

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/182695

Flegar, G.; Anzt, H.; Cojean, T.; Quintana-Ortí, ES. (2021). Adaptive Precision Block-Jacobi
for High Performance Preconditioning in the Ginkgo Linear Algebra Software. ACM
Transactions on Mathematical Software. 47(2):1-28. https://doi.org/10.1145/3441850

https://doi.org/10.1145/3441850

Association for Computing Machinery

© ACM, 2021. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
ACM Transactions on Mathematical Software, Volume 47, Issue , June 2021,
http://doi.acm.org/10.1145/3441850

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Adaptive Precision Block-Jacobi for High Performance

Preconditioning in the Ginkgo Linear Algebra Software

GORAN FLEGAR, Departamento de Ingeniería y Ciencia de Computadores, Universidad Jaime I, Spain

HARTWIG ANZT, Karlsruhe Institute of Technology, Germany and University of Tennessee, USA

TERRY COJEAN, Karlsruhe Institute of Technology, Germany

ENRIQUE S. QUINTANA-ORTÍ, Departamento de Informática de Sistemas y Computadores, Universitat

Politècnica de València, Spain

The use of mixed precision in numerical algorithms is a promising strategy for accelerating scientific appli-

cations. In particular, the adoption of specialized hardware and data formats for low precision arithmetic in

high-end GPUs (graphics processing units) has motivated numerous efforts aiming at carefully reducing the

working precision in order to speed up the computations. For algorithms whose performance is bound by

the memory bandwidth, the idea of compressing its data before (and after) memory accesses has received

considerable attention. One idea is to store an approximate operator –like a preconditioner– in lower than

working precision hopefully without impacting the algorithm output. We realize the first high performance

implementation of an adaptive precision block-Jacobi preconditioner which selects the precision format used

to store the preconditioner data on-the-fly, taking into account the numerical properties of the individual

preconditioner blocks. We implement the adaptive block-Jacobi preconditioner as production-ready func-

tionality in the Ginkgo linear algebra library, considering not only the precision formats that are part of the

IEEE standard, but also customized formats which optimize the length of exponent and significand to the

characteristics of the preconditioner blocks. Experiments run on a state-of-the-art GPU accelerator show that

our implementation offers attractive runtime savings.

CCS Concepts: • Mathematics of computing→ Mathematical software; Arbitrary-precision arithmetic;

Additional Key Words and Phrases: Sparse linear algebra, adaptive precision, preconditioning, block-Jacobi,

Krylov solvers, GPU

ACM Reference Format:
Goran Flegar, Hartwig Anzt, Terry Cojean, and Enrique S. Quintana-Ortí. 2020. Adaptive Precision Block-Jacobi

for High Performance Preconditioning in the Ginkgo Linear Algebra Software. ACM Trans. Math. Softw. 1, 1
(August 2020), 27 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Improving the robustness and speed of iterative sparse linear system solvers has been an important

research topic for more than a decade. As a result, Krylov subspace methods (KSMs) are nowadays

among the most efficient algorithms for large and sparse linear systems. When applied to a linear

Authors’ addresses: Goran Flegar, Departamento de Ingeniería y Ciencia de Computadores, Universidad Jaime I, Castellón,

Spain, flegar@uji.es; Hartwig Anzt, Karlsruhe Institute of Technology, Karlsruhe, Germany, University of Tennessee,

Knoxville (TN), USA, hartwig.anzt@kit.edu; Terry Cojean, Karlsruhe Institute of Technology, Karlsruhe, Germany, terry.

cojean@kit.edu; Enrique S. Quintana-Ortí, Departamento de Informática de Sistemas y Computadores, Universitat Politècnica

de València, Valencia, Spain, quintana@disca.upv.es.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0098-3500/2020/8-ART $15.00

https://doi.org/0000001.0000001

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

:2 G. Flegar et al.

system Ax = b (with sparse coefficient matrix A ∈ Rn×n , right-hand side b ∈ Rn , and unknown

x ∈ Rn) KSMs started with an initial guess x0 produce a sequence of vectors x1,x2,x3, . . . ∈ R
n

that, in general, progressively reduce the norm of the residuals rk = b −Axk , eventually yielding

an acceptable approximation to the solution of the system.

The optimization of KSMs with respect to numerical robustness and runtime performance can

proceed hand-in-hand, for example, with the use of a sophisticated preconditioner. The motivation

behind is that the convergence of KSMs is largely dictated by the condition number of the system

coefficient matrix A. Preconditioning schemes aim to accelerate the convergence of this type of

solvers by transforming the original problem into the alternative preconditioned system (M−1A)x =
M−1b. An ideal preconditionerM−1 ∈ Rn×n yields a transformed coefficient matrix Â = M−1A with

a lower condition number than A, while admitting a software realization of the preconditioner

calculation that is relatively cheap to compute and inexpensive to apply.

An example of a preconditioner typically improving both robustness and speed is the Jacobi

preconditioner, and its straight-forward extension to a block-Jacobi preconditioner [Saad 2003].

The underlying inversion of the (block-)diagonal of the system matrix exhibits a high degree of

parallelism while offering superior convergence acceleration when applied to problems that exhibit

some inherent block structure. For example, this is the case for problems arising from a finite

element discretization of a partial differential equation (PDE) [Anzt et al. 2017a].

Other optimization strategies aim at improving only runtime performance, potentially even

allowing for some loss in the numerical robustness. One strategy that recently gained significant

attention takes advantage of lower precision formats in parts of the algorithm [Abdelfattah et al.

2020]. The motivation for this idea is that KSMs, enhanced with some form of a simple precondi-

tioner, are memory-bound algorithms, implying that their performance on current architectures is

constrained by the bandwidth between the floating-point units (FPUs) and the memory where the

data resides. In case the problem data is too large to fit into the cache memory of the processor(s),

the increasing gap between the throughputs of the processor and the main memory (also known as

the memory wall [Dongarra et al. 2014; Lucas et al. 2014],) dictates the performance of this type of

algorithms. This is a well-recognized problem, especially in the domain of sparse linear algebra

operations, where communication-avoiding techniques are particularly appealing; see, e.g., [Cools

2018; Hoemmen 2010] and the references therein.

The idea of mixed precision KSMs tackles the memory bottleneck by reducing the communi-

cation volume and memory footprint. For example, the authors of [Carson and Higham 2018]

diminish data movement (and arithmetic cost) using the standard ieee half/single/double precision

formats [Commitee 2000] in combination with iterative refinement.
1
Other efforts aim at reducing

the indexing information necessary to maintain the sparse system matrix, e.g. via the compressed

storage block (CSB) format [Buluç et al. 2009].

A technique orthogonal to these efforts targets not the KSM, but the preconditioner itself.

In [Anzt et al. 2019], we proposed to reduce the pressure on the memory bandwidth by adjusting

the precision format used to store the preconditioner [Anzt et al. 2019]. We analyzed the approach

under theoretical aspects for a CG solver equipped with a block-Jacobi preconditioner that operates

(that is, performs all arithmetic) in full double precision, while accessing the inverted diagonal

blocks of the block-Jacobi preconditioner in a problem-adapted (potentially lower) precision. More

precisely, all the problem data is stored in ieee double precision format, except the blocks of the

preconditioner, which are stored in either ieee half/single/double precision formats, depending on

their condition numbers. A type transformation is therefore required every time the preconditioner

1
In the setting of the solution of linear systems, iterative refinement is an old technique, which dates back to the use of the

first desk calculators, in the 1940s [Higham 2002].

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Adaptive Precision Block-Jacobi :3

blocks stored in half or single precision in main memory are moved to the registers (where they

are maintained in double precision). The theoretical data transfer savings were estimated using an

analytical model that takes the floating point format and the convergence impact into account. For

a significant portion of the symmetric positive definite matrices available in the SuiteSparse Matrix

Collection [Davis and Hu 2011], we observed data transfer savings of up to 70% compared with a

solver that handles all (preconditioner) data and arithmetic using double-precision.

In this paper, we build upon our preliminary theoretical analysis by deriving the first practical

implementation of the adaptive precision block-Jacobi preconditioner, proving the practical us-

ability in the context of high performance computing on state-of-the-art GPU architectures, and

disseminating the production-ready implementation along with usage examples in the Ginkgo

numerical linear algebra library.

Specifically, we make the following specific contributions:

(1) We move from a theoretical analysis of the usability and potential performance benefits [Anzt

et al. 2019] to an actual implementation of the adaptive precision block-Jacobi preconditioner,

ready to run on high-end GPUs, which leverages an ample variety of hardware-specific opti-

mization techniques ranging from cache-line alignment to cooperative group communication.

(2) We extend the idea presented in [Anzt et al. 2019] by adopting also precision formats out-

side the IEEE standard to optimize the length of exponent and significand to the problem

properties.

(3) We derive algorithm-specific kernels that entail the extraction of the diagonal blocks, the

inversion of the diagonal blocks via Gauss-Jordan elimination featuring pivoting [Anzt et al.

2018], the computation of the condition number and the data range [Anzt et al. 2018], and

the selection of the optimal storage precision. These kernels are needed for the adaptive

precision block-Jacobi preconditioner generation, and they are heavily optimized to incur

only negligible overhead compared to a standard block-Jacobi preconditioner generation.

(4) We propose an efficient compact layout to store the blocks of the adaptive precision block-

Jacobi preconditioner that optimized the memory access.

(5) We evaluate the performance of a production code realizing the adaptive precision block-

Jacobi preconditioner scheme in the framework of a high-performance CG implementation

on a NVIDIA Volta GPU. This experimental evaluation demonstrates the validity of the

approach and reveals up to 30% performance improvement over a standard (double precision)

block-Jacobi preconditioner for a large range of real-world test problems.

(6) We deploy the production-ready block-Jacobi preconditioner in the Ginkgo numerical linear

algebra library along with usage examples.

Our approach shares some of the appealing properties of the prototype in [Anzt et al. 2019].

Concretely, we employ full double precision in the generation and application of the preconditioner,

as well as in all other arithmetic computations. Furthermore, we store part of the preconditioner

in reduced precision, and convert it into full precision before proceeding with the arithmetic

operations in the actual preconditioner application. Thus, our preconditioner still ensures that the

preconditioning operator preserves orthogonality in double precision, implying that previously

orthogonal Krylov vectors are orthogonal after the preconditioner application. In consequence,

there is no need for flexible variants that introduce an additional orthogonalization step to preserve

convergence [Golub and Ye 1999].

The rest of the paper is structured as follows. In Section 2.2 we introduce the Ginkgo numerical

linear algebra library and briefly review the idea of KSMs and block-Jacobi preconditioning. More

details about the idea of decoupling the memory precision from the arithmetic precision [Anzt

et al. 2019] and the adaptive precision block-Jacobi are presented in Section 3. We elaborate on the

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

:4 G. Flegar et al.

Library	Infrastructure
Algorithm	 Implementations
• Iterative	Solvers
• Preconditioners
• …

Core

OpenMP-kernels	
• SpMV
• Solver	kernels
• Precond kernels
• …

OpenMP
Reference	kernels	
• SpMV
• Solver	kernels
• Precond kernels
• …

Reference
CUDA-GPU	kernels
• SpMV
• Solver	kernels
• Precond kernels
• …

CUDA
HIP-GPU	kernels
• SpMV
• Solver	kernels
• Precond kernels
• …

HIP

Library	core	contains	architecture-agnostic	
algorithm	 implementation;

Runtime	polymorphism	 selects	the	right	kernel	
depending	 on	the	target	architecture;

Architecture-specific	kernels	
execute	the	algorithm	
on	target	architecture;

Reference	are	sequential	
kernels	 to	check	correctness	
of	algorithm	design	and	
optimized	kernels;

Optimized	architecture-specific	kernels;

• Shared	kernels
Common

Fig. 1. The Ginkgo library design overview with the library core separated from the architecture-specific

backends for AMD GPUs (hip), NVIDIA GPUs (cuda), multicore (omp), and the reference backend for

correctness checks [Anzt et al. 2020b].

first high performance realization of the adaptive precision block-Jacobi in Section 4. We dedicate

Section 5 to motivate the need for making novel algorithms and high performance implementations

available in sustainable open source software. In Section 6, we present performance results for the

block-Jacobi preconditioner generation and application, and analyze the effectiveness and efficiency

of the adaptive precision block-Jacobi preconditioner. Next, In Section 7 we discuss some central

aspects of adaptive precision preconditioning in general and the experimental results in particular,

and conclude in Section 8 with a summary of the findings and future research directions.

2 HIGH PERFORMANCE SPARSE LINEAR ALGEBRA ON GPUS

2.1 The Ginkgo numerical linear algebra library

Ginkgo [Anzt et al. 2020a] is a modern sparse linear algebra library implemented in C++ that

embraces two principal design concepts: The first principle, aiming at future technology readiness,

is to consequently separate the numerical algorithms from the hardware-specific kernel imple-

mentation to ensure correctness (via comparison with sequential reference kernels), performance

portability (by applying hardware-specific kernel optimizations), and extensibility (via kernel back-

ends for other hardware architectures). The second design principle –aiming at user-friendliness–

is the convention to express functionality in terms of linear operators: every solver, preconditioner,

factorization, matrix-vector product, and matrix reordering is expressed as a linear operator (or

composition thereof).

A high-level overview of Ginkgo’s software architecture is displayed in Figure 1 [Anzt et al.

2020b]. The library design collects all classes and generic algorithm skeletons in the “core” library

which are accessed via the driver kernels available in th “cuda,” “hip,” “omp,” and “reference” modules.

We note that “reference” contains sequential CPU kernels used to validate the correctness of the

algorithms and serve as a reference implementation for the unit tests realized using the googletest

framework [Google Google]. The “cuda,” “hip,” and “omp” modules are heavily optimized kernel

backends for NVIDIA GPUs, AMD GPUs, and multicore CPUs, respectively.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Adaptive Precision Block-Jacobi :5

Ginkgo relies on the “executor” concept to enable platform portability. The executor specifies the

memory location and the execution space of the linear algebra objects and represents computational

capabilities of distinct devices. Each executor implements methods for allocating/deallocating

memory on the device targeted by that executor, copying data between executors, providing

hardware-specific kernels, running operations, and synchronizing all operations launched on the

executor. As all information in the executor is encapsulated and all memory allocation and kernel

selection is automatically orchestrated, the user can run a single code on different platforms without

having to modify the code by selecting a different executor in the beginning of the application.

2.2 Computational Aspects of KSMs and block-Jacobi Preconditioning

Most instances of KSMs, such as CG, BiCG, GMRES, BiCGStab, etc., are comprised of a sequence

of calls to simple computational kernels, such as the dot or inner product (dot), axpy-like vector

updates, and the sparse matrix-vector product (SpMV), inside an iteration loop [Saad 2003]. These

kernels are all memory-bound operations, with a ratio between floating-point operations (FLOPs)

and memory accesses (MEMOPs) that is O(1), globally yielding a memory-bound solver.

Block-Jacobi preconditioners split the coefficient matrix into A = L + M + U , where the pre-

conditioner defined by M = diag(D1,D2, . . . ,Dm) ∈ R
n×n

, with Di ∈ R
mi×mi

and

∑m
i=1mi = n, is

a block-diagonal matrix containing the corresponding entries on the diagonal blocks of A, while
L,U ∈ Rn×n contain the elements of the coefficient matrix below and above those of M , respec-

tively. (The scalar Jacobi preconditioner is a simple variant of the block counterparts withmi = 1,

i = 1, 2, . . . ,m, so thatM only contains the diagonal of A.) The block-Jacobi preconditioner is well
defined if the diagonal blocks Di are all nonsingular. Furthermore, block-Jacobi preconditioning is

particularly effective if the system matrix A inherently presents a block structure (which is the case

for many problems that arise from a finite element discretization of a PDE [Anzt et al. 2017a]) that

is matched by the block structure of the Jacobi preconditioner.

In this work, we integrate a block-Jacobi preconditioner that explicitly computes the block-

inverse matrix,M−1 = diag(D−1
1
,D−1

2
, . . . ,D−1

m) = diag(E1,E2, . . . ,Em), before the iteration process

of the KSM commences. The preconditioner is then applied within the KSM iteration in terms

of a dense matrix-vector multiplication (GeMV) per inverse block Ei . Thus, the iteration for the

preconditioned KSM remains a memory-bound process, as so is the GeMV kernel, independently

of the block size mi . In practice, the resulting preconditioner is of a comparable quality to the

one computed by the conventional (and numerically more stable) strategy that computes the LU

factorization (with partial pivoting) [Golub and Van Loan 1996] of each block (Di = LiUi), and then

applies the preconditioner using two triangular solves (per factorized block)[Anzt et al. 2018, 2017].

In exchange for a higher cost, the block-Jacobi preconditioner with explicit computation of the

inverses presents the appealing property of yielding an application based on a highly parallel kernel

(GeMV), compared with the constrained parallelism of the triangular systems that are necessary in

the application of the LU-based preconditioning counterpart [Anzt et al. 2017b].

3 ADAPTIVE BLOCK-JACOBI PRECONDITIONING

3.1 Standard ieee precision formats

In [Anzt et al. 2019], we proposed an adaptive block-Jacobi preconditioner that individually tunes

the storage format of each block Di depending on its condition number. The scheme adopted in that

work relies on three precision formats: 16-bit (fp16), 32-bit (fp32) and 64-bit (fp64), which correspond

to the standard ieee half, single and double precision formats [Commitee 2000], respectively. In

detail, the adaptive block-Jacobi preconditioner proceeds as follows:

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

:6 G. Flegar et al.

(1) Before the iteration commences, we explicitly compute the inverse of each block using fp64:

Di → Ei .
(2) At the same stage (i.e., before the iterative solver is started), we compute κ1(Di) = κ1(Ei) =

∥Di ∥1∥D
−1
i ∥1 = ∥Di ∥1∥Ei ∥1. As Ei is explicitly available, computing κ1(Di) is straightforward

and inexpensive compared with the inversion of the block [Anzt et al. 2018].

(3) After inverting the diagonal block Di in fp64, we store the inverted diagonal block Ei in the

format determined by its condition number—truncating the entries of the block if necessary.

Precisely, we store Ei in 
fp16 if τ Lh < κ1(Di) ≤ τUh ,

fp32 if τ Ls < κ1(Di) ≤ τUs , and

fp64 otherwise,

(1)

where the thresholds τ are set as τ Lh = 0 and τUh = τ
L
s .

(4) During the iteration, we recover the block Ei , stored in the corresponding format in memory

(as determined by (1)), transform its entries to fp64 in the processor’s registers, and apply the

block in terms of a fp64 GeMV.

A central aspect is the choice of the values for τ , which is strongly related to the question of how

much accuracy of the preconditioner should be preserved. For preserving the accuracy a of the

preconditioner (e.g., a = 10
−1
), a storage format with round-off error u can be considered valid for

a block D if κ(D) ≤ a/u. Furthermore, the value τ for this format is computed as τ = a/u. While

the round-off errors u are format-specific, but fixed, the values of τ are still variable with respect to

how much accuracy of the preconditioner should be preserved.

Due to the use of the standard formats for half, single and double precision, in the above procedure

the truncation can result in either overflows or underflows, whose consequences need to be tackled.

Here we only discuss the second case and refer the reader to [Anzt et al. 2019] for the handling of

overflows. The risk associated with underflow is that the truncation may turn a non-zero (but close

to zero) value in fp64 into a zero which in turn can make Ei an ill-conditioned (or even singular)

block, thereby causing numerical difficulties for the convergence of the KSM. In order to avoid this

issue, we examine the condition number of the truncated representation of Ei , and discard the use

of the corresponding reduced precision if it was above a given threshold τκ .

3.2 Unconventional precision formats

In addition to the three floating point formats defined by the ieee standard, this work augments

the set of considered precisions with three additional formats that can be cheaply processed using

the instruction set of NVIDIA GPUs. While it would be theoretically possible to employ any

combination of exponent and significand bits, the complexity of purely software-based format

conversion could prove detrimental to performance. However, conversions for several particular

precision configurations can be implemented efficiently.

In particular, if the conversion to lower precision preserves the number of exponent bits and the

rounding mode is limited to round-to-zero, the conversion to lower precision consists of significand

truncation, only. Converting back to full precision then conversely adds zeros as the missing

significand bits[Anzt et al. 2019]. Using the notation fpex,snf (where ex and snf denotes the number

of exponent bits and significand bits, respectively), this procedure can be used on the 64 bit ieee

double precision format (f p11,52) with 11 exponent and 52 significand bits to obtain an alternative

32 bit floating point format with 11 exponent and 20 significand bits (f p11,20) by dropping the 32

low-order bits of the original format. The range of such a format stays roughly the same as that

of ieee double precision, and the unit roundoff (adjusted for the round-to-zero rounding mode) is

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Adaptive Precision Block-Jacobi :7

Invert	the	diagonal	block
using	Gauss-Jordan	elimination.

Compute	condition	 number	
and	exponent	range.

Select	storage	format:

fp11,52

fp11,4

fp11,20

fp5,10 fp8,7

fp8,23

16-bit

32-bit

64-bit

Fig. 2. Workflow for generating the inverse block and selecting a suitable storage format. The horizontal

arrows (purple) reflect bitcount-constant traversals addressing overflow and underflow, the green vertical

arrows represent significand extensions for increasing the accuracy to the requirements imposed by the

condition number.

u = 9.54e − 7. A 16-bit format based on ieee double (f p11,4) can also be obtained by dropping the 48

low-order significand bits. The result is a format with 11 exponent and 4 significand bits and unit

roundoff u = 6.25e − 2. A 16-bit format can also be obtained by basing it on the 32 bit ieee single

precision (f p8,23). Such a format (f p8,7) has 8 exponent and 7 significand bits, and unit roundoff of

u = 7.81e − 3.

The additional formats offer a trade-off by providing formats of the same size as their ieee

counterparts, but with larger range and lower precision. They can be used to store a block that

is relatively well conditioned (and thus does not require high precision to achieve reasonable

accuracy [Anzt et al. 2019]), but the range of values in the block is such that a conventional format

would cause catastrophic overflows or underflows. The improved format selection strategy selects

the first format from the list f p5,10, f p8,7, f p11,4, f p8,23, f p11,20, f p11,52 whose unit roundoff is

small enough to deliver the required accuracy, and where the exponent range avoids catastrophic

overflows and underflows. The list is sorted by increasing sizes of the formats, which means that

the procedure selects the smallest format capable of delivering the required accuracy. Within the

same format size, the list is sorted so that priority is given to the format that offers more accuracy.

In Figure 2 we visualize the process of generating the block-Jacobi preconditioner and selecting a

suitable storage format.

4 CUDA IMPLEMENTATION

4.1 Previous work

As a starting point for the implementation of adaptive block-Jacobi kernels, we use a previous

prototype CUDA implementation of full precision block-Jacobi [Anzt et al. 2018]. The implementa-

tion includes an optimized kernel for block-Jacobi preconditioner generation which extracts the

diagonal blocks from the sparse system matrix stored in Compressed Sparse Row (CSR [Saad 2003])

format, inverts them, and stores the inverses into the GPU main memory. For each block, the entire

pipeline is executed using a single warp (a group of 32 GPU cores, roughly equivalent to a 32-wide

vector unit) with each core processing a single column of the matrix. The inversion is realized via

the highly parallel Gauss-Jordan Elimination (GJE) algorithm, and the explicit inverse diagonal

blocks are stored in row-major order to enable coalesced access both when extracting the blocks

from the sparse structure, as well as when storing the inverses back into memory. The generation

pipeline leverages the extensive register storage available in recent CUDA architectures (up to 32

KB per warp) to keep the entire block in processor registers during the computation and completely

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

:8 G. Flegar et al.

Fig. 3. Preconditioner storage scheme. Top: sequential storage used by the initial implementation. Bottom:

block-interleaved storage used by the new implementation.

avoid expensive data access. This strategy allows to efficiently process double precision blocks of

up to 32 rows and columns.

The second component of the prototype is a custom implementation of the preconditioner

application procedure. Once again, each warp is responsible for processing a single preconditioner

block. First, the section of the input vector corresponding to the block is read into the registers and

distributed among the threads of the warp. Then, for each row of the block, the warp collaboratively

reads the values in the row, forms a dot product between the input vector (already present in the

registers) and the row, and writes the result to the output vector. Processing the blocks stored in

row-major in this way ensures contiguous access to the main memory.

A final optimization included in the initial prototype involves the processing of small blocks.

If all the preconditioner blocks are smaller than some dimension k < 32, a more efficient version

of the kernel can be generated by having each thread of the warp use an array large enough to

store only k instead of 32 values. This reduces the resource requirements of the warp, allowing the

GPU to simultaneously process more warps per multiprocessor. In addition, for small values of k , a
warp can be logically split into two (or more) sub-warps; then, instead of using the entire warp

to process a single block, each sub-warp can handle the generation of one preconditioner block.

Precisely, for a maximum block size
ˆk , every warp handles 2

5−⌈log
2

ˆk ⌉
blocks:

32 ≥ ˆk > 16 1 block per warp,

16 ≥ ˆk > 8 2 blocks per warp,

8 ≥ ˆk > 4 4 blocks per warp,

4 ≥ ˆk > 2 8 blocks per warp,

2 ≥ ˆk > 1 16 blocks per warp,

1 = s 32 blocks per warp.

To enable these optimizations, we generate a kernel optimized for each maximal block size
ˆk =

1, 2, . . . , 32.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Adaptive Precision Block-Jacobi :9

4.2 Kernel improvements

Before implementing the adaptive precision version of the block-Jacobi preconditioner, we first

incorporate several improvements to the full precision block-Jacobi preconditioner.

Starting with CUDA toolkit version 9.0, NVIDIA updated the warp shuffle and warp vote APIs

used for intra-warp communication to support the new Volta architecture that features relaxed

warp execution constraints [NVIDIA Corporation 2018]. While the APIs used by the previous

implementation of block-Jacobi kernels are still available (albeit deprecated), using them causes

the kernel to stall
2
when run on the Volta architecture. In addition to the updated low-level APIs,

the CUDA toolkit version 9.0 also includes a new cooperative group APIs which encapsulates the

details of the low-level APIs. Instead of using the low level API directly, we decided to modify our

code to use this high-level alternative as it provides more flexibility and can potentially enable

better compatibility with future CUDA versions.

We also identified several additional performance optimizations concerning the memory layout

of the block-Jacobi preconditioner, specifically the question of storing the blocks in row-major

vs. column-major layout. A detailed analysis of the preconditioner application kernel explained

in Section 4.1 revealed that the time needed for intra-warp communication in the collaborative

computation of the dot product (necessary in a row-major block storage) is significant compared

with the time needed to load the data from memory, so improving that part of the kernel can render

performance gains. For this reason, we change the data layout of the preconditioner blocks to

use column-major instead of row-major storage. This enables efficient column-wise access of the

block – equivalent to a column-major gemv for each Jacobi block. The downside of this approach

is that the block data has to be transposed after the inversion, which results in suboptimal memory

accesses during the preconditioner generation step. However, since the preconditioner is generated

only once, but applied multiple times (at least once per KSM iteration), we expect this change in

storage layout will render performance improvements for most use cases.

The final improvement aims at processing small blocks more efficiently. The original implemen-

tation stores consecutive blocks in sequence, as depicted in the top part of Figure 3. With such

storage, memory access during preconditioner application is optimal for large blocks. However,

as soon as the maximal block size becomes small enough to split the warp into sub-warps, so

that several blocks are processed by the same warp, this no longer holds. Since the corresponding

columns of consecutive blocks are not consecutive in memory, reading them causes suboptimal

strided memory access. To eliminate this problem, we replace the sequential storage scheme with

the block-interleaved storage shown in the bottom part of Figure 3. The new scheme groups all

blocks processed by a warp together, and interleaves the storage of their columns. Precisely, the

scheme initially stores the first columns of all blocks in the group, then proceeds with storing the

second columns, etc.; this strategy ensures contiguous memory accesses during preconditioner

application.

The last two optimizations are essential to enable performance improvements via low precision

storage. Without the former, communication would dominate the cost of preconditioner application,

severely limiting the benefit of reduced data transfers. Without the latter, accessing small blocks

would incur unnecessary data loads into cache. Since the size of the cache lines is fixed, reducing the

size of the individual elements would just increase the amount of memory being wasted, without

reducing the total data movement volume.

2
Since only a subset of the warp was calling the API in the original implementation.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

:10 G. Flegar et al.

4.3 Adaptive block-Jacobi

Extending the full precision block-Jacobi to the adaptive precision variant requires adding the pre-

cision detection logic to the preconditioner generation, storing the blocks in appropriate precision

together with metadata specifying which precision is employed for the distinct blocks and, during

preconditioner application, restoring the original block on the fly from low precision storage using

the metadata.

The precision selection method we employ is that explained in Section 3.1, enhanced with the

additional formats introduced in Section 3.2. The condition number of the block is determined

by computing the matrix 1-norm of the block before and after inverting it [Anzt et al. 2018]. The

condition number is then evaluated against the unit roundoffs to select the optimal format using the

format priority list we introduced in Section 3.2. For precisions that require additional protection

against catastrophic underflow or overflow (ieee singe and half), the conditioning of the inverse

stored in lower precision is computed by converting each value of the inverse block to lower

precision, converting it back to double precision, followed by norm calculation, inversion, and

another norm calculation — all in double precision. This way, the condition number is computed

with high accuracy. Before reducing the precision, a copy of the full precision inverse is backed up

to main GPU memory. This allows to retrieve the full precision inverse afterwards (if necessary).

When a group of blocks is processed by a single warp (in case of small blocks), the precision is not

decided individually, but jointly for the entire group of blocks, using the first precision in the list

from Section 3.2, which is suitable for storing all blocks. This is done for performance reasons, as

trying to execute different instructions by threads belonging to the same warp — which would be

necessary to read values stored in different precisions — would lead to thread divergence, and the

serialization of these instructions, ultimately resulting in a significant slowdown.

Since the final precisions are not known before inverting the blocks, a memory workspace large

enough to store all blocks in double precision is allocated before launching the preconditioner

generation kernel. Once the storage precision is decided, low precision blocks are stored using only

the first part of the workspace they are assigned to, while the rest of the workspace remains unused

(fragmentation). While it would be possible to post-process the block storage structure to remove

unused “gaps” via de-fragmentation, doing so would not reduce the total memory transfer volume

during preconditioner application, since the total storage required for the group of blocks is a

multiple of the cache line size in any precision, as long as the block size is at least 2. In consequence,

the “gaps” will never be transferred from main memory to the cache. Thus, removing gaps is only

attractive in case the total memory footprint of the preconditioner is a relevant factor. We refrain

from incorporating de-fragmentation in our implementation.

A distinct memory block is used to store the information about the precisions used for the

inverted blocks. The precision of each block is encoded using 8 bits, which is the smallest amount of

data that can be independently stored and loaded frommemory. This information is retrieved during

the preconditioner application stage to determine the storage locations and precision formats of

individual blocks and select the correct conversion procedure.

5 USABILITY, REPRODUCIBILITY AND SUSTAINABILITY EFFORTS

As not only modern hardware but also the software that can effectively utilize the hardware

resources becomes increasingly complex, it can no longer be expected that novel algorithms or high

performance implementations presented in scientific publications are adequately explained so that

the readers can reproduce an implementation of equivalent quality. Furthermore, domain scientists

who can potentially benefit from such work, should not be required to understand low-level

optimization techniques needed to produce a high performance implementation. In consequence,

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Adaptive Precision Block-Jacobi :11

1 // Read data
2 auto A = share(gko::read <mtx >(std:: ifstream ("data/A.mtx"), exec));
3 auto b = gko::read <vec >(std:: ifstream ("data/b.mtx"), exec);
4 auto x = gko::read <vec >(std:: ifstream ("data/x0.mtx"), exec);
5

6 // Generate solver
7 auto solver_gen =
8 cg::build()
9 + .with_preconditioner(
10 + gko:: preconditioner ::Jacobi <>::build ().on(exec))
11 .with_criteria(
12 gko::stop:: Iteration ::build().with_max_iters (20u).on(exec),
13 gko::stop:: ResidualNormReduction <>::build()
14 .with_reduction_factor (1e-20)
15 .on(exec))
16 .on(exec);
17 auto solver = solver_gen ->generate(A);
18

19 // Solve system
20 solver ->apply(lend(b), lend(x));

1 // Read data
2 auto A = share(gko::read <mtx >(std:: ifstream ("data/A.mtx"), exec));
3 auto b = gko::read <vec >(std:: ifstream ("data/b.mtx"), exec);
4 auto x = gko::read <vec >(std:: ifstream ("data/x0.mtx"), exec);
5

6 // Generate solver
7 auto solver_gen =
8 cg::build()
9 + .with_preconditioner(
10 + gko:: preconditioner ::Jacobi <>::build ()
11 + .with_storage_optimization(
12 + gko:: precision_reduction :: autodetect ())
13 + .on(exec))
14 .with_criteria(
15 gko::stop:: Iteration ::build().with_max_iters (20u).on(exec),
16 gko::stop:: ResidualNormReduction <>::build()
17 .with_reduction_factor (1e-20)
18 .on(exec))
19 .on(exec);
20 auto solver = solver_gen ->generate(A);
21

22 // Solve system
23 solver ->apply(lend(b), lend(x));

Fig. 4. Changes needed to enhance Ginkgo’s simple_solver usage example with the full precision block-

Jacobi preconditioner (top) and adaptive precision block-Jacobi preconditioner (bottom).

it is becoming increasingly important to openly publish high performance implementations and

simplify their integration into other software ecosystems.

To address these issues, we integrate both the full-precision block-Jacobi preconditioner as well

as the adaptive precision variant into the open source Ginkgo linear algebra package
3
. Ginkgo

is a C++ library originally designed for the iterative solution of sparse linear systems. It features

various matrix formats and solvers with high performance implementations for both GPU and

CPU architectures, and allows for the easy integration into existing software stacks. At this point,

the (adaptive) block-Jacobi preconditioner is available in “reference mode” (a single threaded

straightforward CPU implementation that can be used for correctness checking and evaluating the

convergence benefits of the preconditioner) as well as in “CUDA mode”, with the latter featuring

the high performance GPU implementation described in this work. A high performance CPU

implementation based on OpenMP parallelization is planned, but not yet available.

Adding the block-Jacobi preconditioner into a larger software effort provides the benefits of

reusing existing workflows: Ginkgo’s low-level building blocks are utilized to simplify the imple-

mentation; its unit testing framework extended to include tests for the block-Jacobi preconditioner

3
https://ginkgo-project.github.io

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

https://ginkgo-project.github.io

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

:12 G. Flegar et al.

which are then automatically run using Ginkgo’s continuous integration (CI) system; the bench-

marks for block-Jacobi are integrated into Ginkgo’s Continuous Benchmarking (CB) framework

and can be run separately, or in conjunction with the rest of the benchmarks [Anzt et al. 2019].

From the user’s perspective, the integration reduces the amount of software that has to be installed

as well as simplifies the installation (as Ginkgo uses the well-established CMake build system) and

integration of the software. If the user is already using Ginkgo as part of an application, adding the

adaptive block-Jacobi preconditioner requires only a few of additional lines of code, as shown in

Figure 4. If the application does not (yet) use Ginkgo, its library interoperability features can be

used to wrap existing data structures into Ginkgo objects, which can then be used to construct and

apply the preconditioner. Finally, as all the unit tests and benchmarks contributed in this work are

distributed as part of the Ginkgo ecosystem, it should be relatively simple for the user to verify the

correctness and reproduce the performance results we present in this paper, or even to evaluate

the kernels’ performance on a different CUDA-supporting architecture.

6 EXPERIMENTAL EVALUATION

This section evaluates the numerical properties and the effectiveness, efficiency, and performance of

the developed adaptive precision algorithm and the low level kernels on recent CUDA-supporting

GPUs. Initially, we assess the performance gains available from the improvements to the full

precision block-Jacobi preconditioner. Then, the optimized full precision kernels are compared

with the adaptive precision variant.

Two hardware setups are used in the experiments. The first one is a GPU-accelerated node of a

compute cluster at the University of Jaume I (UJI). The node is composed of an 8-core Intel Xeon

E5-2620 v4 CPU with 32 GB of RAM and an NVIDIA TESLA P100 (PCI-e form factor) GPU with 16

GB of HBM2 memory. The accelerator achieves a peak double precision performance of 4.7 TFlop/s

and a peak memory bandwidth of 732 GB/s.

The second setup is the Summit supercomputer at the Oak Ridge National Laboratory. Our

experiments use a single node containing two 22-core IBM POWER9 CPUs with 256 GB of RAM

and 6 NVIDIA TESLA V100 (SXM2 form factor) GPUs with 16 GB of HBM2 memory. For our

experiments, we use only a single NVIDIA V100 GPU with a peak double precision performance of

7.8 TFlop/s and a peak memory bandwidth of 900 GB/s.

6.1 Effects of using the cooperative group APIs and the newer Volta architecture

While the C++ language and its compilers are designed to enable zero-overhead abstractions, there

is always a possibility that a particular abstraction is not properly translated by the compiler and

does not generate sufficiently optimized code. Thus, we first evaluate the effect of replacing the

low-level warp shuffle and vote APIs used in the original code with the higher-level cooperative

groups API. Since the initial version using the low-level APIs does not work correctly on the new

Volta generation hardware used by the Summit system, the evaluation was realized on the UJI

cluster, which features the older Pascal generation P100 GPU. For the new implementation that

supports the recent Volta architecture, we also include the results obtained on the Summit system

and the V100 GPU to study the effects of switching to newer hardware.

The experiments were performed using synthetically-generated block-diagonal matrices with

varying block sizes and a total of 50,000 equally-sized blocks per matrix. The maximal size of

preconditioner blocks was set to match the block size of the matrix. The nonzero locations were

filled with randomly-generated small floating point numbers uniformly distributed between −1

and 1.

The results presented in Figure 5 reveal that there is no significant performance difference when

moving to the higher level API. At the same time, the version using the cooperative groups API

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Adaptive Precision Block-Jacobi :13

Fig. 5. Effects of using the higher-level cooperative groups API (green and blue) over the low-level warp

shuffle and warp vote APIs (red). The results with cooperative groups are shown for the older P100 GPU

(green) and newer V100 GPU (blue). The top plot shows the performance of the preconditioner generation

(not including block size detection) and the bottom plot the performance of the preconditioner application.

supports the new Volta architecture. The preconditioner generation stage takes a slight performance

hit for large blocks due to the Volta architecture increasing register pressure to support the relaxed

warp execution model [Anzt et al. 2018]. However, the more relevant preconditioner application

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

:14 G. Flegar et al.

stage does not suffer from this problem, and exhibits performance improvements between 40% and

50% on the V100.

6.2 Memory layout improvements

Next, we evaluate the effect of the two preconditioner memory layout optimizations: the block-level

optimization that employs column-major instead of row-major storage and the preconditioner-level

optimization based on block-interleaved instead of sequential block storage. We run the experiments

on Summit’s V100 GPU, using the same synthetic benchmarks as in Section 6.1.

Figure 6 demonstrates that changing the storage scheme from row-major to column-major

slightly reduces the performance of preconditioner generation as storing the preconditioner data

causes non-coalesced memory access. On the other hand, the performance of preconditioner

application increases for all block sizes, due to the availability of a more efficient matrix-vector

product algorithm. As mentioned earlier, since the preconditioner is generated only once and

applied multiple times (and the cost of generating the block-Jacobi preconditioner is negligible

compared with the solver runtime [Anzt et al. 2018]), the overall performance of the solver is

improved.

The second optimization only has impact on blocks with at most 16 rows and columns. This

is expected, as for larger blocks the two storage schemes result in exactly the same data layout.

For those cases where the storage layout is different, marginal benefits can be identified in favour

of the block-interleaved layout. We expect that these benefits become more pronounced in the

adaptive block-Jacobi variant, since unfavorable cache access is more detrimental when dealing

with smaller data types.

6.3 Adaptive precision

Having analyzed the effects of the additional improvements applied to the full precision block-Jacobi,

we now turn our attention to the adaptive variant. Once again, we run the experiments on Summit’s

V100 GPU and use synthetic benchmarks described in Section 6.1. For the full precision version, we

evaluate a kernel incorporating all the optimizations described in previous sections: cooperative

groups API, column-major storage and block-interleaved block storage. For the adaptive version, a

kernel featuring all these optimization steps and additional support for adaptive precision is used.

We report results where the autodetection system was disabled, and the precision used for all blocks

is fixed beforehand to the same value. This offers an upper bound on the theoretical performance

improvement that can be expected if all blocks can be stored in the same precision. On real-world

problems (covered in the next section), the actual performance improvement highly depends on

the condition number distribution of the diagonal blocks of the system matrix, which is difficult to

replicate with synthetic benchmarks. However, since disabling autodetection means that part of

the preconditioner generation kernel is skipped, we additionally report performance results that

account for the autodetection: a variant that selects only between the three precision formats that

do not require additional condition number calculation, and a variant with full autodetection using

all six supported precisions formats.

Figure 7 shows the results for the generation and application stages of the adaptive precision

block-Jacobi preconditioner and all six supported precisions. While there are some performance

improvements available when using lower precision in the generation stage due to the reduction

of the total time needed to store low-precision blocks, the improvements in the application stage

are of higher importance. These improvements are more pronounced for larger block sizes, where

the preconditioner’s memory footprint becomes more relevant compared with the footprint of the

input and output vectors. In total, low-precision blocks can yield up to 1.7× and 2× speedups for

32-bit and 16-bit storage schemes, respectively. Another interesting observation concerns the effect

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Adaptive Precision Block-Jacobi :15

Fig. 6. Performance of memory layout optimizations on the V100 GPU. The original row-major, sequential

block storage is shown in red, column-major, sequential block storage in green and column-major, block-

interleaved block storage in blue. The top plot shows the performance of the preconditioner generation

(without block size detection) and the bottom plot the performance of the preconditioner application.

of automatic precision detection on the preconditioner generation time. When using only the three

non-standard formats that preserve the representable range of values, there is virtually no impact

on the performance of preconditioner generation. On the other hand, using all six formats can lead

to performance degradation of up to a factor of 2×. This implies that, in case the solver is expected

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

:16 G. Flegar et al.

Fig. 7. Performance of adaptive precision block-Jacobi on the V100 GPU. The storage format is encoded

as (ex, snf). The first bar (red), is the full precision block-Jacobi. The next five bars represent lower storage

precision without accounting for the detection of the suitable precision. The last two bars include the

autodetection. For the seventh bar (purple), all six precisions were considered (requiring the calculation

of two additional condition numbers). In the last bar (pink), only the three precisions that do not require

additional condition number calculation are considered. All performance numbers only count the floating-

point operations required by the full-precision variant. The top plot shows the performance of preconditioner

generation (without block size detection), and the bottom plot the performance of preconditioner application.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Adaptive Precision Block-Jacobi :17

to converge in a few iterations (where preconditioner generation represents a high fraction of the

total runtime), it may be beneficial to only use the three non-standard precisions, or to maintain

the full precision block-Jacobi.

6.4 Full solver runtime

Finally, we compare the effectiveness of a solver enhanced with adaptive precision block-Jacobi

with that of a solver enhanced with the full precision variant. For this experiment, we use a set of

matrices from the SuiteSparse matrix collection
4
, arising in real-world applications. Only symmetric

positive definite problems that have between 10
6
and 5 × 10

8
nonzeros, and where a block-Jacobi

enhanced Conjugate Gradient (CG) solver needs more than 100 iterations are considered, as these

problems justify the use of a preconditioned CG solver on GPUs. The CG solver available in the

Ginkgo library was employed. For both preconditioners, the double precision standard block-Jacobi

as well as the adaptive precision block-Jacobi, we automatically detect natural diagonal blocks

using the supervariable amalgamation algorithm. While we recognize that it may be possible to

design a more advanced method of block-detection, this is still an area of active research [Goetz

and Anzt 2018] that remains outside the scope of this paper. The block size upper limit was set

to 32. The solvers were run for at most 10,000 iterations, or until the initial residual norm was

reduced by at least 10 orders of magnitude. We used the automatic precision detection method (with

all six precisions) described earlier to select the precision of each block in the adaptive precision

variant. We run two parameter settings where the automatic precision detection procedure was

instructed to assign precisions such that either 1 or 2 decimal digits are preserved when applying

the preconditioner. This reflects the assumption that the preconditioner provides 1 and 2 digits

of accuracy, respectively. For these two settings the distribution of the distinct precision formats

in the preconditioner blocks is shown in Figure 8. In case of preserving 1 decimal digit of the

preconditioner (top plot in Figure 8), we observe a that a significant amount of the Jacobi blocks

can be be stored in less than double precision. Many blocks are stored in single or half precision,

but the non-standard f p8,7 format is also employed for a notable fraction of the Jacobi blocks.

The alternative non-standard formats, f p11,20 and f p11,4, are irrelevant. As expected, the situation
changes for the setting where we preserve 2 decimal digits of the preconditioner (bottom plot in

Figure 8). Since the precision reduction is overall more conservative, no blocks are stored in the

f p8,7 format.

Figure 9 shows the iteration count and runtime of the CG solver integrated with either the full or

the adaptive precision block-Jacobi preconditioner. For the adaptive precision block-Jacobi we again

consider two settings where 1 digit (top plot) and 2 digits (bottom plot) of the preconditioner are

preserved, respectively. A first observation is that CG enhanced with any of the variants converged

for all problems (black and gray dots on top of the plot). Furthermore, the benefit of adaptive

precision highly depends on the problem and the parameter setting. If most of the blocks are

relatively well conditioned, the majority of the preconditioner can be stored in lower precision,

yielding improvements between 10% and 30%. For problems with ill-conditioned blocks, there is no

difference between the two variants, since all blocks need to be stored in full precision in order

to preserve the quality of the preconditioner. In that case, it is even possible that the adaptive

variant becomes slightly slower due to the additional operations needed to read and process the

information about the precisions of the blocks. In particular in the setting where only 1 digit

of the preconditioner is preserved, there also exist several cases were the adaptive block-Jacobi

preconditioning fails to preserve the effectiveness of the preconditioner (i.e. the preconditioner is

of higher quality than one digit), which results in an increase in the number of iterations which

4
https://sparse.tamu.edu/

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

https://sparse.tamu.edu/

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

:18 G. Flegar et al.

Fig. 8. Distribution of floating point formats among the distinct blocks when preserving 1 (top) or 2 (bottom)

digits of the preconditioner blocks. Each column represents one of the selected matrices. The test matrices

are numbered from 1 to 76. For the matrices characteristics, see Table 1. The fraction of the column filled

with a certain color depicts the fraction of blocks stored in the format represented by that color.

the adaptive variant needs to converge (top plot in Figure 9). This effect is mitigated if 2 digits of

the preconditioner are preserved (bottom plot in Figure 9). Furthermore, we observe that there

are only few cases where the preconditioner carries more accuracy than two orders of magnitude.

At the same time, the benefits of the adaptive precision block-Jacobi preserving 2 digits over the

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Adaptive Precision Block-Jacobi :19

Fig. 9. Iteration count and runtime of the Conjugate Gradient (CG) solver enhanced with the adaptive

precision block-Jacobi preconditioner relative to the CG solver with the full precision variant of block-Jacobi.

The results include all symmetric positive definite matrices with at least 10
6
nonzeros from the SuiteSparse

matrix collection for which a CG solver needs at least 100 iterations to converge. The test matrices are

numbered from 1 to 76. For the matrices characteristics, see Table 1. Black and gray dots on top of the plots

represent (from top to bottom) whether CG, CG+(full precision) block-Jacobi and CG+adaptive block-Jacobi

converged for that matrix. The absence of a dot means that the method did not converge. The red dots

represent the relative number of iterations, while the green dots the relative time of adaptive block-Jacobi

compared with the full-precision variant. A value greater than 1 means that the adaptive variant outperforms

the full precision block-Jacobi for that specific problem. The adaptive precision preserves 1 digit (top) or two

digits (bottom) of the full precision block-Jacobi preconditioner.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

:20 G. Flegar et al.

standard double precision block-Jacobi are only marginally smaller than for the more aggressive

setting preserving only one digit.

From this analysis, we may conclude that a setting preserving 2 digits of the preconditioner

provides a good default choice, while problem-specific optimization can enable performance

advantages.

7 DISCUSSION

In this section, we provide a concise discussion of the central numerical aspects coming with the

precision adaptation in general, and the setting preserving 2 decimal digits of the preconditioner in

particular:

(1) Do we need a flexible Krylov solver if the preconditioner matrix is stored in lower
than working precision? No, storing the preconditioner in adaptive (lower) precision is

independent of the need for a method accepting non-constant preconditioners. As elaborated

in [Anzt et al. 2019], the preconditioner operator is constant as long as all arithmetic operations

are handled in working precision.

(2) Can the adaptive precision block-Jacobi matrix become singular? No, the automatic

precision adaption scheme strictly preserves the regularity of the preconditioner matrix.

(3) Can the default setting preserving 2 decimal digits of the preconditioner introduce
an iteration overhead to the outer solver? Yes, it is possible that the block-Jacobi precon-
ditioner has higher accuracy than 2 decimal digits. In the extreme case of the system matrix

decomposing into independent problems of size smaller than the upper limit for the Jacobi

blocks, the preconditioner presents the exact inverse of the system matrix and any format

reduction introduces an accuracy loss. However, our analysis suggests that the block-Jacobi

preconditioner rarely exceeds 2 decimal digits.

(4) Are larger runtime savings possible by reducing thememory precision formatmore
aggressively? Yes, as the results in Figure 9 (top) indicate, preserving only 1 digit of the pre-

conditioner (and therewith reducing the precision format more aggressively) can potentially

augment the runtime savings for moderately-accurate block-Jacobi preconditioners. However,

preserving only 1 digit in general increases the chance of loosing some preconditioner quality,

and therewith increasing the iteration count.

(5) Is it possible to control how many digits of the preconditioner are preserved? Yes,
the implementation allows to control the number of preserved preconditioner digits via a

parameter.

(6) Is the source code of the adaptive precision block-Jacobi preconditioner publicly
available? Yes, the adaptive precision block-Jacobi preconditioner is part of the Ginkgo

open source software package
5
. A descriptive example for the use of the precision optimization

in block-Jacobi is given in Ginkgo’s adaptiveprecision-blockjacobi example
6
.

(7) Can the adaptive precision block-Jacobi preconditioner be used inside other Krylov-
type solvers? Yes, the adaptive block-Jacobi preconditioner is independent of the Conjugate
Gradient method used in this work and can be employed by any solver that is amenable for

preconditioning.

(8) Can the adaptive precision block-Jacobi preconditioner be used for non-symmetric
positive definite problems? Yes, the adaptive block-Jacobi preconditioner generation is

based on Gauss-Jordan elimination enhanced with pivoting [Anzt et al. 2018] and can handle

general non-singular problems.

5
https://ginkgo-project.github.io

6
https://github.com/ginkgo-project/ginkgo/tree/develop/examples/adaptiveprecision-blockjacobi

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

https://ginkgo-project.github.io
https://github.com/ginkgo-project/ginkgo/tree/develop/examples/adaptiveprecision-blockjacobi

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Adaptive Precision Block-Jacobi :21

8 CONCLUSION AND OUTLOOK

In this work we presented the first practical implementation of an adaptive precision block-Jacobi

preconditioner. More precisely, we developed a heavily-tuned GPU implementation of the adaptive

precision block-Jacobi preconditioner inside the Ginkgo numerical linear algebra library and made

it available alongside with descriptive examples. In addition, we augmented the original strategy,

which advocates for decoupling the arithmetic precision from memory precision and storing the

inverted diagonal blocks in lower precision, with customized precision formats that accommodate

more aggressive memory transfer savings than those that were possible with the original description

of the adaptive block-Jacobi scheme. In the experimental evaluation with the adaptive precision

block-Jacobi preconditioner inside a CG iterative solver, we demonstrated runtime savings between

10% and 30% compared to a full precision block-Jacobi preconditioner. The actual savings highly

depend on the numerical properties of the problem, and fine-tuning the parameter controlling the

level of preconditioner accuracy that is preserved may allow for even larger improvements.

In the future we plan to turn our attention to related topics such as the efficient detection of

strongly connected unknowns in the system matrix and optimizing the block pattern with respect

to preconditioner accuracy and memory savings.

ACKNOWLEDGMENTS

H. Anzt and T. Cojean were supported by the “Impuls und Vernetzungsfond of the Helmholtz

Association" under grant VH-NG-1241. G. Flegar and E. S. Quintana-Ortí were supported by

project TIN2017-82972-R of the MINECO and FEDER and the H2020 EU FETHPC Project 732631

“OPRECOMP”. This research was supported by the Exascale Computing Project (17-SC-20-SC), a

collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear

Security Administration. The authors want to acknowledge the access to the Piz Daint supercom-

puter at the Swiss National Supercomputing Centre (CSCS) granted under the project #d100 and

the Summit supercomputer at the Oak Ridge National Lab (ORNL).

REFERENCES

Ahmad Abdelfattah, Hartwig Anzt, Erik Boman, Erin Carson, Terry Cojean, Jack Dongarra, Mark Gates, Thomas Gruetz-

macher, Nicholas J. Higham, Sherry Li, Neil Lindquist, Yang Liu, Jennifer Loe, Piotr Luszczek, Pratik Nayak, Sri Pranesh,

Siva Rajamanickam, Tobias Ribizel, Barry Smith, Kasia Swirydowicz, Stephen Thomas, Stanimire Tomov, Yaohung Tsai,

Ichitaro Yamazaki, and Urike Meier Yang. 2020. A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic.
SLATE Working Notes 15, ICL-UT-20-08.

Hartwig Anzt, Yen-Chen Chen, Terry Cojean, Jack Dongarra, Goran Flegar, Pratik Nayak, Enrique S. Quintana-Ortí,

Yuhsiang M. Tsai, and Weichung Wang. 2019. Towards Continuous Benchmarking: An Automated Performance

Evaluation Framework for High Performance Software. In Proceedings of the Platform for Advanced Scientific Computing
Conference (PASC ’19). ACM, New York, NY, USA, Article 9, 11 pages. DOI:http://dx.doi.org/10.1145/3324989.3325719

Hartwig Anzt, Terry Cojean, Yen-Chen Chen, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, Tobias Ribizel,

and Yu-Hsiang Tsai. 2020a. Ginkgo: A high performance numerical linear algebra library. Journal of Open Source Software
x, x (2020), x. DOI:http://dx.doi.org/10.21105.joss.02260

Hartwig Anzt, Terry Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, Tobias Ribizel, Yuhsiang Mike

Tsai, and Enrique S. Quintana-Ortí. 2020b. Ginkgo: A Modern Linear Operator Algebra Framework for High Performance

Computing. (2020).

Hartwig Anzt, Jack Dongarra, Goran Flegar, Nicholas J. Higham, and Enrique S. Quintana-Ortí. 2019. Adaptive precision

in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency and Computation: Practice and
Experience 31, 6 (2019), e4460. DOI:http://dx.doi.org/10.1002/cpe.4460

Hartwig Anzt, Jack Dongarra, Goran Flegar, and Enrique S. Quintana-Ortí. 2017a. Batched Gauss-Jordan Elimination for

Block-Jacobi Preconditioner Generation on GPUs. In 8th Int. Workshop Programming Models & Appl. for Multicores &
Manycores (PMAM). 1–10.

Hartwig Anzt, Jack Dongarra, Goran Flegar, and Enrique S. Quintana-Ortí. 2017b. Variable-Size Batched LU for Small

Matrices and Its Integration into Block-Jacobi Preconditioning. In 2017 46th International Conference on Parallel Processing

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

http://dx.doi.org/10.1145/3324989.3325719
http://dx.doi.org/10.21105.joss.02260
http://dx.doi.org/10.1002/cpe.4460

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

:22 G. Flegar et al.

(ICPP). 91–100.
Hartwig Anzt, Jack Dongarra, Goran Flegar, and Enrique S. Quintana-Ortí. 2018. Variable-size batched Gauss–Jordan

elimination for block-Jacobi preconditioning on graphics processors. Parallel Comput. (jan 2018). DOI:http://dx.doi.org/
10.1016/j.parco.2017.12.006

Hartwig Anzt, Jack Dongarra, Goran Flegar, Enrique S. Quintana-Ortí, and Andrés E. Tomás. 2017. Variable-Size Batched

Gauss-Huard for Block-Jacobi Preconditioning. Procedia Computer Science 108 (2017), 1783 – 1792. DOI:http://dx.doi.
org/https://doi.org/10.1016/j.procs.2017.05.186 International Conference on Computational Science, {ICCS} 2017, 12-14

June 2017, Zurich, Switzerland.

Hartwig Anzt, Jack Dongarra, Goran G. Flegar, and Thomas Grützmacher. 2018. Variable-Size Batched Condition Number

Calculation on GPUs. In 2018 30th International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). 132–139. DOI:http://dx.doi.org/10.1109/CAHPC.2018.8645907

Hartwig Anzt, Goran Flegar, Thomas Grützmacher, and Enrique S Quintana-Ortí. 2019. Toward a modular precision

ecosystem for high-performance computing. The International Journal of High Performance Computing Applications
(2019), 1094342019846547.

Aydin Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and Charles E. Leiserson. 2009. Parallel Sparse Matrix-

vector and Matrix-transpose-vector Multiplication Using Compressed Sparse Blocks. In Proceedings of the Twenty-first
Annual Symposium on Parallelism in Algorithms and Architectures (SPAA ’09). ACM, New York, NY, USA, 233–244. DOI:
http://dx.doi.org/10.1145/1583991.1584053

Erin Carson and Nicholas J. Higham. 2018. Accelerating the Solution of Linear Systems by Iterative Refinement in Three

Precisions. SIAM J. Scientific Computing 40, 2 (2018), A817–A847. DOI:http://dx.doi.org/10.1137/17M1140819

IEEE Standard Commitee. 2000. IEEE Standard for Modeling and Simulation (M Amp;S) High Level Architecture (HLA) -

Framework and Rules. IEEE Std. 1516-2000 (2000), i –22. DOI:http://dx.doi.org/10.1109/IEEESTD.2000.92296
Siegfried Cools. 2018. Numerical stability analysis of the class of communication hiding pipelined Conjugate Gradient

methods. CoRR abs/1804.02962 (2018). http://arxiv.org/abs/1804.02962

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1,
Article 1 (Dec. 2011), 25 pages. DOI:http://dx.doi.org/10.1145/2049662.2049663

Jack Dongarra and others. 2014. Applied mathematics research for exascale computing. Technical Report. U.S. Dept. of
Energy, Office of Science, Advanced Scientific Computing Research Program. https://science.energy.gov/~/media/ascr/

pdf/research/am/docs/EMWGreport.pdf.

Markus Goetz and Hartwig Anzt. 2018. Machine Learning-Aided Numerical Linear Algebra: Convolutional Neural Networks

for the Efficient Preconditioner Generation. In 2018 IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems (scalA). 49–56. DOI:http://dx.doi.org/10.1109/ScalA.2018.00010

Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations (3rd ed.). The Johns Hopkins University Press, Baltimore.

Gene H. Golub and Qiang Ye. 1999. Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration. SIAM
Journal on Scientific Computing 21, 4 (1999), 1305–1320. DOI:http://dx.doi.org/10.1137/S1064827597323415

Google. https://github.com/google/googletest. (????).

Magnus R. Hestenes and Eduard Stiefel. 1952. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Nat. Bur.
Standards 49, 6 (Dec. 1952), 409–436.

Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (second ed.). Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA.

Mark Hoemmen. 2010. Communication-avoiding Krylov Subspace Methods. Ph.D. Dissertation. Berkeley, CA, USA. Advisor(s)
Demmel, James W. AAI3413388.

Cornelius Lanczos. 1952. Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. Standards 49, 1
(Dec. 1952), 33–53.

Robert Lucas and others. 2014. Top ten Exascale research challenges. (2014). http://science.energy.gov/~/media/ascr/ascac/

pdf/meetings/20140210/Top10reportFEB14.pdf.

NVIDIA Corporation 2018. NVIDIA CUDA Toolkit (9.0 ed.). NVIDIA Corporation.

Y. Saad. 2003. Iterative Methods for Sparse Linear Systems (2nd ed.). SIAM.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

http://dx.doi.org/10.1016/j.parco.2017.12.006
http://dx.doi.org/10.1016/j.parco.2017.12.006
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.05.186
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.05.186
http://dx.doi.org/10.1109/CAHPC.2018.8645907
http://dx.doi.org/10.1145/1583991.1584053
http://dx.doi.org/10.1137/17M1140819
http://dx.doi.org/10.1109/IEEESTD.2000.92296
http://arxiv.org/abs/1804.02962
http://dx.doi.org/10.1145/2049662.2049663
https://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf
https://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf
http://dx.doi.org/10.1109/ScalA.2018.00010
http://dx.doi.org/10.1137/S1064827597323415
https://github.com/google/googletest
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Adaptive Precision Block-Jacobi :23

A CHARACTERISTICS OF SUITESPARSE (SS) MATRICES USED IN BENCHMARKS

row and col nnz stats

Number SS id Name #rows #cols nnz min mean max

1 341 bcsstk36 23052 23052 1143140 8 49.59 178

2 356 ct20stif 52329 52329 2600295 2 51.57 207

3 361 msc10848 10848 10848 1229776 45 113.36 723

4 362 msc23052 23052 23052 1142686 12 50.10 178

5 369 pwtk 217918 217918 11524432 2 53.39 180

6 761 nasasrb 54870 54870 2677324 12 48.79 276

7 804 cfd1 70656 70656 1825580 12 25.88 33

8 805 cfd2 123440 123440 3085406 8 25.02 30

9 813 olafu 16146 16146 1015156 24 62.87 89

10 817 raefsky4 19779 19779 1316789 18 67.17 177

11 936 nd3k 9000 9000 3279690 127 364.41 515

12 937 nd6k 18000 18000 6897316 130 383.18 514

13 938 nd12k 36000 36000 14220946 126 395.03 519

14 939 nd24k 72000 72000 28715634 110 398.83 520

15 942 af_shell3 504855 504855 17562051 20 34.84 40

16 943 af_shell4 504855 504855 17562051 20 34.84 40

17 946 af_shell7 504855 504855 17579155 20 34.84 40

18 947 af_shell8 504855 504855 17579155 20 34.84 40

19 1202 gyro_k 17361 17361 1021159 12 58.82 360

20 1252 audikw_1 943695 943695 77651847 21 82.28 345

21 1253 bmw7st_1 141347 141347 7318399 1 51.93 435

22 1254 bmwcra_1 148770 148770 10641602 24 71.55 351

23 1257 crankseg_1 52804 52804 10614210 48 201.01 2703

24 1258 crankseg_2 63838 63838 14148858 48 221.64 3423

25 1266 hood 220542 220542 9895422 21 48.83 77

26 1267 inline_1 503712 503712 36816170 18 73.09 843

27 1268 ldoor 952203 952203 42493817 28 48.86 77

28 1269 m_t1 97578 97578 9753570 48 99.96 237

29 1270 oilpan 73752 73752 2148558 28 48.77 70

30 1275 s3dkq4m2 90449 90449 4427725 13 53.30 54

31 1276 s3dkt3m2 90449 90449 3686223 7 41.50 42

32 1277 ship_001 34920 34920 3896496 18 133.00 438

33 1278 ship_003 121728 121728 3777036 18 66.43 144

34 1279 shipsec1 140874 140874 3568176 24 55.46 102

35 1280 shipsec5 179860 179860 4598604 12 56.23 126

36 1281 shipsec8 114919 114919 3303553 15 57.90 132

37 1283 thread 29736 29736 4444880 48 150.32 306

38 1287 vanbody 47072 47072 2329056 6 49.65 232

39 1290 x104 108384 108384 8713602 30 93.81 324

40 1403 thermal2 1228045 1228045 8580313 1 6.99 11

41 1421 G3_circuit 1585478 1585478 7660826 2 4.83 6

42 1423 apache2 715176 715176 4817870 4 6.74 8

43 1435 gyro 17361 17361 1021159 12 58.82 360

44 1453 bone010 986703 986703 47851783 12 72.63 81

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

:24 G. Flegar et al.

45 1454 boneS01 127224 127224 5516602 12 52.78 81

46 1455 boneS10 914898 914898 40878708 12 60.63 81

47 1580 af_0_k101 503625 503625 17550675 15 34.85 35

48 1581 af_1_k101 503625 503625 17550675 15 34.85 35

49 1582 af_2_k101 503625 503625 17550675 15 34.85 35

50 1583 af_3_k101 503625 503625 17550675 15 34.85 35

51 1584 af_4_k101 503625 503625 17550675 15 34.85 35

52 1585 af_5_k101 503625 503625 17550675 15 34.85 35

53 1644 msdoor 415863 415863 19173163 28 48.67 77

54 1848 Dubcova2 65025 65025 1030225 4 15.84 25

55 1849 Dubcova3 146689 146689 3636643 9 24.79 49

56 1850 BenElechi1 245874 245874 13150496 1 53.48 54

57 1853 parabolic_fem 525825 525825 3674625 3 6.99 7

58 1883 ecology2 999999 999999 4995991 3 4.99 5

59 1892 denormal 89400 89400 1156224 6 12.93 13

60 1899 tmt_sym 726713 726713 5080961 3 6.99 9

61 1909 smt 25710 25710 3749582 52 145.98 414

62 2283 offshore 259789 259789 4242673 5 16.33 31

63 2373 pdb1HYS 36417 36417 4344765 18 119.31 204

64 2374 consph 83334 83334 6010480 1 72.13 81

65 2375 cant 62451 62451 4007383 1 64.17 78

66 2541 Serena 1391349 1391349 64131971 15 46.38 249

67 2542 Emilia_923 923136 923136 40373538 15 44.42 57

68 2543 Fault_639 638802 638802 27245944 15 44.79 318

69 2544 Flan_1565 1564794 1564794 114165372 24 75.03 81

70 2545 Geo_1438 1437960 1437960 60236322 15 43.92 57

71 2546 Hook_1498 1498023 1498023 59374451 15 40.67 93

72 2547 StocF-1465 1465137 1465137 21005389 1 14.34 189

73 2659 Bump_2911 2911419 2911419 127729899 1 43.87 195

74 2660 Queen_4147 4147110 4147110 316548962 24 79.45 81

75 2661 PFlow_742 742793 742793 37138461 1 50.00 137

76 2664 bundle_adj 513351 513351 20207907 3 39.36 12588

Table 1. Characteristics of SuiteSparse matrices used in Figures 8 and 9. All matrices are symmetric.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Adaptive Precision Block-Jacobi :25

B REPRODUCE THE RESULTS OF THIS PAPER

In this appendix, we explain how to generate and analyze results with adaptive precision block-

Jacobi, in particular, to reproduce the figure 8 from the relevant paper. We assume that the code

is benchmarked on the Summit machine. If that is not the case, we cannot help with packages

selection and other details such as job submission. For any issue reproducing these experiments

please send a mail to mailto:ginkgo.library@gmail.com.

The main steps are as follows:

(1) Install ssget and prefetch the matrices from the SuiteSparse collection

(2) Download and build Ginkgo

(3) Prepare the experiment scripts

(4) Run the experiments

(5) Publish the experiments to github and tie to the information in the previous mail for generat-

ing the plots.

B.1 Fetching the matrices

First of all, a tool is required for benchmarking: https://github.com/ginkgo-project/ssget

This tool is a bash script simplifying downloading matrices from the SuiteSparse matrix collection.

The script can be put anywhere in the PATH, but line 39 (ARCHIVE_LOCATION) has to be configured,
this is where the downloaded matrices will be stored. On the Summit supercomputer, this would

typically have to be somewhere in $MEMBERWORK/<project>/...., since this has better access
inside jobs.

The matrices used for the experiments can be pre-downloaded, as this saves some node time, as

is shown in Listing 1:

1 for i in $(seq 0 $(ssget -n)); do
2 posdef=$(ssget -p posdef -i $i)
3 cols=$(ssget -p cols -i $i)
4 nnz=$(ssget -p nonzeros -i $i)
5 if ["$posdef" -eq 1 -a "$cols" -lt 10000000 -a "$nnz" -lt 500000000]; then
6 ssget -f -i $i
7 fi
8 done

Listing 1. Download the relevant SuiteSparse matrices to reproduce the experiments.

B.2 Building Ginkgo

Afterwards, Ginkgo can be cloned, configured and built. The steps are shown in Listing 2. All paths

can be adapted as needed. The <...> (project) part absolutely needs to be replaced:

1 project=<project >
2 ginkgo_source=$HOME/TOMS -bj-reproduce/ginkgo
3 ginkgo_build=$MEMBERWORK/${project ,,}/TOMS -bj-reproduce/ginkgo -build
4 module load gcc /6.4.0 cuda /9.2.148 cmake /3.15.2 git /2.20.1
5 # For every new session , the previous setup is required
6 git clone https :// github.com/ginkgo -project/ginkgo.git ${ginkgo_source} --branch 2019toms -adaptive

-bj-solver
7 mkdir -p ${ginkgo_build} && cd ${ginkgo_build}
8 cmake -DBUILD_CUDA=on -DBUILD_OMP=off -DBUILD_EXAMPLES=off -DBUILD_GTEST=on -DDEVEL_TOOLS=off -

DCMAKE_C_COMPILER=$(which gcc) -DCMAKE_CXX_COMPILER=$(which g++) ${ginkgo_source}
9 bsub -P ${project ^^} -W 2:00 -nnodes 1 jsrun -n 1 -c 10 -g 0 make -j10
10 # This is a good time to go do something else , compilation will take a
11 # while as there is a big CUDA compiler bug which makes it extremely slow and
12 # memory heavy to # compile the block jacobi with all optimizations.
13 make -j10 # afterwards , ensure everything is compiled
14 make test
15 # Everything should run without failure.

Listing 2. Download and build the Ginkgo software to reproduce the experiments.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

mailto:ginkgo.library@gmail.com
https://github.com/ginkgo-project/ssget

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

:26 G. Flegar et al.

B.3 Prepare the experiment scripts

In Listing 3, we create two files for launching the experiments. A ginkgo_benchmark.lsf script
for bsub, and a benchmark_one_node.sh script which runs jsrun and populates some arguments

in order to create segments to be benchmarked, all of which can run in parallel.

1 cat > ${ginkgo_source }/ benchmark_one_node.sh << EOF
2 #!/bin/bash -x
3

4 cd \${1}/ benchmark
5 chmod +x run_all_benchmarks.sh
6

7 ADAPTIVE_JACOBI_ACCURACY =\${4:-1e-1}
8 export BENCHMARK=solver
9 export PRECONDS=none ,jacobi ,adaptive -jacobi
10 export SYSTEM_NAME=V100_summit
11 export SEGMENT_ID =\${2}
12 export SEGMENTS =\${3}
13 ./ run_all_benchmarks.sh >/dev/null
14 EOF
15

16 cat > $ginkgo_source/benchmark_ginkgo.lsf << EOF
17 #!/bin/bash
18 #BSUB -P ${project ^^}
19 #BSUB -W 2:00
20 #BSUB -nnodes 1
21 #BSUB -J Ginkgo_Benchmark
22 #BSUB -o Ginkgo_Benchmark .%J
23 #BSUB -e Ginkgo_Benchmark .%J
24

25 if [-z \${segment_id+x}]
26 then
27 echo "Please set variable segment_id"
28 exit
29 fi
30

31 if [-z \${segments+x}]
32 then
33 echo "Please set variable segments"
34 exit
35 fi
36

37 module load gcc /6.4.0 cuda /9.2.148 cmake /3.15.2 git /2.20.1
38

39 jsrun -n 1 -a 1 -c 1 -g 1 $ginkgo_source/benchmark_one_node.sh $ginkgo_build \$segment_id \
$segments

40 EOF
41

42 chmod +x ${ginkgo_source }/ benchmark_one_node.sh

Listing 3. Generate the scripts required for launching the Ginkgo benchmarks

B.4 Run the benchmarks

To run the benchmarks there are two parameters to pick:

• the parallelism desired,

• the number of matrices we want to reproduce against (all of them or a portion).

These are controlled with the variables segments and segment_id. As an example, the code

shown in Listing 4 will run 20 benchmarks in parallel and benchmark all matrices since we use all

segment_id.

1 for i in $(seq 1 20); do segments =20 segment_id=$i bsub $ginkgo_source/benchmark_ginkgo.lsf; done

Listing 4. Benchmark Ginkgo using 20 jobs in parallel

To only benchmark the first half of the matrices, we could do like in Listing 5:

1 # Note the different in the `seq ` below
2 for i in $(seq 1 10); do segments =20 segment_id=$i bsub $ginkgo_source/benchmark_ginkgo.lsf; done

Listing 5. Benchmark Ginkgo on only half the matrices

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Adaptive Precision Block-Jacobi :27

B.5 Publish the results and generate the plots

For analyzing the results, any tool can be used. The previous experiments generated json files for

each matrix, each containing timing and convergence results without preconditioner, with standard

block-Jacobi preconditioner, and with adaptive precision block-Jacobi.

In this section, we describe how to generate the plots by using Ginkgo’s GPE
7
tool. First, we

need to publish the experiments into a Github repository which will be then linked as source input

to the GPE. For this, we can simply fork the ginkgo-data repository. To do so, we can go to the

github repository and use the forking interface: https://github.com/ginkgo-project/ginkgo-data/

tree/2019toms-adaptive-bj

Once this is done, we want to clone the 2019toms-adaptive-bj branch, move all results into a

public domain, and access the GPE for plotting the results. The detailed steps are shown in Listing 6.

1 git clone https :// github.com/<username >/ginkgo -data.git ${ginkgo_build }/ benchmark/ginkgo -data --
branch 2019toms -adaptive -bj

2 rsync -rtv ${ginkgo_build }/ benchmark/results/ ${ginkgo_build }/ benchmark/ginkgo -data/data/
3 cd ${ginkgo_build }/ benchmark/ginkgo -data/data/
4 # The following updates the main `.json ` files with the list of data
5 module load python /3.7.0
6 ./build -list . > list.json
7 ./ agregate < list.json > agregate.json
8 git config --local user.name "<Name >"
9 git config --local user.email "<email >"
10 git commit -am "Ginkgo Reproduced BJ data"
11 git push

Listing 6. Publish the results and generate summary files to a Github benchmark repository.

For generating the plots in the GPE, here are the steps to go through:

(1) Access the GPE: https://ginkgo-project.github.io/gpe/

(2) Update data root URL, from https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/

master/data to https://raw.githubusercontent.com/<username>/ginkgo-data/2019toms-adaptive-bj/

data

(3) Click on the arrow to load the data, select the Result Summary entry above. The first few

entries under this should be V100 (cuda).

(4) Click on select an example to choose a plotting script, and update the url from https://raw.

githubusercontent.com/ginkgo-project/ginkgo-data/master/plots to https://raw.githubusercontent.

com/<username>/ginkgo-data/2019toms-adaptive-bj/plots

(5) Again Click on the arrow next to the URL to load everything

(6) Select the plot "Preconditioned CG detailed comparison"

(7) The results should be available in the tab "plot" on the right side

B.6 Generate results and plots for precision 1e-2

The previous steps benchmarked and generated the plot with block Jacobi accuracy 1e − 1, to

generate the results with 1e − 2, both steps 4 and 5 need to be repeated. The only modification

necessary is to edit $ginkgo_source/benchmark_ginkgo.lsf by appending "1e-2" to the end of

the jsrun line.

In GPE, plotting with the previous link will now show the benchmark data of precision 1e − 2 by

default. To get back to the previous 1e − 1 precision results, replace 2019toms-adaptive-bj in the

link by the previous commit hash.

7
https://ginkgo-project.github.io/gpe/

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

https://github.com/ginkgo-project/ginkgo-data/tree/2019toms-adaptive-bj
https://github.com/ginkgo-project/ginkgo-data/tree/2019toms-adaptive-bj
https://ginkgo-project.github.io/gpe/
https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/master/data
https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/master/data
https://raw.githubusercontent.com/<username>/ginkgo-data/2019toms-adaptive-bj/data
https://raw.githubusercontent.com/<username>/ginkgo-data/2019toms-adaptive-bj/data
https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/master/plots
https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/master/plots
https://raw.githubusercontent.com/<username>/ginkgo-data/2019toms-adaptive-bj/plots
https://raw.githubusercontent.com/<username>/ginkgo-data/2019toms-adaptive-bj/plots
https://ginkgo-project.github.io/gpe/

