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6 Abstract7

8

Reducing structure weigh is one of the main strategies for decreasing environmen-9

tal and manufacturing costs of engineering solutions. The reduction in material10

is normally related with a higher impact of aeroelastic solicitations. For some in-11

dustrial cases it is needed to account for non-linear aerodynamics and, therefore,12

the whole fully coupled set of equations needs to be simulated in order to predict13

its behavior. One possible way of reducing the high computational cost associated14

with this problem is the use of an equivalent 2D model, whose derivation is not15

straightforward. This article presents a methodology for reducing the order from16

a complete three dimensional arbitrary beam to its equivalent 2D characteristic17

section. The behavior of both systems is analyzed and it is shown how, when the18

methodology is applied, the resulting 2D system is capable to predict similar results19

with a computational cost which is reduced by orders of magnitude.20

21

1. Introduction22

Reduction of production costs and environmental impact is one of the hot topics of modern industry [1].23

Decreasing structure material is a common practice for achieving this aim at �elds as civil [2], aerospace24

[3] or automotive [4] engineering. However, reduction in weight is usually related with a decrease in the25

structural sti�ness and could lead to an increase in the importance of aeroelastic e�ects when the system26

is exposed to wind loads. As a consequence, an important amount of research has been carried out during27

past years in order to characterize these phenomena.28

Traditionally, aerospace engineering has been the �eld at which more research e�orts have been dedicated29

to the study of aeroelasticity and the instabilities associated with this kind of Fluid Structure Interaction30

(FSI). For instance, it is possible to �nd an important amount of literature quantifying the e�ects of aeroe-31

lastic divergence experimentally [5], analytically [6] or numerically [7]. In addition, references about other32

related Fluid Structure Interaction phenomena such as �utter [8] or bu�eting [9], [10] may be found.33

One important simpli�cation widely adopted for the analysis of aeroelasticity is the use of an equivalent34

2D section. The advantages of this simpli�cation are clear: the computational cost is lower by orders of35

magnitude than its equivalent 3D case; the reduction on degrees of freedom ease the interpretation of results36

and it is possible to obtain closed analytic solutions for inviscid �ows. Additionally, the low computational37

cost allows the study of non-linear aerodynamics using a�ordable resources. In this sense, Sodja et al.38

[11] performed a wind tunnel characterization of a 2D airfoil, connected to the tunnel by means of a set39

of longitudinal and torsional springs of known sti�ness; Camilo et al. [12] studied the aeroelastic response40

of a 2D section using Computational Fluid Dynamics (CFD) to account for aerodynamic non-linearities.41

However, and despite its undeniable capacity for analyzing this kind of �ows, the equivalence between the42

2D and the 3D structure is not clear in the literature. Although there exist some rules of the thumb, and43

there are some proposals for the calculation of equivalent sti�ness in classic references, as Dowell [13] (in44

which it is also possible to �nd a wide number of analytic solutions for the 2D case), they are limited45

to a very speci�c set of structural boundary conditions. Therefore, quantitative extrapolation from the46

two-dimensional data to the actual three-dimensional structure is not straightforward.47

Relative to the simulation of the whole 3D plate, many aeroelastic studies have been carried out. For48

instance, in the work of Peng and Jinglong [14], a fully coupled three dimensional characterization was49
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performed. The authors solved the Euler and deformable body equations in order to obtain the aeroelastic50

features of a transport wing �ying at low angle of attack. Tsushima and Su [15] performed an aeroelastic51

analysis over a three dimensional wing. The wing was coupled with a 2D unsteady potential aerodynamic52

model in order to predict the �utter suppression for �exible wings using piezoelectric e�ects. Finally, Kwon53

et al. [16] performed an analysis of the �utter including shock interference e�ects with a modi�ed small54

disturbance theory (TSD) as aerodynamic model. Due to the high computational cost of three dimensional55

calculations, most of the studies performed in the literature tend to use a simpli�ed set of �uid �ow equations.56

In consequence, they are normally limited for evaluating low angles of attack, without noticeable detachments57

over the body.58

Most of the operational life of commercial aircraft will be located at conditions of cruise �ight, at which59

linear or almost linear aerodynamic models can be applicable. Nevertheless, under exigent maneuvers, highly60

non-linear phenomena could arise, leading to the necessity of accounting for e�ects which could not be covered61

with the simpli�cations named during the previous paragraph. These e�ects are more noticeable, even at62

normal operating conditions, in problems related with other industries, such as civil engineering. In this63

sense, a wide amount of research can be found trying to account for aeroelastic non-linear phenomena. For64

instance, Wu et al. [17] performed a wind tunnel experiment over a complex section which cannot be modeled65

using simple aerodynamic theory. In other recent study of Wu et al. [18], the non-linear aerodynamics of a66

2D �at plate are analyzed in order to use them for predicting its aeroelastic features. Other related studies67

which would worth to be cited could be Tang et al. [19], Taylor and Browne [20] or Schellenberg et al. [21].68

In these studies, it is also possible to observe how the 2D modeling is adequate in order to analyze aeroelastic69

phenomena under highly complex aerodynamic conditions. Nevertheless, due to the lack of an accurate 2D70

equivalence model, 3D characterization is the best tool in order to obtain quantitative data about the actual71

structure.72

The current article attempts to overcome some of these limitations. In �rst place, a methodology for the73

obtainment of an equivalent 2D model from an arbitrary 3D geometry will be proposed. Additionally, the74

simpli�ed model will be corrected in order to account for 3D aerodynamic e�ects. The limitations of the75

2D model will be discussed and, lately, 2D and 3D aeroelastic predictions will be carried out, performing76

an exhaustive comparison between them. In this sense, in order to ease the interpretation of the current77

article, the work�ow followed during this investigation is sketched at Figure 1.78

Figure 1: Block diagram of the procedure followed during the research

The methodology is applied to a simpli�ed geometry, consisting of a cantilever �at plate immersed in a79
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virtual wind tunnel. The selection of this geometry is due to its main advantages. In �rst place, the system80

can be completely de�ned without many di�culties: (a) its mass and structural features are all well known;81

(b) the aerodynamic is complex and non-linearities can be identi�ed for very low values of the angle of82

attack [22]. (c) Despite these complex aerodynamics, the detachment point is always located at the corner83

of the plate, leading to lift and moment coe�cients which are almost independent from the value of the84

Reynolds number as a �rst approach [23]. Due to these features, and also to its direct applicability to other85

problems of the industry, the �at plate has also been studied in similar works by other researchers. It could86

be worth to reference the works of Gralund et al. [24], Savage and Larose [25] or Attaran et al. [26]. One87

direct applicability of this geometry can be found to model the structure and aerodynamic of photovoltaic88

panels and bridges, as it can be observed at the works of Jubayer and Hangan [27], Reina and De Stefano89

[28] or Larose and Livesey [29].90

The paper is structured as follows: Section 2 provides a description of the reference case studied during91

this work. Section 3 shows the derivation of the equivalent 2D model. This section is illustrated by means92

of the example of the already mentioned cantilevered plate, although it could be applied to an arbitrary set93

of boundary conditions and bodies if the derivation conditions are complied with. After that, in Section 494

the methodology for the resolution of the 3D and 2D cases is explained. Then, Section 5 discusses the main95

results of this study, comparing 3D and 2D, with and without aerodynamic corrections. Finally, Section 696

summarizes the most important results and conclusions.97

2. Description of the test case98

The simulations proposed in this paper are performed on a cantilevered �exible �at plate immersed in a99

closed channel. The beam is clamped in one of its edges and is let to be free at the other.100

The main dimensions of the case of study can be found at Figure 2, which shows a scheme of the problem101

both in 3D (left) and 2D (right). These are the chord of the plate (c = 100mm), its length (L = 3.7 c) and102

its thickness (h = 0.04 c), leading to an aspect ratio AR = 2 L/c = 7.4. The channel is conformed by a103

square section of dimension H = 4 c, with a length of Lu = 5 c upstream and Ld = 15 c downstream. Both104

distances are taken in a manner that the boundary conditions do not signi�cantly a�ect the computed �uid105

�ow ([30]). Finally, the plate is located at the center of the cross-section of the channel with an incidence of106

θ0 = 2.5 deg.107

(a) 3D domain (b) 2D domain (not-scale)

Figure 2: Domain of the simulation (not scale), 3D plate simulation (left) and 2D simpli�cation of the problem (right)

The walls of the domain are supposed to be placed far enough from the plate in order to assume that the108

thin boundary layer is not signi�cantly a�ecting its aerodynamics. The distances have been chosen similar to109

those studied on the work of Torregrosa et al. [23]. Here, they proposed the use of slip boundary conditions110

on channel walls in order to decrease the computational cost without jeopardizing the accuracy of the results111

and, therefore, a similar strategy is followed at the current work. On the other hand, it could be argued112
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that the closeness of the horizontal walls to the plate will make the aerodynamic of the body to be highly113

in�uenced by blockage e�ects. In fact, this is the case. However, as explained during the introduction of114

the paper, the main aim of this work is to propose a methodology for studying three dimensional geometries115

(both directly and by means of two dimensional simpli�cations) using CFD. Therefore, the methodology116

itself is the main contribution of the article and could also be applied to problems representing a structure117

lying in a far�eld just by increasing these dimensions, although increasing the computational cost of the118

simulation.119

The �ow is perpendicular to the inlet section, with a reference constant velocity of V∞ = 20 m s−1, which120

is maintained during all the simulations. The �uid is supposed to be air with inlet conditions of density121

ρ∞ = 1.18 kg m−3, viscosity µ∞ = 1.86 ·10−5 Pa s and sound speed a∞ = 340 m s−1. For the �at plate, the122

reference material is polymethyl methacrylate, whose mechanical properties are given by its Young Modulus,123

E = 3300 MPa; a Poisson coe�cient of ν = 0.35 and a density of ρs = 1180 kgm−3. With these parameters,124

the �ow conditions are given by a Reynolds number of Re = ρ∞V∞c/µ∞ ≈ 1.5 · 105 and a Mach number of125

Ma = V∞/a∞ ≈ 0.06. Thus, the �ow can be assumed to be incompressible.126

It is important to point that the previous values are a reference for the problem. As it will later shown,127

the sti�ness parameter which governs the problem is proportional to E/(ρ∞V
2
∞). Therefore, in order to128

analyze the in�uence of this parameter while maintaining the value of Re and Ma, the Young's modulus will129

be varied during the di�erent simulations.130

3. Derivation of the 2D equivalent model131

In this section, the methodology to reduce a 3D arbitrary beam to an equivalent 2D section is derived.132

As it is well known, the behavior of the three dimensional system will be governed by the conjunction of the133

Lagrange equations [31], which can be written as:134

d

dt

(
∂T

∂q̇j

)
+
∂U

∂qj
= Qqj (1)

Where T is the kinetic energy of the structure; qj represents the jth generalized coordinate; U is the135

potential energy and Qqj is the generalized force corresponding to the coordinate qj .136

As the plate can be structurally modeled as a beam, its displacement could be expressed as a �exural137

motion, ∆w(z, t), combined with a torsional displacement, ∆θ(z, t). Thus, it would be possible to express138

each of them as the sum of eigenfunctions, as follows:139

∆θ(z, t) =

∞∑
n=1

(Θi(t) · fi(z)) ∆w(z, t) = c ·
∞∑
n=1

(Wi(t) · gi(z)) (2)

where fi(z) and gi(z) are the associated eigenfunctions for torsion and bending, respectively [32] and Θi(t)140

and Wi(t) are the amplitude associated with each of them. Both functions must comply with the boundary141

conditions of the structure which, for the case of a clamped-free plate, are ∆θ(0) = ∆θ′(0) = 0; ∆w(0) =142

∆w′(0) = 0 and ∆w′′(L) = 0. Figure 3 shows these functions for the �exural and torsional motion for the143

current set of boundary conditions. The eigenfunctions can be calculated analytically or numerically, as will144

be explained during the Section 4.145
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Figure 3: Normalized deformation modes along the span of the clamped �at plate corresponding to the bending (left) and
torsional (right) modes

Once the motion of the plate can be supposed to be a combination of torsional and �exural modes, the146

vertical displacement and velocity of any point located over the plate (yp) can be, therefore, calculated as147

equation 3.148

yp = −x
∞∑
0

Θi(t) · fi(z) +

∞∑
0

Wi(t) · gi(z) ẏp = −x
∞∑
0

Θ̇(t) · fi(z) +

∞∑
0

Ẇ (t) · gi(z) (3)

where x is the coordinate of the plate in the direction of the chord. Θi and Wi are the torsion and bending149

coe�cients of the series, respectively.150

With these assumptions, kinetic, T , and potential, U , energies of the plate could be expressed following151

Equation 4:152

T =
1

2

∫∫∫
ρsẏ

2
pdΩ U =

1

2

∫
GJ

(
d ∆θ

dz

)2

dz +
1

2

∫
EI

(
d2 ∆w

dz2

)2

dz (4)

where G = E/(2 · (1 + ν)) is the shear modulus of the material; J is the torsion constant of the section153

(which, for a rectangular shape with h/c << 1 results to be J = 1
3 c h

3) and I is the second moment of area154

of the section (which, for a rectangular shape results to be I = 1
12 c h

3).155

Therefore, the left hand term of the Lagrange equations can be written, when a bounded number of156

N eigenfunctions are considered, and separating the contribution of the �exural and torsional motion, in157

accordance with Equation 5:158

d

dt

∂T

∂ ~̇Θ
=

1

12
ρsc

3hLMθ
~̈Θ

d

dt

∂T

∂ ~̇W
= ρsLchMw

~̈W
∂U

∂~Θ
=
GJ

L
Kθ

~Θ
∂U

∂ ~W
=
EI

L3
Kw

~W (5)

Where Mθ and Mw are the mass matrices for the torsional and �exural motions, respectively, and Kθ159

andKw are the sti�ness matrices for the torsional and �exural motions. Their components can be calculated160

as stated in Equations 6 and 7. Note that, if eigenfunctions are taken forming an orthogonal base, the terms161

o� of the diagonal will be zero:162

M ij
θ =

∫ 1

0

fi

( z
L

)
fj

( z
L

)
d
( z
L

)
M ij
w =

∫ 1

0

gi

( z
L

)
gj

( z
L

)
d
( z
L

)
(6)
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Kij
θ =

∫ 1

0

f ′i

( z
L

)
f ′j

( z
L

)
d
( z
L

)
Kij
w =

∫ 1

0

g′′i

( z
L

)
g′′j

( z
L

)
d
( z
L

)
(7)

Finally, it is necessary to obtain the generalized forces. In this sense, the virtual work, δW, generated at163

an arbitrary section will be the combination of the virtual displacement produced by the vertical force (lift)164

and the virtual torsion produced by the aerodynamic moment. In consequence, Equation 8 can be stated:165

d(δW)

dz
=

1

2
ρ∞V

2
∞ccl · δw+

1

2
ρ∞V

2
∞c

2cm · δθ =
1

2
ρ∞V

2
∞ccl ·

∞∑
1

(δWigi) +
1

2
ρ∞V

2
∞c

2cm ·
∞∑
1

(δΘifi) (8)

Where cl and cm are the aerodynamic coe�cients for lift and moment, respectively. Next, in order to166

obtain an equivalent 2D model by integrating Equation 8, two di�erent assumptions will be made. Namely:167

� The aerodynamic coe�cients, cl and cm are a function only of the local angle of attack and its168

derivatives of each one of the sections, i.e. the e�ects of three dimensionality of the aerodynamics can169

be neglected, as a �rst approach.170

� The aerodynamic force coe�cients can be linearized around the rigid angle of attack. The linear term171

of the serie will be supposed to be constant for the whole span of the plate. This assumption is only172

valid when the di�erence between the pitching angle in the tip and the root is low.173

With the previous assumptions, the aerodynamic coe�cients of equation 8 can be written in a general174

way, as:175

cl = cl(w0, θ0) + clθ∆θ+
clw
c

∆w+
c · clθ̇
V∞

∆θ̇+
clẇ
V∞

∆ẇ+

N∑
n=2

cn · clθ(n)

V n∞
∆θ(n) +

N∑
n=2

cn−1 · clw(n)

V n∞
∆w(n) (9)

Being ∆θ(n) = ∂n∆θ
∂tn and ∆w(n) = ∂n∆w

∂tn . As a consequence, it will be possible to establish the value of176

the generalized forces as follows:177

~Q~Θ = ~Q~Θ,0 +
1

2
ρ∞V

2
∞c

2LAθ,w

∞∑
0

c
m

(n)
w
cn−1

V n∞
~W (n) +

1

2
ρ∞V

2
∞c

2LAθ,θ

∞∑
0

c
m

(n)
θ

cn

V n∞
~Θ(n) (10)

~Q ~W = ~Q ~W,0 +
1

2
ρ∞V

2
∞cLAw,w

∞∑
0

c
l
(n)
w
cn−1

V n∞
~W (n) +

1

2
ρ∞V

2
∞cLAw,θ

∞∑
0

c
l
(n)
θ

cn

V n∞
~Θ(n) (11)

where Aθ,θ, Aw,θ, Aθ,w and Aw,w are the aerodynamic in�uence matrices, whose components are given by:178

Aijθ,w =

∫ 1

0

fi

( z
L

)
·gj
( z
L

)
d
( z
L

)
Aijθ,θ =

∫ 1

0

fi

( z
L

)
·fj
( z
L

)
d
( z
L

)
Aijw,w =

∫ 1

0

gi

( z
L

)
·gj
( z
L

)
d
( z
L

)
(12)

Note how, as torsion and �exion eigenfunctions are not necessarily otrhogonal between them, matrices179

Aθ,w and Aw,θ could contain non-zero values in its diagonal. However, when i 6= j,
Aijθ,w
Aiiθ,w

< 1, indicating180

that cross terms contribute to a lesser extent to the resulting motion.181

Additionally, for values of the velocity below or arround the divergence, as the series are needed to be182

convergent, it should be possible to assume that Wi

Wi+1
> 1, allowing then to neglect the terms with crossed183
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contribution between low and high order modes. This hypothesis will be demonstrated in the following184

sections. Therefore, it will be possible to establish a set of equations, as follows:185

1

12
·ρs ·c3 ·h·L·Mθ

iiΘ̈i+
GJ

L
Kθ
iiΘi =

1

2
ρ∞V

2
∞c

2L

(
Aiiθ,w

∞∑
n=0

c
m

(n)
w
cn−1

V n∞
Wi

(n) +Aiiθ,θ

∞∑
n=0

c
m

(n)
w
cn

V n∞
Θi

(n)

)
(13)

ρschLM
w
ii Ẅi + EI · L3Kw

iiWi =
1

2
ρ∞V

2
∞cL

(
Aiiw,w

∞∑
n=0

c
l
(n)
w
cn−1

V n∞
Wi

(n) +Aiiw,θ

∞∑
n=0

c
l
(n)
w
cn

V n∞
Θi

(n)

)
(14)

On the other hand, the equations governing the motion of an aeroelastic characteristic section can be186

expressed as:187

I2D θ̈2D + kθθ2D =
1

2
ρ∞V

2
∞c

2

(
cm0 +

∞∑
n=0

c
m

(n)
w
cn−1

V n∞
w2D

(n) +

∞∑
n=0

c
m

(n)
w
cn

V n∞
θ2D

(n)

)
(15)

m2Dẅ2D + kww2D =
1

2
ρ∞V

2
∞c

(
cl0 +

∞∑
n=0

c
l
(n)
w
cn−1

V n∞
w2D

(n) +

∞∑
n=0

c
l
(n)
w
cn

V n∞
θ2D

(n)

)
(16)

In consequence, an inspection of the equations would lead to the next deduction: the 2D airfoil is capable188

to accurately represent the �rst mode of the 3D plate motion, when 2D properties of the airfoil are taken189

to be:190

I2D =
1

12
ρsc

3h
Mθ

11

Aθ11

kθ =
GJ

L2

Kθ
11

Aθ11

m2D = ρsch
Mw

11

Aθ,w11

kw =
EI

L4

Kw
11

Aθ,w11

(17)

Therefore, dimensionally, it can be deduced how, for a given geometry, the aeroelastic response can be
considered to be a function of the following non-dimensional parameters:

F2D

(
Re,Ma,

I2D
1
2ρ∞c

4
,

kθ
1
2ρ∞V

2
∞c

2
,
m2D

1
2ρ∞c

2
,

kw
1
2ρ∞V

2
∞
,
tV∞
c
,
w2D

c
, θ2D

)
= 0 (18)

With this selection of parameters, it will be, therefore, possible to reduce the complex 3D model to an191

equivalent 2D. Next sections will be dedicated to the application of this reduced model and its comparison192

with the complete three dimensional case. The characteristic parameter of the analysis is the non-dimensional193

torsion sti�ness k∗ = kθ
1
2ρ∞V

2
∞c

2 . Additionally, it can be observed how the relationship between the �exural194

and torsional sti�ness and mass are c2kw/kθ ≈ 0.183 and c2m2D/I2D ≈ 9.12 for the case of study.195

3.1. 3D correction for 2D model196

As stated in Section 1, the actual aerodynamic coe�cients of the plate can be a�ected by three dimen-197

sional e�ects. Therefore, it should be possible to correct the two-dimensional forces to obtain more accurate198

results.199

In order to obtain the ratio between 3D and 2D coe�cients, a steady CFD analysis is performed both for200

the 2D and 3D problem. Then, a corrective factor multiplies the section aerodynamic coe�cients. However,201

inspection of Equation 19, which shows the equation governing the torsion of the corrected 2D system,202

leads to the conclusion that multiplying the aerodynamic coe�cients by the corrective factor is completely203

analogous to divide both the 2D masses and sti�ness by the same factor.204

I2Dcorr θ̈2D + kθcorrθ2D =
1

2
ρ∞V

2
∞c

2

(
cm0 +

∞∑
n=0

c
m

(n)
w
cn−1

V n∞
w2D

(n) +

∞∑
n=0

c
m

(n)
w
cn

V n∞
θ2D

(n)

)
(19)
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Where I2Dcorr , kθcorr are the corrected inertia and sti�ness respectively. A similar analysis can be applied205

to the �exural degree of freedom in order to obtain the corrected mass and inertia as a function of the angle206

of attack.207

I2Dcorr =
cm(θ)

CM (θ)
I2D m2Dcorr =

cl(θ)

CL(θ)
m2D kθcorr =

cm(θ)

CM (θ)
kθ kwcorr =

cl(θ)

CL(θ)
kw (20)

Where cl and cm are the 2D lift and pitching moment coe�cients of the equivalent section; and CL and208

CM the lift and moment coe�cients of the 3D plate.209

4. Methodology210

4.1. Numerical methodology for the resolution of the 2D case211

As it was explained in Section 3, a three-dimensional �at plate can be calculated as a 2D equivalent section212

whose structural motion is governed by torsional and linear springs with sti�ness kθ and kw, respectively,213

inertia, I2D, and mass, m2D. Figure 4, illustrates this transformation. Figure 4 (left) represents the real214

three dimensional model while Figure 4 (right) shows its 2D simpli�cation.215

(a) 3D plate (b) 2D plate

Figure 4: Scheme of the three dimensional lifting �at plate (left) and its equivalent two dimensional model (right)

Equations 15 and 16 have been solved by means of the Finite Volume Method, using commercial software216

Simcenter STAR-CCM+®, solving the Unsteady Reynolds Average Navier Stokes (URANS) equations [33]217

for the �uid �ow, and the rigid solid motion equations for the plate. In order to calculate �ow separation218

under adverse pressure gradients ([34], [35]) k − ω with shear stress transport (SST) turbulence model [36]219

is chosen. This model varies from the k−ω turbulence model proposed by Wilcox [37] in the vicinity of the220

walls, to the k − ε model away from them, solving the main inconveniences of both models.221

For discretization, a polygonal mesh (polyhedral for 3D calculations) with second order upwind ROE222

FDS scheme [38] is adopted for the advection terms. The gradients are computed with a hybrid Gauss-223

Least Squares Method with Venkatakrishnan limiter [39]. For transient simulations, second order time224

discretization is used. To generate the discretized computational domain, an overset mesh methodology,225

which is widely used in the literature ([40], [41], [42], [43], [44]), is utilized [45].226

The mesh size at the wall of the plate was taken to be approximately ∆xwall
c ≈ 0.004; the mesh is227

gradually increasing its size from this boundary until reaching a practically uniform overset domain size of228

∆xoverset
c ≈ 0.020, and, thus, ensuring interface similar sizes at the overset and background domains. Due to229

the expected importance of the wake, specially at medium-high angles of attack, the grid size is constrained230

to a size of ∆xwake
c ≈ 0.040 at a region downstream the plate. The biggest size of the mesh at the domain is231

set to ∆xdomain
c ≈ 0.200. In order capture the e�ects of the wall boundary layer, a prism layer is generated232
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near the wall, with a thickness ∆y
c = 0.075, containing a total of 5 layers, ensuring a maximum value of233

y+ < 1 for the most part of the wall, as will be shown later. This con�guration results in a computational234

mesh with an approximately 5.1 · 104 elements. As an example, Figure 5 shows an sketch of the constructed235

grid.236

Figure 5: Sketch of the computational mesh (not scale) showing the di�erent zones of re�nement.

In order to check the spatial discretization, a grid independence study was performed using di�erent cell237

resolutions. The study consisted on the obtainment of the aerodynamic forces and moments as a function of238

the steady angle of attack, as shown at Figure 6 where lift (left) and moment (right) coe�cients measured239

at the center of the plate, are shown as a function of the angle of attack for di�erent levels of grid resolution.240

It can be observed a fair agreement between all meshes for these parameters, even at angles near to stall.241

Similar trends are observed at the drag coe�cient but, as this parameter should not be dominant on the242

plate motion, it is not shown. The 2D aerodynamic coe�cients are de�ned from the 2D drag, F ′D, lift, F
′
L243

and moment, M ′, measured at the center of the section, as stated by Equation 21:244

cd =
F ′D

1
2ρ∞V

2
∞c

cl =
F ′L

1
2ρ∞V

2
∞c

cm =
M ′

1
2ρ∞V

2
∞c

2
(21)
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Figure 6: Comparison of lift (left) and moment (right) coe�cients, measured at the center of the plate, for the 2D plate
as a function of the angle of attack for di�erent grid re�nements

As it was previously stated, it is intended to obtain a resolution of the momentum boundary layer. In245

order to do this, it is necessary to ensure that the wall y+ is kept in the viscous sublayer (y+ < 5) for the246

major part of the wall. Figure 7 (left) shows the evolution of this parameter at the suction and pressure side247

for di�erent values of the angle of attack. Note how y+ < 1 for the whole plate. Moreover, this parameter248

allows to recognize how, even for the low angle of θ = 1 deg a recirculation bubble appears at the suction249

side, extending for almost the 50 % of the length. For θ = 5 deg, the recirculation is found for the whole250

length. These trends are con�rmed by Figure 7 (right), where the distribution of the pressure coe�cient251

(cp = p−p∞
1
2ρ∞V

2
∞
) is shown for di�erent values of the angle of attack. Note how the e�ects of the recirculation252

bubble can be inferred from the observation of an almost �at curve at the suction side of the plate.253

(a) y+ distribution over the plate (b) cp distribution over the plate

Figure 7: Distribution of wall y+ (left) and pressure coe�cient, cp (right) over the plate at di�erent angles of angle of
attack.

In order to correctly model unsteady e�ects, Courant-Lewis-Federich number
(
CFL = ∆tV

∆x

)
should be254

maintained to as low as possible for most part of the computational domain. For the current mesh with255

N = 3.5 · 104 a time step of ∆t · c/V∞ = 1.25 · 10−6 was chosen. Figure 8a shows the distribution of CFL256
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at an arbitrary instant, for a rigid angle of attack of θ0 = 2.5 deg at conditions of kθ
1
2ρ∞V

2
∞c

2 = 6.44 and257

Re ≈ 105. For the mentioned conditions the major part of the cells present a CFL lower than 2 and 90% of258

the volume has a CFL lower than 1.5.259

CFL

0 2 4 6 8 10

N
=N

to
ta

l

0

0.05

0.1

0.15

0.2

0.25
CFL distribution

(a) 2D mesh (b) 3D mesh

Figure 8: CFL distribution of the mesh for the speci�ed time step at an arbitrary instant for the 2D (left) and 3D (right)
computations.

For each value of sti�ness or velocity, the case is �rstly initialized with a steady-rigid �uid �eld. This is260

used as the initial condition for the unsteady �exible simulation, which is iterated until steady or statistically261

steady conditions are reached.262

4.2. Numerical methodology for the resolution of the 3D case263

The three-dimensional case uses the Finite Volume Method for solving the URANS equations named in264

the previous subsection for the �uid �ow and the elastic solid equations for the plate [46], [47]. To simulate265

the motion of the solid, an overset region is set around it, in order to ensure maintenance of the overall266

quality of the mesh. The plate is deformed as a consequence of the applied �uid pressure and is modeled267

as a �exible linear body. The overset interface can be freely deformed in accordance with the plate motion268

and the rest of the cells of the region are interpolated using radial basis functions (RBF) from the solid269

boundary displacement [48].270

The mesh size had to be increased in comparison with the 2D calculations, in order to state computational271

requirements bounded. The cell size at the walls was set to ∆xwall
c ≈ 0.010 , growing to a size of ∆xoverset

c ≈272

0.020 at the overset. The size at the wake was set to ∆xwake
c ≈ 0.040 and the maximum size at the273

furthest surfaces was ∆xdomain
c ≈ 0.400 . With this con�guration, the mesh is conformed by a total of274

N ≈ 5 · 106 elements, Figure 9 shows an image of the mesh. For the time discretization a temporal step of275

∆t · c/V∞ = 5.00 · 10−7 s is used. In addition, the time step follows the criteria for the CFL number (Figure276

8b) which is lower than 1 for a 92% of the volume.277
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Figure 9: Solid mesh (left) and �uid mesh (right) of the 3D simulation. Detail on the plate and the boundary layer

In a similar way, as shown for the 2D geometry, it is necessary to ensure that the solution is not dependent278

on the discretization. In this sense, it was chosen to perform an spatial grid independence study based on279

the calculation of the stationary �uid �eld around the 3D plate, whose results are shown at Table 1. Observe280

how the discrepancies between the di�erent simulations are minimal, ensuring grid independence of the �uid281

solution. The force and moment coe�cients around the center of the clamped plate section are calculated282

in accordance with Equation 22:283

CD =
FD

1
2ρ∞V

2
∞Sw

CL =
FL

1
2ρ∞V

2
∞Sw

CM =
M

1
2ρ∞V

2
∞Swc

(22)

Being Sw = L c the reference surface of the plate and FD, FL and M the drag, lift and moment,284

respectively, exerted over the plate.285

Table 1

Comparison of the 3D force coe�cients at di�erent values of the angle of attacks for three di�erent discretizations

Mesh N = 4.7 · 106 Mesh N = 7.0 · 106 Mesh N = 15 · 106
α(deg) CD CL CM CD CL CM CD CL CM

0.0 0.0473 0.0000 0.0000 0.0450 0.0000 0.0000 0.0438 0.0000 0.0000

2.5 0.0555 0.2554 0.0585 0.0554 0.2554 0.0585 0.0541 0.2613 0.0602

5.0 0.0872 0.4945 0.0804 0.0867 0.4861 0.0711 0.0858 0.4826 0.0697

10 0.1551 0.5727 0.0687 0.1550 0.5725 0.0677 0.1535 0.5684 0.0659

Although the vibration modes of a clamped �at plate can be obtained theoretically [32], the Finite286

Element Method is used in order to generalize the procedures to any possible geometry and boundary287

conditions. The plate is discretized with elements of uniform size
∆xplate

c ≈ 0.035 at the surface and a total288

of 4 elements through the thickness.289

With these values, the eigenfrequencies and eigenvectors of the plate are calculated. It could be sup-290

posed that the discretization is good enough when the location value of the �rst 8 eigenfrequencies is not291

substantially modi�ed when changing the mesh. Note that, if the resonance frequency, fi was expressed in292

terms of the Strouhal number, Sti = fic
V∞

, the ith Strouhal resonance frequency could always be expressed as293

a function of the non-dimensional sti�ness (k∗) and mass (I∗ = I2D
1
2ρ∞c

4 ), in accordance with Equation 23:294

Sti = Ci
L

h

√
k∗

I∗
(23)
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If the constant Ci is known, the vacuum resonance frequency can be calculated at any working condition.295

Table 2 shows the value of each of these constants for di�erent solid mesh discretizations for the current296

aspect ratio of 2L/c = 7.4. It can be observed how the result of the eigenfrequency is not noticeably297

a�ected by the number of elements chosen at each case. In consequence, the structural spatial resolution for298

N = 8.5 · 103 elements can be considered to be accurate enough from this point of view.299

Table 2

Comparison of the vacuum resonance frequency for two di�erent discretizations

N C1 (bending) C2 (bending) C3 (torsional) C4 (bending) C5 (torsional)

8.5 · 103 2.44 · 10−4 1.52 · 10−3 1.77 · 10−3 4.28 · 10−3 5.49 · 10−3

5.0 · 104 2.42 · 10−4 1.49 · 10−3 1.73 · 10−3 4.19 · 10−3 5.35 · 10−3

5. Results300

This section presents the main results obtained during the current work. For easing its interpretability301

it is subdivided in two di�erent sections: In �rst place, the aerodynamics of the rigid three-dimensional302

plate and its equivalent rigid two-dimensional characteristic section are presented, in order to quantify the303

corrective factor introduced at Section 3.1. Later, the deformation of the two systems is analyzed, starting304

with a validation of the hypothesis of neglecting high order modes and following with the capability of the305

two dimensional model for obtaining both the average deformation results and the beginning of instability306

aeroelastic zone.307

5.1. Aerodynamic analysis308

As it was previously stated, one important drawback of the reduction of dimensions is that, for a three-309

dimensional geometry, the aerodynamic loads are expected to vary as a function of the position in the span310

direction. In fact, for low values of the angle of attack, it is well known that a vortex is produced at the311

tip of any lifting surface, leading to an important reduction of lift compared with the pure two dimensional312

body. Similar e�ects could be observed when θ takes moderate-high values, although the e�ects of the313

tip are slightly di�erent. Moreover, the center of pressure is moved and the aerodynamic moment is also314

modi�ed. To visualize these e�ects, in Figure 10, the evolution of the force coe�cients of the 3D plate with315

the depth coordinate are presented for two low and one moderate angles of attack. This �gure shows how,316

as explained before, the aerodynamic correction of Section 3.1 should be applied to reproduce the e�ects317

of 3D aerodynamics. Note how integration about the z axis would allow to obtain the global aerodynamic318

coe�cient of the plate. Figure 10a shows the distribution of lift coe�cient. Observe how near the clamping319

(z/L = 0), the force can be considered to be approximately constant, decreasing, for low values of angle of320

attack when reaching coordinates near to the tip (z/L ≈ 1). For moderate-high θ, the three-dimensional321

e�ects of the plate and the in�uence of the channel's walls produce an increase in lift close to the tip. Similar322

e�ects can be observed for the pitching moment, which is shown at Figure 10b.323

Three-dimensional e�ects can also be illustrated by means of Figure 11, which shows the streamlines of324

the wall shear stress over the plate, colored by the value of the pressure coe�cient, for di�erent θ. These325

lines indicate the direction of the air over the plate and can be easily used for identifying di�erent �ow326

patterns, namely the existence of a recirculation bubble beginning at the leading edge of the suction side327

even for very low θ. Note how, for the case of θ = 2 deg, this bubble is shorter at the tip and its size tends to328

increase when reaching the z/L = 0 position, where it occupies approximately the 25 % of the chord. The329

recirculation bubble grows when increasing the angle of attack (for instance, at θ = 4 deg it occupies almost330

80 % of the chord) until its length correspond to the whole chord for high angles of attack.331
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(a) Lift distribution (b) Moment distribution

Figure 10: Distribution of lift force (left) and pitching (right) moment along the span measured at the center of the chord.

(a) Pressure side - θ = 2◦ (b) Suction side - θ = 2◦

(c) Pressure side - θ = 4◦ (d) Suction side - θ = 4◦

(e) Pressure side - θ = 8◦ (f) Suction side - θ = 8◦

Figure 11: Pressure coe�cient distribution and wall shear stresses at the pressure side (left) and suction side (right) for
di�erent values of angle of attack

Figure 12 might also be useful for visualization of these e�ects. Here, streamlines passing near to332

the plate's tip are shown both the perfectly rigid con�guration (left) and at an arbitrary time step of333

the statistically stationary fully coupled solution, corresponding to a non-dimensional sti�ness parameter334

of k∗ = 6.44. As expected, similar �uid patterns can be inferred from the stream lines of both �gures.335

Additionally, turbulence kinetic energy, k, is visualized, non-dimensionalized with the free stream velocity.336
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Streamlines show the vortex produced at the tip of the plate. A high turbulence kinetic energy zone starts337

after the sharp edge of the plate and continues downwards. The higher value of the turbulent kinetic energy338

is obtained in the recirculation bubble of the suction side, near to the shear layer. Then the kinetic energy339

is di�used downwards and its value is decreased until it is dissipated.340

Figure 12: 3D e�ects on the �at plate with θ0 = 2.5 deg. Figure shows the solution for rigid plate (left, k∗ → ∞) and
for an arbitrary time step corresponding with the simulations of a �exible plate of k∗ = 6.44

Therefore, in order to obtain an accurate two-dimensional aeroelastic model, applicable to a wide range341

of angles of attack and non-dimensional sti�ness, quanti�cation of these e�ects over the global force and342

moment coe�cients needs to be performed. Figure 13 illustrates the variation of the lift coe�cient. The343

global lift coe�cient (3Dglobal) is also shown. Note how, as expected, force coe�cient near the root is similar344

to the two-dimensional calculation, although slightly minored. However, the value near the tip is far di�erent345

from the 2D case. A correction for the lift coe�cient is proposed in Figure 13b. This global correction uses346

the coe�cient value of the 3D simulation to correct 2D results. Similar e�ects are observed for the pitching347

moment, shown in Figure 14.348

In Figures 13 and 14, it is possible to appreciate how, for low θ the lift and moment in the 2D problem are349

higher than in the 3D simulation. For moderate to high values of the angle of attack, two-dimensional plate350

stalls while in the value of CM continues increasing. Therefore, the correction applied to the 2D problem351

must decrease the value of the coe�cients in the �rst zone and after a stall angle of attack, the coe�cient352

must be ampli�ed.353
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(a) Lift coe�cient (b) Lift correction

Figure 13: Lift coe�cient for 2D section, root section and global 3D plate (left) and scaling coe�cient for the lift force
(right).

(a) Pitch moment coe�cient (b) Pitch moment correction

Figure 14: Pitch moment coe�cient for 2D section, root section and global 3D plate (left) and scaling coe�cient for the
pitch moment (right).

5.2. Deformation results and instability analysis354

The methodology derived during Section 3 took as hypothesis that only �rst modes of torsion and bending355

are dominant for quantifying the aeroelastic features of the system for values of the non-dimensional sti�ness356

above aeroelastic instability. In order to examine the accuracy of neglecting high order modes, the shape357

of the deformed structure is compared with the modal deformation shapes, similarly as performed at [23].358

Figure 15 shows the modal contribution for bending (left) and torsion (right) for the 4 �rst modes. From359

this �gure, it can be inferred how the �rst mode is dominant in both bending and torsion, with a modal360

factor contribution at least two orders of magnitude greater than the participation of higher order modes.361

Slight di�erences are observed between the �rst mode and the actual deformed shape. In consequence, for362

practical purposes, and given the substantial simpli�cation in terms of computational cost, the hypothesis363

of neglecting high order modes can be considered to be accurate enough.364
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(a) Bending modal contribution (b) Torsional modal contribution

Figure 15: Modal contribution for the �exural and the torsional deformations for a reference plate with k∗ = 21

Once the contribution of the high order modes has been analyzed and shown to be of negligible importance365

in the computation of deformation, it is possible to establish that the structural equivalence between the 2D366

and 3D models can be applied for evaluating the fully coupled problem. Next, the capabilities of both models367

will be analyzed. Figure 16a and 16b show the time average torsion and bending, respectively, predicted by368

the 3D and 2D (with aerodynamic corrections) models when a statistically stationary state is reached. Some369

points of this curve are highlighted, as their time history will be discussed later. The gray zone represents370

the values of k∗ at which the slope of the curves becomes signi�cantly high, which could be used as an371

indicator for predicting aeroelastic instabilities. Note the high capability of the 2D model for predicting the372

same results than the 3D for average torsion, even when not considering any kind of three dimensional e�ects373

for the 2D aerodynamic evaluation (red lines). However, this non-corrected model tends to overestimate the374

value of the average bending, which is in accordance with the already mentioned overestimation of the force375

coe�cient of the 2D model.376

The equivalence of the 2D and 3D models can be improved by the application of a three-dimensional377

aerodynamic correction. Note how, when applying a corrective factor accounting for the global coe�cients378

of the plate (black lines), both prediction of torsion and bending obtained by the 2D and 3D models show379

a fair agreement.380

Finally, note how the beginning of an aeroelastic instability could be identi�ed by the observation of381

a zone of the curves at which the slope of both the average torsion and bending is abruptly increased,382

approximately for the same value of k∗ ≈ 5.5. As it will be shown later, this instability can be attributed to383

a stall �utter phenomenon, characterized by an oscillatory motion whose amplitude is constantly ampli�ed384

with time. This phenomenon should not be confused with the classical linear �utter, as mechanisms of385

this last are completely di�erent. In fact, classical linear �utter consists on a coupling between torsional386

and bending modes which can even be predicted ignoring aerodynamic non-linearities. Moreover in cases387

at which the center of gravity of the section and its elastic axis are coincident (as the current case) linear388

�utter is expected not to occur.389
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(a) Average torsion (b) Average bending

(c) A: k∗ = 5.25 (d) B: k∗ = 7.00 (e) C: k∗ = 21.25

(f) D: k∗ = 3.00 (g) E: k∗ = 6.44 (h) F: k∗ = 21.25

Figure 16: Top: Average deformation for the non-dimensional sti�ness 16a and 16b. The shaded area shows the uncertainty

limit of the 2D derived section. Bottom: Temporal evolution of the pitch respect a non-dimensional time

(
t∗ = tv∞

c

√
k∗
I∗

)
for 2D simulation cases A, B and C [ ] (16c 16d and 16e) and 3D simulations D, E and F [ ] (16f 16g and 16h).

The analysis of the time evolution of 2D and 3D models can be considered to be also of interest and,390

therefore, they will be discussed next, using the unsteady responses shown at Figures 16c-16h. Here, time is391

nondimensionlized as

(
t∗ = tv∞

c

√
k∗

I∗

)
in order to ease comparison between di�erent k∗. Cases C (Figure392

16e) and F (Figure 16h) correspond to the evolution of the 2D and 3D computations, respectively, for a393

relatively high value of k∗. Here, it can be observed how the damping introduced by the aerodynamic forces394

is high enough to ensure that, at a su�ciently long time, the oscillations of the system are minimal, and a395

steady response is reached.396

When the value of k∗ is lower, the aerodynamic damping is decreased and, therefore, the oscillations of397

the system are not easily suppressed. In fact, when reaching the limit of instability, represented by the Case398

B (Figure 16d) for the 2D section, a stable Limit Cycle Oscillation (LCO) is observed. For this value of k∗399
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LCO is not already reached for the 3D simulation, case E (Figure 16g).400

Similar trends can be observed analyzing values of k∗ lying inside the stall �utter aeroelastic instability401

zone, corresponding to Cases A (Figure 16c) and D (Figure 16f). Here, the aerodynamic damping becomes402

zero, or even negative and, as a result, an unstable oscillation is found, predicting the 2D calculation a much403

more abrupt response than the 3D case. Both cases present a similar unstable oscillatory evolution, which404

can be attributed to a stall �utter phenomenon.405

The Limit Cycle Oscillation can be further discussed by means of Figure 17. Here, the curves of cl vs θ406

and the phase diagram are shown for the 2D calculation for a case just after (Case A) and just before (Case B)407

the instability region. Note how, at Figure 17d, for high values of time, a stable cycle can be identi�ed, while408

the amplitude of the oscillation represented at Figure 17c is monotonically increased. Similar conclusions409

could be extracted from Figures 17a and 17b where, additionally, the high nonlinearities of the current410

calculations can be observed, showing a loop whose shape is signi�cantly di�erent to those results in the411

literature covering only the linear regime of angle of attack [49], [50].412

(a) Case A: Lift loop (b) Case B (LCO): Lift loop

(c) Case A: Phase diagram (d) Case B (LCO): Phase diagram

Figure 17: Aerodynamic hysteresis loop of the aeroelastic 2D simulation for �utter conditions (left) and LCO (right).
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6. Conclusions413

A methodology for obtaining an equivalent two-dimensional section from a three dimensional arbitrary414

structure has been presented during this work. This procedure allows modeling the main aeroelastic features415

of the 3D system and it is capable of accounting for aerodynamic non-linearities at arbitrary sections.416

The equivalent model has been shown not to be of straightforward derivation, in accordance with the417

literature. The main advantage of the proposed methodology is the reduction, by orders of magnitude, of418

the computational resources for a similar level of accuracy.419

The methodology has been tested for a �at cantilevered plate inside an aerodynamic channel. Along420

the paper, a comparison between the 3D simulation and the equivalent 2D problem has been performed,421

obtaining low di�erences between the simpli�ed section and the 3D case. As the 2D equivalent problem is422

representative of a 3D structure for most of the operation range, the procedure and methodology would allow423

to simulate arbitrary sections of arbitrary complex beams accounting for highly non-linear �uid dynamics424

e�ects. Relative to the aerodynamics, the wind loads calculated in the 2D simulation do not directly account425

for purely three-dimensional e�ects as tip vortex. This work, additionally, proposes and tests a corrective426

factor for the aerodynamic coe�cients in order to obtain more accurate values of the aeroelastic deformations427

of the system. On the one hand, the non-corrected simulation gives good accuracy for the calculation of the428

pitching angle, but a slight overprediciton of bending comparing with the three-dimensional results. On the429

other hand, the accuracy of these predictions has been shown to be substantially improved when applying430

a correction accounting for the total force and moment coe�cients acting over the three-dimensional rigid431

plate. The main important advantages of this simpli�ed methodology can be listed next:432

� Although important simpli�cations have been assumed during the derivation of the equivalent model,433

it allows to obtain accurate deformation results, implying reduction on the computational cost by434

orders of magnitude respect to the 3D simulation.435

� The aerodynamics of the reduced bi-dimensional model can be considered to be fully non-linear, given436

that the hypothesis listed during its derivation could be assumed to be valid.437

� Therefore, the model should be useful for relatively quick estimations of aeroelastic linear instabili-438

ties, such as �utter or divergence. Also it could be used for the estimation of non linear instabili-439

ties/phenomena such as stall �utter.440

The main hypothesis of the equivalent 2D derivation have been discussed, as well as their range of441

applicability, showing how, even with the important simpli�cations which were assumed during the derivation442

(the coupling between low and high order modes is neglected, the di�erences of the total pitching angle443

between tip and root are bounded...) the two-dimensional simpli�ed geometry is capable to provide with the444

same aeroelastic phenomena than the three dimensional plate, for the studied range of application. Therefore,445

the current methodology can be applied for the study of non-linear aeroelastic systems for high and medium446

values of the non dimensional sti�ness, showing a high capacity for predicting the same deformations and447

instabilities zones of its equivalent 3D cases.448
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Symbols454

∆θ Torsional motion
∆w Flexural motion
∆xdomain Largest grid size on the domain
∆xoverset Grid size on the overset region
∆xplate Grid size on the plate
∆xwake Grid size on the wake
∆xwall Grid size on the walls
δθ Pitching angle di�erential
δW Virtual work derivative
δw Plunge di�erential
ε Turbulent dissipation
~Θ Vector of torsional modes amplitude
Θi(t) Amplitude associated with torsional modes
θ0 Initial pitch angle of the plate
θ2D Pitching angle of the 2D section
µ∞ Free stream viscosity
ν Poisson coe�cient
ρ∞ Free stream density
ρs Solid density
ω Turbulent dissipation rate
Aθ,θ, Aθ,w, Aw,θ, Aw,w Aerodynamic in�uence matrix
a∞ Free stream speed of sound
AR Aspect ratio
CD 3D drag coe�cient
Ci Vacuum resonance frequency
CL 3D lift coe�cient
CM 3D pitch moment coe�cient
c Chord of the plate
cd 2D drag coe�cient
cl 2D lift coe�cient
c
l
(n)
θ

2D lift coe�cient n derivative respect to the pitch angle

c
l
(n)
w

2D lift coe�cient n derivative respect to the vertical position

cm 2D pitch moment coe�cient
c
m

(n)
θ

2D pitch moment coe�cient n derivative respect to the pitch angle

c
m

(n)
w

2D pitch moment coe�cient n derivative respect to the vertical position

CFL Courant-Friedrichs-Levy number
dΩ Di�erential of the volume
E Young's modulus
FD 3D drag force
F ′D 2D drag force
FL 3D lift force
F ′L 2D lift force
fi Torsional eigenfunction
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G Transversal elastic modulus
gi Bending eigenfunction
H Section of the wind tunnel
h Thickness of the plate
I Second moment of area of the section
I∗ Non-dimensional inertia of the cross section of the plate
I2D 2D inertia of the plate
I2Dcorr 2D inertia of the plate corrected with 3D aerodynamics
J Polar moment of inertia
Kθ Sti�ness matrix of the torsional modes
Kw Sti�ness matrix of the �exural modes
k Turbulent kinetic energy
k∗ Characteristic non-dimensional sti�ness of the plate
kθ 2D torsional sti�ness
kθcorr 2D torsional sti�ness corrected with 3D aerodynamics
kw 2D �exural sti�ness
kwcorr 2D �exural sti�ness corrected with 3D aerodynamics
L Span of the plate
Ld Downwind distance domain
Lu Upwind distance domain
M 3D pitch moment
M ′ 2D pitch moment
Mθ Mass matrix of the torsional modes
Mw Mass matrix of the �exural modes
m2D 2D mass of the plate
m2Dcorr 2D mass of the plate corrected with 3D aerodynamics
Ma Mach number
N Number of elements
Qqj Generalized forces
qj Generalized coordinate of the plate
Sw Reference surface of the plate
St Strouhal number
T Kinetic energy of the plate
t Time
t∗ Non-dimensional time
U Potential energy of the plate
Re Reynolds number
V∞ Free stream velocity
~W Vector of �exural modes amplitude
Wi(t) Amplitude associated with �exural modes
w0 Initial vertical position of the plate
w2D Plunge of the 2D section
x Position coordinate
y Position coordinate
yp Vertical displacement of a point over the plate
z Position coordinate
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