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Adaptive Precision Block-Jacobi for High Performance

Preconditioning in the Ginkgo Linear Algebra Software
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The use of mixed precision in numerical algorithms is a promising strategy for accelerating scientific appli-

cations. In particular, the adoption of specialized hardware and data formats for low precision arithmetic in

high-end GPUs (graphics processing units) has motivated numerous efforts aiming at carefully reducing the

working precision in order to speed up the computations. For algorithms whose performance is bound by

the memory bandwidth, the idea of compressing its data before (and after) memory accesses has received

considerable attention. One idea is to store an approximate operator –like a preconditioner– in lower than

working precision hopefully without impacting the algorithm output. We realize the first high performance

implementation of an adaptive precision block-Jacobi preconditioner which selects the precision format used

to store the preconditioner data on-the-fly, taking into account the numerical properties of the individual

preconditioner blocks. We implement the adaptive block-Jacobi preconditioner as production-ready func-

tionality in the Ginkgo linear algebra library, considering not only the precision formats that are part of the

IEEE standard, but also customized formats which optimize the length of exponent and significand to the

characteristics of the preconditioner blocks. Experiments run on a state-of-the-art GPU accelerator show that

our implementation offers attractive runtime savings.

CCS Concepts: • Mathematics of computing→ Mathematical software; Arbitrary-precision arithmetic;

Additional Key Words and Phrases: Sparse linear algebra, adaptive precision, preconditioning, block-Jacobi,

Krylov solvers, GPU
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1 INTRODUCTION

Improving the robustness and speed of iterative sparse linear system solvers has been an important

research topic for more than a decade. As a result, Krylov subspace methods (KSMs) are nowadays

among the most efficient algorithms for large and sparse linear systems. When applied to a linear

Authors’ addresses: Goran Flegar, Departamento de Ingeniería y Ciencia de Computadores, Universidad Jaime I, Castellón,

Spain, flegar@uji.es; Hartwig Anzt, Karlsruhe Institute of Technology, Karlsruhe, Germany, University of Tennessee,

Knoxville (TN), USA, hartwig.anzt@kit.edu; Terry Cojean, Karlsruhe Institute of Technology, Karlsruhe, Germany, terry.

cojean@kit.edu; Enrique S. Quintana-Ortí, Departamento de Informática de Sistemas y Computadores, Universitat Politècnica

de València, Valencia, Spain, quintana@disca.upv.es.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0098-3500/2020/8-ART $15.00

https://doi.org/0000001.0000001

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

:2 G. Flegar et al.

system Ax = b (with sparse coefficient matrix A ∈ Rn×n , right-hand side b ∈ Rn , and unknown

x ∈ Rn) KSMs started with an initial guess x0 produce a sequence of vectors x1,x2,x3, . . . ∈ R
n

that, in general, progressively reduce the norm of the residuals rk = b −Axk , eventually yielding

an acceptable approximation to the solution of the system.

The optimization of KSMs with respect to numerical robustness and runtime performance can

proceed hand-in-hand, for example, with the use of a sophisticated preconditioner. The motivation

behind is that the convergence of KSMs is largely dictated by the condition number of the system

coefficient matrix A. Preconditioning schemes aim to accelerate the convergence of this type of

solvers by transforming the original problem into the alternative preconditioned system (M−1A)x =
M−1b. An ideal preconditionerM−1 ∈ Rn×n yields a transformed coefficient matrix Â = M−1A with

a lower condition number than A, while admitting a software realization of the preconditioner

calculation that is relatively cheap to compute and inexpensive to apply.

An example of a preconditioner typically improving both robustness and speed is the Jacobi

preconditioner, and its straight-forward extension to a block-Jacobi preconditioner [Saad 2003].

The underlying inversion of the (block-)diagonal of the system matrix exhibits a high degree of

parallelism while offering superior convergence acceleration when applied to problems that exhibit

some inherent block structure. For example, this is the case for problems arising from a finite

element discretization of a partial differential equation (PDE) [Anzt et al. 2017a].

Other optimization strategies aim at improving only runtime performance, potentially even

allowing for some loss in the numerical robustness. One strategy that recently gained significant

attention takes advantage of lower precision formats in parts of the algorithm [Abdelfattah et al.

2020]. The motivation for this idea is that KSMs, enhanced with some form of a simple precondi-

tioner, are memory-bound algorithms, implying that their performance on current architectures is

constrained by the bandwidth between the floating-point units (FPUs) and the memory where the

data resides. In case the problem data is too large to fit into the cache memory of the processor(s),

the increasing gap between the throughputs of the processor and the main memory (also known as

the memory wall [Dongarra et al. 2014; Lucas et al. 2014],) dictates the performance of this type of

algorithms. This is a well-recognized problem, especially in the domain of sparse linear algebra

operations, where communication-avoiding techniques are particularly appealing; see, e.g., [Cools

2018; Hoemmen 2010] and the references therein.

The idea of mixed precision KSMs tackles the memory bottleneck by reducing the communi-

cation volume and memory footprint. For example, the authors of [Carson and Higham 2018]

diminish data movement (and arithmetic cost) using the standard ieee half/single/double precision

formats [Commitee 2000] in combination with iterative refinement.
1
Other efforts aim at reducing

the indexing information necessary to maintain the sparse system matrix, e.g. via the compressed

storage block (CSB) format [Buluç et al. 2009].

A technique orthogonal to these efforts targets not the KSM, but the preconditioner itself.

In [Anzt et al. 2019], we proposed to reduce the pressure on the memory bandwidth by adjusting

the precision format used to store the preconditioner [Anzt et al. 2019]. We analyzed the approach

under theoretical aspects for a CG solver equipped with a block-Jacobi preconditioner that operates

(that is, performs all arithmetic) in full double precision, while accessing the inverted diagonal

blocks of the block-Jacobi preconditioner in a problem-adapted (potentially lower) precision. More

precisely, all the problem data is stored in ieee double precision format, except the blocks of the

preconditioner, which are stored in either ieee half/single/double precision formats, depending on

their condition numbers. A type transformation is therefore required every time the preconditioner

1
In the setting of the solution of linear systems, iterative refinement is an old technique, which dates back to the use of the

first desk calculators, in the 1940s [Higham 2002].
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Adaptive Precision Block-Jacobi :3

blocks stored in half or single precision in main memory are moved to the registers (where they

are maintained in double precision). The theoretical data transfer savings were estimated using an

analytical model that takes the floating point format and the convergence impact into account. For

a significant portion of the symmetric positive definite matrices available in the SuiteSparse Matrix

Collection [Davis and Hu 2011], we observed data transfer savings of up to 70% compared with a

solver that handles all (preconditioner) data and arithmetic using double-precision.

In this paper, we build upon our preliminary theoretical analysis by deriving the first practical

implementation of the adaptive precision block-Jacobi preconditioner, proving the practical us-

ability in the context of high performance computing on state-of-the-art GPU architectures, and

disseminating the production-ready implementation along with usage examples in the Ginkgo

numerical linear algebra library.

Specifically, we make the following specific contributions:

(1) We move from a theoretical analysis of the usability and potential performance benefits [Anzt

et al. 2019] to an actual implementation of the adaptive precision block-Jacobi preconditioner,

ready to run on high-end GPUs, which leverages an ample variety of hardware-specific opti-

mization techniques ranging from cache-line alignment to cooperative group communication.

(2) We extend the idea presented in [Anzt et al. 2019] by adopting also precision formats out-

side the IEEE standard to optimize the length of exponent and significand to the problem

properties.

(3) We derive algorithm-specific kernels that entail the extraction of the diagonal blocks, the

inversion of the diagonal blocks via Gauss-Jordan elimination featuring pivoting [Anzt et al.

2018], the computation of the condition number and the data range [Anzt et al. 2018], and

the selection of the optimal storage precision. These kernels are needed for the adaptive

precision block-Jacobi preconditioner generation, and they are heavily optimized to incur

only negligible overhead compared to a standard block-Jacobi preconditioner generation.

(4) We propose an efficient compact layout to store the blocks of the adaptive precision block-

Jacobi preconditioner that optimized the memory access.

(5) We evaluate the performance of a production code realizing the adaptive precision block-

Jacobi preconditioner scheme in the framework of a high-performance CG implementation

on a NVIDIA Volta GPU. This experimental evaluation demonstrates the validity of the

approach and reveals up to 30% performance improvement over a standard (double precision)

block-Jacobi preconditioner for a large range of real-world test problems.

(6) We deploy the production-ready block-Jacobi preconditioner in the Ginkgo numerical linear

algebra library along with usage examples.

Our approach shares some of the appealing properties of the prototype in [Anzt et al. 2019].

Concretely, we employ full double precision in the generation and application of the preconditioner,

as well as in all other arithmetic computations. Furthermore, we store part of the preconditioner

in reduced precision, and convert it into full precision before proceeding with the arithmetic

operations in the actual preconditioner application. Thus, our preconditioner still ensures that the

preconditioning operator preserves orthogonality in double precision, implying that previously

orthogonal Krylov vectors are orthogonal after the preconditioner application. In consequence,

there is no need for flexible variants that introduce an additional orthogonalization step to preserve

convergence [Golub and Ye 1999].

The rest of the paper is structured as follows. In Section 2.2 we introduce the Ginkgo numerical

linear algebra library and briefly review the idea of KSMs and block-Jacobi preconditioning. More

details about the idea of decoupling the memory precision from the arithmetic precision [Anzt

et al. 2019] and the adaptive precision block-Jacobi are presented in Section 3. We elaborate on the

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.
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Library	Infrastructure
Algorithm	 Implementations
• Iterative	Solvers
• Preconditioners
• …

Core

OpenMP-kernels	
• SpMV
• Solver	kernels
• Precond kernels
• …

OpenMP
Reference	kernels	
• SpMV
• Solver	kernels
• Precond kernels
• …

Reference
CUDA-GPU	kernels
• SpMV
• Solver	kernels
• Precond kernels
• …

CUDA
HIP-GPU	kernels
• SpMV
• Solver	kernels
• Precond kernels
• …

HIP

Library	core	contains	architecture-agnostic	
algorithm	 implementation;

Runtime	polymorphism	 selects	the	right	kernel	
depending	 on	the	target	architecture;

Architecture-specific	kernels	
execute	the	algorithm	
on	target	architecture;

Reference	are	sequential	
kernels	 to	check	correctness	
of	algorithm	design	and	
optimized	kernels;

Optimized	architecture-specific	kernels;

• Shared	kernels
Common

Fig. 1. The Ginkgo library design overview with the library core separated from the architecture-specific

backends for AMD GPUs (hip), NVIDIA GPUs (cuda), multicore (omp), and the reference backend for

correctness checks [Anzt et al. 2020b].

first high performance realization of the adaptive precision block-Jacobi in Section 4. We dedicate

Section 5 to motivate the need for making novel algorithms and high performance implementations

available in sustainable open source software. In Section 6, we present performance results for the

block-Jacobi preconditioner generation and application, and analyze the effectiveness and efficiency

of the adaptive precision block-Jacobi preconditioner. Next, In Section 7 we discuss some central

aspects of adaptive precision preconditioning in general and the experimental results in particular,

and conclude in Section 8 with a summary of the findings and future research directions.

2 HIGH PERFORMANCE SPARSE LINEAR ALGEBRA ON GPUS

2.1 The Ginkgo numerical linear algebra library

Ginkgo [Anzt et al. 2020a] is a modern sparse linear algebra library implemented in C++ that

embraces two principal design concepts: The first principle, aiming at future technology readiness,

is to consequently separate the numerical algorithms from the hardware-specific kernel imple-

mentation to ensure correctness (via comparison with sequential reference kernels), performance

portability (by applying hardware-specific kernel optimizations), and extensibility (via kernel back-

ends for other hardware architectures). The second design principle –aiming at user-friendliness–

is the convention to express functionality in terms of linear operators: every solver, preconditioner,

factorization, matrix-vector product, and matrix reordering is expressed as a linear operator (or

composition thereof).

A high-level overview of Ginkgo’s software architecture is displayed in Figure 1 [Anzt et al.

2020b]. The library design collects all classes and generic algorithm skeletons in the “core” library

which are accessed via the driver kernels available in th “cuda,” “hip,” “omp,” and “reference” modules.

We note that “reference” contains sequential CPU kernels used to validate the correctness of the

algorithms and serve as a reference implementation for the unit tests realized using the googletest

framework [Google Google]. The “cuda,” “hip,” and “omp” modules are heavily optimized kernel

backends for NVIDIA GPUs, AMD GPUs, and multicore CPUs, respectively.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.
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Adaptive Precision Block-Jacobi :5

Ginkgo relies on the “executor” concept to enable platform portability. The executor specifies the

memory location and the execution space of the linear algebra objects and represents computational

capabilities of distinct devices. Each executor implements methods for allocating/deallocating

memory on the device targeted by that executor, copying data between executors, providing

hardware-specific kernels, running operations, and synchronizing all operations launched on the

executor. As all information in the executor is encapsulated and all memory allocation and kernel

selection is automatically orchestrated, the user can run a single code on different platforms without

having to modify the code by selecting a different executor in the beginning of the application.

2.2 Computational Aspects of KSMs and block-Jacobi Preconditioning

Most instances of KSMs, such as CG, BiCG, GMRES, BiCGStab, etc., are comprised of a sequence

of calls to simple computational kernels, such as the dot or inner product (dot), axpy-like vector

updates, and the sparse matrix-vector product (SpMV), inside an iteration loop [Saad 2003]. These

kernels are all memory-bound operations, with a ratio between floating-point operations (FLOPs)

and memory accesses (MEMOPs) that is O(1), globally yielding a memory-bound solver.

Block-Jacobi preconditioners split the coefficient matrix into A = L + M + U , where the pre-

conditioner defined by M = diag(D1,D2, . . . ,Dm) ∈ R
n×n

, with Di ∈ R
mi×mi

and

∑m
i=1mi = n, is

a block-diagonal matrix containing the corresponding entries on the diagonal blocks of A, while
L,U ∈ Rn×n contain the elements of the coefficient matrix below and above those of M , respec-

tively. (The scalar Jacobi preconditioner is a simple variant of the block counterparts withmi = 1,

i = 1, 2, . . . ,m, so thatM only contains the diagonal of A.) The block-Jacobi preconditioner is well
defined if the diagonal blocks Di are all nonsingular. Furthermore, block-Jacobi preconditioning is

particularly effective if the system matrix A inherently presents a block structure (which is the case

for many problems that arise from a finite element discretization of a PDE [Anzt et al. 2017a]) that

is matched by the block structure of the Jacobi preconditioner.

In this work, we integrate a block-Jacobi preconditioner that explicitly computes the block-

inverse matrix,M−1 = diag(D−1
1
,D−1

2
, . . . ,D−1

m ) = diag(E1,E2, . . . ,Em), before the iteration process

of the KSM commences. The preconditioner is then applied within the KSM iteration in terms

of a dense matrix-vector multiplication (GeMV) per inverse block Ei . Thus, the iteration for the

preconditioned KSM remains a memory-bound process, as so is the GeMV kernel, independently

of the block size mi . In practice, the resulting preconditioner is of a comparable quality to the

one computed by the conventional (and numerically more stable) strategy that computes the LU

factorization (with partial pivoting) [Golub and Van Loan 1996] of each block (Di = LiUi ), and then

applies the preconditioner using two triangular solves (per factorized block)[Anzt et al. 2018, 2017].

In exchange for a higher cost, the block-Jacobi preconditioner with explicit computation of the

inverses presents the appealing property of yielding an application based on a highly parallel kernel

(GeMV), compared with the constrained parallelism of the triangular systems that are necessary in

the application of the LU-based preconditioning counterpart [Anzt et al. 2017b].

3 ADAPTIVE BLOCK-JACOBI PRECONDITIONING

3.1 Standard ieee precision formats

In [Anzt et al. 2019], we proposed an adaptive block-Jacobi preconditioner that individually tunes

the storage format of each block Di depending on its condition number. The scheme adopted in that

work relies on three precision formats: 16-bit (fp16), 32-bit (fp32) and 64-bit (fp64), which correspond

to the standard ieee half, single and double precision formats [Commitee 2000], respectively. In

detail, the adaptive block-Jacobi preconditioner proceeds as follows:

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.
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(1) Before the iteration commences, we explicitly compute the inverse of each block using fp64:

Di → Ei .
(2) At the same stage (i.e., before the iterative solver is started), we compute κ1(Di ) = κ1(Ei ) =

∥Di ∥1∥D
−1
i ∥1 = ∥Di ∥1∥Ei ∥1. As Ei is explicitly available, computing κ1(Di ) is straightforward

and inexpensive compared with the inversion of the block [Anzt et al. 2018].

(3) After inverting the diagonal block Di in fp64, we store the inverted diagonal block Ei in the

format determined by its condition number—truncating the entries of the block if necessary.

Precisely, we store Ei in 
fp16 if τ Lh < κ1(Di ) ≤ τUh ,

fp32 if τ Ls < κ1(Di ) ≤ τUs , and

fp64 otherwise,

(1)

where the thresholds τ are set as τ Lh = 0 and τUh = τ
L
s .

(4) During the iteration, we recover the block Ei , stored in the corresponding format in memory

(as determined by (1)), transform its entries to fp64 in the processor’s registers, and apply the

block in terms of a fp64 GeMV.

A central aspect is the choice of the values for τ , which is strongly related to the question of how

much accuracy of the preconditioner should be preserved. For preserving the accuracy a of the

preconditioner (e.g., a = 10
−1
), a storage format with round-off error u can be considered valid for

a block D if κ(D) ≤ a/u. Furthermore, the value τ for this format is computed as τ = a/u. While

the round-off errors u are format-specific, but fixed, the values of τ are still variable with respect to

how much accuracy of the preconditioner should be preserved.

Due to the use of the standard formats for half, single and double precision, in the above procedure

the truncation can result in either overflows or underflows, whose consequences need to be tackled.

Here we only discuss the second case and refer the reader to [Anzt et al. 2019] for the handling of

overflows. The risk associated with underflow is that the truncation may turn a non-zero (but close

to zero) value in fp64 into a zero which in turn can make Ei an ill-conditioned (or even singular)

block, thereby causing numerical difficulties for the convergence of the KSM. In order to avoid this

issue, we examine the condition number of the truncated representation of Ei , and discard the use

of the corresponding reduced precision if it was above a given threshold τκ .

3.2 Unconventional precision formats

In addition to the three floating point formats defined by the ieee standard, this work augments

the set of considered precisions with three additional formats that can be cheaply processed using

the instruction set of NVIDIA GPUs. While it would be theoretically possible to employ any

combination of exponent and significand bits, the complexity of purely software-based format

conversion could prove detrimental to performance. However, conversions for several particular

precision configurations can be implemented efficiently.

In particular, if the conversion to lower precision preserves the number of exponent bits and the

rounding mode is limited to round-to-zero, the conversion to lower precision consists of significand

truncation, only. Converting back to full precision then conversely adds zeros as the missing

significand bits[Anzt et al. 2019]. Using the notation fpex,snf (where ex and snf denotes the number

of exponent bits and significand bits, respectively), this procedure can be used on the 64 bit ieee

double precision format (f p11,52) with 11 exponent and 52 significand bits to obtain an alternative

32 bit floating point format with 11 exponent and 20 significand bits (f p11,20) by dropping the 32

low-order bits of the original format. The range of such a format stays roughly the same as that

of ieee double precision, and the unit roundoff (adjusted for the round-to-zero rounding mode) is

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.
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Invert	the	diagonal	block
using	Gauss-Jordan	elimination.

Compute	condition	 number	
and	exponent	range.

Select	storage	format:

fp11,52

fp11,4

fp11,20

fp5,10 fp8,7

fp8,23

16-bit

32-bit

64-bit

Fig. 2. Workflow for generating the inverse block and selecting a suitable storage format. The horizontal

arrows (purple) reflect bitcount-constant traversals addressing overflow and underflow, the green vertical

arrows represent significand extensions for increasing the accuracy to the requirements imposed by the

condition number.

u = 9.54e − 7. A 16-bit format based on ieee double (f p11,4) can also be obtained by dropping the 48

low-order significand bits. The result is a format with 11 exponent and 4 significand bits and unit

roundoff u = 6.25e − 2. A 16-bit format can also be obtained by basing it on the 32 bit ieee single

precision (f p8,23). Such a format (f p8,7) has 8 exponent and 7 significand bits, and unit roundoff of

u = 7.81e − 3.

The additional formats offer a trade-off by providing formats of the same size as their ieee

counterparts, but with larger range and lower precision. They can be used to store a block that

is relatively well conditioned (and thus does not require high precision to achieve reasonable

accuracy [Anzt et al. 2019]), but the range of values in the block is such that a conventional format

would cause catastrophic overflows or underflows. The improved format selection strategy selects

the first format from the list f p5,10, f p8,7, f p11,4, f p8,23, f p11,20, f p11,52 whose unit roundoff is

small enough to deliver the required accuracy, and where the exponent range avoids catastrophic

overflows and underflows. The list is sorted by increasing sizes of the formats, which means that

the procedure selects the smallest format capable of delivering the required accuracy. Within the

same format size, the list is sorted so that priority is given to the format that offers more accuracy.

In Figure 2 we visualize the process of generating the block-Jacobi preconditioner and selecting a

suitable storage format.

4 CUDA IMPLEMENTATION

4.1 Previous work

As a starting point for the implementation of adaptive block-Jacobi kernels, we use a previous

prototype CUDA implementation of full precision block-Jacobi [Anzt et al. 2018]. The implementa-

tion includes an optimized kernel for block-Jacobi preconditioner generation which extracts the

diagonal blocks from the sparse system matrix stored in Compressed Sparse Row (CSR [Saad 2003])

format, inverts them, and stores the inverses into the GPU main memory. For each block, the entire

pipeline is executed using a single warp (a group of 32 GPU cores, roughly equivalent to a 32-wide

vector unit) with each core processing a single column of the matrix. The inversion is realized via

the highly parallel Gauss-Jordan Elimination (GJE) algorithm, and the explicit inverse diagonal

blocks are stored in row-major order to enable coalesced access both when extracting the blocks

from the sparse structure, as well as when storing the inverses back into memory. The generation

pipeline leverages the extensive register storage available in recent CUDA architectures (up to 32

KB per warp) to keep the entire block in processor registers during the computation and completely
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Fig. 3. Preconditioner storage scheme. Top: sequential storage used by the initial implementation. Bottom:

block-interleaved storage used by the new implementation.

avoid expensive data access. This strategy allows to efficiently process double precision blocks of

up to 32 rows and columns.

The second component of the prototype is a custom implementation of the preconditioner

application procedure. Once again, each warp is responsible for processing a single preconditioner

block. First, the section of the input vector corresponding to the block is read into the registers and

distributed among the threads of the warp. Then, for each row of the block, the warp collaboratively

reads the values in the row, forms a dot product between the input vector (already present in the

registers) and the row, and writes the result to the output vector. Processing the blocks stored in

row-major in this way ensures contiguous access to the main memory.

A final optimization included in the initial prototype involves the processing of small blocks.

If all the preconditioner blocks are smaller than some dimension k < 32, a more efficient version

of the kernel can be generated by having each thread of the warp use an array large enough to

store only k instead of 32 values. This reduces the resource requirements of the warp, allowing the

GPU to simultaneously process more warps per multiprocessor. In addition, for small values of k , a
warp can be logically split into two (or more) sub-warps; then, instead of using the entire warp

to process a single block, each sub-warp can handle the generation of one preconditioner block.

Precisely, for a maximum block size
ˆk , every warp handles 2

5−⌈log
2

ˆk ⌉
blocks:

32 ≥ ˆk > 16 1 block per warp,

16 ≥ ˆk > 8 2 blocks per warp,

8 ≥ ˆk > 4 4 blocks per warp,

4 ≥ ˆk > 2 8 blocks per warp,

2 ≥ ˆk > 1 16 blocks per warp,

1 = s 32 blocks per warp.

To enable these optimizations, we generate a kernel optimized for each maximal block size
ˆk =

1, 2, . . . , 32.
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4.2 Kernel improvements

Before implementing the adaptive precision version of the block-Jacobi preconditioner, we first

incorporate several improvements to the full precision block-Jacobi preconditioner.

Starting with CUDA toolkit version 9.0, NVIDIA updated the warp shuffle and warp vote APIs

used for intra-warp communication to support the new Volta architecture that features relaxed

warp execution constraints [NVIDIA Corporation 2018]. While the APIs used by the previous

implementation of block-Jacobi kernels are still available (albeit deprecated), using them causes

the kernel to stall
2
when run on the Volta architecture. In addition to the updated low-level APIs,

the CUDA toolkit version 9.0 also includes a new cooperative group APIs which encapsulates the

details of the low-level APIs. Instead of using the low level API directly, we decided to modify our

code to use this high-level alternative as it provides more flexibility and can potentially enable

better compatibility with future CUDA versions.

We also identified several additional performance optimizations concerning the memory layout

of the block-Jacobi preconditioner, specifically the question of storing the blocks in row-major

vs. column-major layout. A detailed analysis of the preconditioner application kernel explained

in Section 4.1 revealed that the time needed for intra-warp communication in the collaborative

computation of the dot product (necessary in a row-major block storage) is significant compared

with the time needed to load the data from memory, so improving that part of the kernel can render

performance gains. For this reason, we change the data layout of the preconditioner blocks to

use column-major instead of row-major storage. This enables efficient column-wise access of the

block – equivalent to a column-major gemv for each Jacobi block. The downside of this approach

is that the block data has to be transposed after the inversion, which results in suboptimal memory

accesses during the preconditioner generation step. However, since the preconditioner is generated

only once, but applied multiple times (at least once per KSM iteration), we expect this change in

storage layout will render performance improvements for most use cases.

The final improvement aims at processing small blocks more efficiently. The original implemen-

tation stores consecutive blocks in sequence, as depicted in the top part of Figure 3. With such

storage, memory access during preconditioner application is optimal for large blocks. However,

as soon as the maximal block size becomes small enough to split the warp into sub-warps, so

that several blocks are processed by the same warp, this no longer holds. Since the corresponding

columns of consecutive blocks are not consecutive in memory, reading them causes suboptimal

strided memory access. To eliminate this problem, we replace the sequential storage scheme with

the block-interleaved storage shown in the bottom part of Figure 3. The new scheme groups all

blocks processed by a warp together, and interleaves the storage of their columns. Precisely, the

scheme initially stores the first columns of all blocks in the group, then proceeds with storing the

second columns, etc.; this strategy ensures contiguous memory accesses during preconditioner

application.

The last two optimizations are essential to enable performance improvements via low precision

storage. Without the former, communication would dominate the cost of preconditioner application,

severely limiting the benefit of reduced data transfers. Without the latter, accessing small blocks

would incur unnecessary data loads into cache. Since the size of the cache lines is fixed, reducing the

size of the individual elements would just increase the amount of memory being wasted, without

reducing the total data movement volume.

2
Since only a subset of the warp was calling the API in the original implementation.
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4.3 Adaptive block-Jacobi

Extending the full precision block-Jacobi to the adaptive precision variant requires adding the pre-

cision detection logic to the preconditioner generation, storing the blocks in appropriate precision

together with metadata specifying which precision is employed for the distinct blocks and, during

preconditioner application, restoring the original block on the fly from low precision storage using

the metadata.

The precision selection method we employ is that explained in Section 3.1, enhanced with the

additional formats introduced in Section 3.2. The condition number of the block is determined

by computing the matrix 1-norm of the block before and after inverting it [Anzt et al. 2018]. The

condition number is then evaluated against the unit roundoffs to select the optimal format using the

format priority list we introduced in Section 3.2. For precisions that require additional protection

against catastrophic underflow or overflow (ieee singe and half), the conditioning of the inverse

stored in lower precision is computed by converting each value of the inverse block to lower

precision, converting it back to double precision, followed by norm calculation, inversion, and

another norm calculation — all in double precision. This way, the condition number is computed

with high accuracy. Before reducing the precision, a copy of the full precision inverse is backed up

to main GPU memory. This allows to retrieve the full precision inverse afterwards (if necessary).

When a group of blocks is processed by a single warp (in case of small blocks), the precision is not

decided individually, but jointly for the entire group of blocks, using the first precision in the list

from Section 3.2, which is suitable for storing all blocks. This is done for performance reasons, as

trying to execute different instructions by threads belonging to the same warp — which would be

necessary to read values stored in different precisions — would lead to thread divergence, and the

serialization of these instructions, ultimately resulting in a significant slowdown.

Since the final precisions are not known before inverting the blocks, a memory workspace large

enough to store all blocks in double precision is allocated before launching the preconditioner

generation kernel. Once the storage precision is decided, low precision blocks are stored using only

the first part of the workspace they are assigned to, while the rest of the workspace remains unused

(fragmentation). While it would be possible to post-process the block storage structure to remove

unused “gaps” via de-fragmentation, doing so would not reduce the total memory transfer volume

during preconditioner application, since the total storage required for the group of blocks is a

multiple of the cache line size in any precision, as long as the block size is at least 2. In consequence,

the “gaps” will never be transferred from main memory to the cache. Thus, removing gaps is only

attractive in case the total memory footprint of the preconditioner is a relevant factor. We refrain

from incorporating de-fragmentation in our implementation.

A distinct memory block is used to store the information about the precisions used for the

inverted blocks. The precision of each block is encoded using 8 bits, which is the smallest amount of

data that can be independently stored and loaded frommemory. This information is retrieved during

the preconditioner application stage to determine the storage locations and precision formats of

individual blocks and select the correct conversion procedure.

5 USABILITY, REPRODUCIBILITY AND SUSTAINABILITY EFFORTS

As not only modern hardware but also the software that can effectively utilize the hardware

resources becomes increasingly complex, it can no longer be expected that novel algorithms or high

performance implementations presented in scientific publications are adequately explained so that

the readers can reproduce an implementation of equivalent quality. Furthermore, domain scientists

who can potentially benefit from such work, should not be required to understand low-level

optimization techniques needed to produce a high performance implementation. In consequence,
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1 // Read data
2 auto A = share(gko::read <mtx >(std:: ifstream ("data/A.mtx"), exec));
3 auto b = gko::read <vec >(std:: ifstream ("data/b.mtx"), exec);
4 auto x = gko::read <vec >(std:: ifstream ("data/x0.mtx"), exec);
5

6 // Generate solver
7 auto solver_gen =
8 cg::build()
9 + .with_preconditioner(
10 + gko:: preconditioner ::Jacobi <>::build ().on(exec))
11 .with_criteria(
12 gko::stop:: Iteration ::build().with_max_iters (20u).on(exec),
13 gko::stop:: ResidualNormReduction <>::build()
14 .with_reduction_factor (1e-20)
15 .on(exec))
16 .on(exec);
17 auto solver = solver_gen ->generate(A);
18

19 // Solve system
20 solver ->apply(lend(b), lend(x));

1 // Read data
2 auto A = share(gko::read <mtx >(std:: ifstream ("data/A.mtx"), exec));
3 auto b = gko::read <vec >(std:: ifstream ("data/b.mtx"), exec);
4 auto x = gko::read <vec >(std:: ifstream ("data/x0.mtx"), exec);
5

6 // Generate solver
7 auto solver_gen =
8 cg::build()
9 + .with_preconditioner(
10 + gko:: preconditioner ::Jacobi <>::build ()
11 + .with_storage_optimization(
12 + gko:: precision_reduction :: autodetect ())
13 + .on(exec))
14 .with_criteria(
15 gko::stop:: Iteration ::build().with_max_iters (20u).on(exec),
16 gko::stop:: ResidualNormReduction <>::build()
17 .with_reduction_factor (1e-20)
18 .on(exec))
19 .on(exec);
20 auto solver = solver_gen ->generate(A);
21

22 // Solve system
23 solver ->apply(lend(b), lend(x));

Fig. 4. Changes needed to enhance Ginkgo’s simple_solver usage example with the full precision block-

Jacobi preconditioner (top) and adaptive precision block-Jacobi preconditioner (bottom).

it is becoming increasingly important to openly publish high performance implementations and

simplify their integration into other software ecosystems.

To address these issues, we integrate both the full-precision block-Jacobi preconditioner as well

as the adaptive precision variant into the open source Ginkgo linear algebra package
3
. Ginkgo

is a C++ library originally designed for the iterative solution of sparse linear systems. It features

various matrix formats and solvers with high performance implementations for both GPU and

CPU architectures, and allows for the easy integration into existing software stacks. At this point,

the (adaptive) block-Jacobi preconditioner is available in “reference mode” (a single threaded

straightforward CPU implementation that can be used for correctness checking and evaluating the

convergence benefits of the preconditioner) as well as in “CUDA mode”, with the latter featuring

the high performance GPU implementation described in this work. A high performance CPU

implementation based on OpenMP parallelization is planned, but not yet available.

Adding the block-Jacobi preconditioner into a larger software effort provides the benefits of

reusing existing workflows: Ginkgo’s low-level building blocks are utilized to simplify the imple-

mentation; its unit testing framework extended to include tests for the block-Jacobi preconditioner

3
https://ginkgo-project.github.io
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which are then automatically run using Ginkgo’s continuous integration (CI) system; the bench-

marks for block-Jacobi are integrated into Ginkgo’s Continuous Benchmarking (CB) framework

and can be run separately, or in conjunction with the rest of the benchmarks [Anzt et al. 2019].

From the user’s perspective, the integration reduces the amount of software that has to be installed

as well as simplifies the installation (as Ginkgo uses the well-established CMake build system) and

integration of the software. If the user is already using Ginkgo as part of an application, adding the

adaptive block-Jacobi preconditioner requires only a few of additional lines of code, as shown in

Figure 4. If the application does not (yet) use Ginkgo, its library interoperability features can be

used to wrap existing data structures into Ginkgo objects, which can then be used to construct and

apply the preconditioner. Finally, as all the unit tests and benchmarks contributed in this work are

distributed as part of the Ginkgo ecosystem, it should be relatively simple for the user to verify the

correctness and reproduce the performance results we present in this paper, or even to evaluate

the kernels’ performance on a different CUDA-supporting architecture.

6 EXPERIMENTAL EVALUATION

This section evaluates the numerical properties and the effectiveness, efficiency, and performance of

the developed adaptive precision algorithm and the low level kernels on recent CUDA-supporting

GPUs. Initially, we assess the performance gains available from the improvements to the full

precision block-Jacobi preconditioner. Then, the optimized full precision kernels are compared

with the adaptive precision variant.

Two hardware setups are used in the experiments. The first one is a GPU-accelerated node of a

compute cluster at the University of Jaume I (UJI). The node is composed of an 8-core Intel Xeon

E5-2620 v4 CPU with 32 GB of RAM and an NVIDIA TESLA P100 (PCI-e form factor) GPU with 16

GB of HBM2 memory. The accelerator achieves a peak double precision performance of 4.7 TFlop/s

and a peak memory bandwidth of 732 GB/s.

The second setup is the Summit supercomputer at the Oak Ridge National Laboratory. Our

experiments use a single node containing two 22-core IBM POWER9 CPUs with 256 GB of RAM

and 6 NVIDIA TESLA V100 (SXM2 form factor) GPUs with 16 GB of HBM2 memory. For our

experiments, we use only a single NVIDIA V100 GPU with a peak double precision performance of

7.8 TFlop/s and a peak memory bandwidth of 900 GB/s.

6.1 Effects of using the cooperative group APIs and the newer Volta architecture

While the C++ language and its compilers are designed to enable zero-overhead abstractions, there

is always a possibility that a particular abstraction is not properly translated by the compiler and

does not generate sufficiently optimized code. Thus, we first evaluate the effect of replacing the

low-level warp shuffle and vote APIs used in the original code with the higher-level cooperative

groups API. Since the initial version using the low-level APIs does not work correctly on the new

Volta generation hardware used by the Summit system, the evaluation was realized on the UJI

cluster, which features the older Pascal generation P100 GPU. For the new implementation that

supports the recent Volta architecture, we also include the results obtained on the Summit system

and the V100 GPU to study the effects of switching to newer hardware.

The experiments were performed using synthetically-generated block-diagonal matrices with

varying block sizes and a total of 50,000 equally-sized blocks per matrix. The maximal size of

preconditioner blocks was set to match the block size of the matrix. The nonzero locations were

filled with randomly-generated small floating point numbers uniformly distributed between −1

and 1.

The results presented in Figure 5 reveal that there is no significant performance difference when

moving to the higher level API. At the same time, the version using the cooperative groups API

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.
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Fig. 5. Effects of using the higher-level cooperative groups API (green and blue) over the low-level warp

shuffle and warp vote APIs (red). The results with cooperative groups are shown for the older P100 GPU

(green) and newer V100 GPU (blue). The top plot shows the performance of the preconditioner generation

(not including block size detection) and the bottom plot the performance of the preconditioner application.

supports the new Volta architecture. The preconditioner generation stage takes a slight performance

hit for large blocks due to the Volta architecture increasing register pressure to support the relaxed

warp execution model [Anzt et al. 2018]. However, the more relevant preconditioner application

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.
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stage does not suffer from this problem, and exhibits performance improvements between 40% and

50% on the V100.

6.2 Memory layout improvements

Next, we evaluate the effect of the two preconditioner memory layout optimizations: the block-level

optimization that employs column-major instead of row-major storage and the preconditioner-level

optimization based on block-interleaved instead of sequential block storage. We run the experiments

on Summit’s V100 GPU, using the same synthetic benchmarks as in Section 6.1.

Figure 6 demonstrates that changing the storage scheme from row-major to column-major

slightly reduces the performance of preconditioner generation as storing the preconditioner data

causes non-coalesced memory access. On the other hand, the performance of preconditioner

application increases for all block sizes, due to the availability of a more efficient matrix-vector

product algorithm. As mentioned earlier, since the preconditioner is generated only once and

applied multiple times (and the cost of generating the block-Jacobi preconditioner is negligible

compared with the solver runtime [Anzt et al. 2018]), the overall performance of the solver is

improved.

The second optimization only has impact on blocks with at most 16 rows and columns. This

is expected, as for larger blocks the two storage schemes result in exactly the same data layout.

For those cases where the storage layout is different, marginal benefits can be identified in favour

of the block-interleaved layout. We expect that these benefits become more pronounced in the

adaptive block-Jacobi variant, since unfavorable cache access is more detrimental when dealing

with smaller data types.

6.3 Adaptive precision

Having analyzed the effects of the additional improvements applied to the full precision block-Jacobi,

we now turn our attention to the adaptive variant. Once again, we run the experiments on Summit’s

V100 GPU and use synthetic benchmarks described in Section 6.1. For the full precision version, we

evaluate a kernel incorporating all the optimizations described in previous sections: cooperative

groups API, column-major storage and block-interleaved block storage. For the adaptive version, a

kernel featuring all these optimization steps and additional support for adaptive precision is used.

We report results where the autodetection system was disabled, and the precision used for all blocks

is fixed beforehand to the same value. This offers an upper bound on the theoretical performance

improvement that can be expected if all blocks can be stored in the same precision. On real-world

problems (covered in the next section), the actual performance improvement highly depends on

the condition number distribution of the diagonal blocks of the system matrix, which is difficult to

replicate with synthetic benchmarks. However, since disabling autodetection means that part of

the preconditioner generation kernel is skipped, we additionally report performance results that

account for the autodetection: a variant that selects only between the three precision formats that

do not require additional condition number calculation, and a variant with full autodetection using

all six supported precisions formats.

Figure 7 shows the results for the generation and application stages of the adaptive precision

block-Jacobi preconditioner and all six supported precisions. While there are some performance

improvements available when using lower precision in the generation stage due to the reduction

of the total time needed to store low-precision blocks, the improvements in the application stage

are of higher importance. These improvements are more pronounced for larger block sizes, where

the preconditioner’s memory footprint becomes more relevant compared with the footprint of the

input and output vectors. In total, low-precision blocks can yield up to 1.7× and 2× speedups for

32-bit and 16-bit storage schemes, respectively. Another interesting observation concerns the effect
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Fig. 6. Performance of memory layout optimizations on the V100 GPU. The original row-major, sequential

block storage is shown in red, column-major, sequential block storage in green and column-major, block-

interleaved block storage in blue. The top plot shows the performance of the preconditioner generation

(without block size detection) and the bottom plot the performance of the preconditioner application.

of automatic precision detection on the preconditioner generation time. When using only the three

non-standard formats that preserve the representable range of values, there is virtually no impact

on the performance of preconditioner generation. On the other hand, using all six formats can lead

to performance degradation of up to a factor of 2×. This implies that, in case the solver is expected
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Fig. 7. Performance of adaptive precision block-Jacobi on the V100 GPU. The storage format is encoded

as (ex, snf ). The first bar (red), is the full precision block-Jacobi. The next five bars represent lower storage

precision without accounting for the detection of the suitable precision. The last two bars include the

autodetection. For the seventh bar (purple), all six precisions were considered (requiring the calculation

of two additional condition numbers). In the last bar (pink), only the three precisions that do not require

additional condition number calculation are considered. All performance numbers only count the floating-

point operations required by the full-precision variant. The top plot shows the performance of preconditioner

generation (without block size detection), and the bottom plot the performance of preconditioner application.
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to converge in a few iterations (where preconditioner generation represents a high fraction of the

total runtime), it may be beneficial to only use the three non-standard precisions, or to maintain

the full precision block-Jacobi.

6.4 Full solver runtime

Finally, we compare the effectiveness of a solver enhanced with adaptive precision block-Jacobi

with that of a solver enhanced with the full precision variant. For this experiment, we use a set of

matrices from the SuiteSparse matrix collection
4
, arising in real-world applications. Only symmetric

positive definite problems that have between 10
6
and 5 × 10

8
nonzeros, and where a block-Jacobi

enhanced Conjugate Gradient (CG) solver needs more than 100 iterations are considered, as these

problems justify the use of a preconditioned CG solver on GPUs. The CG solver available in the

Ginkgo library was employed. For both preconditioners, the double precision standard block-Jacobi

as well as the adaptive precision block-Jacobi, we automatically detect natural diagonal blocks

using the supervariable amalgamation algorithm. While we recognize that it may be possible to

design a more advanced method of block-detection, this is still an area of active research [Goetz

and Anzt 2018] that remains outside the scope of this paper. The block size upper limit was set

to 32. The solvers were run for at most 10,000 iterations, or until the initial residual norm was

reduced by at least 10 orders of magnitude. We used the automatic precision detection method (with

all six precisions) described earlier to select the precision of each block in the adaptive precision

variant. We run two parameter settings where the automatic precision detection procedure was

instructed to assign precisions such that either 1 or 2 decimal digits are preserved when applying

the preconditioner. This reflects the assumption that the preconditioner provides 1 and 2 digits

of accuracy, respectively. For these two settings the distribution of the distinct precision formats

in the preconditioner blocks is shown in Figure 8. In case of preserving 1 decimal digit of the

preconditioner (top plot in Figure 8), we observe a that a significant amount of the Jacobi blocks

can be be stored in less than double precision. Many blocks are stored in single or half precision,

but the non-standard f p8,7 format is also employed for a notable fraction of the Jacobi blocks.

The alternative non-standard formats, f p11,20 and f p11,4, are irrelevant. As expected, the situation
changes for the setting where we preserve 2 decimal digits of the preconditioner (bottom plot in

Figure 8). Since the precision reduction is overall more conservative, no blocks are stored in the

f p8,7 format.

Figure 9 shows the iteration count and runtime of the CG solver integrated with either the full or

the adaptive precision block-Jacobi preconditioner. For the adaptive precision block-Jacobi we again

consider two settings where 1 digit (top plot) and 2 digits (bottom plot) of the preconditioner are

preserved, respectively. A first observation is that CG enhanced with any of the variants converged

for all problems (black and gray dots on top of the plot). Furthermore, the benefit of adaptive

precision highly depends on the problem and the parameter setting. If most of the blocks are

relatively well conditioned, the majority of the preconditioner can be stored in lower precision,

yielding improvements between 10% and 30%. For problems with ill-conditioned blocks, there is no

difference between the two variants, since all blocks need to be stored in full precision in order

to preserve the quality of the preconditioner. In that case, it is even possible that the adaptive

variant becomes slightly slower due to the additional operations needed to read and process the

information about the precisions of the blocks. In particular in the setting where only 1 digit

of the preconditioner is preserved, there also exist several cases were the adaptive block-Jacobi

preconditioning fails to preserve the effectiveness of the preconditioner (i.e. the preconditioner is

of higher quality than one digit), which results in an increase in the number of iterations which

4
https://sparse.tamu.edu/
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Fig. 8. Distribution of floating point formats among the distinct blocks when preserving 1 (top) or 2 (bottom)

digits of the preconditioner blocks. Each column represents one of the selected matrices. The test matrices

are numbered from 1 to 76. For the matrices characteristics, see Table 1. The fraction of the column filled

with a certain color depicts the fraction of blocks stored in the format represented by that color.

the adaptive variant needs to converge (top plot in Figure 9). This effect is mitigated if 2 digits of

the preconditioner are preserved (bottom plot in Figure 9). Furthermore, we observe that there

are only few cases where the preconditioner carries more accuracy than two orders of magnitude.

At the same time, the benefits of the adaptive precision block-Jacobi preserving 2 digits over the
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Fig. 9. Iteration count and runtime of the Conjugate Gradient (CG) solver enhanced with the adaptive

precision block-Jacobi preconditioner relative to the CG solver with the full precision variant of block-Jacobi.

The results include all symmetric positive definite matrices with at least 10
6
nonzeros from the SuiteSparse

matrix collection for which a CG solver needs at least 100 iterations to converge. The test matrices are

numbered from 1 to 76. For the matrices characteristics, see Table 1. Black and gray dots on top of the plots

represent (from top to bottom) whether CG, CG+(full precision) block-Jacobi and CG+adaptive block-Jacobi

converged for that matrix. The absence of a dot means that the method did not converge. The red dots

represent the relative number of iterations, while the green dots the relative time of adaptive block-Jacobi

compared with the full-precision variant. A value greater than 1 means that the adaptive variant outperforms

the full precision block-Jacobi for that specific problem. The adaptive precision preserves 1 digit (top) or two

digits (bottom) of the full precision block-Jacobi preconditioner.
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standard double precision block-Jacobi are only marginally smaller than for the more aggressive

setting preserving only one digit.

From this analysis, we may conclude that a setting preserving 2 digits of the preconditioner

provides a good default choice, while problem-specific optimization can enable performance

advantages.

7 DISCUSSION

In this section, we provide a concise discussion of the central numerical aspects coming with the

precision adaptation in general, and the setting preserving 2 decimal digits of the preconditioner in

particular:

(1) Do we need a flexible Krylov solver if the preconditioner matrix is stored in lower
than working precision? No, storing the preconditioner in adaptive (lower) precision is

independent of the need for a method accepting non-constant preconditioners. As elaborated

in [Anzt et al. 2019], the preconditioner operator is constant as long as all arithmetic operations

are handled in working precision.

(2) Can the adaptive precision block-Jacobi matrix become singular? No, the automatic

precision adaption scheme strictly preserves the regularity of the preconditioner matrix.

(3) Can the default setting preserving 2 decimal digits of the preconditioner introduce
an iteration overhead to the outer solver? Yes, it is possible that the block-Jacobi precon-
ditioner has higher accuracy than 2 decimal digits. In the extreme case of the system matrix

decomposing into independent problems of size smaller than the upper limit for the Jacobi

blocks, the preconditioner presents the exact inverse of the system matrix and any format

reduction introduces an accuracy loss. However, our analysis suggests that the block-Jacobi

preconditioner rarely exceeds 2 decimal digits.

(4) Are larger runtime savings possible by reducing thememory precision formatmore
aggressively? Yes, as the results in Figure 9 (top) indicate, preserving only 1 digit of the pre-

conditioner (and therewith reducing the precision format more aggressively) can potentially

augment the runtime savings for moderately-accurate block-Jacobi preconditioners. However,

preserving only 1 digit in general increases the chance of loosing some preconditioner quality,

and therewith increasing the iteration count.

(5) Is it possible to control how many digits of the preconditioner are preserved? Yes,
the implementation allows to control the number of preserved preconditioner digits via a

parameter.

(6) Is the source code of the adaptive precision block-Jacobi preconditioner publicly
available? Yes, the adaptive precision block-Jacobi preconditioner is part of the Ginkgo

open source software package
5
. A descriptive example for the use of the precision optimization

in block-Jacobi is given in Ginkgo’s adaptiveprecision-blockjacobi example
6
.

(7) Can the adaptive precision block-Jacobi preconditioner be used inside other Krylov-
type solvers? Yes, the adaptive block-Jacobi preconditioner is independent of the Conjugate
Gradient method used in this work and can be employed by any solver that is amenable for

preconditioning.

(8) Can the adaptive precision block-Jacobi preconditioner be used for non-symmetric
positive definite problems? Yes, the adaptive block-Jacobi preconditioner generation is

based on Gauss-Jordan elimination enhanced with pivoting [Anzt et al. 2018] and can handle

general non-singular problems.

5
https://ginkgo-project.github.io

6
https://github.com/ginkgo-project/ginkgo/tree/develop/examples/adaptiveprecision-blockjacobi
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8 CONCLUSION AND OUTLOOK

In this work we presented the first practical implementation of an adaptive precision block-Jacobi

preconditioner. More precisely, we developed a heavily-tuned GPU implementation of the adaptive

precision block-Jacobi preconditioner inside the Ginkgo numerical linear algebra library and made

it available alongside with descriptive examples. In addition, we augmented the original strategy,

which advocates for decoupling the arithmetic precision from memory precision and storing the

inverted diagonal blocks in lower precision, with customized precision formats that accommodate

more aggressive memory transfer savings than those that were possible with the original description

of the adaptive block-Jacobi scheme. In the experimental evaluation with the adaptive precision

block-Jacobi preconditioner inside a CG iterative solver, we demonstrated runtime savings between

10% and 30% compared to a full precision block-Jacobi preconditioner. The actual savings highly

depend on the numerical properties of the problem, and fine-tuning the parameter controlling the

level of preconditioner accuracy that is preserved may allow for even larger improvements.

In the future we plan to turn our attention to related topics such as the efficient detection of

strongly connected unknowns in the system matrix and optimizing the block pattern with respect

to preconditioner accuracy and memory savings.
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A CHARACTERISTICS OF SUITESPARSE (SS) MATRICES USED IN BENCHMARKS

row and col nnz stats

Number SS id Name #rows #cols nnz min mean max

1 341 bcsstk36 23052 23052 1143140 8 49.59 178

2 356 ct20stif 52329 52329 2600295 2 51.57 207

3 361 msc10848 10848 10848 1229776 45 113.36 723

4 362 msc23052 23052 23052 1142686 12 50.10 178

5 369 pwtk 217918 217918 11524432 2 53.39 180

6 761 nasasrb 54870 54870 2677324 12 48.79 276

7 804 cfd1 70656 70656 1825580 12 25.88 33

8 805 cfd2 123440 123440 3085406 8 25.02 30

9 813 olafu 16146 16146 1015156 24 62.87 89

10 817 raefsky4 19779 19779 1316789 18 67.17 177

11 936 nd3k 9000 9000 3279690 127 364.41 515

12 937 nd6k 18000 18000 6897316 130 383.18 514

13 938 nd12k 36000 36000 14220946 126 395.03 519

14 939 nd24k 72000 72000 28715634 110 398.83 520

15 942 af_shell3 504855 504855 17562051 20 34.84 40

16 943 af_shell4 504855 504855 17562051 20 34.84 40

17 946 af_shell7 504855 504855 17579155 20 34.84 40

18 947 af_shell8 504855 504855 17579155 20 34.84 40

19 1202 gyro_k 17361 17361 1021159 12 58.82 360

20 1252 audikw_1 943695 943695 77651847 21 82.28 345

21 1253 bmw7st_1 141347 141347 7318399 1 51.93 435

22 1254 bmwcra_1 148770 148770 10641602 24 71.55 351

23 1257 crankseg_1 52804 52804 10614210 48 201.01 2703

24 1258 crankseg_2 63838 63838 14148858 48 221.64 3423

25 1266 hood 220542 220542 9895422 21 48.83 77

26 1267 inline_1 503712 503712 36816170 18 73.09 843

27 1268 ldoor 952203 952203 42493817 28 48.86 77

28 1269 m_t1 97578 97578 9753570 48 99.96 237

29 1270 oilpan 73752 73752 2148558 28 48.77 70

30 1275 s3dkq4m2 90449 90449 4427725 13 53.30 54

31 1276 s3dkt3m2 90449 90449 3686223 7 41.50 42

32 1277 ship_001 34920 34920 3896496 18 133.00 438

33 1278 ship_003 121728 121728 3777036 18 66.43 144

34 1279 shipsec1 140874 140874 3568176 24 55.46 102

35 1280 shipsec5 179860 179860 4598604 12 56.23 126

36 1281 shipsec8 114919 114919 3303553 15 57.90 132

37 1283 thread 29736 29736 4444880 48 150.32 306

38 1287 vanbody 47072 47072 2329056 6 49.65 232

39 1290 x104 108384 108384 8713602 30 93.81 324

40 1403 thermal2 1228045 1228045 8580313 1 6.99 11

41 1421 G3_circuit 1585478 1585478 7660826 2 4.83 6

42 1423 apache2 715176 715176 4817870 4 6.74 8

43 1435 gyro 17361 17361 1021159 12 58.82 360

44 1453 bone010 986703 986703 47851783 12 72.63 81
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45 1454 boneS01 127224 127224 5516602 12 52.78 81

46 1455 boneS10 914898 914898 40878708 12 60.63 81

47 1580 af_0_k101 503625 503625 17550675 15 34.85 35

48 1581 af_1_k101 503625 503625 17550675 15 34.85 35

49 1582 af_2_k101 503625 503625 17550675 15 34.85 35

50 1583 af_3_k101 503625 503625 17550675 15 34.85 35

51 1584 af_4_k101 503625 503625 17550675 15 34.85 35

52 1585 af_5_k101 503625 503625 17550675 15 34.85 35

53 1644 msdoor 415863 415863 19173163 28 48.67 77

54 1848 Dubcova2 65025 65025 1030225 4 15.84 25

55 1849 Dubcova3 146689 146689 3636643 9 24.79 49

56 1850 BenElechi1 245874 245874 13150496 1 53.48 54

57 1853 parabolic_fem 525825 525825 3674625 3 6.99 7

58 1883 ecology2 999999 999999 4995991 3 4.99 5

59 1892 denormal 89400 89400 1156224 6 12.93 13

60 1899 tmt_sym 726713 726713 5080961 3 6.99 9

61 1909 smt 25710 25710 3749582 52 145.98 414

62 2283 offshore 259789 259789 4242673 5 16.33 31

63 2373 pdb1HYS 36417 36417 4344765 18 119.31 204

64 2374 consph 83334 83334 6010480 1 72.13 81

65 2375 cant 62451 62451 4007383 1 64.17 78

66 2541 Serena 1391349 1391349 64131971 15 46.38 249

67 2542 Emilia_923 923136 923136 40373538 15 44.42 57

68 2543 Fault_639 638802 638802 27245944 15 44.79 318

69 2544 Flan_1565 1564794 1564794 114165372 24 75.03 81

70 2545 Geo_1438 1437960 1437960 60236322 15 43.92 57

71 2546 Hook_1498 1498023 1498023 59374451 15 40.67 93

72 2547 StocF-1465 1465137 1465137 21005389 1 14.34 189

73 2659 Bump_2911 2911419 2911419 127729899 1 43.87 195

74 2660 Queen_4147 4147110 4147110 316548962 24 79.45 81

75 2661 PFlow_742 742793 742793 37138461 1 50.00 137

76 2664 bundle_adj 513351 513351 20207907 3 39.36 12588

Table 1. Characteristics of SuiteSparse matrices used in Figures 8 and 9. All matrices are symmetric.
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B REPRODUCE THE RESULTS OF THIS PAPER

In this appendix, we explain how to generate and analyze results with adaptive precision block-

Jacobi, in particular, to reproduce the figure 8 from the relevant paper. We assume that the code

is benchmarked on the Summit machine. If that is not the case, we cannot help with packages

selection and other details such as job submission. For any issue reproducing these experiments

please send a mail to mailto:ginkgo.library@gmail.com.

The main steps are as follows:

(1) Install ssget and prefetch the matrices from the SuiteSparse collection

(2) Download and build Ginkgo

(3) Prepare the experiment scripts

(4) Run the experiments

(5) Publish the experiments to github and tie to the information in the previous mail for generat-

ing the plots.

B.1 Fetching the matrices

First of all, a tool is required for benchmarking: https://github.com/ginkgo-project/ssget

This tool is a bash script simplifying downloading matrices from the SuiteSparse matrix collection.

The script can be put anywhere in the PATH, but line 39 (ARCHIVE_LOCATION) has to be configured,
this is where the downloaded matrices will be stored. On the Summit supercomputer, this would

typically have to be somewhere in $MEMBERWORK/<project>/...., since this has better access
inside jobs.

The matrices used for the experiments can be pre-downloaded, as this saves some node time, as

is shown in Listing 1:

1 for i in $(seq 0 $(ssget -n)); do
2 posdef=$(ssget -p posdef -i $i)
3 cols=$(ssget -p cols -i $i)
4 nnz=$(ssget -p nonzeros -i $i)
5 if [ "$posdef" -eq 1 -a "$cols" -lt 10000000 -a "$nnz" -lt 500000000 ]; then
6 ssget -f -i $i
7 fi
8 done

Listing 1. Download the relevant SuiteSparse matrices to reproduce the experiments.

B.2 Building Ginkgo

Afterwards, Ginkgo can be cloned, configured and built. The steps are shown in Listing 2. All paths

can be adapted as needed. The <...> (project) part absolutely needs to be replaced:

1 project=<project >
2 ginkgo_source=$HOME/TOMS -bj-reproduce/ginkgo
3 ginkgo_build=$MEMBERWORK/${project ,,}/TOMS -bj-reproduce/ginkgo -build
4 module load gcc /6.4.0 cuda /9.2.148 cmake /3.15.2 git /2.20.1
5 # For every new session , the previous setup is required
6 git clone https :// github.com/ginkgo -project/ginkgo.git ${ginkgo_source} --branch 2019toms -adaptive

-bj-solver
7 mkdir -p ${ginkgo_build} && cd ${ginkgo_build}
8 cmake -DBUILD_CUDA=on -DBUILD_OMP=off -DBUILD_EXAMPLES=off -DBUILD_GTEST=on -DDEVEL_TOOLS=off -

DCMAKE_C_COMPILER=$(which gcc) -DCMAKE_CXX_COMPILER=$(which g++) ${ginkgo_source}
9 bsub -P ${project ^^} -W 2:00 -nnodes 1 jsrun -n 1 -c 10 -g 0 make -j10
10 # This is a good time to go do something else , compilation will take a
11 # while as there is a big CUDA compiler bug which makes it extremely slow and
12 # memory heavy to # compile the block jacobi with all optimizations.
13 make -j10 # afterwards , ensure everything is compiled
14 make test
15 # Everything should run without failure.

Listing 2. Download and build the Ginkgo software to reproduce the experiments.
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B.3 Prepare the experiment scripts

In Listing 3, we create two files for launching the experiments. A ginkgo_benchmark.lsf script
for bsub, and a benchmark_one_node.sh script which runs jsrun and populates some arguments

in order to create segments to be benchmarked, all of which can run in parallel.

1 cat > ${ginkgo_source }/ benchmark_one_node.sh << EOF
2 #!/bin/bash -x
3

4 cd \${1}/ benchmark
5 chmod +x run_all_benchmarks.sh
6

7 ADAPTIVE_JACOBI_ACCURACY =\${4:-1e-1}
8 export BENCHMARK=solver
9 export PRECONDS=none ,jacobi ,adaptive -jacobi
10 export SYSTEM_NAME=V100_summit
11 export SEGMENT_ID =\${2}
12 export SEGMENTS =\${3}
13 ./ run_all_benchmarks.sh >/dev/null
14 EOF
15

16 cat > $ginkgo_source/benchmark_ginkgo.lsf << EOF
17 #!/bin/bash
18 #BSUB -P ${project ^^}
19 #BSUB -W 2:00
20 #BSUB -nnodes 1
21 #BSUB -J Ginkgo_Benchmark
22 #BSUB -o Ginkgo_Benchmark .%J
23 #BSUB -e Ginkgo_Benchmark .%J
24

25 if [ -z \${segment_id+x} ]
26 then
27 echo "Please set variable segment_id"
28 exit
29 fi
30

31 if [ -z \${segments+x} ]
32 then
33 echo "Please set variable segments"
34 exit
35 fi
36

37 module load gcc /6.4.0 cuda /9.2.148 cmake /3.15.2 git /2.20.1
38

39 jsrun -n 1 -a 1 -c 1 -g 1 $ginkgo_source/benchmark_one_node.sh $ginkgo_build \$segment_id \
$segments

40 EOF
41

42 chmod +x ${ginkgo_source }/ benchmark_one_node.sh

Listing 3. Generate the scripts required for launching the Ginkgo benchmarks

B.4 Run the benchmarks

To run the benchmarks there are two parameters to pick:

• the parallelism desired,

• the number of matrices we want to reproduce against (all of them or a portion).

These are controlled with the variables segments and segment_id. As an example, the code

shown in Listing 4 will run 20 benchmarks in parallel and benchmark all matrices since we use all

segment_id.

1 for i in $(seq 1 20); do segments =20 segment_id=$i bsub $ginkgo_source/benchmark_ginkgo.lsf; done

Listing 4. Benchmark Ginkgo using 20 jobs in parallel

To only benchmark the first half of the matrices, we could do like in Listing 5:

1 # Note the different in the `seq ` below
2 for i in $(seq 1 10); do segments =20 segment_id=$i bsub $ginkgo_source/benchmark_ginkgo.lsf; done

Listing 5. Benchmark Ginkgo on only half the matrices

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: August 2020.
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B.5 Publish the results and generate the plots

For analyzing the results, any tool can be used. The previous experiments generated json files for

each matrix, each containing timing and convergence results without preconditioner, with standard

block-Jacobi preconditioner, and with adaptive precision block-Jacobi.

In this section, we describe how to generate the plots by using Ginkgo’s GPE
7
tool. First, we

need to publish the experiments into a Github repository which will be then linked as source input

to the GPE. For this, we can simply fork the ginkgo-data repository. To do so, we can go to the

github repository and use the forking interface: https://github.com/ginkgo-project/ginkgo-data/

tree/2019toms-adaptive-bj

Once this is done, we want to clone the 2019toms-adaptive-bj branch, move all results into a

public domain, and access the GPE for plotting the results. The detailed steps are shown in Listing 6.

1 git clone https :// github.com/<username >/ginkgo -data.git ${ginkgo_build }/ benchmark/ginkgo -data --
branch 2019toms -adaptive -bj

2 rsync -rtv ${ginkgo_build }/ benchmark/results/ ${ginkgo_build }/ benchmark/ginkgo -data/data/
3 cd ${ginkgo_build }/ benchmark/ginkgo -data/data/
4 # The following updates the main `.json ` files with the list of data
5 module load python /3.7.0
6 ./build -list . > list.json
7 ./ agregate < list.json > agregate.json
8 git config --local user.name "<Name >"
9 git config --local user.email "<email >"
10 git commit -am "Ginkgo Reproduced BJ data"
11 git push

Listing 6. Publish the results and generate summary files to a Github benchmark repository.

For generating the plots in the GPE, here are the steps to go through:

(1) Access the GPE: https://ginkgo-project.github.io/gpe/

(2) Update data root URL, from https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/

master/data to https://raw.githubusercontent.com/<username>/ginkgo-data/2019toms-adaptive-bj/

data

(3) Click on the arrow to load the data, select the Result Summary entry above. The first few

entries under this should be V100 (cuda).

(4) Click on select an example to choose a plotting script, and update the url from https://raw.

githubusercontent.com/ginkgo-project/ginkgo-data/master/plots to https://raw.githubusercontent.

com/<username>/ginkgo-data/2019toms-adaptive-bj/plots

(5) Again Click on the arrow next to the URL to load everything

(6) Select the plot "Preconditioned CG detailed comparison"

(7) The results should be available in the tab "plot" on the right side

B.6 Generate results and plots for precision 1e-2

The previous steps benchmarked and generated the plot with block Jacobi accuracy 1e − 1, to

generate the results with 1e − 2, both steps 4 and 5 need to be repeated. The only modification

necessary is to edit $ginkgo_source/benchmark_ginkgo.lsf by appending "1e-2" to the end of

the jsrun line.

In GPE, plotting with the previous link will now show the benchmark data of precision 1e − 2 by

default. To get back to the previous 1e − 1 precision results, replace 2019toms-adaptive-bj in the

link by the previous commit hash.

7
https://ginkgo-project.github.io/gpe/
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