” in the L−N least significant bits). 

This way, we use L bits of the bitstream to look up an entry in the table at the position 

indicated by these L bits, which gives us the corresponding symbol S and the number of bits 

N that the Huffman code actually requires. Hence, for the next symbol, N bits are input from 

the bitstream, which are completed with L−N bits that were already read but did not belong to 

the previous Huffman code. 

The main drawback of this Huffman decoding technique is that it does not scale very well 

because growth is exponential as the size of L increases (since it requires 2L entries). 

Therefore, we use a combination of both methods. First, we use a small table to decode a 

symbol. For short Huffman codes, the symbol can be successfully decoded, however, for long 

codes, the complete symbol will not be decoded, but a binary tree will be used to finish the 

decoding operation following the usual Huffman decoding process. Note that the increase in 

complexity is very low because short codes are much more likely than long codes, and thus, 

most times, the decoding operation will be solved with the lookup table. 

 

codec\ 
bitrate SBHP PROGRES LTW 

Huffman 
LTW 
Orig. 

JPEG 
2000 

Lena (512×512) 
0.125 n/a 30.59 31.06 31.27 30.84 
0.25 n/a 33.71 34.03 34.31 34.04 
0.5 n/a 36.85 37.03 37.35 37.22 
1 n/a 39.89 40.11 40.50 40.31 

Café (2560×2048) 
0.125 20.49 n/a 20.56 20.76 20.74 
0.25 22.64 n/a 22.90 23.24 23.12 
0.5 26.01 n/a 26.31 26.85 26.80 
1 31.08 n/a 31.30 32.03 32.04 

Woman (2560×2048) 
0.125 27.09 26.89 27.23 27.52 27.33 
0.25 29.59 29.40 29.70 30.16 29.98 
0.5 33.11 33.02 33.15 33.82 33.63 
1 37.98 37.75 37.76 38.53 38.43 

 

Table 7.4: PSNR (dB) with different bitrates and very fast encoders. 

 

7.2.3 Numerical results 

In Table 7.4, we compare the compression efficiency of the new proposed variation of LTW 



CHAPTER 7. ADVANCED CODING 

153 

with the original LTW, JPEG 2000 and other fast wavelet encoders described in Chapter 4 

that also avoid bit-plane coding and iterative methods, namely PROGRES [CHO05] and 

(non-embedded) SBHP [CHY00]. Obviously, the original LTW is more efficient than the 

Huffman variation (from to 0.2 to 0.7 dB in PSNR, depending on the bit-rate and image), 

mainly due to the use of adaptivity, context modeling and arithmetic coding. When compared 

with JPEG 2000, PSNR is similar at low bitrates, and about 0.6 lower at high bitrates. 

However, our new proposal is more efficient than PROGRES (up to 0.5 dB at low bitrates), 

and than SBHP in slightly detailed images, like Café, although in low-frequency images, like 

Woman, SBHP works slightly better, ranging from 0.05 to 0.2 dB. 

However, the main advantage of this new proposal is its very low execution time. In table 

7.5, execution time is compared with the original LTW and PROGRES1. For the coding 

process, the original LTW is faster than PROGRES (up to 3 times) except in high bit-rates. If 

we compare the new fast LTW proposal with PROGRES, this advantage is increased, being 

from 4 to 9 times faster, depending on the bit-rate. The decoding process is much faster than 

the coding process in PROGRES because the decoder does not need to compute the highest 

coefficient in each sub-tree, and consequently only an improvement of about 20% is achieved 

with the proposed LTW at 1 bpp, while this improvement becomes smaller as the bitrate is 

reduced. Although there are no execution time results (or reference software) available to 

compare our proposal with SBHP, the use of bitplane coding to compute the significance map 

and a sorting algorithm in SBHP probably make it slower. In fact, our encoder, when coding 

Woman at a range from 1 bpp to 0.125 bpp, is from 18 to 38 times faster than JPEG 2000 

reference software (in particular, Jasper, written in C), while in [CHY00] authors state that 

SBHP coding was 4 times faster than JPEG 2000 VM.  

As in the rest of chapters, for more tests, our implementations are available at 

http://www.disca.upv.es/joliver/thesis. 

 

 

 

                                                 
1 For the execution time comparison, similar processors have been employed. Results for PROGRES 
were published in [CHO05] with an Intel Xeon 2 Ghz Processor, and results for LTW in this section 
are obtained with an Intel PentiumM 1.6 Ghz Processor. On the other hand, all the implementations 
are written in C language and compiled with Visual C++ 6.0 and the same speed optimization level 



CHAPTER 7. ADVANCED CODING 

154 

codec\ 
bitrate 

PRO-
GRESS 

LTW 
Huffman

LTW 
Orig. 

PRO-
GRESS 

LTW 
Huffman

LTW 
Orig. 

 CODING DECODING 
       Lena (512×512) 
0.125 23.7 2.7 8.2 1.6 1.6 4.8 
0.25 26.1 3.5 12.1 2.6 2.4 8.6 
0.5 29.0 5.0 19.7 4.6 3.9 15.8 
1 34.8 8.1 36.4 8.3 6.7 30.8 

       Woman (2048×2048) 
0.125 378.4 51.3 149.5 24.1 26.1 83.4 
0.25 404.3 68.8 217.2 41.9 40.5 147.3 
0.5 450.1 100.2 337.3 74.7 63.2 266.6 
1 528.4 140.0 568.7 128.4 101.5 484.2 

 

Table 7.5: Execution time comparison of the coding process for very fast encoders (excluding 

DWT) (time in million of CPU cycles). 

7.3 Lossless coding 

In Chapter 1, we discussed the importance of lossless coding in some applications (such as 

medical imaging and image editing). For this reason, it is important for an encoder to be able 

to provide lossless compression with little or no modification of the usual algorithm, so that 

an implementation of that algorithm can work in lossy or lossless mode, depending on the 

specific application, simply by varying the input parameters. The algorithms presented in this 

thesis possess this feature if no quantization is applied and an integer-to-integer wavelet 

transform is used. In order to skip the quantization process, the parameters of the Appendix A 

can be set as rplanes=0, Q=1/2 and K=0, although it is faster if we simply omit all the 

operations related to the scalar quantization. For the wavelet transform, we will use the 

reversible bi-orthogonal 5/3 filter bank for integer implementation, which is described in 

Chapter 2. 

In Table 7.6, we compare the results of losslessly encode six images (grayscale 8 bpp) 

with our encoder, JPEG 2000 and the LOCO-I algorithm (in which the JPEG-LS standard is 

based). In JPEG 2000, the same bi-orthogonal 5/3 transform is used. In this table, results are 

expressed as the number of bits per pixel needed for the compressed image, and in general it 

is reduced from 8 bpp (in the original image) to 4-5 bpp after lossless coding. LTW and 

JPEG 2000 are general purpose and perform almost the same in all the images, with no more 

than 0.05 bpp difference between them (about 1% in performance). This is a good result for 



CHAPTER 7. ADVANCED CODING 

155 

our encoder, if we take into account that lossless coding is mainly based in predictive 

techniques and context modeling, and LTW, contrary to JPEG 2000, only handles two 

contexts. LOCO-I [WEI00] is a specific prediction-based lossless technique. However, it is 

not much more efficient than the other two encoders under evaluation, requiring about 0.1-

0.2 bpp less than JPEG 2000 and LTW (LOCO-I’s coding efficiency is not higher than 5% 

compared with JPEG 2000 and LTW). 

 

codec \ image LOCO-I JPEG 2000 LTW 
Lena (512×512) 4.24 4.31 4.26 
Barbara (512×512) 4.86 4.78 4.83 
Goldhill (512×512) 4.71 4.84 4.78 
Woman (2560×2048) 4.45 4.51 4.50 
Café (2560×2048) 5.09 5.35 5.36 
Bike (2560×2048) 4.36 4.53 4.56 

 

Table 7.6: Lossless coding comparison of various image encoders with six greyscale 8 bpp 

images. Results are given in bits per pixel (bpp) needed to losslessly encode the original 

image. 

7.4 Summary 

Some variations of the algorithms presented in chapters 5 and 6 have been proposed in this 

chapter, in order to obtain versions with very low memory consumption and/or with very fast 

coding of the wavelet coefficients. 

The versions with reduced memory usage use the wavelet transform of Chapter 3, and, 

with almost the same coding efficiency as the original algorithms, are faster and require 20 

times less memory usage when considering process memory (data memory usage is actually 

much lower). 

The very fast version of the lower-tree wavelet encoder uses Huffman coding and other 

strategies to reduce execution time. The loss of coding efficiency is compensated by the 

reduction in execution time. In fact, the encoder is less complex than some of the fastest 

wavelet encoders reported in the literature, being up to 9 times faster than PROGRES (and 

much more symmetric than it), while PSNR is from 0.3 to 0.5 dB higher at low bit-rates.  

Finally, results for the methods proposed in this thesis applied to lossless image 



CHAPTER 7. ADVANCED CODING 

156 

compression are shown, revealing that its coding efficiency in lossless mode is not far from 

specific lossless encoders like LOCO-I.    



 

157 

 

 

Chapter 8   

Conclusions and future work 

 

 

8.1 Contributions of this thesis 

Although a detailed summary section with the main contributions and conclusions is 

presented at the end of each chapter, it is interesting to summarize some of the main 

contributions introduced in this thesis. 

In Chapter 3, we propose a general recursive algorithm to compute the DWT in a line-

based fashion. We give two implementations of this recursive algorithm, first by means of a 

simple filter-bank and later using the lifting scheme to improve its efficiency. Both 

convolution and lifting algorithms are fully described and can be straightforwardly 

implemented. In fact, we give an implementation in ANSI C language, which differs little 

from the pseudo-code description. While in an iterative approach (like that proposed in 

[CHR00]) we need to handle several buffers with different delay and rhythm, which is a 

difficult task in a software-based implementation, the main contribution of our proposal with 

respect to other proposals is the solution of the problem of synchronous communication 

among buffers by means of a recursive function. At the same time, we introduce a line-based 

DWT based on the lifting scheme that reduces the memory requirements by half and 

improves the overall execution time, and an integer-to-integer implementation that allows a 

reversible wavelet transform. Furthermore, other previous proposals are given with an 

implicit assumption of a hardware design implementation, whereas our proposal is valid for 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

158 

software-based ones. 

In Chapters 5 and 6, we introduce various non-embedded wavelet image encoders that 

avoid bit-plane coding and do not use iterative optimization algorithms or high-order context 

modeling in order to reduce complexity. Although these encoders are not SNR scalable, they 

support resolution scalability because coefficients are encoded at once, in decreasing order of 

subband level. With these coders, we introduce a discussion about the convenience of 

complex coding techniques to achieve features that are not always necessary. With this in 

mind, we present a run-length (RLW) coder and a tree-based (LTW) wavelet coder. In 

addition, LTW reveals that tree-based coding can be used as a very fast method of grouping 

coefficients, and not only as an efficient way to encode them. Based on these ideas, other 

tree-based proposals emerged later, like for example PROGRES [CHO05]. 

Finally, we show that a line-based wavelet transform can be efficiently applied along 

with a tree-based scheme, significantly reducing the memory requirements.  

8.2 Conclusions 

In this thesis, we have proposed several algorithms to reduce complexity and memory usage 

for wavelet coding. Although great efforts have been made to improve compression 

efficiency and allow additional features, there are many open opportunities in reducing 

complexity, as stated by H. Malvar, a director of Microsoft Research, in a plenary talk at the 

24th Picture Coding Symposium [MAL04], referring to the new lines of research to be 

explored in the field of image compression after the release of the JPEG 2000 standard. With 

this in mind, the coding scheme proposed in Chapter 7, which stems from the joint 

application of the tree-based image coder of Chapter 6 and the recursive wavelet transform 

with reduced memory usage of Chapter 3, is able to encode an image with state-of-the-art 

coding performance, while complexity is reduced a lot if compared with the encoders 

commonly used as benchmarks, like SPIHT and the JPEG 2000 standard. In fact, execution 

time is reduced several times, in particular more than three times compared with SPIHT and 

more than 25 compared with the JPEG 2000 reference software (all of them written in C 

language and compiled under the same conditions), while memory requirements are reduced 

22 times with respect to SPIHT and up to 50 times compared with the JPEG 2000 reference 

software.  

Although complexity reduction may seem of limited interest in high-performance 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

159 

workstations with plenty of memory, some particular applications, like image editing for 

large images and especially GIS applications, cannot be easily tackled with the complexity of 

previous encoders. In addition, many other common applications, like simple slide show, 

become annoying if the decoding delay is too high.  

On the other hand, the memory requirements of these encoders may seriously affect 

memory-constrained devices dealing with digital images, such as mobile phones, digital 

cameras and personal digital assistants (PDA). The complexity of these encoders is another 

issue that affects these devices, since they usually contain DSPs or processors with lower 

computational power than regular desktop workstation processors. Both memory requirement 

and complexity impose severe restrictions on coding applications running on this type of 

devices, in terms of required working memory and processing time.  

From a hardware design perspective, complexity reduction can be thought of as a cost 

reduction when implementing a particular application. Thus, in order to implement a time-

consuming and memory-intensive coding algorithm, an expensive DSP is needed (for 

example, a 1000 MHz TMS320C6455 DSP with 2048 KB L2 cache, which is currently 

valued at approximately 350 $US). If we reduce complexity and improve cache utilization for 

the same type of application, a much cheaper DSP can run the new algorithm (for example a 

400 MHz TMS320DM640AGDK4 DSP with 160 KB L2 cache that costs less than 25 $US). 

In conclusion, we think that the encoders presented in this thesis are good candidates for 

real-time interactive multimedia communications and other applications, allowing simple 

implementation both in hardware and in software. 

8.3 Future lines of research 

There are several open problems and more work to be done related with the subject of this 

thesis. Future work includes:  

− To develop parallel versions of the wavelet transform and the image encoders 

proposed in this thesis to ease GIS processing. 

− A study of hardware designs for the algorithms presented in the thesis, since we 

have shown that they are suitable for efficient image compression implemented in 

hardware with low-cost systems. 

− Non-iterative rate control methods for non-embedded image coding can be further 

analyzed. These methods are expected to be useful for other non-embedded 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

160 

encoders apart from RLW and LTW, such as PROGRES and non-embedded 

SPITH and SPECK/SBHP. 

− More investigation is needed to employ the proposed wavelet image coders in 

error-prone environments and to add more robustness to them for wireless 

transmission. 

− The use of the wavelet transform in video compression is still a topic of interest, 

because while some proposals have been made, most of them are still below the 

efficiency of DCT-based encoders like H.264. In the next section, we briefly 

describe how video compression can be implemented with the techniques proposed 

in this thesis. 

8.3.1 A future application: extension to video coding 

Following the classical schemes of wavelet-based video coding, many of the techniques and 

algorithms applied in this thesis can be extended to video, ether by using a motion-

compensation scheme, by considering time as a third dimension (with time filtering), or even 

by combining both ideas. 

8.3.1.1 Motion Compensation (MC) 

In motion compensated video coding (like [BLA98], [MAR99] and [WIE00]), a frame is 

predicted from those frames previously encoded in the video sequence. In these encoders, 

after the motion compensation algorithm is applied, the prediction residue is then encoded 

with a two-dimensional wavelet-based algorithm, along with the motion vectors. Actually, 

this framework is very similar to the well-known family of standards MPEG, but in order to 

decorrelate the energy of the residue, a wavelet transform is employed instead of the DCT. 

Within this scheme, any of the image encoders presented in this thesis can be easily applied 

to encode the residue, once a motion compensation algorithm has reduced the redundancy 

between frames. Clearly, the motion estimation algorithm will be the computational 

bottleneck in this video encoder, and therefore more research is needed to ease this part. In 

addition, the expected coding efficiency is not very high, based on similar experiments 

previously published ([BLA98] [MAR99] [WEI00]). 

8.3.1.2 Temporal Filtering (TF) 

Another scheme typically used for video coding is the three-dimensional (3D) wavelet video 

coding, in which the wavelet transform is applied in the three directions, i.e., in the spatial 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

161 

directions (horizontal and vertical) and in the time direction (which is known as temporal 

filtering). Afterwards, the resulting wavelet coefficients are entropy encoded. The first 

problem that arises in this case is the extremely high memory consumption of the wavelet 

transform if the regular algorithm is used, since a group of frames must be kept in memory 

before applying temporal filtering, and in general, the greater temporal decorrelation, the 

more number of frames are needed in memory.  

Some efforts have already been done to reduce memory requirements and the execution 

time of the 3D DWT [MOY01] [BER02]. As an alternative to them, the ideas introduced in 

Chapter 3 can be easily adapted to compute the wavelet transform in the three dimensions 

with very low memory usage. Therefore, Algorithm 3.1 can be modified to achieve a frame-

based 3D wavelet transform simply by replacing the word “line” by “frame” in the algorithm 

description. In this new version, at every level, each buffer must be able to keep either 2N+1 

or W+2 low frequency frames, depending on whether it is implemented as a filter-bank or 

with the lifting scheme (see Chapter 3 for details). As presented in Figure 8.1, which shows 

the new proposal compared with the classical one, each buffer at a level i needs a quarter of 

coefficients if compared with the previous level (i−1). Therefore, for a frame size of (w×h) 

and an nlevel time decomposition, the number of coefficients required by the version 

implemented with a filter-bank is  
14)()12(4)()12()()12( −××+++××++××+ nlevelhwNhwNhwN L        (8.1) 

which is asymptotically (as nlevel approaches infinity)  

3
4)()12(

4
)()12(

0

×××+=
××+∑

∞

=

hwNhwN
n

n   (8.2) 

independently of the number of frames to be encoded, much lower than the regular case.  

Another drawback of the regular 3D DWT and the need to split the video sequence into 

group of frames is that it causes discontinuities on the first and last frames, displaying 

blocking artifacts in the time domain.  

In addition, an important difference between both proposals is how video can be decoded 

from the middle of the bitstream, that is, when the user begins to receive the video broadcast 

while it is already in progress. In the regular algorithm, the current group of frames being 

received is ignored, and then, the following group is stored in memory. After it has been 

entirely received, it can be decoded, and the 3D IWT can be applied. On the other hand, for 

the inverse transform in the frame-based scheme, the decoding process begins immediately 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

162 

by filling up the highest-level buffer (nlevel) with the information received from the 

bitstream. During this process, other information from the bitstream is ignored. Afterwards, 

once this buffer is full, we begin to accept also information from the previous level 

(nlevel−1), and so forth, until all the buffers are full. At that moment, the video can be 

sequentially decoded as usual. The latency of this process is determinist and depends on the 

filter length and the number of decomposition levels (the higher they are, the higher latency). 

However, for the regular 3D algorithm, the latency depends on the remaining number of 

frames in the current group when the process begins, and the size of the group of pictures. 

An important issue to consider in this proposal is the need to reverse the order of the 

coefficients in the decoder, from the highest level to lowest one. A simple solution is to hold 

a different bitstream for each decomposition level. However, more complex and suitable 

investigations should be done, trying to reverse the order of the coefficients as they are 

computed in the encoder and read by the decoder, as suggested in [CHR00]. 

Finally, the transform coefficients can be entropy encoded by using run-length coding 

techniques or 3D lower trees in a similar way as in Chapter 7. In this case, to form 3D lower 

trees, each coefficient (except the leaves) has eight descendant coefficients instead of four, as 

proposed in [KIM00]. The expected complexity of this encoder is lower than the motion 

compensated one, but the coding efficiency will be low in moderate-motion sequences due to 

the appearance of misaligned objects in the time direction, causing an energy increase in 

high-frequency subbands, and thus preventing the lower-tree formation. 

 
Fig. 8.1: Overview of the 3D DWT computation in a two-level decomposition, (a) following a 
frame-based scheme as an evolution of Algorithm 3.1 or (b) the regular 3D DWT algorithm.

LLL1 

LLH1, LHL1, LHH1, HLL1, 
HLH1, HHL1, HHH1, 

LLL2 

LLH2, LHL2, 
LHH2, HLL2, 
HLH2, HHL2, 
HHH2 

(a) (b) 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

163 

A different application of the 3D DWT is to encode 3D surfaces. In [AVI05], the authors 

propose the use of the LTW algorithm to encode 3D models in a scalable fashion (with 

various LODs, Levels Of Detail). Numerical results show that a LTW-based encoder 

achieves higher coding efficiency than a SPIHT-based encoder. 

8.3.1.3 Motion Compensated Temporal Filtering (MCTF) 

So far, the best results in wavelet-based video coding are achieved with a combination of the 

two previous methods. In these techniques, in order to compensate the object (or pixel) 

misalignment between frames, and hence to avoid the significant amount of energy that 

appears in high-frequency subbands, a motion compensation algorithm is introduced to align 

all the objects (or pixels) in the frames before being temporal filtered. This approach is called 

Motion Compensated Temporal Filtering (MCTF) and currently, there is considerable 

research activity focused on it [SEC01] [SON05] [CAG05]. Most of them use very simple 

lifting transforms for the temporal filtering, such as the B5/3 transform described in equations 

(2.43) and (2.44) or even a simplified version of this transform that skips the update step 

(equation (2.44)). The fast image encoders proposed in this thesis can also be extended to 

video and then used in the MCTF framework to compensate the high complexity of the 

motion estimation. In addition, as a future work, the 3D DWT described in the previous 

section could be combined with a motion compensation scheme, so that more complex 

wavelet transforms can be easily applied. A future research should establish if the 

introduction of longer filter-banks is really beneficial in MCTF. 

8.4 Publications resulting from this thesis 

Some fragments of the work presented in this thesis have been published in proceeding of 

international conferences. In particular, the main contributions are: 

From Chapter 3: 

− J. Oliver, M.P. Malumbres, “A fast wavelet transform for image coding with 

low memory consumption,” in proceedings of the 24th IEEE Picture Coding 

Symposium, California (USA), 2004. A first version of the recursive wavelet 

transform with low memory usage is presented using a simple filter-bank.  

− J. Oliver, E. Oliver, M.P. Malumbres, “On the efficient memory usage in the 

lifting scheme for the two-dimensional wavelet transform computation,” in 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

164 

proceedings of the IEEE International Conference on Image Processing, 

Genoa (Italy), 2005. The recursive transform of Chapter 3 is generalized and 

it is implemented with the lifting scheme. 

− J. Oliver, E. Oliver, M.P. Malumbres, “Fast integer-to-integer reversible 

lifting transform with reduced memory consumption,” in proceedings of the 

IEEE International Symposium on Signal Processing and Information 

Technology, Athens (Greece), 2005. An integer-to-integer reversible version 

of the efficient wavelet transform of Chapter 3 is described. 

From Chapter 4: 

− J. Oliver, M.P. Malumbres, “Tuning and optimizing the performance of the 

EZW algorithm,” in proceedings of the International Conference on Image 

and Signal Processing, Agadir (Morocco), 2001. An implementation of the 

EZW algorithm is presented and tuned, analyzing many coding parameters.  

From Chapter 5: 

− J. Oliver, M.P. Malumbres, “A simple picture coding algorithm with fast run-

length mode,” in proceedings of the 23th IEEE Picture Coding Symposium, 

Saint Malo (France), 2003. The simple and run-length encoders of Chapter 5 

are proposed.  

From Chapter 6: 

− J. Oliver, M.P. Malumbres, “A new fast lower-tree wavelet image encoder,” 

in proceedings of the IEEE International Conference on Image Processing, 

Thessaloniki (Greece), 2001. An early version of the tree-based LTW 

encoder is introduced. This version only makes use of degree-0 trees, and it 

is compared only with EZW. 

− J. Oliver, M.P. Malumbres, “Design options on the development of a new 

tree-based wavelet image encoder,” in Lecture Notes in Computer Science,  

proceedings of the 8th International Workshop, Very Low Bit-Rate Video, 

Madrid (Spain), 2003. An analysis of the coding parameters of LTW is made 

to improve compression efficiency. 

− J. Oliver, M.P. Malumbres, “Fast and efficient spatial scalable image 

compression using wavelet lower trees,” in proceedings of the IEEE Data 

Compression Conference, Snowbird, Utah (USA), 2003. A complete version 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

165 

of the LTW algorithm, with degree-1 trees among other optimizations, is 

presented. 

From Chapter 7: 

− J. Oliver, M.P. Malumbres, “A fast run-length algorithm for wavelet image 

coding with reduced memory usage,” in Lecture Notes in Computer Science,  

proceedings of the 2nd Iberian Conference on Pattern Recognition and Image 

Analysis, 2005. The memory requirements of the run-length encoder of 

Chapter 5 are greatly reduced with the use of the recursive wavelet transform 

of Chapter 3. 

− J. Oliver, M.P. Malumbres, “Fast-tree based wavelet image coding with 

efficient use of memory,” in proceedings of the SPIE/IEEE Visual 

Communications and Image Processing, Beijing (China), 2005. In this paper, 

the tree-based encoder of Chapter 6 is now combined with the wavelet 

transform of Chapter 3, and the problem of tree construction for wavelet 

coding with this DWT is tackled.  

− J. Oliver, M.P. Malumbres, “Huffman Coding of Wavelet Lower Trees for 

Very Fast Image Compression,” in proceedings of the IEEE International 

Conference on Acoustics, Speech and Signal Processing, Toulouse (France), 

2006. A very fast version of the tree-based encoder of Chapter 6 is presented, 

reducing the execution time several times with moderate loss of coding 

efficiency. This encoder is compared with other recent very fast wavelet 

encoders such as PROGRES. 

 





 

167 

 

 

Bibliography 
 

 

[ACH05] T. Acharya, P. Tsai, JPEG 2000 Standard for Image Compression: Concepts, 

Algorithms and VLSI Arquitectures,  Chapter 5, Wiley, October 2005. 

[ADA00] M. Adams, F. Kossentini, Reversible Integer-to-Integer Wavelet Transforms for 

Image Compression: Performance Evaluation and Analysis, IEEE Transactions on Image 

Processing, vol. 9, pp. 1010-1024, June 2000. 

[ADA00] M. D. Adams, F. Kossentini, Reversible Integer-to-Integer Wavelet Transforms for 

Image Compression: Performance Evaluation and Analysis, IEEE Transactions on Image 

Processing, vol. 9, no 6, pp. 1010-1024, June 2000. 

[ADA02] M. Adams, Jasper Software Reference Manual (Version 1.600.0), ISO/IEC JTC 

1/SC 29/WG 1 N 2415, Oct. 2002. 

[ALB95] M. Albanesi, S. Bertoluzza, Human vision model and wavelets for high-quality 

image compression, International Conference in Image Processing and its Applications, July 

1995. 

[ALG95] V. R. Algazi, R. R. Estes, Analysis-based coding of image transform and subband 

coefficients, SPIE Applications of Digital Image Processing XVII, vol. 2564, pp. 11-21, 

August 1995. 

[ANT92] M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, Imagen Coding Using 

Wavelet Transform, IEEE Transactions on Image Processing, vol. 1, no2, April 1992. 



BIBLIOGRAPHY 

168 

[AVI05] M. Avilés, F. Morán, N. García, Progressive lower trees of wavelet coefficients: 

efficient spatial and SNR scalable coding of 3D models, Pacifica Rim Conference on 

Multimedia, November 2005. 

[BAR93] M. Barnsley, L. Hurd. Fractal Image Compression, AK Peters, Wellesley, 1993. 

[BEL90] T. C. Bell, J. G. Cleary, I. H. Witten, Text Compression, Advanced Reference 

Series, Englewood Cliffs, Prentice Hall, 1990. 

[BER01] W. Berghorn, T. Boskamp, M. Lang, H. Peitgen, Fast variable run-length coding 

for embedded progressive wavelet-based image compression, IEEE Transactions on Image 

Processing, vol. 10, pp. 1781-1790, December 2001. 

[BER02] G. Bernabé, J. González, J.M. García, J. Duato, Memory conscious 3D wavelet 

transform, EUROMICRO Conference, September 2002. 

[BLA98] D. Blasiak, W.Y. Chan, Efficient wavelet coding of motion compensated prediction 

residuals, IEEE International Conference on Image Processing, October 1998. 

[BRI95] C. M. Brislawn, Preservation of Subband Symmetry in Multirate Signal Coding, 

IEEE Transactions on Signal Processing, vol. 43, no 12, pp. 3046-3050, December 1995. 

[CAG05] M. Cagnazzo, Wavelet transform and three/dimensional data compression, Ph.D. 

thesis, Università degli studi di Napoli / Université de Nice-Sophia Antipolis, 2005. 

[CAL98] R. C. Calderbank, I. Daubechies, W. Sweldens, B. L. Yeo, Wavelet transforms that 

map integers to integer, Journal of Applied Computational and Harmonic Analysis, vol. 5, 

pp. 332-369, 1998. 

[CAP58] J. Capon, A probabilistic model for Run-Length coding of pictures, IRE 

Transactions on Information Theory, 157-163, 1958. 

[CHA01] W. Chang, Y. Lee, W. Peng, C. Lee, A Line-Based, Memory Efficient and 

Programmable Architecture for 2D DWT using Lifting Scheme, International Symposium on 

Circuits and Systems (ISCAS), 2001. 



BIBLIOGRAPHY 

169 

[CHO05] Yushin Cho, W. A. Pearlman, A. Said, Low complexity resolution progressive 

image coding algorithm: PROGRES (Progressive Resolution Decompression), IEEE 

International Conference on Image Processing, September 2005. 

[CHO05b] Yushin Cho, W. A. Pearlman, Quantifying the coding power of zerotrees of 

wavelet coefficients: a degree-k zerotree model, IEEE International Conference on Image 

Processing, September 2005. 

[CHR00] C. Chrysafis, A. Ortega, Line-based, reduced memory, wavelet image compression, 

IEEE Transactions on Image Processing, vol. 9, pp. 378-389, March 2000. 

[CHY00] C. Chrysafis, A. Said, A. Drukarev, A. Islam, W. A. Pearlman, SBHP- A low 

complexity wavelet coder, IEEE International Conference on Acoustics, Speech, and Signal 

Processing, pp. 2035-2038, 2000. 

[CLE84] J. G. Cleary, I. H. Witten, Data Compression Using Adaptive Coding and Partial 

String Matching, IEEE Transactions on Communications, Vol. 32, 396-402, 1984. 

[COH92] A. Cohen, I. Daubechies, J.C. Feauveau, Biorthogonal Bases of Compactly 

Supported Wavelets, Communications on Pure and Applied Mathematics, vol.45, no5, pp 

485-560, June 1992. 

[COI92] R. R. Coifman, M. V. Wickerhauser, Entropy-based algorithms for best basis 

selection, IEEE Transactions on Information Theory, vol. 38,  pp. 713-718, March 1992. 

[COS98] P. Cosman, K. Zeger, Memory constrained wavelet-based image coding, Proc. 

UCSD Conf. Wireless Communications, March 1998. 

[COV91] T. M. Cover, J. A. Thomas, Elements of information theory, Wiley Series in 

Communications, 1991. 

[CUT52] C. C. Cutler, Differential Quantization for Television Signals, U. S. Patent 

2,605,361, July 29 1954. 



BIBLIOGRAPHY 

170 

[DAS96] E. A. B. Da Silva, D. G. Sampson, M. Ghanbari, A successive approximation vector 

quantizer for wavelet transform image coding, IEEE Transactions on Image Processing, vol. 

5, pp. 299-310, February 1996. 

[DAU92] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied 

Mathematics, Philadelphia, Pennsylvania, 1992. 

[DAU98] I. Daubechies, Orthonormal Bases of Compactly Supported Wavelets, 

Communications on Pure and Applied Mathematics, vol. 41, pp 909-996, November 1998. 

[DAU98b] I. Daubechies, W. Sweldens, Factoring wavelet transforms into lifting steps, 

Journal of Fourier Analysis, no 3, 1998. 

[DIL03] G. Dillen, B. Georis, J. Legat, O. Cantineau, Combined Line-Based Architecture for 

the 5-3 and 9-7 Wavelet Transform of JPEG 2000, IEEE Transactions on Circuits and 

Systems for Video Technology, vol. 13, pp. 944-950, September 2003. 

[EVE63] H. Everett, Generalized Lagrange multiplier method for solving problems of 

optimum allocation of resources, Operations Research, vol. 11, pp. 399-417, 1963. 

[FAL73] N. Faller, An adaptive system for data compression, Record of the 7th Asilomar 

Conference on Circuits, Systems and Computers, 593-597, Piscataway, IEEE Press, 1973. 

[FAN61] R. M. Fano, Transmission of Information, a statistical theory of communication, 

Cambridge MA, The MIT Press,  1961. 

[GAB46] D. Gabor, Theory of communication, Journal of the IEE, pp. 429-457, 1946. 

[GAL78] R. G. Gallagher, Variations on a theme by Huffman, IEEE Transactions on 

Information Theory, Vol. 6, 668-674, November 1978. 

[GER92] A. Gersho, R.M. Gray, Vector Quantisation and Signal Compression, Kluwer 

Academic Publishers, 1992. 

[GHA03] M. Ghanbari, Standard Codecs: Image Compression to Advanced Video Coding, 

Institution of Electrical Engieneers (IEE) Telecommunications series,  43-53, 2003. 



BIBLIOGRAPHY 

171 

 [HIL94] M.L. Hilton, B.D. Jawerth, A. Sengupta, Compressing still and moving images with 

wavelets, Multimedia Systems, vol. 2, 1994. 

[HON02] E. S. Hong, R. E Ladner, Group testing for image compression, IEEE Transactions 

on Image Processing, vol. 11, pp. 901-911, August 2002. 

[HSI00] S.T. Hsiang, J. W. Woods, Embedded image coding using zeroblocks of 

subband/wavelet coefficients and context modelling, IEEE International Conference on 

Circuits and Systems, pp. 662-665, 2000. 

[HUF52] D. A. Huffman, A method for the construction of minimum-redundancy codes, 

Proceedings of the Institute of Electrical and Radio Engineers,  Vol. 40, 1098-1101, 

September 1952. 

[ISL99] A. Islam, W. A. Pearlman, An embedded and efficient low-complexity hierarchical 

image coder, SPIE Visual Communications and Image Processing (VCIP conference), pp. 

294-305, 1999. 

[ISO00] ISO/IEC 15444-1, JPEG2000 image coding system, 2000. 

[ISO92] ISO/IEC 10918-1/ITU-T Recommendation T.81, Digital Compression and Coding 

of Continuous-Tone Still Image, 1992. 

[ITU00] Recommendation ITU-T BT.500-10, Methodology for the Subjective Assessment of 

the Quality of Television Pictures, ITU-T 2000. 

[ITU82] ITU-T Recommendation 602, Encoding parameters of digital television for studios, 

1982. 

[JAY70] N. S. Jayant, Adaptive Delta Modulation with One-Bit Memory, Bell Systems 

Technical Journal, Vol. 49, 321-342, March 1970. 

[JOS95] R. L. Joshi, V. J. Crump, T. R. Fischer, Image subband coding using arithmetic 

coded trellis coded quantization, IEEE Transactions on Circuits and Systems for Video 

technology, vol. 5, December 1995. 



BIBLIOGRAPHY 

172 

[KIM00] B. J. Kim, Z. Xiong, W. A. Pearlman, Low bit-rate scalable video coding with 3d 

set partitioning in hierarchical trees (3d spiht), IEEE Transactions on Circuits and Systems 

for Video technology, vol. 10, pp. 1374-1387, December 1995. 

[KIM00] B.J. Kim, Z. Xiong, W.A. Pearlman, Low bit-rate scalable video coding with 3D set 

partitioning in hierarchical trees (3D SPIHT), IEEE Transactions on Circuits and Systems 

for Video Technology, vol. 10, pp. 1374-1387, December 2000. 

[LEG88] D. Le Gall, A. Tabatabai, Subband Coding of Digital Images Using Sysmmetric 

Kernel Filters and Arithmetic Coding Techniques, International Conference on Acoustics, 

Speech Signal Processing, New York, USA, pp. 761-764, April 1988. 

[LEL87] D. A. Lelewer, D. S. Hirschberg, Data Compression, ACM Computing Surveys, 

Vol. 9, 261-296, September,  1987. 

[LEN04] K. Lengwehasatit, A. Ortega, Scalable variable complexity approximate forward 

DCT, IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, pp. 1236-

1248, November 2004. 

[LIM90] J. S. Lim, Two-Dimensional Signal and Image Processing, Chapter 4.1, Prentice-

Hall, 1990. 

[MAL03] H. S. Malvar, G. J. Sullivan, YCoCg-R: A Color Space with RGB Reversibility and 

Low Dynamic Range, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, 

Document No. JVT-I014r3, July 2003. 

[MAL04] H. Malvar, Is there life after JPEG2000 and H.264?, Plenary talk, Picture Coding 

Symposium, San Francisco, December 2004. 

[MAL89] S. Mallat, A Theory for Multiresolution Signal Decomposition, IEEE Transactions 

on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674-693, July 1989. 

[MAL92] S. Mallat, S. Zhong, Characterization of signals from multiscale edges, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 14, pp. 710-732, July 1992. 



BIBLIOGRAPHY 

173 

[MAR02] M. W. Marcellin, M. A. Lepley, A. Bilgin, T. J. Flohr, T. T. Chinen, J. H. Kasner, 

An overview of quantization in JPEG2000, Signal Processing: Image Communication, vol. 

17, 2002. 

[MAR99] D. Marpe, H. Cycon, Very low bit-rate video coding using wavelet-based 

techniques, IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, pp. 85-

94, February 1999. 

[MAR99] D. Marpe, H. L. Cycon, Very low bit-rate video coding using wavelet-based 

techniques, IEEE Transactions on Circuits and Systems for Video technology, vol. 9, pp. 85-

94, February 1999. 

[MEY00] F. G. Meyer, A. Z. Averbuch, J. O. Strömberg, Fast adaptive wavelet packet image 

compression, IEEE Transactions on Image Processing, vol. 9, pp. 792-800, May 2000. 

[MOY01] E. Moyano, F.J. Quiles, A. Garrido, L. Orozco, J. Duato, Efficient 3-D wavelet 

transform decomposition for video compression, International Workshop on Digital and 

Computational Video, February 2001. 

[MUK02] D. Mukherjee, S. K. Mitra, Successive refinement lattice vector quantization, IEEE 

Transactions on Image Processing, vol. 11, pp. 1337-1348, December 2002. 

[MUR98] E. Murata, M. Ikekawa, I. Kuroda, Fast 2D IDCT implementation with multimedia 

instructions for a software MPEG2 decoder, in Proc. IEEE International Conference on 

Acoustics, Speech, and Signal Processing, pp. 3105-3108, 1998. 

[PAS76] R. Pasco, Source Coding Algorithms for Fast Data Compression, Ph.D. thesis, 

Standford University, 1976. 

[PEA01] W. A. Pearlman, Trends of tree-based, set partitioning compression techniques in 

still and moving image systems, Picture Coding Symposium, pp. 1-8, April 2001. 

[PEA04] W. A. Pearlman, A. Islam, N. Nagaraj, A. Said, Efficient, low-complexity image 

coding with a set-partitioning embedded block coder, IEEE Transactions on Circuits and 

Systems for Video technology, vol. 14, pp. 1219-1235, November 2004. 



BIBLIOGRAPHY 

174 

[PEA98] W.A. Pearlman, A. Islam, Brief report on testing for the JPEG2000 core 

experiment, appendix B in compression vs. complexity tradeoffs for quadratic splitting 

systems, ISO/IEC/JTC1/SC29, June 1998. 

[RAB02] M. Rabbani, R. Joshi, An overview of the JPEG2000 still image compression 

standard, Signal Processing: Image Communication, vol. 17, 2002. 

[RAJ03] N. M. Rajpoot, R. G. Wilson, F. G. Meyer, R. R. Coifman, Adaptive wavelet packet 

basis selection for zerotree image coding, IEEE Transactions on Image Processing, vol. 12, 

pp. 1460-1472, December 2003. 

[RAM93] K. Ramchandran, M. Vetterli, Best wavelet packet bases in a rate-distortion sense, 

IEEE Transactions on Image Processing, vol. 2, pp. 160-175, February 1993. 

[RAO90] K.R. Rao, P. Yip, Discrete Cosine Transform, Algorithms, Advantages, 

Applications, Academic Press Professional, 1990. 

[RAO96] K. R. Rao, J. J. Hwang, Techniques and Standards for Image, Video and Audio 

Coding, Prentice Hall PTR, 1996. 

[RIS76] J. J. Rissanen, Generalized Kraft Inequality and Arithmetic Coding, IBM Journal of 

Research and Development,  Vol. 20, 198-203, May 1976. 

[RIS79] J. J. Rissanen, G. G. Langdon, Arithmetic Coding, IBM Journal of Research and 

Development,  Vol. 23, 149-162, March 1976. 

[RIS84] J. Rissanen, Universal coding, information, prediction, and estimation, IEEE 

Transactions on Information Theory, Vol. 30, pp. 629-636, July 1984. 

[SAI96] A. Said, A. Pearlman, A new, fast, and efficient image codec based on set 

partitioning in hierarchical trees, IEEE Transactions on circuits and systems for video 

technology, Vol. 6, no3, June 1996. 

[SAY00] K. Sayood, Introduction to Data Compression, 2nd edition, an imprint of academic 

press, Morgan Kaufmann Publishers, 2000. 



BIBLIOGRAPHY 

175 

[SEC01] A. Secker, D. Taubman, Motion/compensated highly scalable video compression 

using an adaptive 3D wavelet transform based on lifting, IEEE International Conference on 

Image Processing, October 2001. 

[SHA48] C. E. Shanon, A Mathematical Theory of Communication, Bell System Technical 

Journal, Vol. 27, 379-423, 623-656,  1948. 

[SHA93] J.M. Shapiro, Embedded image coding using zerotrees of wavelet coefficients, IEEE 

Transactions on Signal Processing, Vol. 41, n12, December 1993. 

[SHE96] Y. Sheng, Wavelet Transform, The transforms and applications handbook, pp. 747-

827, CRC Press, 1996. 

[SHO84] Y. Shoham, A. Gersho, Efficient bit allocation for an arbitrary set of quantizers, 

IEEE Transactions on Acoustic, Speech, Signal Processing, vol. 36, pp. 1445-1453, 

September 1984. 

[SLA98] M. J. Slattery, J. L. Mitchell, The Qx-coder, IBM Journal of Research and 

Development, vol. 42, pp. 767-784, November 1998. 

[SON05] L. Song, J. Xu, H. Xiong, F. Wu, Content adaptive update for lifting-based motion-

compensated temporal filtering, Electronic Letters, vol. 41, pp. January 2005. 

[SPR02] N. Sprljan, S. Grgic, M. Mrak, M. Grgic, Modified SPIHT algorithm for wavelet 

packet image coding, International Symposium on Video/Image Processing and Multimedia 

Communications (VIPromCom), 2002. 

[STO88] J. A. Storer, Data Compression- Methods and Theory, New York: Computer 

Science Press, 1988. 

[STR96] G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellsley Cambridge Press, MA, 

1996. 

[SWE96] W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal 

wavelets, Journal of Applied Computational and Harmonic Analysis, vol. 3, pp. 186-200, 

1996. 



BIBLIOGRAPHY 

176 

[TAN00] K. T. Tan, M. Ghanbari, A Multi-metric Objective Picture Quality Measurement 

Model for MPEG Video, IEEE Transactions On Circuits and Systems for Video Technology, 

vol. 10, October 2000. 

[TAN03] X. Tang, S. Cho, W. A. Pearlman, Comparison of 3D set partitioning methods in 

hyperspectral image compression featuring an improved 3D-SPIHT, Data Compression 

Conference, March 2003. 

[TAU00] D. Taubman, High Performance Scalable Image Compression with EBCOT, IEEE 

Transactions on Image Processing, vol. 9, pp. 1158-1170, July 2000. 

[TAU02] D. S. Taubman, M. W. Marcellin, JPEG 2000: Image Compression Fundamentals, 

Standards and Practice, Kluwer Academic Publishers, pp 262-281, 2002. 

[TAU94] D. Taubman, A. Zakhor, Multirate 3-d subband coding of video, IEEE Transactions 

on Image Processing, vol. 3, pp. 572-588, September 1994. 

[TSA96] M.J. Tsai, J. Villasenor, F. Chen, Stack-run image coding, IEEE Transactions on 

Circuits and Systems for Video Technology, vol. 6, pp. 519-521, October 1996. 

 [UYT99] G. Uytterhoeven, Wavelets: software and applications, Ph.D. dissertation, Dep. 

Computerwetenschappen, Katholieke Universiteit Leuven, April 1999. 

[VAI93] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, Signal 

Processing Series, 1993. 

[VCE] Video Coding Expert Group ftp server, available at http://ftp3.itu.int/av-arch/ 

[VET92] M. Vetterli, C. Herley, Wavelets and Filter Banks: Theory and Design, IEEE 

Transactions on Signal Processing, vol. 40, pp. 2207-2232, 1992. 

[VET96] M. Vetterli, J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, Englewood 

Cliffs, 1995. 

[VIL95] J. Villasenor, B. Belzer, Judy Liao, Wavelet Filter Evaluation for Image 

Compression, IEEE Transactions on Image Processing, vol. 4, no 8, pp. 1053-1060, August 

1995. 



BIBLIOGRAPHY 

177 

[VIS94] M. Vishwanath, The recursive pyramid algorithm for the discrete wavelet transform, 

IEEE Transactions on Signal Processing, March 1994. 

[WEI00] M. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I Lossless Image Compression 

Algorithm: Principles and Standardization into JPEG-LS, IEEE Transactions on Image 

Processing, Vol. 9, 1309-1324, August 2000. 

[WIE00] M. Wien, Hierarchical wavelet video coding using warping prediction, IEEE 

International Conference on Image Processing, September 2000. 

[WIT87] I. H. Witten, R. M. Neal, J. G. Cleary, Arithmetic coding for compression, 

Commun. ACM, Vol. 30, 520-540, June 1987. 

[WOO86] J.W. Woods, S. O'Neil, “Subband coding of images”, IEEE Transactions on 

Acoustic, Speech, Signal Processing, vol. 34, pp. 1278-1288, October 1986. 

[WU01] X. Wu, Compression of Wavelet Transform Coefficients, The Transform and Data 

Compression Handbook, pp. 347-378, CRC Press, 2001. 

[WU96] X. Wu, N.D. Memon, CALIC- A Context Based Adaptive Lossless Image Coding 

Scheme, IEEE Transactions on Communications, Vol.  45, 437-444, May 1996. 

[WU98] X. Wu, High-order context modeling and embedded conditional entropy coding of 

wavelet coefficients for image compression, in Proc. 31st Asilomar Conf. Signals, Systems, 

Computers, vol. 23, pp. 1378-1382, 1998. 

[WUH01] H. Wu, Z. Yu, S. Winkler, T. Chen, Impairment Metrics for MC/DPCM/DCT 

Encoded Digital Video, Picture Coding Symposium, Seoul, April 2001. 

[XIE05] G. Xie, H. Shen, Highly-scalable, low-complexity image coding using zeroblocks of 

wavelet coefficients, IEEE Transactions on circuits and systems for video technology, Vol. 

15, pp. 763-770, June 2005. 

[XIO97] Z. Xiong, K. Ramchandran, M. Orchard, Space-frequency quantization for wavelet 

image coding, IEEE Transactions on Image Processing, vol. 46, pp. 677-693, May 1997. 



BIBLIOGRAPHY 

178 

[XIO98] Z. Xiong, K. Ramchandran, M. T. Orchart, Wavelet packet image coding using 

space-frequency quantization, IEEE Transactions on Image Processing, vol. 7, pp. 892-898, 

June 1998. 

[ZEN02] W. Zeng, S. Daly, S. Lei, An overview of the visual optimization tools in 

JPEG2000, Signal Processing: Image Communication, vol. 17, 2002. 

[ZER01] N. Zervas, G. Anagnostopoulos, V. Spiliotopoulos, Y. Andreopoulos, C. Goutis, 

Evaluation of Design Alternatives for the 2-D-Discrete Wavelet Transform, IEEE 

Transactions on Circuits and Systems for Video Technology, vol. 11,  pp. 1246-1262, 

December 2001. 

[ZIV77] J. Ziv, A. Lempel, A Universal Algorithm for Data Compression, IEEE Transactions 

on Information Theory, Vol. 23, 337-343, May 1977. 

[ZIV78] J. Ziv, A. Lempel, Compression of Individual Sequences via Variable-Rate Coding, 

IEEE Transactions on Information Theory, Vol. 24, 530-536, September 1978. 

 



 

179 

  

 

Appendix A 

Joint scalar/bit-plane uniform 
quantization  
 
 
All the algorithms proposed in this thesis employ a quantization mechanism based on two 

parameters, one finer (Q) and another coarser (rplanes). Thus, the quantized image is the 

result of jointly applying two quantization methods. The first method performs a scalar 

quantization with a step-size of 2Q, and it can be computed during the wavelet transform 

normalization process. The second quantization step consists in removing the rplanes least 

significant bits of all coefficients, being a simple bit-plane quantization process.   

The use of both quantization processes may seem a bit strange, but it reveals more natural 

when the algorithms are studied in depth. The coarser quantization is useful to shorten the 

number of bits needed to represent a coefficient, and to concentrate the symbol probability. In 

addition, it allows the introduction of quantization in architectures that only support integer 

arithmetic. Finally, with this type of quantization, some values are never employed by 

significant coefficients (in particular those rplanes
jic 2, < ), and this range can be used to 

represent specific marks and control symbols (such as LOWER and ISOLATED_LOWER), 

allowing in-place symbol computation (which avoids the introduction of extra memory to 

store those symbols). In the bit-plane quantization, the available step-sizes are always power 

of two, and thus its granularity is very low. Therefore, a fine control of the image 

compression is not possible with only this quantization parameter. In order to perform a finer 

rate control, a scalar quantization stage is required.  



APPENDIX A. JOINT SCALAR/BIT-PLANE UNIFORM QUANTIZATION 

180 

In spite of the use of two quantization methods, the quantized wavelet coefficient can be 

expressed mathematically formulated with the following equations (let us call c the initial 

coefficient and Qc  the quantized coefficient):  

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢
+=> rplanes

Q K
Q
cccif 25.0

2
0

 (A.1) 

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
−=< rplanes

Q K
Q
cccif 25.0

2
0

 (A.2) 

00 == Qccif      (A.3) 

Note that an integer constant K can be used to adjust the bit plane quantization (by taking 

some values out of the deadzone), which may be useful in some cases. Experimental tests 

have revealed that K=1 is a good value, increasing the R/D performance for most source 

images. On the other hand, the coefficients recovered on the decoder side are (let us call Rc  a 

coefficient recovered from Qc ): 

( )( )( )QKcccif rplanes
QRQ 121220 1 −−+=> −

 (A.4) 

( )( )( )QKcccif rplanes
QRQ 121220 1 ++−=< −

 (A.5) 

00 == RQ ccif     (A.6) 

In both dequantization processes, i.e. in the standard scalar dequantization and in the 

dequantization from the bit-plane removing, the Rc  value is adjusted to the midpoint within 

the recovering interval, reducing in this way the quantization error. 

These equations may be clearer if we observe both dequantization processes separately. 

First, we have to recover the initial number of bits of the scalar quantized coefficient, thus if 

0>Qc  

( ) 11 21222 −− +=+=′ rplanes
Q

rplanesrplanes
QR ccc  (A.7) 

then the constant K is subtracted and the scalar dequantization is applied 

( )( )QKcc RR 12 −−′=     (A.8) 

 

 

 



APPENDIX A. JOINT SCALAR/BIT-PLANE UNIFORM QUANTIZATION 

181 

 

With the expressions shown above, a relation between both quantization parameters, Q 

and rplanes, can be established. In fact, we can see that two different rplanes values may 

represent approximately the same global quantization whenever we choose the suitable Q 

value. In particular, if rplanes is decreased by one, Q should be multiplied by two to preserve 

the same global quantization, whereas if rplanes is increased by one Q should be divided by 

two. 

As an example, Figure A.1 shows the relation between both quantization parameters and 

the final bit rate achieved with Lena encoded with LTW. In these curves, it can be easily seen 

the equivalence previously mentioned. The bit rate corresponding to Q=0.2 and rplanes=6 is 

roughly 0.5 bpp. If we decrease rplanes in one, the same bit rate is achieved with Q=0.4, and 

if we decrease it again it is achieved with Q=0.8. In addition, with a constant finer 

quantization parameter, this figure shows that when rplanes is decreased by one, the bit rate is 

halved. E.g., for a fixed value Q=0.8, the bit rate is 1 bpp with rplanes=2, it is 0.5 with 

rplanes=3, it is 0.25 with rplanes=4, and so on. 

The same relation between both quantization parameters can be observed in Figure A.2, 

where the image quality (PSNR) is evaluated as a function of the quantization parameters. As 

in the previous graph, we see that the same PSNR is achieved with Q=0.2 and rplanes=4, 

with Q=0.4 and rplanes=3, etc. 

 

 
 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1

B
it 

ra
te

 (
bp

p)

Finer quantization parameter

rplanes=2
rplanes=3
rplanes=4
rplanes=5

 
Fig.A.1: Relation between quantization parameters and bit rate for Lena. 



APPENDIX A. JOINT SCALAR/BIT-PLANE UNIFORM QUANTIZATION 

182 

 

 30

 35

 40

 45

 50

 55

 0  0.2  0.4  0.6  0.8  1

P
S

N
R

(d
B

)

Finer quantization parameter

rplanes=2
rplanes=3
rplanes=4
rplanes=5

 
Fig.A.2: Relation between quantization parameters and PSNR. 



 

183 

  

 

Appendix B 

Rate control in the proposed algorithms 
 
 
Precise rate control is not feasible in the algorithms RLW and LTW presented in Chapters 5 

and 6, because in order to achieve precise rate control, we need bit plane coding or iterative 

methods that significantly increase the complexity of the encoder, which is unsuitable for our 

purposes. For example, EZW and SPIHT exhibit very precise rate control by coding the 

coefficients bit-plane by bit-plane, but being slow and increasing the cache miss rate. Other 

encoders, like EBCOT and SFQ, achieve less precise rate control by using iterative methods 

with rate-distortion optimization algorithms, which are even slower than bit plane coding 

(although more efficient). Therefore, the RLW and LTW encoders do not present any type of 

iterative method, and each coefficient is encoded as soon as it is visited. So it is not possible 

to perform precise rate control and optimal SNR scalability (which can be approximated by 

magnifying the different low-frequency subbands as the inverse transform is computed). Both 

RLW and LTW simply apply a constant quantization (determined by Q and rplanes) to all the 

wavelet coefficients, encoding the image at a constant and uniform quality, as it happened in 

the former JPEG standard (where only a quality parameter was available, and no rate control 

was performed). Note that other very fast wavelet image encoders reported in the literature 

(like PROGRES) have also taken this approach. 

Although sometimes constant quality is a desired feature when encoding a group of 

images (and it is easily achieved by applying the same quantization to all of them), a constant 

size of the compressed image is required more often. For example, in a digital camera, for a 

given memory size, the number of remaining photos that still can be taken and held in 

memory is commonly given. In order to obtain this feature, a certain rate control is needed. 



APPENDIX B. RATE CONTROL IN THE PROPOSED ALGORITHMS 

184 

For our algorithms, which work with fixed quantization parameters, a rate control can be 

seen as a function (RC) that returns the suitable quantization (Q and rplanes) for a given 

transform image C and a desired bit rate b. That is 

( ) ( )rplanesQbC ,,RC =   (B.1) 

The rate control function could be implemented by modeling the encoding process with a 

model M that returns the final bit rate achieved when encoding the image with the given 

quantization parameters, 

( ) bC rplanesQ =,M    (B.2) 

However, this rate control method presents several drawbacks. First, it is an iterative method, 

because the model should be applied with several quantization parameters in order to 

determine the combination of quantization parameters that obtains the desired bit rate (or that 

is close enough to it). Nevertheless, it could be a valid method if we could establish a very 

fast model that would precisely return that bit rate. Unfortunately, it is not possible unless we 

actually encode the image (or at least analyze the number of trees that can be formed and the 

third-order entropy of the symbols to be encoded), which results in a very slow rate control 

method. Therefore, another alternative is needed. 

The rate control that we propose is based on a fast analysis of the transform image 

features, extracting one or more numerical parameters that are employed to determine the 

quantization parameters needed to approximate a bit rate. In order to simplify the 

quantization process, we suggest the use of a fixed rplanes value. Particularly, we propose 

rplanes equal to two to be able to perform in-place processing (see Appendix A). Then, we 

can use the first-order entropy of the wavelet coefficients in order to determine the 

complexity of an image (level of detail) and therefore to estimate the number of lower trees 

that will be formed. In Figure B.1, we show a simple study of the Q parameter employed to 

encode seven popular images (with different entropy) at various bit rates. With these curves, 

we can conclude that there is a correspondence between the first-order entropy of the 

coefficients and the quantization parameter, which allows us to predict the quantization step 

needed to encode an image at a given bit rate simply by computing its entropy. However, this 

correspondence becomes less precise as the bit rate decreases, mainly because at low bit 

rates, the compressed image file is very small and a slight error in the final image size largely 

modifies the final bit rate with respect to the desired one (in other words, an exact rate control 

is more difficult at low bit rates). Other groups of images have also been analyzed, with 



APPENDIX B. RATE CONTROL IN THE PROPOSED ALGORITHMS 

185 

similar results to those shown in Figure B.1. 

Although the proposed rate control method is not very precise, it is very fast and can be 

employed to determine some parameters in real implementations and specific applications, 

such as the number of pictures that still can be introduced and stored in a memory card. In 

addition, when successively encoding a group of images, the quantization parameter can be 

adaptively tuned to progressively compensate small errors. 

 

 0

 2

 4

 6

 8

 10

 3.5  4  4.5  5

Q
 (

w
ith

 r
pl

an
es

=
2)

First-order entropy

0.25 bpp
0.5 bpp

1 bpp
2 bpp

 
Fig.B.1: Quantization parameter (Q) used to encode with LTW images with various entropies at 

different bit rates. The images employed are (in order of entropy of the wavelet coefficients): Zelda 
(3.2), Lena (3.58), Peppers (3.80), Boat (3.86), Goldhill (4.19), Barbara (4.31) and Baboon (5.39). 

 





 

187 

  

 

Appendix C 

Implementation of the efficient DWT 
 
 

 

In this Appendix, an operative implementation of the filtering algorithm to compute the DWT 

proposed in Chapter 3 is given in ANSI C language. This implementation is also available at 

http://www.disca.upv.es/joliver/thesis. 

In the first two sections, the forward wavelet transform (FWT) is implemented. Section 

C.1 implements the recursive backward function that is used in Subsection C.2 in order to 

compute the wavelet transform. In the following two sections, the inverse wavelet transform 

(IWT) is implemented in a similar way. In section C.5, some functions and variables that are 

used by the previous functions are given. Finally, some useful function headers are defined. 

C.1 Backward Recursion Function 

 
 
int GetLLlineBwd(int step, int width, float *Dest) 
{ 
int f,g; 
float **BuffLevel=BufferTransf[step]; 
 
if (step<0) return(ReadImageLine(Dest));  
if (SymmetryPoint[step]<=NTaps) return EOL; 
if (!BuffLevel[0]) 
{ 
 for (f=0;f<BufferSize;f++)  

  BuffLevel[f]=(float *)malloc(width*sizeof(float)); 
 for (f=0;f<NTaps+1;f++) 
 { 
  GetLLlineFwd(step-1, width*2, BuffLevel[f+NTaps]); 
  LineTransform(width,BuffLevel[f+NTaps]); 
 } 
 for(f=NTaps-1,g=NTaps+1;f>=0;f--,g++)  
  LineCopy(width,BuffLevel[g],BuffLevel[f]); 
} 



APPENDIX C. IMPLEMENTATION OF THE EFFICIENT DWT 

188 

else repeat(2) 
{ 
 ShiftLines(BuffLevel); 
 If (GetLLlineFwd(step-1,width*2,BuffLevel[BufferSize-1])!=EOL) 
  LineTransform(width,BuffLevel[BufferSize-1]); 
 else 
 { 
  LineCopy(width,BuffLevel[SymmetryPoint[step]- 
    Radious[step]],BuffLevel[BufferSize-1]); 
  Radious[step]++,SymmetryPoint[step]--; 
 } 
} 
ColumnTransformLow(width, BuffLevel, Dest, HL); 
ColumnTransformHigh(width, BuffLevel, LH, HH); 
ProcessSubbands(HL,LH,HH,step); 
return OK;   
} 
 

C.2 Implementation of the Wavelet Transform  

 
 
int WaveletTransform(int Nsteps,int width,int height) 
{ 
int f,g; 
NTapsMax=NTaps>NTapsInv?NTaps:NTapsInv; 
BufferSize=(NTapsMax<<1)+1; 
 
CoefExt=(float *)malloc((width+(NTapsMax<<1))*sizeof(float)); 
CoefExtIni=CoefExt+NTapsMax; 
BufferTransf=(float***) malloc(Nsteps*sizeof(float(**))); 
for (f=0;f<Nsteps;f++)  

BufferTransf[f]=(float**) malloc(BufferSize*sizeof(float(*))); 
for (f=0;f<Nsteps;f++)  
 for (g=0;g<BufferSize;g++) 
  BufferTransf[f][g]=NULL; 
SymmetryPoint=(int *)malloc(Nsteps*sizeof(int)); 
for (f=0;f<Nsteps;f++)  
 SymmetryPoint[f]=BufferSize-2; 
Radious=(int *)malloc(Nsteps*sizeof(int)); 
for (f=0;f<Nsteps;f++)  
 Radious[f]=1; 
LL=(float *)malloc((width>>Nsteps)*sizeof(float)); 
LH=(float *)malloc((width>>1)*sizeof(float)); 
HL=(float *)malloc((width>>1)*sizeof(float)); 
HH=(float *)malloc((width>>1)*sizeof(float)); 
 
for (f=0;f<(height/(1<<Nsteps));f++) 
{ 
 GetLLlineFwd(Nsteps-1, width/(1<<(Nsteps-1)), LL); 
 ProcessLLSubband(LL); 
} 
 
for (f=0;f<Nsteps;f++)  
 for (g=0;g<BufferSize;g++) 
  free(BufferTransf[f][g]); 
free(LL);free(HL);free(LH);free(HH);  
free(Radious); free(SymmetryPoint); 
for (f=0;f<Nsteps;f++)  
 free(BufferTransf[f]); 
free(BufferTransf); free(CoefExt);  
return 0; 
} 
 



APPENDIX C. IMPLEMENTATION OF THE EFFICIENT DWT 

189 

C.3 Forward  Recursion Function 

 
 
int GetLLlineFwd(int step, int width, float *Dest) 
{ 
int f,g; 
float **BuffLevel=BufferTransf[step];  
int halfwidth=width/2; 
 
if (step>lastStep) return ReadLLline(Dest);  
if (LinesInBuffer[step]) 
{ 
 InvColumnTransformLow(width, BuffLevel, Dest); 
 LinesInBuffer[step]=0; 
 return OK; 
} 
if (SymmetryPoint[step]<=NTapsInv) return EOL; 
if (!BuffLevel[0]) 
{ 
 for (f=0;f<BufferSize;f++)  
  BuffLevel[f]=(float *) malloc(width*sizeof(float)); 
 for (f=NTapsInv;f<BufferSize;) 
 { 
  GetLLlineBwd(step+1, halfwidth, BuffLevel[f]); 
  ReadSubbandLine( 
    BuffLevel[f]+halfwidth, 
    BuffLevel[f+1],  
    BuffLevel[f+1]+halfwidth,  
    step); 
  InvLineTransform(width,BuffLevel[f++]); 
  InvLineTransform(width,BuffLevel[f++]); 
 } 
 for (f=NTapsInv-1,g=NTapsInv+1;f>=0;f--,g++) 
  LineCopy(width,BuffLevel[g],BuffLevel[f]); 
} 
else  
{ 
 ShiftLines(BuffLevel);  
 ShiftLines(BuffLevel); 
 if (GetLLlineBwd(step+1,halfwidth, BuffLevel[BufferSize-2])==OK) 
 { 
   ReadSubbandLine( 
    BuffLevel[BufferSize2]+halfwidth, 
    BuffLevel[BufferSize-1],  
    BuffLevel[BufferSize-1]+halfwidth 

    step); 
   InvLineTransform(width,BuffLevel[BufferSize-2]); 
   InvLineTransform(width,BuffLevel[BufferSize-1]); 
 } 
 else 
 { 
  LineCopy(width,BuffLevel[SymmetryPoint[step]- 
              Radious[step]-1],BuffLevel[BufferSize-2]); 
  LineCopy(width,BuffLevel[SymmetryPoint[step]- 
              Radious[step]-2],BuffLevel[BufferSize-1]); 
  Radious[step]+=2;  
  SymmetryPoint[step]-=2; 
 } 
} 
InvColumnTransformHigh(width, BuffLevel, Dest); 
LinesInBuffer[step]=1; 
return OK; 
} 
 



APPENDIX C. IMPLEMENTATION OF THE EFFICIENT DWT 

190 

C.4 Implementation of the Inverse Wavelet Transform 

 
 
int InvWaveletTransform(int Nsteps,int width,int height) 
{ 
float *ImageLine;  
int f,g; 
 
NTapsMax=NTaps>NTapsInv?NTaps:NTapsInv;  
BufferSize=(NTapsMax<<1)+1; lastStep=Nsteps-1; 
CoefExt=(float *) malloc((width+(NTapsMax<<1))*sizeof(float)); 
CoefExtIni=CoefExt+NTapsMax; 
BufferTransf=(float***) malloc(Nsteps*sizeof(float(**))); 
for (f=0;f<Nsteps;f++)  
 BufferTransf[f]=(float **) malloc(BufferSize*sizeof(float(*))); 
for (f=0;f<Nsteps;f++)  
 for (g=0;g<BufferSize;g++) 
  BufferTransf[f][g]=NULL; 
SymmetryPoint=(int *) malloc(Nsteps*sizeof(int)); 
for (f=0;f<Nsteps;f++)  
 SymmetryPoint[f]=BufferSize-3; 
Radious=(int *)malloc(Nsteps*sizeof(int)); 
for (f=0;f<Nsteps;f++)  
 Radious[f]=0; 
LinesInBuffer=(int *)malloc(Nsteps*sizeof(int)); 
for (f=0;f<Nsteps;f++)  
 LinesInBuffer[f]=0;  
ImageLine=(float *)malloc(width*sizeof(float)); 
for (f=0;f<height;f++) 
{ 
 GetLLlineBwd(0, width, ImageLine); 
 ProcessLine(ImageLine); 
} 
for (f=0;f<Nsteps;f++)  
 for (g=0;g<BufferSize;g++) 
  free(BufferTransf[f][g]);  
free(ImageLine); free(LinesInBuffer); 
free(Radious); free(SymmetryPoint);  
for (f=0;f<Nsteps;f++)  
 free(BufferTransf[f]);  
free(BufferTransf); free(CoefExt); 
return 0; 
} 
 

C.5 Auxiliary Functions and Global Variables 

In order to get a complete module for the proposed wavelet transform, the previous functions 

can be appended to the functions and variables defined in this section. 

 
 
#include <stdlib.h> 
#include <string.h> 
#include “external_headers.h” 
 
#define OK 0 
#define EOL 1 
 
static float ***BufferTransf; 
static float *CoefExt,*CoefExtIni; 
static int *SymmetryPoint, *Radious, *LinesInBuffer; 



APPENDIX C. IMPLEMENTATION OF THE EFFICIENT DWT 

191 

static int BufferSize,NTapsMax,lastStep; 
static float *LL,*HL,*LH,*HH; 
static int NTaps=4; 
static int NTapsInv=3; 
static float B79_AnLowPass[]=  
 {0.85269868F, 0.37740286F,-0.11062440F, -0.02384947F, 0.03782846F}; 
static float B79_AnHighPass[]= 
 {0.78848562F, -0.41809227F, -0.04068942F, 0.06453888F}; 
static float B79_SynLowPass[]=  
 {0.85269868F, 0.41809227F, -0.11062440F, -0.06453888F, 0.03782846F}; 
static float B79_SynHighPass[] = 
 {0.78848562F,-0.37740286F,-0.04068942F, 0.02384947F}; 
#define repeat(x) for (int __indx=0;__indx<x;__indx++) 
 
#define LineCopy(n, source, dest) memcpy(dest,source,n*sizeof(float)) 
 
inline void InterleaveLine (float *Src,float *Dest, int width) 
{ 
 float *HalfSrc=Src+(width>>1); 
 for (int x=0;x<(width>>1);x++) {*Dest++=*Src++; *Dest++=*HalfSrc++;} 
} 
 
inline void ShiftLines(float **Buff) 
{   
 float *Aux=Buff[0];  
 for (int f=0;f<BufferSize-1;f++) 
  Buff[f]=Buff[f+1];  
 Buff[BufferSize-1]=Aux;  
} 
 
inline void SymmetricExt(float *ini,float *end) 
{  
  for (int x=1;x<=NTapsMax;x++)  
 {  
  ini[-x]=ini[x];  
  end[x]=end[-x];  
 }  
} 
 
inline float FourTapsFilter(float *c,float *t) 
{ 
 return ( 
  t[0]*c[0]+ 
  t[1]*(c[1]+c[-1])+ 
  t[2]*(c[2]+c[-2])+ 
  t[3]*(c[3]+c[-3])); 
} 
 
inline float FiveTapsFilter(float *c,float *t) 
{ 
   return ( 
  t[0]*c[0]+ 
  t[1]*(c[1]+c[-1])+ 
  t[2]*(c[2]+c[-2])+ 
  t[3]*(c[3]+c[-3])+ 
  t[4]*(c[4]+c[-4])); 
} 
 
void LineTransform(int width, float *Line) 
{ 
float *CoefAuxL,*CoefAuxH; 
LineCopy(width,Line,CoefExtIni); 
SymmetricExt(CoefExtIni,CoefExtIni+width-1); 
CoefAuxL=Line; CoefAuxH=Line+(width>>1); 
for (int x=0;x<width;)  
{ 
 *CoefAuxL++= FiveTapsFilter(CoefExtIni+x,B79_AnLowPass); 
 x++; 



APPENDIX C. IMPLEMENTATION OF THE EFFICIENT DWT 

192 

 *CoefAuxH++= FourTapsFilter(CoefExtIni+x,B79_AnHighPass); 
 x++; 
} 
} 
 
void InvLineTransform(int width, float *Line) 
{ 
InterleaveLine(Line,CoefExtIni, width); 
SymmetricExt(CoefExtIni,CoefExtIni+width-1); 
for (int x=0;x<width;)  
{ 
 *Line++=FourTapsFilter(CoefExtIni+x,B79_SynHighPass); 
 x++; 
 *Line++=FiveTapsFilter(CoefExtIni+x,B79_SynLowPass); 
 x++; 
} 
} 
 
inline float FiveTapsColumnFilter(float *t, float **B, int x) 
{ 
 return (  
  t[0]*B[4][x]+ 
  t[1]*(B[3][x]+B[5][x])+ 
  t[2]*(B[2][x]+B[6][x])+ 
  t[3]*(B[1][x]+B[7][x])+ 
  t[4]*(B[0][x]+B[8][x])); 
} 
 
inline float FourTapsColumnFilter(float *t, float **B, int x) 
{ 
  return ( 
  t[0]*B[5][x]+ 
  t[1]*(B[6][x]+B[4][x])+ 
  t[2]*(B[7][x]+B[3][x])+ 
  t[3]*(B[8][x]+B[2][x])); 
} 
 
void ColumnTransformLow(int width, float **BuffLevel, float *LL, float *HL) 
{ 
int x=0; 
while (x<width/2) 

*LL++=FiveTapsColumnFilter(B79_AnLowPass, BuffLevel, x++);  
while (x<width) 

*HL++=FiveTapsColumnFilter(B79_AnLowPass, BuffLevel, x++);  
} 
 
void ColumnTransformHigh(int width, float **BuffLevel, float *LH, float *HH) 
{ 
int x=0; 
while (x<width/2) 
 *LH++=FourTapsColumnFilter(B79_AnHighPass, BuffLevel, x++); 
while (x<width) 
 *HH++=FourTapsColumnFilter(B79_AnHighPass, BuffLevel, x++); 
} 
 
void InvColumnTransformHigh (int width, float **BuffLevel, float *LL) 
{ 
for (int x=0;x<width;x++) 
 *LL++=FourTapsColumnFilter(B79_SynHighPass, BuffLevel-2, x); 
} 
 
void InvColumnTransformLow(int width, float **BuffLevel, float *LL) 
{ 
    for (int x=0;x<width;x++) 
  *LL++=FiveTapsColumnFilter(B79_SynLowPass, BuffLevel, x); 
} 
 
 



APPENDIX C. IMPLEMENTATION OF THE EFFICIENT DWT 

193 

C.6 External Headers 

A few functions employed in the previous procedures are dependant on the final application, 

and are left as external and open functions. In general, these functions are used to read data 

line-by-line (namely, ReadImageLine() is used to read an image line in the FWT, and 

ReadLLline() ReadSubbandLine() serve to read subband lines for the IWT) and to 

encode the generated coefficients line-by-line (in particular, ProcessSubbands(), 

ProcessLLSubband() are used to encode and release a subband line once it is calculated 

in the FWT, and ProcessLine() is called when an image line is obtained in the IWT). 

 
 

/* EXTERNAL FUNCTIONS USED BY THE FWT */ 
 
/* Read an image line on Dest */ 
int ReadImageLine(float *Dest); 
 
/* Process or store one line achieved from every wavelet subband (HL, LH and 
HH) at level=step */  
void ProcessSubbands(float *HL,float *LH,float *HH,int step); 
 
/* Process or store a line achieved from the LL subband */  
void ProcessLLSubband(float *LL); 
 
/* EXTERNAL FUNCTIONS USED BY THE IWT */ 
 
/* Read a line from the LL subband */ 
int ReadLLline(float *Dest); 
 
/* Read a line from every wavelet subband (HL, LH and HH) at level = step */ 
void ReadSubbandLine(float *HL, float *LH, float *HH, int step); 
 
/* Process or store an achieved image line */ 
void ProcessLine(float *ImageLine); 
 





 

195 

 

 

Appendix D 

Reference images 
 
 

 

In this Appendix, the reference images that have been employed in this thesis to evaluate the 

proposed encoders and to compare them with other proposals are shown. All of them are 

standard images. In particular, Lena, Goldhill and Barbara are from the USC database, while 

Café and Woman belong to the JPEG 2000 test bed. 



APPENDIX D. REFERENCE IMAGES 

196 

D.1 Lena 

 
Grayscale, 8 bpp, 512×512. 



APPENDIX D. REFERENCE IMAGES 

197 

D.2 Goldhill 

 
Grayscale, 8 bpp, 512×512. 



APPENDIX D. REFERENCE IMAGES 

198 

D.3 Barbara 

 
Grayscale, 8 bpp, 512×512. 



APPENDIX D. REFERENCE IMAGES 

199 

D.4 Café 

 
Grayscale, 8 bpp, 2048×2560. 



APPENDIX D. REFERENCE IMAGES 

200 

D.5 Woman 

 
Grayscale, 8 bpp, 2048×2560. 



 

201 

 

 

Appendix E 

Post compressed images for subjective 
comparison 
 
 

 

In this Appendix, the reference images of Appendix D are shown after being compressed at 

moderate to low bit rates (in particular, at 1 bpp and 0.125 bpp), using the LTW encoder of 

Chapter 6, and the state of the art encoders SPIHT and JPEG 2000.  These images allow us to 

perform a subjective comparison of the encoders. However, since the three encoders achieve 

similar PSNR results, the resulting visual quality of the images compressed with these 

encoders is not very different, which validates the use of the PSNR as an objective metric in 

our research. 



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

202 

E.1 Lena 

 
LTW, at 1 bpp, PSNR= 40.50 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

203 

 
SPIHT, at 1 bpp, PSNR= 40.41 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

204 

 
JPEG 2000, at 1 bpp, PSNR= 40.31 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

205 

 
LTW, at 0.125 bpp, PSNR= 31.25 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

206 

 
SPIHT, at 0.125 bpp, PSNR= 31.10 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

207 

 
JPEG 2000, at 0.125 bpp, PSNR= 30.84 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

208 

E.2 Goldhill 

 
LTW, at 1 bpp, PSNR= 36.74 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

209 

 
SPIHT, at 1 bpp, PSNR= 36.55 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

210 

 
JPEG 2000, at 1 bpp, PSNR= 36.53 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

211 

 
LTW, at 0.125 bpp, PSNR= 28.60 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

212 

 
SPIHT, at 0.125 bpp, PSNR= 28.48 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

213 

 
JPEG 2000, at 0.125 bpp, PSNR= 28.35 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

214 

E.3 Barbara 

 
LTW, at 1 bpp, PSNR= 36.72 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

215 

 
SPIHT, at 1 bpp, PSNR= 36.41 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

216 

 
JPEG 2000, at 1 bpp, PSNR= 36.54 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

217 

 
LTW, at 0.125 bpp, PSNR= 25.24 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

218 

 
SPIHT, at 0.125 bpp, PSNR= 24.86 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

219 

 
JPEG 2000, at 0.125 bpp, PSNR= 25.25 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

220 

E.4 Café 

 
LTW, at 1 bpp, PSNR= 32.04 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

221 

 
SPIHT, at 1 bpp, PSNR= 31.74 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

222 

 
JPEG 2000, at 1 bpp, PSNR= 32.04 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

223 

 
LTW, at 0.125 bpp, PSNR= 20.76 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

224 

 
SPIHT, at 0.125 bpp, PSNR= 20.67 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

225 

 
JPEG 2000, at 0.125 bpp, PSNR= 20.74 dB.  

 

 

 

 



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

226 

E.5 Woman 

 
LTW, at 1 bpp, PSNR= 38.49 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

227 

 
SPIHT, at 1 bpp, PSNR= 38.28 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

228 

 
JPEG 2000, at 1 bpp, PSNR= 38.43 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

229 

 
LTW, at 0.125 bpp, PSNR= 27.50 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

230 

 
SPIHT, at 0.125 bpp, PSNR= 27.33 dB.  



APPENDIX E. POST COMPRESSED IMAGES FOR SUBJECTIVE COMPARISON 

231 

 
JPEG 2000, at 0.125 bpp, PSNR= 27.33 dB.  

 
 




