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Abstract

Latent Class Choice Models (LCCM) are extensions of general discrete choice models
(DCMs) typically implemented to capture unobserved heterogeneity in the choice process
by segmenting the population based on similarities. Socio-economic characteristics of the
decision-makers have typically defined latent classes. However, incorporating individuals’ at-
titudes or beliefs, measured using psychometric indicators, into the specification of the latent
classes can offer additional behavioral insights, allowing for more realistic market segmenta-
tion and more specific design policies. This study analyzes different methods of incorporating
attitudinal indicators in the discrete choice model employing machine learning (ML) tech-
niques, namely Embeddings and Gaussian-Bernoulli Mixtures. Without compromising the
economic and behavioral interpretability of the models, ML-based techniques offer us a pow-
erful way to capture unobserved behavioral patterns. Models with and without attitudinal
variables are compared to evidence the relevance of attitudes in the estimation and class
configuration of LCCMs.
The application aims to model people’s behavior towards different types of car sharing. By
including travelers’ attitudes into the models, we can implement personalized policies to
attract and retain car-sharing members while aiding in its sustainable integration with the
existing transportation system.

Keywords

Machine learning, Latent Class Choice Models, Discrete Choice Models, car-sharing,
psychometric indicators, Gaussian-Bernoulli Mixture Latent Class Choice Model, Embed-
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Attitudes and Latent Class Choice Models using Machine Learning:
An application in Car-Sharing

1 Introduction

Our project aims to explore and investigate the inclusion of attitudinal statements in
latent class choice models. We analyze different model formulations with and without the
inclusion of attitudinal variables to understand better how believes and attitudes influence
the distribution of the latent classes in discrete choice models.
For our project application, we aim to model people’s behavior towards different types of
car sharing. By analyzing the travelers’ preferences and attitudes, we can provide personal-
ized incentives and service features for different population segments that attract and retain
car-sharing members while aiding car-sharing sustainable integration with the existing trans-
portation system [1]
There are many examples in the transportation literature where the segmentation of the
population into latent groups allows for a convenient, flexible, and intuitive way to intro-
duce taste heterogeneity in choice models [2]. Latent classes refer to unobservable population
groups, where each individual has an associated probability of belonging to each group/class.
This segmentation leads to more accurate and applicable results, such as more efficient de-
sign policies.
The traditional latent class choice models based their segmentation on socio-demographic
variables. Some previous studies have focused, for example, on how socio-demographic vari-
ables influence the probability of becoming a car-sharing member [10][11]. However, this
approach is minimal.
The introduction into the models of attitudinal variables that reflect the attitudes of individ-
uals on subjects related to the choice allows for a more complete and richer analysis of the
latent classes. Our analysis evidence that it also provides different latent class configurations
and estimates, staying that attitudinal information is significant for the decision process. It
is the case when within a group that shares similar socio-demographic variables, differences
in their behavior towards car-sharing still exist. Some other studies have also proved that
the estimation of latent class models can be improved using psychometric indicators that
measure the effect of unobserved attitudes [2].
Our application is in the field of car-sharing, which offers short-term car access to its users,
providing a flexible alternative that meets diverse transportation needs while reducing the
negative impacts of private vehicle ownership. For nearly 20 years, car-sharing usage has
been growing. In 2018, car-sharing was operating in 47 countries and six continents, with
over 98.000 vehicles available for more than 32 million members [3]
This new business idea enables its users to access a car for a certain amount of time and en-
dows them greater mobility flexibility. It provides their users a reduction in their commutes
times and increases their use of other alternative transportation modes [5]. Moreover, this
availability of cars provokes that car-sharing members own fewer vehicles than the rest of the
population [4]. They also affect positively both socially and environmentally in cities given
its capacity to reduce parking demand [9], and congestion [8], which results in a decrease of
greenhouse gases and air pollutant emissions by reducing the kilometers traveled [6]. Never-
theless, car-sharing personal monetary savings has primarily contributed to its growth over
the past decade [5].
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We analyze individual behavior through different car-sharing businesses, depending on their
possibilities of pick-up and return locations, such as station-based, free-floating, or round-
trip. Besides, other attributes can change depending on the car-sharing company as the type
of car engine, the pricing scheme, the ownership of the cars, or the parking availability.
Our study is based on data collected in Copenhagen, a bicycle-friendly city. We employ data
from a stated preference (SP) choice experiment, socio-demographic variables, and attitu-
dinal questions toward car and car-sharing services. Moreover, it has been analyzed that
local elements also affect car-sharing preferences, such as the use of bikes, the price of public
transport, or the availability of car-sharing services. Service features ideal for one context
may not apply to other cities. [12]. Thus, these local features are also incorporated in our
models.
In conclusion, we explore different formulations to include attitudinal statements in discrete
choice models. We evidence improvements in the estimation and configuration of the classes
when attitudinal indicators are present in the models. We open the door for future investi-
gation in models formulation that integrates latent classes and attitudinal variables.
For this concrete application, we dig into the impact of attitudinal questions on people’s be-
havior towards car ownership and different types of car-sharing businesses. We contribute to
the car-sharing literature by detecting the difference in car-sharing preferences when targeted
to different population segments sharing similar beliefs and attitudes. This segmentation al-
lows us to design more tailor-made policies to subscribe and retain satisfied car-sharing
members, optimizing car-sharing business integration.
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2 Literature review

Understanding how people make choices is a beneficial information for policymaking, de-
signing marketing campaigns, planning the transportation system in cities, and many other
situations. Therefore, much effort has been made to understand the behavioral process that
leads to the choice made by an agent.
The causal perspective seems the most convenient, where some that factors collectively de-
termine or cause the agent’s choice. Some of these factors are observed by the researcher,
and some are not. Thus, the agent’s choice can model through a function y = h(x, ϵ), called
behavioral process, where ϵ is the not observed part of the decision. Therefore, the agent’s
choice is not deterministic and cannot be precisely predicted. Instead, we get the probability
of choosing each alternative. [23]
Thurstone (1927) first developed these concepts in terms of psychological stimuli, leading
to a binary probit model [25] and Marschak (1960) interpreted stimuli as utility and pro-
vided a formulation based on utility maximization, called random utility models (RUM)
[26]. Although, the theory of discrete choice was finally consolidated with the contribution
of McFadden, work that earned him the Nobel Prize in Economics in 2000. He proposed a
multinomial logit model in connection with the consumer demand theory.
The main principle of RUM is that the individual has a utility function Ui associated with
each alternative. He chooses the option that provides him with the maximum utility. The
formulation of the utility of an individual n (Uin), includes factors connected with the al-
ternative j, named as the attributes (Xnj), as well as socio-characteristics variables of the
decision-maker (Sn). This observed part of the utility is called the representative utility,
Vnj. However, not all the variables can be observed by the researcher when a person makes
a decision. For this reason, a disturbance term is included in the formulation of the utility,
taking into account these unobserved factors. The disturbance term, called ϵ, is not defined
for a choice situation per se, and the researcher can modify its specification.

Unj = Vnj + ϵnj (1)

It is worth mentioning that only the differences between utilities (Unj) matter. Therefore,
alternative-specific coefficients can be included to measure the average effect of no included
factors in the utility of an alternative compared with all other ones.

2.1 Logit model

In the logit model, the error term ϵ is assumed to be independent and identically dis-
tributed following an extreme value distribution, in this way, the final model is computation-
ally solvable with an interpretable and closed expression. The density for the unobserved
part of each utility is, therefore, defined as:

f(ϵnj) = e−ϵnje−e−ϵnj (2)
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and its cumulative distribution is

F (ϵnj) = e−e−ϵnj (3)

The difference between two variables of type extreme value, ϵ∗nji = ϵnj − ϵni follows a loga-
rithmic distribution,

F (ϵ∗nji) =
eϵ

∗
nji

1 + eϵ
∗
nji

(4)

Thus, the probability that the decision maker n chooses alternative i can be expressed as:

Pni = Prob(Vvi + ϵni > Vnj + ϵnj∀j ̸= i) = Prob(ϵnj < ϵni + Vni − Vnj∀j ̸= i) (5)

that after some manipulations turns out in the closed expression,

Pni =
eVni∑
j e

Vnj
(6)

called the logit probability.

Later on, the development of discrete choices models has led to different models, such
as generalized extreme value models, probit, and mixed logit, valid for modeling in different
situations. In addition, they also overcome some of the restrictions present in logit models,
such as independence of irrelevant alternatives (IIA) or random variation of preferences.
IIA means that the ratio between alternatives i and k, only depends on these alternatives,
and it remains constant, no matter what other alternatives appear.

Pni

Pnk

=

eVni∑
j e

Vnj

eVnk∑
j e

Vnj

=
eVni

eVnk
= eVni−Vnk (7)

In other words, an improvement in one alternative is proportionally extracted from all re-
maining alternatives. For example, if the probability of one choice improves by 20%, the
probabilities of all remaining alternatives fall by 20%. This pattern may be an unrealistic
and restrictive assumption to model in real situations.
Moreover, the variation in the preferences between individuals can only be captured if they
vary systematically given the observed variables. For a random change of taste, logit is
not a good approximation of the reality since the unobserved part of the utility is assumed
to be independent and, therefore, does not provide information on the error of a different
alternative.
Finally, logit is not a good model specification when dealing with panel data, i.e. when mul-
tiple choices are made by the same individual. Because just as some dynamics are expected
in the observed variables, there are also dynamics in the unobserved ones and it is hard to
assume that they are independent [24].
In conclusion, the logit model is the ancestor of more complex models described hereafter.
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2.2 Mixed logit

Our first model is a mixed logit. It is a highly flexible model that can approximate any
random utility model [13]. This model has none of the limitations mentioned above of the
logit model.
Mixed logit is any model in which probabilities can be expressed as,

Pni =

∫ (
eβ

′xni∑J
j=1 e

β′xnj

)
f(β)dβ (8)

where f(β) is the probability density function of β. In other words, the mixed logit model
probability is a weighted average of the logit formula evaluated at different beta values,
where the weights are given by f(β).
When the distribution of the beta values is discrete and takes a finite number of values, the
mixed model is called latent class choice model. We will explain this model in the following
section.
When the distribution of beta f(β) is continuous, the beta coefficients change between
decision-makers with density f(β). The researcher specifies its distribution f(β|θ), accord-
ing to its expectations of behavior, and estimates its parameters θ. Usually, the distribution
is specified as normal or log-normal. This last one is useful if the coefficient sign is known;
for example, the cost coefficient is always negative.
The increase in computation speed and the discovery of new estimation methods pushed the
usage of mixed logit models.

2.3 Latent class choice models (LCCM)

It was Walker and Ben-Aliva (2002) [14], who presented a practical generalized random
utility model with extensions for latent variables and latent classes. Extensions added to the
basic RUM to relax assumptions and enrich the capabilities of the model.
Latent class choice models (LCCM) are employed when latent classes are discrete constructs.
The hypothesis is that there may be discrete segments of decision-makers that are not im-
mediately identifiable from the data. However, the population can be probabilistically seg-
mented into groups that have different preferences, different decision protocols, or behave
differently towards the decision, signified by class-specific utility equations for each class.
[14]
Evidences in the literature suggests that latent class models are a very convenient, flexible,
and intuitive way to introduce taste heterogeneity in discrete choice models. One of the first
applications of LCCM was in 1995 when Gopinath modeled shippers’ choices allowing for
different sensitivities to time and cost [15].
The critical issue in latent class choice models is how to specify the class membership model
since it is not defined forehand. Typically, straightforward logit equations are employed. We
will explore different class membership models in the following sections.
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2.4 Machine learning techniques

In recent years, machine learning techniques have been applied to choice models prob-
lems, resulting in increased prediction accuracy.
Nevertheless, machine learning techniques have often been criticized in economics and trans-
portation for their lack of interpretability. While that may have been true in its early days,
nowadays, many different studies have focused on improving prediction estimates without
sacrificing the model’s interpretability.
The choice models employing machine learning techniques that we will present in sections
3.4 and 3.6 are examples of this tendency.
We describe hereafter the two machine learning techniques implemented in our models.

2.4.1 Clustering

Clustering techniques belong to unsupervised learning, also called exploratory analysis,
characterized by no output variables. Unsupervised learning aims to identify patterns in the
data by learning some structure, finding regularities or discovering hidden information.
Clustering a set of observations means dividing them into non-overlapping groups. These
groups are meaningful because they capture some data structure. Observations are grouped
using similarity measures, and clusters interpretation is helpful for a specific purpose.
Different machine learning techniques can be applied for clustering. Following the formula-
tion of [31], which we will explain in section 3.4, we chose a model-based clustering technique
based on parametric mixture models for the formulation of the class membership model. Mix-
ture models can represent the presence of subpopulations within an overall population. In
mixture models, each data observation has an associated probability of belonging to each
distribution, where each distribution represents a latent (unobserved) cluster/class.
The justification for employing mixture models is triple. Firstly, a probabilistic model is
needed to estimate the latent classes simultaneously with the discrete choice model, which
improves the estimation compared to sequential estimation. Secondly, mixture models pro-
vide more flexibility than the utility specification of latent classes commonly defined as
linear functions. Thirdly, this clustering technique also allows for interpretable results when
evaluating the clusters. [32].

2.4.2 Embeddings

For our last model formulation, we will employ continuous vector representation, called
embeddings, to encode categorical or discrete explanatory variables with a particular focus
on interpretability and model transparency.
Within the framework of DCMs, categorical variables are typically encoded using dummy
encoding, also called ’one-hot-encoding.’ However, this type of encoding, although compu-
tationally simple, has several disadvantages. Firstly, it increases the model’s dimensionality
proportionally to the cardinality of the categorical variables considered. A high-dimensional
model is more exposed to suffer what is known as "the curse of dimensionality," which ac-
counts for the challenge encountered when an increase in the number of dimensions requires
an exponential increase in the sample size to maintain the model reliability. The amount of
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data that contributes to estimating each coefficient becomes insufficient and worsens when
the heterogeneity of the data is high.
At the same time, travel data collection typically has a small sample size. This fact, coupled
with the increase of model dimensions, may lead to overfitting. Overfitting occurs when the
model is so complex that it describes noise or random errors in the data instead of only the
relation between the dependent and independent variables. Although an overfitted model
presents a good estimation in the train set, it does not perform well on out-of-sample predic-
tions where these noise terms do not follow a systematic pattern. Thus, if we do not consider
overfitting when selecting a model, we risk choosing complex and non-generalized models.
On the other hand, the second disadvantage of dummy encoding is that it assumes that cat-
egorical variables are mutually exclusive and unrelated. It does not allow to model similarity
representation between categories, which would be intuitive for a human to recognize. In
other words, it ignores the contextual information behind the features.
Therefore, embeddings enable us to encode categorical variables to reduce the problems men-
tioned above by employing a data-driven method.
Embedding first became popular with the creation of word2vec, a deep learning-based
method for generating a vector of words, called words embeddings. It became a valuable
technique for capturing the semantic relatedness of words based on their distributional prop-
erties. Similar words have similar vectors in the embeddings space, allowing the formation
of meaningful word clusters. Their first applications were in Natural Language Processing
(NLP) which permits machines to break down and interpret human language. [30]
Embedding representations within the logit framework have been first conceptualized by
Pereira in [28], where he mapped discrete variables used in travel demand modeling into a la-
tent embedding space exceeding traditional methods as PCA or dummy encoding. However,
we followed the formulation of Arkoudi in [27] that allow us to preserve the interpretability
of the embeddings vectors by linking each of their dimensions to an alternative within the
choice set. This formulation allows us to visualize and analyze the categorical variables in a
meaningful continuous space.

2.5 Attitudinal variables in DCMs

Finally, we explore some of the literature connecting attitudinal indicators and latent
class discrete choice models. We found examples in the literature on the relationship between
attitudes and behavior in mode choices [16].
The inclusion of attitudinal variables in LCCM helps construct more realistic population
segments that can help design more appropriate strategies and effective policies [17] [18].
Research into attitude-based segmentation has significantly increased in recent years since it
is a successful area with potential improvements in the explanatory power of choice models.
Psychometric indicators are additional information that can specify and estimate latent
classes. They measure the effect of unobserved attributes in individuals’ preferences on top-
ics related to the choice. An example of a psychometric indicator can be: ’We need to build
more parking lots downtown.’ A positive answer to this statement shows a desire for a more
car-based city, and a negative one a preference for a more environmentally friendly city.
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In [20], a LCCM is estimated, and psychometric indicators are included in the maximum
likelihood estimation to reinforce the model. The psychometric indicators are conditional on
the latent class s. Therefore, the item-response probability of observing indicator In is given
by Pn(In|s) that is defined as a parameter jointly estimated with the choice and the class
membership model. The model evidence that including the psychometric indicators allows
for a richer analysis and generates significantly different estimates for the class membership
model.
On the other hand, in [2], psychometric indicators are introduced by assuming that the prob-
ability of giving an agreement level IK to the kth attitudinal question also depends on the
respondent’s class s, Pn(Ik|s). In this case, they use an ordinal logit approach to model the
response probability Pn(Ik|s), since the responses to the indicators consist of a few ordered
integer values corresponding with the level of agreement with the statement on a Likert scale
[19]. The advantage of this formulation is the close form of the ordinal logit used to measure
the indicators that allow for a more straightforward estimation procedure, where the choice
and the response to the indicators are estimated together.
Another study has gone further, studying the relationship between normative belief, modal-
ity styles, and travel behavior. Normative belief refers to the individual’s perception of the
opinion of others concerning a specific behavior. At the same time, modality style describes
the part of an individual’s lifestyle characterized by using a particular set of travel modes.
They show evidence of associations between travel behavior and different latent psychoso-
cial constructs. In this case, latent normative belief can predict the engagement to different
modality styles. Modality styles are represented as latent classes defined by mode-use fre-
quencies, mobility attitudes, mode-specific attitudes, and habits. This model exemplifies
how the socio-psychological approach, which originated in social psychology, can extend
conventional travel behavior analysis. [21]
Finally in [22], exploratory factor analysis and latent class cluster analysis of attitudinal
variables is performed to cluster individuals in groups concerning their inclination to adopt
MaaS (Mobility as a Service). Even though the model is enriched with a series of covari-
ates referring to socioeconomic, mobility, and technology-related characteristics, they do not
improve the model; they only help cluster identification. Attitudinal variables are the ones
defining the structure.
The previous examples have highlighted the importance and relevance of including attitudes,
preferences, and beliefs in discrete choice models, especially in LCCM. They improve the
model estimation and create more realistic and valuable models.
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3 Model framework and formulation

This section will present the formulation and theory for all models that we have imple-
mented, in corresponding order of complexity.

3.1 Mixed logit

We defined the mixed logit as any model in which probabilities can be expressed as,

Pni =

∫ (
eni∑J
j=1 enj

)
f(β)dβ (9)

However, the mixed logit can also be interpreted as a model with a correlation error term
between the utilities of different alternatives. The utility can be expressed as Unjt = β′

nxnjt+
ϵnjt. And the coefficients βn can be decomposed in its mean α and its deviations µn, therefore
the utility can be written as,

Unj = α′xnj + µ′
nxnj + ϵnj (10)

where xnj is the observable variables of alternative j, α is a vector of fix coefficients, µ′
n is a

vector of random terms with mean equal to zero and ϵnj is identically distributed Extreme
Value Type I. The non-observed part of the utiliy is therefore,

ηnj = µ′
nxnj + ϵnj (11)

And the correction between alternatives is: Cov(ηni, ηnj = E(µ′
nxni + ϵni)(µ

′
nxnj + ϵnj) =

xniWxnj. In this way, the utility is correlated between alternatives even if the error com-
ponent is independent. As a consequence it does not exhibit IIA, as the ratio between two
mixed logit probabilities Pni

Pnj
models depends on all the data, not on only of the attributes

of i and j
With the mixed logit formulation, we can model panel data by specifying variability in the
coefficients between different decision-makers but constant coefficients for the same individ-
ual in different situations.
The mixed logit where the coefficients βn are distributed with a density f(β|θ) can be easily
simulated by extracting a random value from f(β|θ), evaluating it in the logit formula,

Lni(β) =
eβxni∑J
j=1 e

βxnj

(12)

and repeating this process several times.
Finally, the simulated probability is the average of the previous values.

Pni =
1

R

R∑
r=1

Lni(β
r) (13)
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3.2 Latent class choice model

LCCM are composed by two sub-models, a class membership model and a class-specific
choice model which log-likelihood is maximize simultaneously.
The class membership model returns the probability of an individual n to belong to a given
class k. It is dependent of its characteristics, and the utility can be expressed as follows:

Unk = Snγk + υnk (14)

where Sn is the vector containing the characteristics of the individual n, γk is the vector
of the unknown parameters that need to be estimated and υnk is the error term that typi-
cally is assumed to be independently and identically distributed Extreme Value Type I over
decision-makers and classes.
Therefore, the probability that the decision-maker n belongs to class k given his/her char-
acteristic is the logit formula:

P (qnk|Sn, γk) =
eSnγk∑K
k=1 e

Snγk
(15)

where qnk = 1 if he/she belongs to class k and 0 otherwise.
On the other hand, the class-specific choice model returns the probability that the decision
maker choose an specific alternative, given that she/he belong to an certain class.
The utility of individual n when choosing alternative i during the period t, given that he/she
bellows to class k is formulated as:

Unit|k = X ′
nitβK + ϵnit|k (16)

where Xnit is the vector of observed attributes of alternative i during time period t normally
including an alternative-specific constant. βk is the vector of unknown parameters that are
being estimated and ϵnit|k is independent and normally distributed Extreme Value Type I
over decision-makers, alternatives and classes.
Therefore, the probability that individual n chose alternative j during time period t, given
that he/she belongs to class k is formulated as

P (ynit|Xnit, qnk, βk) =
eVnit|k∑J
j=1 e

Vnjt|k
(17)

where J is the number of alternatives.
Thus, conditional on the class, the probability of observing yn, during all time periods Tn is
formulated as:

P (yn|Xn, qnk, βk) =
Tn∏
t=1

J∏
j=1

(P (ynjt|Xnjt, qnk, βk))
ynjt (18)
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where ynjt is 1 if the decision-maker n choose alternative j during the time period t and 0
otherwise.
The unconditional probability of observing yn, can be calculated by mixing the previous
choice probability by the probability of belonging to each class k:

P (yn) =
K∑
k=1

P (qnk|Sn, γk)P (yn|Xn, qnk, βk) (19)

To conclude, the likelihood over all individuals N, considered independence between them,
is expressed as follows:

P (y) =
N∏

n=1

K∑
k=1

P (qnk|Sn, γk)P (yn|Xn, qnk, βk) (20)

On the other hand, it is worth mentioning that we have employed the AIC and BIC
goodness-of-fit and the corresponding variances and p-values to select the attributes and
socio-demographic variables present in each of the models that we will present in section 5.
We overview the employed goodness-of-fit measures for completeness in the two following
subsections.

3.2.1 Likelihood ratio test

The likelihood-ratio test assesses the goodness of fit of two competing statistical models
based on the ratio of their likelihoods, precisely when one is an extended model on the
parameter space and the other one has some constraints imposed. It is a good measure to
detect overfitting.
If the null hypothesis is true, then the two models’ likelihood differences should only differ
by the sampling error. The sampling error difference is modeled by a χ2 distribution with
df degrees of freedom.
Therefore, the likelihood ratio test is defined, for the null hypothesis (H0) being true, by:

χ2
df ∼ 2(LL(Extended)− LL(baseline)) (21)

where the degrees of freedom df , is given by,

df = parametersExtended − parametersbaseline (22)

3.2.2 AIC and BIC

The Akaike information criterion (AIC) is a mathematical test used to evaluate how well
a model fits the data. It penalizes models that use more parameters to avoid over-fitting
since we aim to select the model that better explains the data with the smallest number of
parameters.

AIC = 2k − 2ln(L̂) (23)
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where k is the number of parameters in the model and L is the estimated likelihood of the
model.
On the other hand, the Bayesian information criterion is closely related to the AIC but
derived from Bayesian probability, is expressed as:
.

BIC = klog(n)− 2ln(L̂) (24)

where k is the number of parameters in the model, n is the number of observations and L is
the estimated likelihood of the model.
For model selection purposes, there is no clear choice between AIC and BIC. Both formula-
tions introduce a penalty term for the number of parameters in the model, but this penalty
term is larger in the BIC than in the AIC. We employ both criteria for our models selection.

3.3 Latent class choice model with attitudinal statements

In this section we formulate the traditional LCCM model, where the factors scores
obtained from a Confirmatory Factor Analysis (CFA) of attitudinal statements are included
in the class membership model as continuous variables.
In other words, a pre-computed representation of the latent variable space of the attitudinal
variables is added into the LCCM as continuos variables. However, this approach treats CFA
factors as observed variables in the LCCM model and does not perform a joint estimation
of classes and latent variables (factors).
Hereafter, we introduce the basic factor analysis concepts employed for this and subsequent
formulations.

3.3.1 Exploratory Factor Analysis

To not excessively increase the number of model parameters, as it could make the
computation excessive or overfit the model, we perform Factor Analysis to the attitudinal
variables.
Factor analysis explains the variance among the observed variable and condenses a set of the
observed variables into unobserved variables called factors. Observed variables are modeled
as a linear combination of factors and error terms that also help understand which charac-
teristics are strong when determining groups.
The relation between the observed variables (xk) and the unobserved factors (Fj) is given
by the equation:

xk = x̄k +
∑
j

ρkjFj + φk (25)

where x̄k is the mean value of the observed variable k and φk is the error term model as a
normal distribution. The factor loadings, ρkj, quantify the correlation between the observed
variable and unobserved factors.
The Principal axis factoring method has been employed with Varimax (orthogonal) rota-
tion.
Before computing the factor analysis, we tested our data’s adequacy with several tests.

3.3 Latent class choice model with attitudinal statements Page 12 of 54



Attitudes and Latent Class Choice Models using Machine Learning:
An application in Car-Sharing

Firstly, Bartlett’s Test states the null hypothesis (H0) that the correlation matrix is an Iden-
tical matrix. So, it assumes that no correlation is present among the variables. Therefore, we
expect a low p-value that contradicts the null hypothesis (statistically significant variances).
Secondly, the Kaiser-Meyer-Olkin (KMO) test measures how suited the data is for Factor
Analysis. It computes the proportion of variance among variables that might be common
variance. The lower the proportion, the higher the KMO-value and the more suited the data
is to Factor Analysis.

3.3.2 Confirmatory Factor Analysis

After computing the Exploratory Factor Analysis, which allows us to have a predefined
structure on how the factors are constructed and related, we can compute the Confirmatory
Factor Analysis (CFA). CFA basic assumption is that each factor is associated with a partic-
ular set of observed variables. It is a Restricted Model since we impose some restrictions on
its structure, such as not having cross-loadings of a factor with variables from other factors.
In other words, CFA creates independent factors and confirms the structure that the EFA
predefines.
Once the CFA confirms the factor structure, we employ the Cronbach’s alpha test that mea-
sures internal consistency. Cronbach’s alpha test indicates how closely related a set of items
are as a group. It is a weighted average of the correlations between the variables that form
part of the group. Therefore, the closer it is to 1, the more consistent the items will be with
each other. Ideally, it should be at least 0.7, but we can also accept factors with a lower
level if they have a coherent meaning.

3.4 Gaussian-Bernoulli Mixture Latent Class Choice Model

We followed the model formulation presented in [31] for our next model.
In Gaussian-Bernoille Mixture Latent Class Choice Model, the class membership model,
P (qnk|Sn, γk) is defined as a Gaussian-Bernoulli Mixture Model (GBM), a probabilistic ma-
chine learning technique used for clustering, where the Gaussian Mixture Model (GMM) is
used for continuous variables and the Bernoulli Mixture Model (BMM) for binary variables.
In this way, the characteristics of the decision- maker (Sn) are divided in Scn, that refers
to the continuous characteristic and has a dimension Dc corresponding with the number of
elements in Scn, and in Sdn that accounts for the discrete/binary characteristics of individual
n and has a dimension Dd corresponding with the number of elements in Sdn.
The Gaussian Mixture model is defined as a combination of normal distributions N (Scn|µck,Σck)
where each component has its own mean µck (with dimension equal to the number os el-
ements in Scn), covariance Σck and mixing coefficient πk. On the other hand, BMM is a
combination of k mixture components, each being the product of Dd independent Bernoulli
probability distributions with its own mean vector µdk.
However, the formulation of the class membership as a GBM cannot be directly applied into
the model. The probability of a decision-maker n belonging to class k, given its charac-
teristics, P (qnk|Sn) is the posterior probability calculated employing Bayes’ therorem, and
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therefore, cannot appear in the maximization of the likelihood function.
Instead, we estimate the probability of observing decision-maker n with characteristics
Sn = {Scn, Sdn} given that he/she belongs to latent class k. The model architecture is
represented in Figure 1, where unobserved variables are represented by ellipses and observ-
able variables by rectangles.
By making the assumption that the continuous and binary data of the Gaussian and Bernoulli
distributions are independent, the joint probability can be expressed as as the product of
the probability of the class, the densities of Scn and Sdn given the class, and the choice
probability conditional on the class:

P (Scn, Sdn, yn, qnk) = P (qnk|πk)P (Ssn|qnk = 1, µck,Σck)P (Sdn|qnk = 1, µdk)P (yn|Xn, qnk, βk)
(26)

where
P (qnk|πk) = πk (27)

K∑
k=1

πk = 1 (28)

πk is the probability of beloging to class k regardless the characteristics of the decision-maker,
also called prior probability. Its sum over all the classes is equal to 1.
The densities of Scn and Sdn, given the class, are expressed as:

P (Scn|qnk = 1, µck,Σck) = N (Scn|µck,Σck) =
1√

(2π)Dc|Σck|
exp

(
−1

2
(Scn − µck)

′Σ−1
ck (Scn − µck)

)
(29)

P (Sdn|qnk = 1, µdk) =

Dd∏
i=1

µSdni
dki

(1− µdki)
(1−Sdni) (30)

where |Σck| is the determinant of the covariance matrix, Sdni is a binary characteristics of
decision-maker n and µdki its corresponding mean.
Therefore, the joint probability of Scn, Sdn and yn can be calculated by taking the marginal
of (26) over the K classes.

P (Scn, Sdn, yn) =
K∑
k=1

P (Scn, Sdn, yn, qnk) (31)

Finally, the likelihood function of the complete model for all the decision makers N is ex-
pressed as:

P (Sc, Sd, y) =
N∏

n=1

P (Scn, Sdn, yn) =

N∏
n=1

K∑
k=1

πKN (Scn|µck,Σck)

Dd∏
i=1

µSdni
dki

(1− µdki)
(1−Sdni)

Tn∏
t=1

J∏
j=1

(
eX

′
njtβk∑J

j′=1 e
X′

nj′tβk

)ynjt
(32)
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Typically, discrete choice models are estimated using the maximum likelihood estimation to
maximize the observed data’s likelihood given the model parameters. However, maximizing
the LCMM and the GBM-LCCM together is complex due to the summation over the k
classes that appears in the final likelihood and will not lead to a closed-form solution.
To solve this problem, we apply the Expectation-Maximization (EM), a commonly used
algorithm to maximize the likelihood estimation in models with latent classes.

Figure 1: Model struture of Gaussian-Bernoulli Mixture Latent Class Choice Model (GBM-
LCCM)

3.4.1 EM algorithm

The EM algorithm is a method that combines an expectation step with a maximization
one until we reach convergence. We start by initializing the unknown parameters. After, we
estimate the expected values of the latent variables (E-step) using Bayes’ theorem. Then,
we update the unknown parameters’ values, using the maximization of the log-likelihood
(M-step).
Finally, we evaluate the log-likelihood with the current values of the unknown parameters
and check for convergence. We return to the E-step, until convergence is reached.
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We can rewrite the joint likelihood assuming that the clusters are observed as follows:

P (Sc, Sd, y, q) =
N∏

n=1

K∏
k=1

[
πKN (Scn|µck,Σck)

Dd∏
i=1

µSdni
dki

(1− µdki)
(1−Sdni)

]qnk

X

N∏
n=1

K∏
k=1

Tn∏
t=1

J∏
j=1

[
eX

′
njtβk∑J

j′=1 e
X′

nj′tβk

]ynjtqnk
(33)

The function is divided into two parts when we take the logarithm of the likelihood:

LL =
N∑

n=1

K∑
k=1

qnklog

[
πKN (Scn|µck,Σck)

Dd∏
i=1

µSdni
dki

(1− µdki)
(1−Sdni)

]

+
N∑

n=1

K∑
k=1

Tn∑
t=1

J∑
j=1

ynjtqnklog

[
eX

′
njtβk∑J

j′=1 e
X′

nj′tβk

] (34)

this equation can be solved by equating to zero its derivatives with respect to each of the
unknown parameters only if qnk is known.
In order to find the initial values of qnk, we estimate the expectation of qnk (E-step) using
Bayes’s theorem.

E[qnk] = γqnk =

=

πKN (Scn|µck,Σck)
∏Dd

i=1 µ
Sdni
dki

(1− µdki)
(1−Sdni)

∏Tn

t=1

∏J
j=1

[
e
X′

njtβk∑J
j′=1 e

X′
nj′t

βk

]ynjt

∑K
k′=1

[
πK′N (Scn|µck′ ,Σck′)

∏Dd

i=1 µ
Sdni

dk′i
(1− µdk′i

)(1−Sdni)
∏Tn

t=1

∏J
j=1

[
e
X′

njt
βk′∑J

j′=1 e
X′

nj′t
βk′

]ynjt
]

(35)

where γqnk is considered as the posterior probability of the classes. Combining equations
(34) and (35), gives:

E[LL] =
N∑

n=1

K∑
k=1

γnklog

[
πKN (Scn|µck,Σck)

Dd∏
i=1

µSdni
dki

(1− µdki)
(1−Sdni)

]

+
N∑

n=1

K∑
k=1

Tn∑
t=1

J∑
j=1

ynjtγnk

[
eX

′
njtβk∑J

j′=1 e
X′

nj′tβk

] (36)

where the derivatives of the expected log-likelihood with respect to the unknown parameters
can be settled to zero. The following expressions are obtained for each parameter:

µck =
1

Nk

N∑
n=1

γqnk
Scn (37)
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Σck =
1

Nk

N∑
n=1

γqnk
(Scn − µck)(Scn − µck)

′ (38)

µdk =
1

Nk

N∑
n=1

γqnk
Sdn (39)

πk =
Nk

N
(40)

βk = argmaxβk

N∑
n=1

Tn∑
t=1

J∑
j=1

ynjtγqnk
log

[
eX

′
njtβk∑J

j′=1 e
X′

nj′tβk

]
(41)

where Nk is defined as:

Nk =
N∑

n=1

γqnk
(42)

It is worth mentioning that no closed-form solution can be obtained for the case of beta pa-
rameters (equation 41). Thus, we employ the gradient-based numerical optimization method
BFGS (Nocedal et al., 1999).
After convergence is reached, we can calculate the probability of observing a vector of choices
y of all decision-makers as follows:

P (y) =
N∏

n=1

k∑
k=1

P (qnk|Scn, Sdn, µck,Σck, µdk, πk)
Tn∏
t=1

J∏
j=1

(P (ynjt|Xnjt, qnk, βk))
ynjt (43)

where P (qnk|Scn, Sdn, µck,Σck, µdk, πk) is the posterior probability of vector Sn = {Scn, Sdn}
being generated by cluster k using Bayes’ theorem:

P (qnk|Scn, Sdn, µck,Σck, µdk, πk) =
P (qnk|πk)P (Scn|qnk, uck,Σck)P (Sdn|qnk, µdk)∑K

k′=1 P (qnk′ |πk′)P (Scn|qnk′ , uck′ ,Σck′)P (Sdn|qnk′ , µdk′)
(44)

3.5 Gaussian-Bernoulli Mixture Latent Class Choice Model with
attitudinal statements

Based on the formulation of the GBM-LCCM model presented in section 3.4, we ex-
tended the model by including the information of the attitudinal questions.
In this case, the definition of the latent classes includes the factor scores obtained from the
Confirmatory Factor Analysis (CFA) of the attitudinal variables, as we made in section 3.3.2.
This approach also treats CFA factors as observed variables in the LCCM model and does
not perform a joint estimation of classes and latent variables (factors).
The model structure is presented in Figure 2, where unobserved variables are represented by
ellipses and observable variables by rectangles.
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Figure 2: Model structure of Gaussian-Bernoulli Mixture Latent Class Choice Model (GBM-
LCCM) with attitudinal statements

In figure 2, we observed how the psychological indicators, in this case, the factor scores
results from the CFA, are included in the class membership model. The colors are different
to indicate that the indicators are included as pre-computed information into the model, and
no joint estimation is performed.

3.6 Embeddings model formulation

3.6.1 Interpretable Embeddings MNL (E-MNL)

The utility Ui,n that individual n associates with alternative i is expressed as:

Ui,n(Xi,n, Qi,n) = Vi,n(Xi,n, Qi,n) + ϵ (45)

where ϵ is independent and normally distributed Extreme Value Type I, X = {X1, X2, ..., Xk}
is the set of continuous explanatory variables and Q = {Q1, Q2, ..., QM} is the set of cat-
egorical explanatory variables. Both can describe observed attributes of the alternatives,
individual’s socio-demographic or attitudinal variables.
Employing a ANN-based DCM model, the systematic part of the utility Vi,n is formulated
as:

Vi,n(Xn, Qn) = fi,1(Xn;B) + fi,2(gi(Qn;Wi);B
′)) (46)

where g represents the embedding function, that maps each dummy encoding input Qn to a
latent J-dimensional representation Q′

n based on a set of trainable weights, W . The shape
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of W is ZxJ , where Z is the number of unique categories, Z =
∑M

m=1 |Qm| and J is the
number of alternatives in the choice set C. Matrix-multiplication is performed between Q
and W resulting in Q′, which shape is MxJ.
On the other hand, the function f is defined as a linear function, such that the trainable
preference parameters of the model B and B′ are a linear combination of the explanatory
variables: fi,1(Xn;B) = BXi,n and fi,2(gi(Qn;Wi);B

′) = B′Q′
i,n.

The model architecture is shown in Figure 3. The ANN consist of two input layers receiving
two separated inputs: X and Q. X is directly connected to the first convolution filter with
the set of trainable weights B. On the other hand, the one-hot encoded inputs Q, are
projected into the embedding layer and then, the new alternative-specific representation Q′

is connected to the second convolution filter with the set of trainable weights B′

The final likelihood of individual n selecting choice alternative i is formulated using the
softmax function, as:

Pn(i) =
efi,1(Xn;B)+fi,2(gi(Qn;Wi);B

′))∑
j∈Cn

efj,1(Xn;B)+fj,2(gj(Qn;Wj);B′))
(47)

which corresponds to the logit probability.[27]

Figure 3: E-MNL model architecture. Source: [27]

3.6.2 Extended Model: Interpretable Embeddings MNL with Representation
Learning term (EL-MNL)

In this last model formulation, we present the Embedding Learning Multinomial Logit
(EL-MNL) that combines the previous E-MNL model with the Learning Multinomial Logit

3.6 Embeddings model formulation Page 19 of 54



Attitudes and Latent Class Choice Models using Machine Learning:
An application in Car-Sharing

(L-MNL) suggested by Sifringer et. al in [29]
EL-MNL extends the previous model formulation by increasing the dimensionality of the
embeddings matrix (W ) from J to J + S. The extra dimensions S of Q′ are the inputs to
a densely connected hidden layer L with K hidden nodes q1, ..., qK . The output of L is a
J-dimensional vector r, where each single term (ri) corresponds with an alternative.
In other words, ri, also called in [29] ‘representation learning term’ is added to each of
the utility functions to reduce the problems of endogeneity and correct for underfit due
to undetected misspecification of the disturbance term, increasing the overall predictive
performance compared to the E-MNL model.
Therefore, the systematic part of the utilities Vi,n are expressed as:

Vi,n(Xn, Qn) = fi,1(Xn;B) + fi,2(gi(Qn;Wi);B
′))+

ri({gJ+1(Qn;WJ+1), ..., gJ+S(Qn;WJ+S)};Mi, αi)
(48)

where the functions f , g and the trainable weights B′, B,W are the same as define in 3.6.1,
but the size of W in this case is MxD, D = J + S. The function r represents the operations
performed in the densely connected layer L that receives Rn = {Q′

J,n, ..., Q
′
J+S,n} as input.

Therefore, (48) can be expressed as:

Vi,n(Xn, Qn) = fi,1(Xn;B) + fi,2(Q
′
i,n;B

′)) + ri(Rn;Mi, αi) (49)

where the function r is define as:

ri(Rn;Mi, αi) =
∑
m∈Mi

k(max(0, Rn)) + αi (50)

being Mi an alternative-specific trainable parameters and αi a bias term.
The model architecture is presented in figure 4.
In [29] it is proof that if the set of features that enters the function f do not overlap with
the ones entering the function r, the parameters of f can still be interpretable. As shown
in 48, the constraint is met for this formulation and, interpretability is still maintained for
some input variables. However, it is not fully interpretable as the E-MNL model.[27]
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Figure 4: EL-MNL model architecture. Source: [27]

3.6.3 Interpretability

By following the forehead formulations of the embeddings, we can obtain unique insights
into how the categorical variables influence each of the choice alternatives. In addition to
providing an encoding method to convert categorical variables to continuous.
Because the dimension of the embedding matrix is fixed and is not subject to tuning, we ob-
tain interpretable embeddings where the value of the embedding along to the j-th dimension
represent the relevance of the encoded category to the j-th choice alternative. In the case of
the EL-MNL model of section 3.6.2, the first J dimensions remain interpretable correspoding
with the J choice alternatives, as in the E-MNL formulation.
For interpreting the embeddings, we need to pay attention to the sign and value each cate-
gory receives along each dimension of the embedding space and the relative distances between
every pair of points. By restricting the coefficients associated to Q′ to be positive, we en-
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hance the interpretability of the emdeddings values, such that a high and positive value
along an alternative-specific axis shows a high positive effect of the selected category on
the corresponding choice alternative. Moreover, closer proximity between categories in the
embedding space demonstrates that their overall impact on the alternatives is similar. [27]
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4 Data

The data used in this study comes from the Share-More project, which aims to maxi-
mize the value of car-sharing services to encourage sustainable urban mobility by developing
a framework of personalized incentives.
The data was collected through a tailor-made online survey (available both web and mobile
versions), from July 16th to August 6th 2020 and simultaneously in three cities: Copenhagen,
Munich, and Tel Aviv. The survey was available in English and Danish for Copenhagen
(CPH) and its duration was estimated at around 15 minutes. The sample was opportunis-
tic, with 200 individuals per city as a target sample size. CPH and Munich’s respondents
were recruited through panels, while in Tel Aviv-Yafo, they were contacted through different
mailing lists. The eligibility criteria were more than 18 years old and having a valid driver’s
license. In Tel Aviv, the minimum age for using car-sharing services is 21 years; therefore,
the eligibility criteria in this city was having 21 years or more.
The survey was divided into six parts. It started with a brief introduction to the project
and its objective. The second part consisted of socio-demographic questions, including ex-
perience with car-sharing. In the next section, the survey addressed questions regarding the
responders’ attitude toward private and car-sharing. The fourth part was questions related
to preferences about car-sharing incentives. The fifth part was a Stated Preference(SP) ex-
periment in which different options of car-sharing plans, taking into account existent services
in each city. The last part of the survey was to examine the effect of Covid-19 on respon-
dents’ mobility behavoir.
For our analysis, only data from Copenhagen and parts 2, 4, and 5 of the questionnaire will
be employed. For further details on the survey and sample, the reader is referred to [1]

4.1 Copenhagen’s mobily context

The context in which the data is collected is vital for its analysis. Therefore, Copen-
hagen mobility context is presented hereafter.
Copenhagen metropolitan area has a population of 1.846.023 inhabitants with an area of
2.562,80 Km2, which leads to a density of 720,31 hab/km2. However, when only taking into
account the city of Copenhagen, the density achieves a value of 7.455,92 hab/km2.
On the other hand, Copenhague’s mobility landscape is quite particular. Cycling is a com-
mon way of getting around. The city contains a complete network of dedicated bicycle
infrastructure that has 382 km and it is possible to board the metro, train and harbor bus
with bikes. As a result, 49% of the population commute by bike to work or education and
63 % of school kind bike or walk to school. Share bikes and e-bikes are also available in
Copenhagen.
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Figure 5: Modal share of Copenhagen considering trip to, from and in Copenhagen in 2018
Source: City of Copenhagen, 2019

In 2018, Copenhagen’s modal share revealed that 49% of all trips are made by soft
modes, 19% by public transport, and 32% by car.
The public transport in Copenhagen consists of buses, harbor buses, a driverless metro, and
an urban-suburban rail (S-train) that serves the Greater Copenhagen. They are all under a
standard system for fare zones and tickets at a national level.
Regarding taxation for car ownership, the registration tax accounts for 85% of the taxable
value of the car up to DKK 185.100. For those above DKK 185.100, taxes are 150% of the
taxable value of the car. In 2021, electric cars only have a tax of 65% of the calculated vehicle
registration tax. In 2022, the price to pay will be 90% of the calculated vehicle registration
tax.
The availability of car-sharing services is increasing in Copenhagen during the last decade.
One hundred ninety-two parking spaces are reserved for station-based car-sharing cars, 7%
of those destined for electric cars. The most common car-sharing companies in CPH are
ShareNow and Green Mobility, both free-floating services, and GoMore, a peer-to-peer car-
sharing company. These companies have been operating in the city for around five years.

4.2 Sample characteristics

A total of 543 Copenhagen inhabitants answered the survey. However, inconsistent
respondents were deleted. They were those who stated to be aware of car-sharing, and, later
in the survey, they answered the opposite. Also, respondents who finished the survey in
less than 40% of the median time were removed, suggesting a lack of attention. After the
cleaning, the sample size of Copenhagen consisted of 542 respondents.
The sample characteristics are describe in table 1. More than 90% of respondents stated to
be aware of car-sharing services, which indicates that car-sharing services are well-known.
The sample is quite balanced regarding gender and proportionally representative of the
population in terms of age. Most of the respondents live in the city center and are employed.
For the level of education, more than 60% of the population have at least a bachelor’s
degree. Moreover, most respondents live in households of 1 or 2 members and up to one car.
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Additionally, more than 50 percent of the sample have two or more bikes at home.
Given the income level, most respondents earn around average (350.000 kr./year) or above,
which is likely related to the high level of education of the sample.
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Total %

Car -sharing membership status
Car-sharing member 96 17.68
Past-car sharing member 64 11.79
Non-car-sharing member 383 70.53

Car-sharing awareness Yes 490 90.24
No 53 9.76

Gender
Man 267 49.17
Woman 275 50.64
Prefer not to say 1 0.18

Age

18-30 146 26.89
31-40 88 16.21
41-50 97 17.86
51-60 88 16.21
More than 60 124 22.84

Place of residence

City center 235 43.28
Suburbs 190 34.99
Another city in the metropolitan region 71 13.08
Outside the metropolitan region 47 8.66

Employment status

Student 74 13.63
Employed 354 65.19
Unemployed 12 2.21
On leave 7 1.29
Retired 100 18.42
Other 8 1.47

Level of education

Less than high school 39 7.18
High school diploma or equivalent 150 27.62
Bachelor’s degree 169 31.12
Master’s degree 134 24.68
Doctoral degree 8 1.47
Other 17 3.13
Did not answer 26 4.79

Size of the household

1 152 27.99
2 223 41.07
3 80 14.73
4 68 12.52
>4 20 3.68

Number of cars in the household

0 139 25.60
1 304 55.99
2 91 16.76
>2 9 1.66

Number of bicycles in the household

0 40 7.37
1 128 23.57
2 156 28.73
>2 219 40.33

Income

Low (Up to 250.000 kr.) 82 15.1
Medium (251-500.000 kr.) 140 25.8
High (Over 500.000 kr.) 221 40.7
Did not answer 100 18.4

Table 1: Copenhagen Sample characteristics
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4.3 Attitudinal statements

In order to better understand believes and attitudes toward car-sharing and car own-
ership, respondents answered statements graded on a 5-point Likert scale from 1=‘strongly
disagree’ to 5=‘strongly agree’.
In figures 6 and 7, we have investigated the proportion of respondents who have selected
’agree’ or ’strongly agree’ at the corresponding statements.
Car ownership is usually considered a significant expense rather than a status symbol be-
tween the respondents from Copenhagen. Almost half of the sample also states that it is
easier for them to conduct their daily trips without a private car, and around 40% empathize
with the difficulty of finding parking slots. However, around 60% of the sample agree that
driving a car is the more convenient and easy way to move around. Surprisingly, only 28%
of the respondents express their concern about the environmental footprints of cars.

Figure 6: Sample results on attitudinal statements toward car ownenship

Regarding respondents’ attitudes towards car-sharing, 67% of them agree that they do
not have to deal with vehicle maintenance and repair by employing car-sharing. Moreover,
up to 50% of them agree that car-sharing also saves expenses associated with private vehicle
ownership. It is generally seen as a more affordable alternative than car ownership. Finally,
car-sharing is also considered a more environmentally friendly alternative for most of the
sample.

Figure 7: Sample results on attitudinal statements toward car-sharing
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4.3.1 Exploratory Factor Analysis

We have computed Exploratory Factor Analyses to reduce the attitudinal variables’ di-
mensionality.
Before computing factor analysis, we tested our data’s adequacy with several tests. Firstly,
Bartlett’s Test states the null hypothesis that the variances are equal for all samples. There-
fore, we expect a low p-value that contradicts the null hypothesis (statistically significant
variances) - our analysis yields a p-value of 0. The null hypothesis is rejected, and the data
seems appropriate for Factor Analysis.
Secondly, the Kaiser-Meyer-Olkin (KMO) test also measures how suited the data is for Fac-
tor Analysis. It computes the proportion of variance among variables that might be common
variance. The lower the proportion, the more suited the data is to Factor Analysis. The
KMO test returns a value between 0 and 1. We obtained 0.845, which can be considered an
acceptable value for the computation of Factor Analysis.
The Principal axis factoring method has been employed with Varimax (orthogonal) rotation.
Several exploratory factor analyses have been computed, with different numbers of factors,
and even considering attitudes from CS and car ownership separately. Table 2 presents the
loadings of the first four factors. For interpretation, we only considered the loadings bigger
than 0.4, as advised in [33]. For the variables with the loadings in red, even if some loadings
are higher than 0.4, the absolute difference between its values for different factors is less than
0.2; therefore, we do not include them.

F1 F2 F3 F4
I feel stressed when driving. -0,01556 0,18107104 0,432393 0,121489
For me, a car is also a status symbol. 0,005298 -0,02195947 0,037037 -0,27094
It is difficult to find parking. 0,038755 0,13902097 0,637288 -0,07415
It’s easy for me to conduct my daily trips without a private car. 0,150664 0,11499914 0,379485 0,495048
Owning and using a car is a big expense. 0,138268 0,05572186 0,453027 0,111462
Driving a private car is the most convenient way to move around. 0,022581 -0,31606836 -0,32671 -0,6072
I am worried about the environmental footprint of cars. 0,232956 0,26503259 0,236902 0,208137
Car sharing is more affordable than owning my own car 0,533812 0,2689488 0,221027 0,186547
Car sharing is more convenient than public transport 0,427489 0,33290292 -0,14865 -0,37706
Car sharing is a more environmentally friendly alternative to car ownership 0,51841 0,18646079 0,225027 0,142418
By using car sharing, I do not have to deal with vehicle maintenance and repair 0,612128 0,03100724 0,140886 0,069241
Thanks to car sharing, I can save from the fuel, taxes, insurance and parking
expenses associated with private vehicle ownership 0,814683 0,04983342 0,093689 0,069872

Having access to different types of vehicles is an important advantage 0,440513 0,17104531 -0,0382 -0,11046
Using a car sharing service can lower my transport expenses 0,470412 0,21612767 -0,05818 -0,10464
Using car sharing whenever I need it can make my life easier 0,379355 0,5246601 0,244928 0,025446
I would not need to buy a car at all because I can use car sharing 0,263015 0,69842185 0,291961 0,135605
I would not mind sharing my personal car with other people 0,162394 0,41872184 0,170862 0,183712

Table 2: Results of the Explanatory Factor Analysis - Loadings

After the different EFA computations and with an overview of the importance of each
variable, we have tested our final structure with the confirmatory factor analysis.
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4.3.2 Confirmatory Factor Analysis

Confirmatory Factor Analysis (CFA) basic assumption is that each factor is only asso-
ciated with a particular set of observed variables.
We have identified the following four factors:

• Factor 1: ‘Car-related issues’: It refers to the inconveniences that can appear with car
ownership.

• Factor 2: ‘Driving a private car is the most convenient way to move around.’

• Factor 3: ‘Positively inclined toward the car-sharing concept’: People with a high score
in this factor have a positive vision toward car-sharing. They believe that car-sharing
is cheaper, easy to maintain, and more environmentally friendly than car ownership.

• Factor 4: ‘Car-sharing is a good alternative to car ownership’: this factor accounts
for the statements which state that using car-sharing can replace the ownership of a
private car specially if you do not mind sharing your car.

Even factor 4 only has one loading, we consider it sufficiently uncorrelated with the other
factors and decide to include it not to lose valuable information.
Table 3 present the final loadings associated with each factor. We also computed the Cron-
bach’s alpha test, that indicates how closely related a set of items are as a group. Ideally, it
should be at least 0.7, but we also accepted the factors with a lower level since its structure
is coherent with the meaning of the factors.

F1
(Cronbach’s

alpha= 0.516)
F2

F3
(Cronbach’s

alpha= 0.578)

F4
(Cronbach’s

alpha= 0.578)
I feel stressed when driving. 0.779 0 0 0
For me, a car is also a status symbol. 0 0 0 0
It is difficult to find parking. 1.039 0 0 0
It’s easy for me to conduct my daily trips without a private car. 0 0 0 0
Owning and using a car is a big expense. 0.717 0 0 0
Driving a private car is the most convenient way to move around. 0 1.092 0
I am worried about the environmental footprint of cars. 0 0 0 0
Car sharing is more affordable than owning my own car 0 0 0 0
Car sharing is more convenient than public transport 0 0 0 0
Car sharing is a more environmentally friendly alternative to car ownership 0 0 0.858 0
By using car sharing, I do not have to deal with vehicle maintenance and repair 0 0 0.878 0
Thanks to car sharing, I can save from the fuel, taxes, insurance and parking
expenses associated with private vehicle ownership 0 0 1.037 0

Having access to different types of vehicles is an important advantage 0 0 0.815 0
Using a car sharing service can lower my transport expenses 0 0 0.837 0
Using car sharing whenever I need it can make my life easier 0 0 0 0
I would not need to buy a car at all because I can use car sharing 0 0 0 0.946
I would not mind sharing my personal car with other people 0 0 0 0.909

Table 3: Results of the Confirmatory Factor Analysis - Factor Loadings

4.4 State preference experiment

The fifth part of the survey was a State Preference (SP) experiment, where the results
can help us better understand the effect of different car-sharing plans on the choice of the
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respondents.
Each experiment task presented four car-sharing alternative plans with eight attributes and
the option to select ’None of the alternatives.’ The fourth task combined the previous
alternatives chosen in the three experiments before. Therefore, they could choose their
preferred alternative among all the ones presented to them.
Figure 21 shows an example of the format of a choice task presented to the decision-makers.
To minimize response bias, the order of appearance of the attributes was random for each
individual but was the same for the three tasks presented to the same individual.

Figure 8: Example of choice task presented to respondents

Table 4 presents all the attributes employed and their corresponding levels. They were
selected by considering the published literature and a qualitative survey previously con-
ducted. The levels for the one-time subscription cost attribute and the cost usage attribute
in Copenhagen depended on the car-sharing service type, and they are presented in the ap-
pendix section A.1. The cost-usage includes many levels to test if different ways of presenting
the cost influence respondents’ choices.
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Attribute Variable type Levels of the attributes
1: up to 5 min
2: 6 to 10 minWalking time access

to the vehicle Continuous
3: 11 to 15 min
1: 10 out of 10 request
2: 9 out of 10 requestProbability to get a

share vehicle Continuous
3: 7 out of 10 request
1: One model of small city cars
2: Small city cars and sedan carsCar-sharing vehicle types Dummy
3: Small, sedan and SUV cars
1: Combustion
2:ElectricCar-sharing vehicle engine type Dummy
3:Mix of combustion and electric
1: Up to 5 min
2: 6 to 10 minWalking time from the parking

location to destination Continuous
3: 11 to 15 min
1: Guaranteed child car seat availability
2: Family/friends account with
discounted rates
3: A business account with discounted rates
4: Booking in advance
5: Plan including other modes for a
seamless door to door trip

Extra features Dummy

6: Collect credits to redeem for goods

Table 4: Description of the attributes of the alternatives

After the experiment, respondents could indicate how frequently they would use the
most preferred alternative, and the results were compared with the initially stated frequency.
In this way, we can observe whether the selected plan would lead to an increase, decrease,
or no change in their car-sharing usage.

Figure 9: Change in car-sharing usage:
Copenhagen’s members and past-members

Figure 10: Change in car-sharing usage:
Copenhagen’s non members
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In figure 10, it is interesting to see that 66.3% of the non-members’ respondents would
become members of car-sharing if their selected plan were available. On the other hand,
figure 9 shows that almost 70% of the car-sharing members would increase or remain their
use given this new alternative.
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5 Results and discussion

In this section we present our results for the previously formulated models, employing
the data describe in section 4.

5.1 Definition of the alternatives

In table 5, we present the alternatives of the choice set, that will be equal to all models,
with their corresponding abbreviation and number in the choice set.

Alternative
number Alternatives Abbrevation

1 Roundtrip car-sharing RT
2 One-way car-sharing - Station based OWST
3 One-way car-sharing - Free-floating OWFF
4 Peer-to-peer car-sharing P2P
5 None of the above -

Table 5: Alternatives with their corresponding abbreviation and number in the choice set

All alternatives refer to a type of car-sharing.
As the name suggests, one-way car-sharing - Station-based is a car-sharing business type
where the cars are in fixed locations around the city. The user can take a vehicle from a
car park and return it to the same place or another location fixed by the company. On the
contrary, in one-way car-sharing - free-floating, the users can pick or return the car in an
available spot in the city without imposing fixed stations. This CS type gives extra freedom
to their user in planning their route.
In roundtrip car-sharing (RT), the cars rest in parking garages scattered around the city and
the suburbs, where they are picked up and dropped off in the exact location when finished.
The driver has no space problems when he wants to return the car and does not overload
the available parking slots in the city, as in the free-floating CS. Still, it can be inconvenient
to find a nearby parking garage, depending on the destination.
Finally, peer-to-peer (P2P) car-sharing occurs when a vehicle owner rents out its car to other
users for a short-time period. Unlike the other CS types, they are individual car owners who
offer their vehicles.

5.2 Mixed logit results

We have started our analysis by computing a mixed model without latent classes to
find out which attributes and features are more relevant for the individuals when making
the decision.
The correspondent utilities are defined by,

Uint = ASCi + βixXint + βZZn + αin + σCSplans + ϵint (51)
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where ASCi is the alternative-specific constant representing the average effect on the utility
of all the factors not included in the model. βix and βZ are the vectors of coefficients that
account for the impact of the attributes of the alternatives Xint, and the socioeconomic vari-
ables Zn, on the utility; they are coefficients to be estimated. αin are error terms normally
distributed across individuals that capture the correlation among choices for the same indi-
vidual (panel data), σCSplans accounts fro the correlation between the different alternatives
and ϵnit is the independent and identically distributed error term following an extreme value
distribution.
We have estimated the model using PandasBiogeme [34], and the coefficients with their stan-
dard deviation are presented in table 6. The final model includes only the variables which
coefficients were found stadistically significant.
The cost of usage, subscription and the age have been scaled for their inclusion in the model.
Their corresponding scales are,

Xit,subscription cost scaled =
Xit,subscription cost

100
Xit,usage cost scaled = Xit,usage cost ∗ 10

Xit,age scaled =
Xit,age

10

(52)

All cost variables were converted to euro with the exchange rate 1 EUR = 7.4434DKK.
On the other hand, Xit,hour_package and Xit,day_package are dummy variables that are activated
when the price is presented per hour or per day, respectively, to represent the influence of
the price format in the utility.
When different levels of the same categorical variable are included in the model, one is set to
zero to reduce the number of model parameters since only the differences in utility matter.
A mix of combustion and electric motor is the base level for the CS vehicle engine. (Its beta
value is imposed as zero). For the price format, given the cost in minutes is the reference
level. The category ‘one model of small city car’ is the base level for the CS vehicle type
attribute. For more information about the attributes’ levels presented in the experiment,
the reader is referred to table 4 and to the appendix section A.1.
The socio-demographic variables included in the model were age, car-sharing membership,
gender, and the presence of kids at home, all included as dummy variables.
Finally, after testing the model with different combinations of the incentives offered (extra
features), any of the incentives appeared relevant.
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Variable Estimate Rob. Std. err
ASC-OWFF 5.75 1.08
ASC-OWST 5.71 1.08
ASC-P2P 7.37 1.07
ASC-RT 5.83 1.09
αpanel effect −OWFF 1.01 0.21
αpanel effect −OWST 1.09 0.22
αpanel effect − P2P 0.91 0.23
αpanel effect −RT 0.70 0.27
βOne time subscription cost -0.88 0.13
βUsage cost(OWFF,OWST,RT ) -0.07 0.03
βUsage cost(P2P ) -2.79 0.37
βUsage cost per day 0.76 0.20
βUsage cost per hour -0.32 0.18
βOnly combustion cars -0.32 0.10
σOnly electric cars 0.78 0.22
βProbability of finding a shared car 1.03 0.40
σWalking time access vehicle 0.06 0.03
βWalking time from parking to destination -0.03 0.01
βAge -1.23 0.19
βCSMember 1.15 0.74
βKidsathome 1.64 0.73
σCSplans 5.00 0.49

Table 6: Mixed logit model results

In table 6 we observe that the ASC corresponding with the P2P alternative shows
the highest value, suggesting a preference for this CS service type without considering all
other attributes. Since the variables for the panel effect turn out significant, there are
some correlations between the choices of the same decision-maker, underlining the presence
of unobserved individuals’ factors. Moreover, the variance accounting for the corrections
between plans shows unobserved common relationships between CS service types.
On the other hand, all cost coefficients are negative, as we expected under the behavioral
theory. The usage cost coefficient has the same value for the alternatives OWFF,OWST
and RT, but it is significantly different and presents a more negative value for P2P. This
coefficient suggests that given specific characteristics of peer-to-peer CS services, users are
less willing to pay the same as for the other alternatives, with everything else equal.
Furthermore, if the price format is given per day, it is seen more negatively as given per
hour, and the price format per minute is preferred for any CS service. Probably, the cause
is that individuals expect to drive CS cars for relatively short trips. The data support this
evidence: around 50% of the responders used the shared car for up to one hour.
The coefficient for the walking time to reach the destination is significant but present a small
value. However, the walking time to access the car has high heterogeneity. We have modeled
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its coefficient with a normal distribution, resulting in a mean value of zero and a standard
deviation of 0.06. This result suggests that while some people may find walking to the car
uncomfortable, others are more inclined to walk for a few minutes before getting into the
car, which is also related to the active mode culture in CPH.
The type of CS engine was also relevant for the analysis. It turned out that responders from
CPH see more positively CS services with electric engines rather than a mix of combustion
and electric engine (reference level), being the combustion engine type their least preferred.
This may be due to concerns about increasing the pollution level, reflected by the Danish
environmental culture.
The attribute accounting for the probability of finding a car also relevant and its coefficient is
positive since as the probability of finding a car increases, the utilities also have to increase.
For the socio-demographic characteristics, the increase in age negatively affects the likelihood
of choosing any CS service. This tendency is also present in [35], where the possible causes
were the long-term habit of owning a car and the generation influence.
Being a CS member increases the utilities of choosing any CS service, as we have expected
since it seems that the individual have already a predisposition for the service. Having kids
at home also increases the probability of choosing a CS service, probably related to the
respondent’s age that still has their kids at home. Also, mobility literature supports that
when there are significant life changes, such as the birth of a child, people become more
inclined to use car-sharing [37].
Concerning the income level, although some studies have found a relationship between lower
use of CS services among people with a lower income level [36], the income level did not turn
out significant for our sample.
The final model log-likelihood has a value of -1975 that can be compared with the log-
likelihood of the models presented in the following sections.

5.3 LCCM results

We extended our model once we overviewed the structure and importance of the at-
tributes and socio-demographic variables when no latent variables were present.
In this section, we present the results of the traditional LCCM model without the inclusion
of the attitudinal variables into the class membership model. We have only obtained results
for the model with two latent classes, as it has not reached convergence when the number of
classes has been increased.
The LCCM model has a log-likelihood of -1990.14, the value of the AIC is 4042.27, the BIC
is 4209.0 and the number of parameters is 31.
Table 7 shows the corresponding coefficients for both classes.
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Variable Class specific choice model
Class 1 Class 2

ASC-OWFF -3.60(1.30) 2.03(0.33)
ASC-OWST -3.36(1.29) 2.01(0.34)
ASC-P2P -0.41(1.37) 3.17(0.37)
ASC-RT -4.04(1.33) 2.04(0.34)

βOne time subscription cost -1.00(0.48) -0.71(0.11)
βUsage cost(OWFF,OWST,RT ) -0.19(0.08) -0.04(0.03)

βUsage cost(P2P ) -5.81(1.37) -2.00 (0.30)
βUsage cost per day -2.37(0.62) -0.48(0.17)
βUsage cost per hour -1.23(0.45) -0.12(0.15)
βOnly combustion cars -0.17(0.32) -0.32(0.08)

βProbability of finding a shared car 2.32(1.30) 0.73(0.32)
βWalking time from parking to destination 0.02(0.04) -0.03(0.01)

Table 7: Parameters of the LCCM without attitudinal statements

We see a clear difference in the values of the alternative-specific coefficients for both
classes. We observe negative values for class one, which imply a negative predisposition
to choosing any car-sharing service than any other means of transport, represented by the
‘None of the above’ alternative. (The representative utility (Vi) for this alternative is the
baseline, and therefore it is settled to zero).
In contrast, the alternative-specific values are positive for all the alternatives in class two,
representing an inclination for choosing any car-sharing services, where peer-to-peer seems
to be the preferred one, without considering the other features.
The cost of subscription and usage coefficients are also more negative for class one than two.
Moreover, it is worth mentioning that it is more negative for P2P than for the other alter-
natives in both classes, which shows that P2P users are more susceptible to price increases
than in the case of private use car-sharing. This fact may be related to the predisposition
of paying less for a shared service.
For both classes, the price presentation per hour is preferred rather than per day, related to
the fact that CS users tend to drive considerably short trips.
On the other hand, for those who are more inclined to use car-sharing services (class 2), a
car with a combustion engine influences their decision more negatively than those less prone
to the service. The baseline level for the engine type is a combination of electric and com-
bustion engines, which is seen more positively than only combustion cars for both classes.
It is also interesting to mention that the coefficient for the probability of finding a car is
higher for class one, which evidences that the availability of the service seems to be more
critical for those who are less inclined to use CS.
The walking time for parking to destination is slightly negative for class two and the walking
time to access the car-sharing turn out no significant and it has been removed from the
model formulation.
Table 8 presents the values of the parameter for the class membership model. Class two is
the baseline, and, therefore, all its parameters values are set to zero with no loss of informa-
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tion since only the differences in the utility matter.

Variables Parameters
Class-specific constant (Class 1) -1.28(0.54)

CS member (Class 1) -0.55(0.30)
Age (Class 1) 0.04(0.01)

Own a car (Class 1) -0.09(0.26)
Leases a car (Class 1) -1.18(0.64)
Bike at home (Class 1) -0.85(0.39)
Kids at home (Class 1) -0.49(0.29)

Table 8: Parameter of the class membership LCCM model without attitudinal statements

We recall that individuals with a higher probability of belonging to class one are less
inclined about the concept of car-sharing, which is consistent with a negative coefficient for
CS membership. Higher age is also a predisposition for belonging to class one since there
is evidence in the literature [35] suggesting that young people are more prone to use this
service. Individuals with bikes or kids at home have less probability of belonging to class
one. We have also mentioned that the literature supported kids at home as a possible factor
in increasing the likelihood of using CS. Owning a car seems not relevant for this formulation
given the high standard deviation of its coefficient compared with its value. Finally, having
access to a leased car scores negatively for the probability of class one, probably because
these individuals are more used to lease or car companies and therefore, they have more
predisposition to CS.

5.4 LCCM with attitudinal statements results

In this section, we present the results of the traditional LCCM model, where the factor
scores obtained from a Confirmatory Factor Analysis (CFA) are included in the class mem-
bership model as continuous variables.
In this case, the model log-likelihood is -1965.71, the AIC value is 4001.42, the BIC is 4189.0
and the number of parameter is 35. The likelihood value is higher than in the previous for-
mulation, as expected when including more information into the model. However, the AIC
and BIC values are smaller than in the last model, which indicates that the inclusion of more
parameters don’t seem to be overfitting the data more than in the previous formulation.
Table 9 presents the model coefficients. We observed a clear difference in the alternative-
specific constants for the two classes.
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Variable Class specific choice model
Class 1 Class 2

ASC-OWFF -3.35(1.29) 2.00(0.33)
ASC-OWST -3.16(1.29) 1.98(0.34)
ASC-P2P -0.17(1.36) 3.12(0.37)
ASC-RT -3.79(1.32) 2.00(0.34)

βOne time subscription cost -0.95(0.48) -0.71(0.11)
βUsage cost(OWFF,OWST,RT ) -0.19(0.09) -0.05(0.03)

βUsage cost(P2P ) -5.72(1.28) -2.00 (0.30)
βUsage cost per day -2.29(0.63) -0.50(0.17)
βUsage cost per hour -1.17(0.48) -0.14(0.15)
βOnly combustion cars -0.09(0.32) -0.32(0.08)

βProbability of finding a shared car 1.98(1.29) 0.75(0.32)
βWalking time from parking to destination 0.01(0.04) -0.02(0.01)

Table 9: Parameters of the LCCM with attitudinal statements

Class one presents a negative bias about CS services compared with other means of
transportation, and class two is more inclined about CS service without accounting for the
other features. The values of the betas are similar to the formulation without attitudinal
variables. Everything explained in the previous section about the beta coefficients applies
as well to this case.
Table 10 presents the values of the parameters for the class membership model. Class two
is again the baseline, and all its parameters are set to zero.

Variables Parameters
Class-specific constant (Class 1) -1.62(0.57)

CS member (Class 1) -0.20(0.32)
Age (Class 1) 0.05(0.01)

Own a car (Class 1) -0.59(0.31)
Leases a car (Class 1) -1.46(0.65)
Bike at home (Class 1) -0.63(0.40)
Kids at home (Class 1) -0.40(0.32)

F1 (Class 1) 0.04(0.14)
F2 (Class 1) -0.11(0.11)
F3 (Class 1) -0.58(0.15)
F4 (Class 1) -0.51(0.12)

Table 10: Parameter of the class membership LCCM model with attitudinal statements

Class two represents a bias to CS services in comparison with class one. For this reason,
it is not surprising that, as before, older adults have a higher probability of belonging to
class one, the one less inclined about CS. As commented before, having kids and bikes at
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home decreases the likelihood of belonging to class one. Owning a car and having access to
lease cars incline individuals to belong to class two.
Regarding the attitudinal factors, in this case, F1 and F2 do not seem relevant for the
analysis since their standard deviation is considerably high compare with its value. This
inconvenience will be solved when increasing to three classes in the GBM model since the
heterogeneity of the classes will be reduced.
However, a positive score for factors two and three correlates with negative class one likeli-
hood. We recall that factor three corresponds with a positive belief about the CS concept,
and factor four represents the agreement that car-sharing is an excellent alternative to car
ownership. Therefore, it seems that including these attitudinal indicators improves the char-
acterization of the classes coherently.

5.5 GBM without attitudinal statements results

The model formulation of this section is described in 3.4, where the class membership
model is defined as a Gaussian-Bernoulli Mixture Model (GBM).
It is important to note that for the GMM we have four different options to formulate the
covariance matrix, depending on the model complexity and the flexibility we want to archive.
In the full covariance formulation, each component of the mixture has its general covariance
matrix. It allows for the highest flexibility, but it is also the model with more parameters,
which can tend to overfit. The tied covariance formulation specifies that all mixture compo-
nents share the same general covariance matrix, reducing the number of model parameters.
On the other hand, no correlation is assumed with the diagonal covariance, where each com-
ponent has its own diagonal covariance matrix. Finally, the spherical covariance constraints,
even more, the covariance matrix assigning to each mixture component one single variance.
This model formulation only has one continuous variable in the class membership (age).
Therefore, the covariance matrix consists of only one element. We can only compare the
model with full covariance (which is equivalent to diagonal and spherical) where the vari-
ance is different for the three classes or the tied formulation where the variance is the same
for all the mixture components.
We have performed the likelihood ratio test between models with the same number of classes
to compare models with different covariance matrices.
On the other hand, we have employed the AIC and BIC goodness-of-fit and its corresponding
p-value to select the attributes and socio-demographic variables present in each model.
Table 11 shows the obtained results of the models with 2 and 3 classes and different covari-
ance matrices:

Classes Log Likelihood AIC BIC Num of parameters
GMB-LCCM

Full covariance
k=2 -1999.99 4074.64 4273 39
k=3 -1989.63 4097.27 4414 59

GMB-LCCM
Tied covariance

k=2 -1999.508 4074.17 4278 38
k=3 -1966.74 4047.48 4355 57

Table 11: GBM without attitudinal variables - models specifications
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It is clear that the best model specification is the model with 3 classes and tied covari-
ance. The beta values for this model, are presented in table 12, showing a clear difference
in the three classes’ coefficients.

Variable Class specific choice model
Class 1 Class 2 Class 3

ASC-OWFF 3.74(0.51) -3.47(1.31) -1.06(0.76)
ASC-OWST 3.12(0.53) -3.29(1.30) 0.48(0.71)
ASC-P2P 4.25(0.58) -0.36(1.40) 1.79(0.73)
ASC-RT 3.08(0.53) -4.09(1.35) 0.53(0.70)

βOne time subscription cost -1.04(0.00) -1.06 (0.48) -0.43 (0.20)
βUsage cost(OWFF,OWST,RT ) 0.06(0.04) -0.18(0.08) -0.28(0.07)

βUsage cost(P2P ) -1.23 (0.43) -5.81 (1.33) -3.41 (0.66)
βUsage cost per day -0.36(0.26) -2.42(0.64) -0.80(0.35)
βUsage cost per hour -0.11(0.23) -1.21(0.44) -0.22(0.31)
βOnly combustion cars -0.20(0.13) -0.07(0.32) -0.60(0.17)

βProbability of finding a shared car -0.19(0.49) 2.28(1.30) 2.52(0.66)
βWalking time from parking to destination -0.05(0.02) 0.01(0.80) 0.01(0.02)

Table 12: Parameters of the GBM without attitudal variables - class specific choice model

Individuals with a higher probability of belonging to the first latent class are more pre-
disposed to car-sharing without considering the observed features. All the alternative-specific
constants have a positive value which means that the mean of all unobserved attributes in-
clined them to choose an alternative that includes car-sharing compared to any other mean
of transport.
On the other hand, latent class two is the least inclined about the concept of car-sharing.
The alternative-specific constants of this class are negatives, meaning that non-choosing any
car-sharing plan gives them more utility than choosing any CS type without accounting for
its characteristics. The cost usage and subscription coefficients are more damaging, evidenc-
ing their inclination against car-sharing use.
Class three evidences a behavior between the previously mentioned classes somewhere in the
middle. This tendency is also visible in this class beta values, which show a more neutral
predisposition towards car-sharing than other means of transport. It is interesting to men-
tion that is the class with less influence in the subscription cost, but more negatively affected
by the cost usage of all the alternatives, except P2P. Moreover, it is also the more concerned
if the type of engine car is combustion.
P2P presents a higher alternative-specific value than the other alternatives and for all the
classes. And table 12 also shows a bias towards displaying the price per minute instead of
per day or hour across all the classes, related to the fact that car-sharing users tend to drive
it for short periods.
It is also worth mentioning that the beta corresponding with the cost usage for all the al-
ternatives except P2P for the first latent class has a positive value, which contradicts the

5.5 GBM without attitudinal statements results Page 41 of 54



Attitudes and Latent Class Choice Models using Machine Learning:
An application in Car-Sharing

theory of choice models, even if this coefficient has a large standard deviation. This issue
will be solved in the subsequent models when including attitudinal variables in the class
membership.
If the engine type of the car is combustion, it scores more negatively for the classes that
are more inclined about the concept of car-sharing than for the least willing. Therefore,
car-sharing could be seen as an electric alternative to those who are more worried about the
environmental footprint of their trips.
Regarding the probability of finding a car, it is a more important feature for those less in-
clined to use car-sharing and those more neutrally inclined, which are more dependent on
the availability of the service.
The distribution of the socio-demographic variables in the class membership model is pre-
sented in table 13. The continuous variable age is standardized, which means that a latent
class with a negative value of age is characterized by individuals younger than the average.
For the categorical variables, the values shown in table 13 are the probability of presenting
the feature or not, given that the individual belongs to that class.

Variables Class 1 Class 2 Class 3
Age Continuous -0.324 0.464 -0.234

Own a car Yes 0.652 0.755 0.633
No 0.348 0.245 0.367

Leases cars Yes 0.082 0.029 0.064
No 0.918 0.971 0.936

Bike at home Yes 0.974 0.869 0.944
No 0.026 0.131 0.056

Kids at home Yes 0.332 0.116 0.189
No 0.668 0.884 0.811

CS Member Yes 0.227 0.113 0.195
No 0.773 0.887 0.805

Table 13: Mean matrix of the class membership model (GBM without attitudinal variables)-
Tied covariance K=3

Individuals with a higher probability of belonging to class one, the most inclined to use
car-sharing services, tend to be the younger ones with more kids at home and more access
to a leased or company car. They are also the most likely to be CS members and have at
least one bike at home compared to the other classes.
However, individuals with a higher probability for class two, the least inclined about CS,
tend to be older than the average. In addition, they owned more cars and fewer bikes than
individuals with a predisposition for the other classes, and they are the ones with fewer kids
at home. They tend to be less likely to be car-sharing members, which correlates with the
results of its class choice model, and almost no one has access to a leased or company car.
While class two grouped individuals with opposite socio-demographic characteristics than
class one. Class three is a trade-off between them for all the socio-demographic characteris-
tics. For example, individuals with a higher probability of belonging to this class tend to be
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younger than the average but still a bit older than individuals with a predisposition to class
one.
To have a clear idea of the class configuration, we plot the percentage of the socio-demographic
variables and the average value for the age for each class in figure 11.

Figure 11: Classes configuration for GBM model without attitudinal variables

5.6 GBM with attitudinal statements results

We go one step further in the analysis by incorporating attitudinal variables into the
model, which we expect will give us more insight into the decision behavior. We included the
information of the attitudinal statements as psychological indicators in the class membership
model. Table 14, shows the specifications for models with a different number of classes and
types of covariance matrices. As in the previous section, the likelihood ratio test has been
employed to select different covariance matrices within the models with the same number of
classes.

Classes Log Likelihood AIC BIC Num of parameters
GMB-LCCM

Full covariance
K=2 -1980.84 4111.7 4515 75
K=3 -2006.72 4239.44 4847.0 113

GMB-LCCM
Tied covariance

K=2 -1980.64 4081.3 4404 60
K=3 -1966.11 4098.2 4544 83

Table 14: GMB with attitudinal variables - models specification

The models are sensitive to starting values and could not guarantee convergence to the
global maximum. We have employed different sets of random initialization points for the
models with two classes, all of which have reached convergence.
On the other hand, it was not easy for the models with three classes to arrive at a global
maximum. We have employed as initial values the coefficients from the previous models
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with two classes, and we have set the parameters of the third class to zero. The solution
was stable with this initialization but did not guarantee to find the global maximum. Thus,
we have employed random initialization, in the case of the model with tied covariance and
three classes, which has allowed us to reach a better value of likelihood.
Therefore, the convergence of the models needs to be analyzed further. However, we think
that including more data would have been the first step to having more stable models since
the number of parameters is high compared with the number of observations. The number
of observations used to estimate each parameter could become insufficient in some cases.
We have also tried to model four classes, but we could not find a model that converged,
probably due again to the small size of the dataset compared with the number of parameters.
The models with tied covariance have been selected. They have a higher likelihood value,
employing fewer parameters, which also prevents overfitting.
In table 15, we present the parameters of the model with three classes and tied covariance.

Variable Class specific choice model
Class 1 Class 2 Class 3

ASC-OWFF -3.60(1.32) -3.64(2.07) 2.36(0.36)
ASC-OWST -3.47(1.32) -1.62(1.75) 2.31(0.37)
ASC-P2P -0.54(1.42 2.04(1.77) 3.21(0.40)
ASC-RT -4.2365(1.40) -0.57(1.74) 2.19(0.37)

βOne time subscription cost -0.80(0.47) -0.27 (0.49) -0.61(0.00)
βUsage cost(OWFF,OWST,RT ) -0.18(0.04) -0.18(0.08) -0.02(0.03)

βUsage cost(P2P ) -5.66(1.26) -6.5(1.5) -1.66(0.32)
βUsage cost per day -2.30(0.66) -2.34(0.85) -0.40(0.18)
βUsage cost per hour -1.09(0.45) -1.26(0.71) -0.07(0.16)
βOnly combustion cars 0.03(0.32) -2.06(0.54) -0.22(0.09)

βProbability of finding a shared car 2.23(1.32) 6.14(1.74) 0.42(0.34)
βWalking time from parking to destination 0.00(0.03) 0.00(0.05) -0.03( 0.01)

Table 15: Parameters of the GBM with attitudal variables (K=3, tied covariance) - class
specific choice model

In this case, we can see the same tendency as before, where class one is not inclined
about the concept of car-sharing (negative alternative-specific coefficients), while class three
is predisposed to car-sharing (positive alternative-specific coefficients), regardless of its char-
acteristics.
Moreover, we also observed a class with a more neutral predisposition about car-sharing, as
before. Even some alternative-specific have a negative sign, the standard deviation is high,
evidencing a significant heterogeneity around zero for these coefficients.
The P2P car-sharing alternative continues to be the preferred one across all the classes, even
an increase in its price is viewed more negatively, as we have commented before. The price
presentation per hour instead of per day is more convenient for all classes, even though the
price per minute is still preferable.
Cars with combustion engines are seen unfavorable in classes three and two, specially in this
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last one; while it is not significant in class one, the less inclined about CS services.
On the other hand, class two, the more neutrally incline about the CS concept, also presents
a high value for the probability of finding a car-sharing, which shows a potential increase in
CS use for individuals in this class if CS services maintain high rates of availability.
Finally, the walking time to arrive at the destination seems to be a minor drawback for
decision-makers with a predisposition to CS usage. However, its value is not so crucial in
the decision for individuals in class one and two.
Traditionally, the estimated cost and time coefficients ratios provide information on the value
of time. By definition, the value of time is the extra cost a person would be willing to incur
to save time. However, our application does not include the time parameter as a coefficient
into the model and this value can not be compared for the different classes.
Finally, table 16, we present the information about the socio-demographic variables together
with the factors extracted from the CFA of the attitudinal questions that provide us extra
insights into the class membership model.

Variables Class 1 Class 2 Class 3
Age Continuous 0.474 -0.543 -0.256
F1 Continuous -0.165 0.921 -0.008
F2 Continuous 0.071 -1.178 0.105
F3 Continuous -0.294 0.173 0.180
F4 Continuous -0.386 0.504 0.200

Own a car Yes 0.765 0.159 0.702
No 0.244 0.841 0.298

Leases cars Yes 0.029 0.088 0.073
No 0.971 0.912 0.927

Bike at home Yes 0.867 1.000 0.957
No 0.133 0.000 0.043

Kids at home Yes 0.116 0.000 0.306
No 0.884 1.000 0.694

CS Member Yes 0.114 0.195 0.215
No 0.886 0.805 0.785

Table 16: Mean matrix of the class membership model (GBM with attitudinal variables)-
Tied covariance K=3

In this case, the socio-demographic distributions in class one is similar to the GBM
model without factors and three classes. People with a higher probability of belonging to
this class tend to have more cars and fewer bikes at home than the other classes. Also, it
has the lowest percentage of CS members and people with access to lease cars of the three
classes.
However, it is interesting to mention that the configuration of class two changes with the
inclusion of the attitudinal factors. Individuals with a higher probability of belonging to
class two tend to be very young people, without any kids at home, with bikes, and it is
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the class with the highest likelihood of having access to lease or company cars and the least
incline to own a car. In addition, the probability of being a CS member is around 20%, a
bit above the average, considering that the sample percentage is 17.5% for the individuals
living in CPH.
On the other hand, class three is also represented by individuals younger than the average.
It is the class with the highest probability of being a CS member and having kids at home.
According to the literature, these facts support car-sharing services, as we have mentioned
before. The other features present values in the middle between the other classes means.
In figure 12, we represent the distribution of the socio-demographic variables more visually.

Figure 12: Classes configuration for GBM with attitudinal variables

Regarding the attitudinal indicators included through the scores factor, we see that
class one has the fewest car-related issues, which is consistent with being the class with more
percentage of car ownership. The factor accounting of the inclination toward the car-sharing
concept is below the average, as well as the belief that CS is a convenient alternative to car
ownership, as we expected.
On the other hand, people belonging to class two have more car-related issues. This fact
directly connects with being the class where people own fewer cars, only around the 16%.
They strongly disagree with the affirmation that driving a private vehicle is the most conve-
nient way to move around, and they are inclined to think positively about car-sharing. They
believe CS is an excellent alternative to car ownership, and they wouldn’t mind sharing their
car with other people.
Class three is the most inclined to think positively about car-sharing services according to
its value for factor three, which is also reflected in its alternative-specific coefficients. They
also agree that CS is an excellent alternative to car ownership above the average of sample
opinions. Surprisingly, people in this class tend to agree that driving a private car is the
most convenient way to move around.
Figure 13 show us a more visual distribution of the standardized factor scores for each class.
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Figure 13: Standardized factor scores for each class - GBM model

5.7 Comparison model with & without attitudinal statements

In this section, we compare the GBM model with three classes, including the attitudi-
nal indicators and without them, and how individuals in the sample change class with the
inclusion of attitudinal information in the model.
Our comparison is limited since the GBM is a probabilistic approach model, where each
individual has an associated probability of belonging to each class. For the visualization
of figure 14 we have assigned to each individual the class with the highest probability of
belonging, which produces a bias and underestimates the classes with low shares. It is also
important to note that the classes without attitudinal statements are not the same as with
them since they are two different models and the configuration of socio-demographic vari-
ables is different.
However, we consider interesting to visualize how most individuals with the highest probabil-
ity of belonging to the class more inclined about the CS concept (according to its alternative-
specific values) are also more inclined about CS when we include the attitudinal statement.
The opposite applies to the individuals belonging to the class least prone to CS.
The second insight that we can get from figure 14 is that the probabilities of belonging to
each category in the model with attitudinal statements are more extreme. Because it assigns
individuals more equitably to the different classes when the assignment criterion is the class
with the highest probability. This can help us design more targeted policies since we can
better characterize a population group when their class assignment is more defined.
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Figure 14: Parallel category plot - classes in models with and without attitudinal information

5.8 Comparison LCCM & GBM model results

In this section, we will compare the models with attitudinal question and two classes
for the LCCM and the GBM. For the LCCM approach no more than two classes could be
estimated due to convergence problems.
Figure 15 shows that the parameters estimates of both class-specific choice models are almost
the same.

Figure 15: Comparison LCCM and GBM-LCCM choice models (K=2

Therefore the changes in the model specifications are cause by changes in the member-
ship models. They are presented together in figure 16.
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Figure 16: Comparison LCCM and GBM-LCCM class membership models (K=2)

Even if the likelihood value is better for the LCCM model in this case, we can conclude
that the GMB-LCCM allows us to capture more heterogeneity than the LCCM since it
can capture up to three latent classes. The GBM has more flexibility than the linear-in-
parameters utility specification of the latent classes of the LCCM.
In addition, the specification of the classes becomes more easily interpretable in the GBM
model since it returns us the corresponding percentage for each attribute in each of the
classes.

5.9 Embeddings model results

We had trained and tested our data both with the E-MNL and the EL-MNL formula-
tion, explained in section 3.6.1 and 3.6.2, respectively.
We have chosen the E-MNL formulation for the interpretation of the embedding space. Even
though this model has a lower log-likelihood than the EL-MNL model in the train set, the
likelihood increases in the test set. This indicates that the EL-MNL model, which is more
complex, may overfit the data.
The analysis of the beta values is not comparable with the other models since no latent classes
are present. Therefore, we based our results on the interpretability of the embeddings’ di-
mensions, which provides more insights into the influence of the attitudinal statements on
the choice.
We present hereafter the value of the embeddings scaled by the betas, allowing us to compare
all the categorical variables together. A higher positive value along each alternative-specific
axis indicates a higher positive effect on the corresponding alternative. The opposite hap-
pens if the value is negative.
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Figure 17: Dimesion 1-(RT) of embeddings space

For dimension one that maps with alternative 1 (Roundtrip-CS), the highest values
of the embeddings, which can be interpreted as a tendency for choosing this alternative,
correspond with totally agree with the statement that it is difficult to find parking and
totally disagree that a car is a status symbol, followed by totally agreeing with the feeling of
stress when driving and that car-sharing prevent to not deal with vehicle maintenance and
repair, in this order.
The lowest two values of this embedding dimension, in other words, the categorical variables
that minor increase the utility of choosing this alternative, everything else being equal,
correspond with totally disagree this the previous statement and being more than 70 years.

Figure 18: Dimesion 2-(OWST) of embeddings space

On the other hand, in the second dimension of the embedding space (OWST car-
sharing), the highest values of the embeddings correspond with the categories of considering
challenging to find parking and thinking car-sharing makes life easier. Together with the
total disagreement that it is easy to conduct daily trips without a private car and to have
access to a leased or company car.
The lowest values in this dimension correspond with a total disagreement that car-sharing
help to save from the fuel, taxes, insurance, and parking expenses, together with a total
disagreement that the car is a considerable expense.

5.9 Embeddings model results Page 50 of 54



Attitudes and Latent Class Choice Models using Machine Learning:
An application in Car-Sharing

Figure 19: Dimesion 3-(OWFF) of embeddings space

For the third dimension of the embedding space connected with the alternative OWFF
car-sharing, the highest values correspond with not minding sharing their car with other peo-
ple, feeling stress when driving, and thinking that car-sharing is more convenient than public
transport. A total agreement with the difficultly of finding parking and that car-sharing is a
more environmentally friendly alternative to car ownership. The lowest values, which every-
thing else being equal, reduce the probability of choosing this type of CS, correspond with
not having a bike at home, being more than 70 years old.

Figure 20: Dimesion 4-(P2P) of embeddings space

For the fourth dimension of car sharing, it is interesting that the highest value correspond
with a disagreement about the possibility of CS for saving from the fuel, taxes, insurance,
and parking expenses associated with private vehicle ownership.
They totally agree that using a car sharing service can lower my transport expenses and
totally disagree Driving a private car is the most convenient way to move around, a total
agreement that with the feeling of stress when driving, and an agreement to share their
personal car with other people.
The lowest two values correspond with believing that the car is also a status symbol and
disagreeing about the difficulty of finding parking.
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Figure 21: Dimension 5-(None of the above) embeddings space

The last dimension of the embeddings space corresponds with not selecting any of the
car-sharing services offered in the other alternatives. The categories with the highest values
in this dimension are being over 70 years old and not having a bike at home. Also, disagree
that having access to different vehicles is an advantage and a neutral belief about the car as
a status symbol. Also, the disagreement with do not have to deal with vehicle maintenance
and repair when using CS. The lowest two values of this embedding dimension correspond
with totally agree with feeling stress when driving and being less than 36 years old.
We have observed the tendency that young people are more likely to subscribe to a CS plan
on several embedding dimensions.

5.10 Discussion

All benchmark models have been evaluated according to goodness-of-fit measures, in-
terpretation of the latent classes and parameter estimates signs of the class-specific DCMs.
Likelihood ratio tests have been used for selecting between different types of covariance ma-
trices for the GBM-LCCM and to detect possible over-fitting.
Our results suggest that the inclusion of attitudinal variables not only improves the estima-
tion, which is expected when including more information, but also modifies the configuration
of the classes. In addiction, the DCM becomes more behaviorally realistic. For example,
individuals who are inclined towards the concept of CS tend to be grouped together in clus-
ters with higher parameter estimates in the utility of choosing CS plans. This indicates that
beliefs and attitudes play a key role in decision-making and including this information allows
for a more accurate estimation and a better understanding of the classes.
The LCCM has better goodness-of-fit measures for the models with and without attitudinal
indicators. However, it was only able to identify two classes, while the GBM-LCCM can
identify up to three. Moreover, the specification of the classes for the GBM model is more
comprehensive than the LCCM because it can provide the mean of the attitudes scores and
socio-demographic characteristics for each group. In addition, it is more flexible since it is
not restricted to linear equations for the formulation of the classes, as in the case of the
LCCM.
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6 Conclusions

We have compared several discrete choice model formulations. We started with a model
without latent classes to identify the more relevant features, and we have gradually increased
the complexity of the models.
We focused on the relevance and impact of the inclusion of attitudinal information in the
models, evidencing its importance in the configuration of the latent classes. It allows us
for extra insights to help us design better policies by having a more realistic population
segmentation. When creating new approaches to attract and retain car-sharing members,
attitudinal information allows us to focus on changing beliefs and mentalities that we know
are closely related to individual choices. Finally, it also helps to understand better how the
decision-making process works from a theoretical point of view.
Regarding our car-sharing application, we have also improved our understanding of how the
features of the car-sharing business can maintain and attract new members.
We have noted the importance of the subscription and usage cost throughout all the models.
In addition, the price format is relevant for the decision, and the price per minute is the
most attractive. We have also observed that the availability of cars is essential in attracting
new members, which can be seen as an improvement opportunity for car-sharing companies.
Choosing an electric car is more favorable for those more inclined to use car-sharing, so hav-
ing a fleet of electric vehicles can be essential to maintain CS members. Finally, while the
time to reach the car did not appear relevant in Copenhagen, some efforts could be made to
reduce the walking time from the parking until the destination, which negatively influences
the choice of a CS service. One solution to this problem could be providing more parking
slots.

6.1 Limitations

We have not had time to incorporate latent classes into the embeddings models. Al-
though we designed a simple ANN model to include latent classes, the configuration of the
model and the method employed to estimate the ANN, called backpropagation, did not al-
low us to create a model that integrates the embedding information and updates the class
membership simultaneously. Without a doubt, this is a clear line of research that may bear
fruit in the future.
The second major limitation is that for the GBM-LCCM model, we have not carried out
a joint estimation of the choice model, the class membership, and the attitudinal questions
together. Instead, we have included a pre-compute factor analysis into the class membership
without considering the respondent’s choice when making the configuration of the factors.
A model where psychometric indicators are included in the GBM using Structural Equation
Model (SEM) can improve the representation of the latent classes.
The data used for the analysis is not very large, only about 520 individuals, which makes
the model estimations complicated when the number of parameters increases so much that
there are no sufficient observations to estimate each coefficient. The inclusion of data from
Tel-Aviv and Munich, obtained in the same survey, would improve this limitation. Further-
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more, it is worth mentioning that the data is not balanced regarding CS membership, as
only 17.5% of the Copenhagen respondents are CS members.
Although all the limitations presented in this work, we are optimistic that this analysis has
opened the door to future research on integrating attitudinal variables with class membership
models through machine learning techniques. This investigation could improve the overall
model fit and prediction accuracy, thanks to the discrete representation of heterogeneity due
to machine learning techniques’ ability to capture complex unobserved patterns. However,
we have always to bear in mind that the transparency and interpretability of the models are
of utmost importance. A model with high accuracy is of no use if we cannot understand it
and draw conclusions since we aim to design better policies and, in conclusion, have a better
understanding of the individual’s decision processes.
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A Appendix

A.1 Levels for the one-time subscription cost and cost usage at-
tributes in CPH

Attributes Levels
RT OWST OWFF P2P

200 kr 200 kr free free
500 kr 500 kr 250 kr 250kr

One-time
subscription

cost 1000 kr 1000 kr 500 kr 500 kr
1kr/min 1kr/min 1kr/min 150kr/day
4kr/min 4kr/min 4kr/min 200kr/day
6kr/min 6kr/min 6kr/min 300kr/day
200kr/6h 200kr/6h 300kr/6h 400kr/day
350kr/6h 350kr/6h 400kr/6h 500kr/day
500kr/6h 500kr/6h 550kr/6h 600kr/day
300kr/day 300kr/day 450kr/day 800kr/day
500kr/day 500kr/day 650kr/day 900kr/day

Usage cost

800kr/day 800kr/day 850kr/day 1000kr/day

Table 17: Levels for the one-time subscription cost and cost usage attributes
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