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Abstract: The rapid filling process in pressurized pipelines has been extensively studied using
mathematical models. On the other hand, the application of computational fluid dynamics models
has emerged during the last decade, which considers the development of CFD models that simulate
the filling of pipes with entrapped air, and without air expulsion. Currently, studies of CFD models
representing rapid filling in pipes with entrapped air and with air expulsion are scarce in the literature.
In this paper, a two-dimensional model is developed using OpenFOAM software to evaluate the
hydraulic performance of the rapid filling process in a hydraulic installation with an air valve,
considering different air pocket sizes and pressure impulsion by means of a hydro-pneumatic tank.
The two-dimensional CFD model captures the pressure evolution in the air pocket very well with
respect to experimental and mathematical model results, and produces improved results with respect
to existing mathematical models.

Keywords: computational fluid dynamics; pipeline filling; transient flow; OpenFOAM; air valve

1. Introduction

Filling and emptying processes in pressurized pipelines are common practices when it
comes to carrying out maintenance and repair work on networks by technical personnel [1].
When such activities are carried out, an interaction between two fluids occurs inside the
pipelines: air and water. Air entrapped in pipes has been a problem that causes (i) increases
in the absolute pressure of the system, (ii) vibrations in the system due to abrupt changes
in velocity, and (iii) corrosion due to temperature changes [2]. When it comes to filling
processes, the water that enters the system by means of a hydraulic impulsion begins to
occupy the space occupied by the air, generating the compression of the air pocket, which
causes overpressures [3–6].

For the study of the hydraulic phenomena resulting from filling processes in pipes
with entrapped air, research has been carried out through the development of mathematical
models based on a piston flow analysis that simulate the water–air interface, analyzing
the liquid phase, such as rigid column models [7–10] and elastic column models [6,11–13].
The authors of [14,15] have proposed a mathematical model for the analysis of hydraulic
transients that occur during rapid filling. They have obtained good approximation of
the maximum pressures reached within a cast-iron pipeline of 1020 m length and DN400
of nominal diameter. The authors of [16] presented a mathematical model to simulate
rapid filling processes and to simulate the hydraulic and thermodynamic variables in
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an experimental facility of 7 m length and 63 mm DN of nominal diameter, where they
determined that mathematical model is suitable for the reproduction of the first oscillation
in the pressure evolution and extreme values of pressure during the filling process. The
authors of [17] displayed the limitations of one-dimensional models under certain scenarios
that can be overcome using of two- and three-dimensional models.

Computational Fluid Dynamics (CFD) models in 2D and 3D can, in turn, be used
to analyze scenarios where air pockets interact with water columns in pressurized pipes,
allowing precise determination of space-time behaviour of the transient event generated
during the rapid filling process. Currently, different authors have proposed CFD models
to simulate rapid filling in pipelines with air entrapped. The authors of [5] assessed the
performance of a 3D CFD model simulating the filling process without an air valve and with
an entrapped air pocket. They obtained good agreement of the evolution of the pressure.
The authors of [18] compared the results of mathematical (1D) and experimental models
with 2D numerical models of overpressure patterns of entrapped air pockets in pipes,
in which different mesh structures are applied to compare computational convergence
criteria, and computational times. The authors of [19] simulated the transient phenomenon
generated during the rapid filling process with entrapped air using 2D and 3D CFD models.
The authors of [20] created a VOF model applying a numerical solution for the analysis
of overpressure generated in entrapped air in pipes during rapid filling processes. Rapid
filling in pipelines using the CFD models has been extensively explored through the
application of 2D and 3D CFD models; however, CFD models for the simulation of rapid
filling of pipelines with entrapped air, and considering air discharge through air valves, has
received scarce attention in the research area. In the present research, a two-dimensional
CFD model is proposed using the software Open-Source OpenFOAM, where obtained
results are compared with experimental pressure measurements done with a pressure
transducer located in a high point of an irregular pipeline system and validating the results.
The inlet pressure is regulated by a hydro-pneumatic tank, and the air release is regulated
by an air valve S050 (A.R.I. manufacturer) with an internal diameter of 3.175 mm. This
paper presents the results of 2D CFD simulations of the rapid filling process of water with
an air valve. The two-dimensional CFD model accurately represents the pressure behaviour
in the air pocket, and it is able to do so due to its ability to capture the deformation of the
air pocket in space-time during the compression and expansion stages.

2. Materials and Methods
2.1. Experimental Facility

The pressures in the air pockets simulated by the CFD model are compared with the
Experimental Test pressures collected in [16] in the hydraulic lab located at the University
of Lisbon, Portugal. The hydraulic installation is made up of an irregular polyvinyl chloride
(PVC) pipe with a nominal diameter of 63 mm, which has a total length of 7.30 m, with
horizontal reaches of 2.05 m, and inclined reaches at an angle of 30° with lengths of
1.50 m. Tests were done using a hydro-pneumatic tank of 1 m3 to produce the inlet pressure.
The pipe system is made up of an air valve S050 (manufacturer A.R.I.) with a inner diameter
of 3175 mm and an outflow discharge coefficient of 0.32, which was theoretically calibrated
by means an air valve characterization curve (see Figure 1). A pressure transducer was
located next to the air valve at the highest point of the pipe system to measure the pressure
patterns. The regulation of the system is managed by a PVC-U +GF+ electro-pneumatic
ball valve type 230 (Georg Fischer Piping Systems Ltd.,Schaffhausen, Switzerland). For all
simulations, for the experimental facility, only the electro-pneumatic ball valve located in
the section connected to the hydropneumatic tank is activated, for which a full opening is
given with an opening time of 0.2 s. Figure 2 shows the experimental components.

For the experimental facility, the hydropneumatic tank is activated and the electro-
pneumatic ball valve is opened to allow water to enter from the tank; as the pipe fills, the
pressure transducer measures the pressure patterns generated in the air pocket located in
the upper part of the irregular pipe, which has a frequency of data collection of 0.0062 Hz.
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The water hammer effect was considered for both water and air (water hammer with
entrapped air). During the measurements, the compression effect of the air pocket due
to the displacement of the water column that is pumped by the hydro-pneumatic tank
is considered. The authors of [16] conducted six experiments with two initial air pocket
lengths (X0 of 0.96 and 1.36 m) and gauge pressures guaranteed by the hydropneumatic
tank (Pi = 2.03, 5.09, and 7.64 mwc). See Table 1 for more details.

Figure 1. Characteristic outflow discharge coefficient in air valve S050.

Figure 2. Conceptual scheme of the experimental facility.

Table 1. Test characteristics.

Experimental Test Pi (mwc) X0 (m)

1 2.03 0.96
2 2.03 1.36
3 5.09 0.96
4 5.09 1.36
5 7.64 0.96
6 7.64 1.36

2.2. 1D Mathematical Model

The reference mathematical model was proposed by the authors of [16], which ana-
lyzes the rapid filling process of an irregular pipe, considering the effect of air discharge by
means of an air valve. This model considers some assumptions: (i) the filling of the water
column is modeled using a rigid column model, (ii) the air–water interface is considered
perpendicular to the main direction of a single pipe, (iii) the friction factor is constant
over the transient event;, and (iv) a polytropic model describes the air phase. The initial
and boundary conditions consider an initial time t = 0, where the water and air velocity,
displaced water column length, and change in air pocket pressure is zero. The air density
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at the start is equal to rhoa = 1.205 kg/m3. The fundamental equations of the mathematical
model are Equations (1) through (5).

dvw

dt
=

p0 − p1

ρwLw
+ g

δz1

Lw
− f

vw|vw|
2Dp

−
RbvgAp

2vw|vw|
Lw

(1)

dLw

dt
= vw (2)

dp1

dt
= kp

p1

Va

(
dVa

dt
− 1

ρa

dma

dt

)
(3)

dma

dt
= −ρava Av (4)

va = Cd p1

√√√√ 7
RT

[(
patm

p1

)1.4286
−
(

patm

p1

)1.714
]

(5)

where vw and va are the velocity of water and air, respectively; Lw = water column length; p0,
p1, and patm are the inlet pressure, absolute pressure, and atmospheric pressure condition
of the air pocket, respectively; Dp = pipe inner diameter; f = friction factor; Rbv = valve
friction coefficient; g = gravitational acceleration; Ap and Av correspond to cross section of
pipe and air valve, respectively; kp = polytropic coefficient; Va and ma are the volume and
mass of air pocket, respectively; ρw and ρa are the water and air density; cd = discharge
coefficient of air valve; R = universal gas constant; and T = temperature.

3. 2D CFD Model

2D CFD models are characterized by their simplifications of experimental models,
which have an advantage due to their usefulness in the verification of the interaction
between fluids and the computational time savings generated.

3.1. Governing Equations

For the analysis of the transient event, the CFD numerical modeling has been carried
out with two-phase flow and compressible (air) using the finite volume method along with
the volume of fluid (VOF) method. This model applies the following equations.

3.1.1. Continuity Equation

The term ∂ρ
∂t in Equation (6) indicates the variation of control volume density over

time. Second,∇(ρu) represents inflow and outflow over control volume surface. The given
equation is defined as

∂ρ

∂t
+∇ · (ρu) = 0 (6)

where ρ is the density of water or air in the studied cell, t represents time, and u is the
velocity vector of the fluid.

3.1.2. Conservation of Momentum Equation

The conservation of momentum equation is based on Newton’s second law, which
considers the forces acting on fluids, such as those generated by gravitational, shear, and
pressure stresses.

ρ

(
∂u
∂t

+ u· ∇u
)
= −∇p + µ∇2u +

1
3

µ∇(∇·u) + ρg (7)

where p is the pressure, µ is the dynamic viscosity, and g is the gravitational decelera-
tion vector.
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3.1.3. Volume Fraction Transport Equation

Reynolds transport equation is applied to a discontinuous air–water volume fraction
(γ), which takes values between 0 and 1 in each domain cell (VOF method). If γ = 0, this
indicates that there is only air presence; if γ = 1, the domain is completely occupied by
water; mean values indicate the presence of mixed water and air. This is estimated by the
following equation:

∂γ

∂t
+∇ · (γu) +∇ · (γ(1− γ)Ur) =

−γ

ρa

(
∂ρa

∂t
+ u · ∇ρa

)
(8)

where Ur is a supplementary velocity field for the compression of the interface introduced
by the Multidimensional Universal Limiter for Explicit Solution (MULES) solver for γ. The
density and viscosity according to the fraction are, thus, the following:

ρ = γρw + (1− γ)ρa (9)

µ = γµw + (1− γ)µa (10)

where ρw is the density of the water; ρa is the density of the air; and µa and µw are the
viscosity of air and water, respectively. The density and viscosity of the water and the
viscosity of the air remain constant over the transient event. The air density is determined
using the ideal gas law, therefore

ρa =
Mp
RT

(11)

3.1.4. Energy Conservation Equations

The energy conservation equation is expressed according to temperature as

∂

∂t
(ρT) + (ρT · ∇u) = ∇ · (aeff∇T)−

(
γ

Cvw

+
1− γ

Cva

)(
∇ · (pu) +

∂(ρK)
∂t

+∇ · (ρKu)
)

(12)

where K equals 0.5u2 (kinetic energy), Cvw corresponds to specific heat in a constant volume
of the water, and Cva is the specific heat in a constant volume of air. ae f f is defined as

aeff =
γktw

Cvw

+
(1− γ)kta

Cva

+
µtur

σtur
(13)

where kta and ktw indicate the thermal conductivity of air and water, respectively; σtur is the
turbulent Prandtl number (0.9); and µtur is the turbulent kinematic viscosity determined
by Menter k-ω SST model.

3.2. Numerical Solution with OpenFOAM

Open-Source Operation and Manipulation (OpenFOAM) is a free, open-source CFD
software package that employs libraries for numerical solution of ordinary and high order,
linear and nonlinear, partial differential equations ([21]). The mesh was created using the
BlockMesh utility, and the ParaView application was employed for pre- and postprocessing.

3.2.1. CFD Model Configuration

A 2D model has been set up using OpenFOAM for the simulation of rapid filling
processes with air valve. The following aspects were considered.

1. The X-axis corresponds to the longitudinal direction which matches the main direction
of the flow. The computation domain extends from Xmin (−0.20 m) up to Xmax
(3.60 m).

2. On the Y-axis the installation diameter was considered, setting it to the 3.175 mm
air valve diameter (S050 Model). This setup was created for a domain between
Ymin(−0.0257) and Ymax (0.83 m).
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3. The coordinate system center of the domain was placed in the center of the electro-
pneumatic valve.

4. The model consists of 25 blocks composed by 31,532 cells, of which 31,404 are hexago-
nal and 128 are multifaceted polygonal cells.

3.2.2. Geometry and Mesh

The system is split in two zones:

1. A dynamic mesh representing the opening motion of the electro-pneumatic valve by a
solid body motion function (Figure 3a,b). The opening phase of the electro-pneumatic
valve occurs from time t = 0.0 s to a time t = 0.2 s. The valve rotation was represented
by a tabulation of rotation versus time data.

2. A set of fixed blocks that represent the pipeline segments of the experimental set-up
where the S050 valve was placed (Figure 3b,c). As suggested by [22], the best cell
layout for 3D models was chosen, adapted to a 2D scenario.

The geometry and mesh are presented in Figure 3, as they were generated by Open-
FOAM’s BlockMesh utility, including the shape and refinement of the mesh.

(a) (b) (c)

Figure 3. Geometry and mesh of the CFD model. (a) Opening movement of the electro-pneumatic. (b) Mesh structure in
the placement of the S050 air valve. (c) Refinement towards the inlet port of the S050 air valve.

3.2.3. Boundary Conditions

The computation domain boundary is composed of seven patches: inlet, represented
by the pressures provided by hydro-pneumatic tank; outlet, represented by the S050 air
valve; top wall of the pipeline; and bottom wall of the pipeline. The remaining three are
inner patches that are necessary for the dynamic mesh at the solenoid valve. Table 2 shows
the description of the boundary conditions defined in the CFD model.

It was decided to modify the slot length in order to avoid an overly fine mesh that could
cause problems in the wall function and, moreover, excessively raise the computational
effort, mainly in the outlet system.
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Table 2. Boundary conditions.

Boundary Description

Inlet

The inlet pressure provided by the hydro-pneumatic tank is
known. ‘Inlet’ is assigned to the fixed-value boundary condition
(Dirichlet BC) with 2.03 mwc, 5.09 mwc, or 7.64 mwc values. Con-
ditions for the remaining required variables as inlet boundaries
are calculated according to the pressure.

Outlet
The outlet pressure of the system is 101,325 Pa. The air velocity is
calculated according to the resulting pressure at the mentioned
3.175 mm outlet slot of the air valve.

Top and Bottom wall

As these are walls, the zero-velocity condition is applied via no-
slip condition. As for the k, ω, and µt variables, that are necessary
for the turbulence modeling (RANS – k-ω SST), wall functions
were assigned to ensure refining so that y+ remains in the desired
range of 30 to 300 [23].

4. Results and Discussion
4.1. CFD Model Validation

For the 2D CFD model validation, the simulated patterns of pressure of the air pockets
are compared with the experimental measurements (see Figure 4). The analysis of air
pocket pressures under Experimental Tests No. 1 and 2, generated by the 2D model, does
not show significant differences from the experimental data, both in extreme values and in
wave oscillation patterns (see Figure 4a,b). According to the results, good adjustments of
the air pocket pressure behaviour during the transient event are observed.

When Pi is higher (Pi = 7.64 mwc), the determination of peak pressure loses reliability.
For Experimental Test No 3, there is no practical evidence of significant differences in the
first overpressure peak. On the other hand, for Experimental Test No. 5, the maximum
pressure value of the air pocket that the simulation obtained is 30.20 mwc and the measured
one is 29 mwc (see Figure 4c,e). The 2D model maximum pressure results during the first
peak pressure of the hydraulic transient presented maximum differences of 2.43 mwc, with
maximum relative errors of less than 9.1% and minimum of 0.71%, which are acceptable
errors in the comparison between experimental and CFD model results [24]. Maximum
pressures simulated by the 2D model (Pmax.CFD) make a highly approximate match to the
maximum experimental pressures (Pmax.Exp) (see Table 3).

Table 3. Results of the CFD model Pmax CFD vs. Experimental data Pmax.

Experimental Test Experimental Repetition Pmax.Exp (mwc) Pmax.CFD (mwc) % Experimental Error

1 1 15.10 13.73 9.10
1 2 14.98 13.73 8.38
2 1 15.24 14.33 5.95
2 2 15.04 14.33 4.72
3 1 21.30 21.45 0.71
3 2 21.65 21.45 0.91
4 1 21.35 22.24 4.18
4 2 21.65 22.24 2.72
5 1 29.65 30.20 1.98
5 2 29.08 30.20 3.84
6 1 29.05 31.65 8.91
6 2 29.18 31.65 8.43

The results of the 2D CFD model were compared to the mathematical model results
presented by [16] where both models represented peak pressures adequately. The 2D CFD
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model makes a more precise simulation of the pressure oscillation during the transient
hydraulic event compared to the mathematical model. In Figure 5, the comparison between
these two models is exposed.

As mentioned in [25], entrapped air pockets along non-straight pipes often lead to a
more complicated interaction between air and water and more complex thermal issues.
Furthermore, in 2D models, the deformation of air pockets in the 3rd dimension is not
represented. Both hypotheses could explain the differences between the CFD model and
the experimental one after the first peak.

(a) Experimental Test 1 (b) Experimental Test 2

(c) Experimental Test 3 (d) Experimental Test 4

(e) Experimental Test 5 (f) Experimental Test 6

Figure 4. Comparison between the 2D CFD model and experimental tests.
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(a) Experimental Test 1 (b) Experimental Test 3

Figure 5. Behaviour of p in the air pocket during the filling process throughout its complete release.

4.2. Influence of the Boundary Conditions

The length of the outlet slot representing the 2D air valve behaviour was modeled
using the aspect ratio Ra, which depends on the ratio of the air valve diameter to the pipe
diameter, multiplied by an adjustment factor, which takes values between 0.3 and 1.0. The
applied equation is given by:

Lr = RaDv =

(
Dv

Dt
α

)
Dv (14)

where Lr is the length of the slot; Ra is a geometric aspect ratio; α is an adjustment
coefficient; and Dv and Dt are the air valve diameter and the inner diameter of the pipeline,
respectively. Table 4 shows the influence of the geometric aspect ratio of Experimental
Test 5, considering different adjustment factors.

Table 4. Ra influence over Lr and the peak pressure. Experimental Test 5.

α Lr (mm) Pmax (mwc) % Experimental Error

0.30 0.0588 42.61 30.5
0.50 0.0981 30.77 3.76
0.70 0.1373 30.65 3.38
0.88 0.1726 30.60 3.38
0.90 0.1765 30.38 2.54
0.92 0.1804 30.35 2.44
0.95 0.1863 30.31 2.30
1.00 0.1961 30.36 2.44

The use of a geometric aspect ratio is useful to ensure an equivalent mass flow for
the two-dimensional modeling. For the assessed models, α values lower than 0.5 were
found to increase the experimental error rate obtaining higher values than in experimental
measurements. For α values between 0.9 and 1.0, the phenomenon is properly captured.
That is why this is considered the most suitable range for the selection of the aspect ratio
values for the 2D model configuration.

On the other hand, the following outlet conditions were considered for the 2D model
using OpenFOAM: fixedValue, totalPressure. The fixedValue condition sets the outlet
fixed pressure value at atmospheric (Patm). TotalPressure defines the outlet pressure value

as Pt = Patm −
1
2

ρ|U|2, where Patm is the atmospheric pressure (101,325 Pa). The Patm
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condition was employed for the adequate representation of the absolute pressure evolution
of the air pocket in the simulations (see Figure 6).

Figure 6. Influence of the outlet boundary condition over the behaviour of the air pocket.

Based on the results in Figure 6, the boundary conditions associated with a fixed value
pressure condition equal to the atmospheric pressure at the outlet boundary guarantees
the same behaviour of the air pocket pressure inside the geometric domain as when using
a total pressure boundary condition.

4.3. Near-Wall Flow Representation

In the present research, a refined mesh to the near-wall region was developed through
the integration of the wall functions to derive the velocity profile. In the analysis, the y+,
variable was defined as the non-dimensional distance from the wall towards the pipeline
interior. Figure 7 shows the results of y+ in the Experimental Tests 1, 3, and 5. There,
the model presents an acceptable range between 30 and 300 for the turbulent processes
simulation, which is an adequate range for evaluation of the non-dimensional distance [26].

Figure 7. y+ on the computational domain.

As proposed in [27], the cell size was determined based on the desired values of y+. Unlike
the conclusions reached in [27], the wall functions adequately modeled the phenomenon.
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4.4. Air–Water Interface and Overpressure Analysis

The pipeline filling process time was examined for Experimental Test No. 3. The total
time measurement of the filling process was 4 s. The 2D CFD model made possible to
establish the filling time in 3.94 s, with a difference of only 1.5% regarding the experimen-
tal measurements. Figure 8 shows the different time steps in which the pipeline filling
is occurring.

Figure 8 shows that the water column occupies the interior of the pipeline, com-
pressing the air pocket and allowing the expulsion of the air, resulting in the first peak of
overpressure at a time of 0.53 s. However, a progressive expansion is generated with the
need to release the compression energy accumulated in the air pocket, between the time
instants t = 0.535 s to t = 0.735 s, resulting in a pressure drop of the air pocket. Subsequently,
at time instant t = 1.135 s, a second overpressure peak is generated, due to the constant
thrust of the water column on the air pocket, which expands again up to time instant
t = 1.635 s. This phenomenon is progressive until the expulsion of the air pocket.

(a) t = 0.135s (b) t = 0.435s (c) t = 0.535s (d) t = 0.585s

(e) t = 0.735s (f) t = 1.135s (g) t = 1.635s (h) t = 2.135s

(i) t = 2.635s (j) t = 3.135s (k) t = 3.635s (l) t = 3.940s

Figure 8. Behaviour of p in the air pocket during the filling process throughout its complete release.

5. Conclusions

In the present study, a rapid water filling process using an air valve was simulated via
a two-dimensional, compressible and multi-stage model on OpenFOAM. The compressible
InterFoam solver worked on the governing equations of the phenomenon and the VOF
method captured the air–water interface. The k-ω SST (Shear Stress Transport) turbulence
model, and wall functions were chosen for the turbulence and high velocity gradient
modeling. The air valve was simplified using the aspect ratio length shortening for the
outlet slot, and the iteration cycles were set at a max. 1× 10−6 s, with a fixed Courant
number equal to 0.47. The 2D model results show that the OpenFOAM computational
tool and the implemented solver enables to achieve adequate configurations for coherent
results to represent and analyze this type of processes.

Within the conducted analysis to define the ideal configuration some conclusions emerged:

• The results of the first overpressure peak were well adjusted to the experimental tests,
presenting experimental errors between 0.71% and 9.10%, which represents a good
results from the numerical point of the view.
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• In contrast to the mathematical models, the CFD models adjust very well with the
pressure patterns of the respective experimental tests, this is evidenced in the pressure
patterns of the CFD models and the mathematical model, after the formation of the
first overpressure peak in the different cases (Figure 5).

• If aspect-ratio is not used to guarantee the system equivalence between the outlet
of the air valve and the 2D modeled pipeline, results will not necessarily match the
experimental data.

• The use of wall functions for turbulent layer modeling reduces the computational
effort, managing to correctly simulate the phenomenon.

• The values of y+ must remain in the range recommended by previous studies, given
that if the cell size increases, the elements of the domain will not properly display the
volume changes in the air pocket by either simulating lower values, or even matching
the experimental ones but with longer wavelengths. An excessive refinement may
result in pressure values higher than experimental values.

• The mesh refinement has a small influence on the wavelength; nevertheless, refining
the mesh achieves complexity for maintaining y+ within the defined range, demand-
ing an extreme refinement, and managing to keep the height of the first cell inside
the viscous layer, which is considered to be an unnecessary effort due to the coherent
results obtained using wall functions.
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Abbreviations

Notation
A = cross section (m2)
Cd = discharge Coefficient of air valve S050 (-)
Cv = specific heat at constant volume (m2 s−2 K−1)
D = diameter (m)
f = friction factor (-)
Fs = volumetric representation of Surface tension (CSF method)
g = gravitational acceleration vector (m s-2)
K = kinetic energy (kg m2 s−2)
kt = thermal conductivity (kg m s−3 K−1)
Lw = water column length (m)
Lr = outlet length (m)
p = pressure (kg m−1 s−2)
Pt = total pressure (kg m−1 s−2)
Pi = inlet pressure (kg m−1 s−2)
R = gas constant (kg m2 s−2 K−1 mol−1)
Rbv = friction coefficient of electro-pneumatic ball valve (m s2 m−6)
Ra = aspect-ratio (-)
T = temperature (K)
t = time (s)
Uoutlet = outlet velocity (m s−1)
u = velocity vector (m s−1)
v = velocity (mathematical model) (m s−1)
X0 = initial air pocket length (m)
y+ = non-dimensional wall distance (-)
µ = dynamic viscosity (m2 s−1)
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ν = kinematic viscosity (kg m−1 s−1)
σtur = Prandtl turbulent number (-)
ρ = density (kg m−3)
Subscripts
a = Refers to the air phase (e.g., air density)
w = Refers to the water phase (e.g., dynamic water viscosity)
tur = Refers to the turbulence conditions (e.g., turbulent dynamic viscosity)
0, 1 = Refers to the inlet and air pocket pressures
atm = Refers to the atmospheric conditions (e.g., atmospheric pressure)
p = Refers to the pipeline (e.g., pipe inner diameter)
v = Refers to the air valve (e.g., air valve cross section)
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