
applied
sciences

Article

Accurate Algorithms for Spatial Operations on the Spheroid in
a Spatial Database Management System

José Carlos Martínez-Llario 1 , Sergio Baselga 2,* and Eloína Coll 1

����������
�������

Citation: Martínez-Llario, J.C.;

Baselga, S.; Coll, E. Accurate

Algorithms for Spatial Operations on

the Spheroid in a Spatial Database

Management System. Appl. Sci. 2021,

11, 5129. https://doi.org/10.3390/

app11115129

Academic Editors: Raffaele Albano,

Aurelia Sole and Ake Sivertun

Received: 28 April 2021

Accepted: 28 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto ITACA, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain;
jomarlla@cgf.upv.es (J.C.M.-L.); ecoll@cgf.upv.es (E.C.)

2 Cartographic Engineering, Geodesy and Photogrammetry Department, Universitat Politècnica de València,
Camino de Vera s/n, 46022 València, Spain

* Correspondence: serbamo@cgf.upv.es

Abstract: Some of the most powerful spatial analysis software solutions (Oracle, Google Earth
Engine, PostgreSQL + PostGIS, etc.) are currently performing geometric calculations directly on
the ellipsoid (a quadratic surface that models the earth shape), with a double purpose: to attain a
high degree of accuracy and to allow the full management of large areas of territory (countries or
even continents). It is well known that both objectives are impossible to achieve by means of the
traditional approach using local mathematical projections and Cartesian coordinates. This paper
demonstrates in a quantitative methodological way that most of the spatial analysis software products
make important deviations in calculations regarding to geodesics, being the users unaware of the
magnitude of these inaccuracies, which can easily reach meters depending on the distance. This is
due to the use of ellipsoid calculations in an approximate way (e.g., using a sphere instead of an
ellipsoid). This paper presents the implementation of two algorithms that solve with high accuracy
(less than 100 nm) and efficiently (few iterations) two basic geometric calculations on the ellipsoid
that are essential to build more complex spatial operators: the intersection of two geodesics and the
minimum distance from a point to a geodesic.

Keywords: computational methods; algorithms; ellipsoid; geodesics; geographical information
science and systems

1. Introduction

The most popular vector spatial operations like overlay or intersections of geometries,
areas of influence (buffer operator), etc. require calculations that are made up of other basic
geometric calculations such as:

• Operation A: Distance and azimuth (bearing) between two points.
• Operation B: Calculation of a second point, from a starting point, an azimuth and a

distance.
• Operation C: Area calculation.
• Operation D: Line intersection.
• Operation E: Minimum distance from a point to a line.

Any spatial analysis software implements these basic geometric calculations in 2D/3D
by itself or through some computational geometry libraries like GDAL, JTS, etc. [1]. The
geometry calculations are performed with Cartesian coordinates using Euclidean (flat)
geometry. However, it is well-known that the Earth’s standard reference surface is the
ellipsoid (or spheroid, as it is occasionally named), as regards planimetric operations, and
the geoid for the case of the vertical component [2]. Ellipsoids are geometrically defined
by two parameters, usually the flattening f and major semiaxis a [3]. Different values for
these defining geometrical parameters can be found in the different reference ellipsoids
that have been historically proposed, to name a few: a = 6,378,206 m and f = 1/294.98 for

Appl. Sci. 2021, 11, 5129. https://doi.org/10.3390/app11115129 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1037-5178
https://orcid.org/0000-0002-0492-4003
https://doi.org/10.3390/app11115129
https://doi.org/10.3390/app11115129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11115129
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11115129?type=check_update&version=2

Appl. Sci. 2021, 11, 5129 2 of 21

Clarke 1866 [4], a = 6,378,249.145 m and f = 1/293.465 for Clarke 1880 [5], a = 6,378,388 m
and f = 1/297 for Hayford [3], a = 6,378,137 m and f = 1/298.257222101 for GRS80 [6]
and a = 6,378,137 m and f = 1/298.257223563 for WGS84 ellipsoid [5], whose minuscule
discrepancy with respect to the GRS80 of 0.1 mm in the direction of the minor semiaxes is
negligible for all practical purposes.

The reference ellipsoid also needs to be assigned a mass and angular velocity, which are
conventionally adopted, for it to serve as a dynamic reference. Further, the ellipsoid needs
to be conveniently placed with respect to the Earth’s center of mass or geocenter, so that a
global geodetic reference system is obtained. The realization (or practical implementation)
of the reference system is done by means of a set of geodetic benchmarks with coordinates
assigned after complex calculations involving different geodetic techniques (Satellite Laser
Ranging, Very Long Baseline Interferometry, Global Navigation Satellite Systems and
Doppler Orbitography and Radiopositioning Integrated by Satellite [7]).

This has eventually resulted in the proposal of the International Terrestrial Reference
System (ITRS) and its most recent realization, the International Terrestrial Reference Frame
2014 (ITRF2014 [7]), as the most accurate scientific reference for geospatial analysis [8]. The
subsequent realizations of the WGS84 reference system (used by the GPS constellation
since its initial deployment), have been increasing aligned with the realizations of the
International Terrestrial Reference System so that the latest ones, WGS84(G1762) and
ITRF2014, are equivalent in practice (they are consistent at the centimeter level [9–11]). The
practical equivalence of both the WGS84 ellipsoid and the WGS84 reference system with
the GRS80 ellipsoid and the ITRS is therefore implied in the rest of the paper.

However, solving a geometric problem on the surface of the ellipsoid is not a simple
task. Therefore, the auxiliary use of map projections is normally preferred. By means of
local projections, the geographic coordinates (on a reference ellipsoid) are converted to flat
coordinates and thus all the above calculations can be easily applied.

Any geometric calculation using map projections must take into account that the
particular type of projection and defining parameters [12] entail several limitations, chiefly:

• a limited, non-universal, area of use;
• scale distortions, leading to different scale factors for different points in the area;
• angle distortions: even for the case of conformal projections, that is those preserving

angles, the angle preservation at every point A is fulfilled between the tangents to the
original geodetic lines on the ellipsoid at A and the tangents to the projected lines at
A, which are not straight lines on the map but curved lines. If the straight segments,
or chords, joining line ends are considered, the original angle is not preserved;

• area distortions: even for the case of equal-area projections, the area of figures enclosed
by geodetic lines is not preserved as the area in the map enclosed by the straight
segments connecting the extreme points.

Hence, there is no projection that helps to accurately solve the geometric calculations
for a large area.

In recent years, the most powerful spatial analysis software solutions (Oracle, Google
Earth Engine, PostgreSQL + PostGIS, etc.) have implemented some geometric calculations
directly on the spheroid. In this way, these software can offer high accuracy over large
areas (countries or even continents).

Operations A and B above can be accurately calculated on the ellipsoid. They are
known as the direct and inverse problems of geodesy and allow the calculation of distances
and angles (azimuths) between two points on the ellipsoid. The calculation involves
numerical integrations and an iterative approach. There is a large number of algorithms
both efficient and accurate, even considering long distances, which provide an accuracy
close to the machine precision, such as GeographicLib [13,14], since the idea that the
software tools developed should provide the user with the highest possible accuracy (close
to machine precision) has become more and more prevalent in recent times.

For more than a decade now, the geospatial analysis software products (GIS Desktop,
Spatial Databases, and computational geometric libraries) have incorporated quite good

Appl. Sci. 2021, 11, 5129 3 of 21

implementations on the ellipsoid of operations A and B with high accuracy (e.g., the
methods ST_Azimuth, ST_Project and ST_Distance in PostGIS [15]). More recently even
the operation C has been addressed [16,17].

The problem appears with the operations D and E. Currently very few products im-
plement these operations on the ellipsoid and the calculations are not performed precisely
but roughly (the errors depending on the distance and the software used can easily reach
meters). We will demonstrate this in the next section. To do so, an algorithm introduced by
the authors in a previous article [18] for solving operation E, has needed to be improved.

The main goals of this research are:

• To test the current geospatial solutions and check that they give approximate results
when talking about ellipsoid calculations.

• To present two new algorithms to solve operations D and E accurately in a spatial
database (PL/SQL) and with Java as a library, so that anyone can easily use it.

• To verify the results of the proposed algorithms (within the desired accuracy of
100 nm).

• To encourage the spatial analysis software vendors to implement the algorithms on
the ellipsoid so that accurate results can be achieved.

2. Experiments

Our hypothesis states that some of the most powerful geospatial software products
provide only approximate results in the calculations of operations D and E on the ellipsoid,
despite that, some software companies claim that these calculations are accurate.

We start with operation D, first describing the methodology used by each software
and then demonstrating how the results of the calculations are in all cases approximate.
Operation E is discussed in Section 4.3.

For all the examples the ellipsoid WGS84 is used. First, we will solve a simple
intersection of two geodesics defined by four points. Given points A, B, C and D on the
ellipsoid (Figure 1) we calculate the intersection (denoted by X) of geodesics AB and CD
with different software products.

Appl. Sci. 2021, 11, 5129 3 of 23

the software tools developed should provide the user with the highest possible accuracy
(close to machine precision) has become more and more prevalent in recent times.

For more than a decade now, the geospatial analysis software products (GIS Desktop,
Spatial Databases, and computational geometric libraries) have incorporated quite good
implementations on the ellipsoid of operations A and B with high accuracy (e.g., the meth-
ods ST_Azimuth, ST_Project and ST_Distance in PostGIS [15]). More recently even the
operation C has been addressed [16,17].

The problem appears with the operations D and E. Currently very few products im-
plement these operations on the ellipsoid and the calculations are not performed precisely
but roughly (the errors depending on the distance and the software used can easily reach
meters). We will demonstrate this in the next section. To do so, an algorithm introduced
by the authors in a previous article [18] for solving operation E, has needed to be im-
proved.

The main goals of this research are:
• To test the current geospatial solutions and check that they give approximate results

when talking about ellipsoid calculations.
• To present two new algorithms to solve operations D and E accurately in a spatial

database (PL/SQL) and with Java as a library, so that anyone can easily use it.
• To verify the results of the proposed algorithms (within the desired accuracy of 100

nm).
• To encourage the spatial analysis software vendors to implement the algorithms on

the ellipsoid so that accurate results can be achieved.

2. Experiments
Our hypothesis states that some of the most powerful geospatial software products

provide only approximate results in the calculations of operations D and E on the ellip-
soid, despite that, some software companies claim that these calculations are accurate.

We start with operation D, first describing the methodology used by each software
and then demonstrating how the results of the calculations are in all cases approximate.
Operation E is discussed in Section 4.3.

For all the examples the ellipsoid WGS84 is used. First, we will solve a simple inter-
section of two geodesics defined by four points. Given points A, B, C and D on the ellip-
soid (Figure 1) we calculate the intersection (denoted by X) of geodesics AB and CD with
different software products.

Figure 1. Intersection of geodesics AB and CD.

In Table 1 four cases are distinguished for short, medium, long and very long lines,
depending on the coordinates given for A(ϕA,λA), B(ϕB,λB), C(ϕC,λC) and D(ϕD,λD): Case 1
A(54.0°,14.5°), B(54.2°,14.6°), C(54.1°,14.4°), D(54.0°,14.7°), distances AX and CX are 6.6

Figure 1. Intersection of geodesics AB and CD.

In Table 1 four cases are distinguished for short, medium, long and very long lines,
depending on the coordinates given for A(ϕA,λA), B(ϕB,λB), C(ϕC,λC) and D(ϕD,λD): Case
1 A(54.0◦,14.5◦), B(54.2◦,14.6◦), C(54.1◦,14.4◦), D(54.0◦,14.7◦), distances AX and CX are
6.6 and 9.6 km; Case 2 A(52◦,5◦), B(51.4◦,6◦), C(51.5◦,4.5◦), D(52◦,5.5◦), distances AX and
CX are 21.6 and 64.7 km; Case 3 A(42◦,29◦), B(39◦,−77◦), C(6◦,0◦), D(64◦,−22◦), distances
AX and CX are 345 and 556 km; Case 4 A(35◦,−92◦), B(40◦,52◦), C(−8◦,20◦), D(49◦,−95◦),
distances AX and CX are 2003 and 11,347 km. In the first example, the distance (average
of AX and CX) is 8 km. For the second, third and fourth examples, the distances are 43,
450 and 6675 km, respectively. For each of the three geospatial software groups, namely
geographic information systems (GIS), spatial database management systems (SDBMS)
and geospatial libraries (APIs), we chose one of the most powerful solutions. Representing

Appl. Sci. 2021, 11, 5129 4 of 21

the first group, we will test ArcGIS by ESRI [19], which is a very well-known and powerful
GIS Desktop solution, spread all over the world and used by many public governments. It
is worth noting that none of the open-source GIS desktops (QGIS, GRASS, gvSIG, uDIG,
etc.) implement operations D or E on the ellipsoid. The best known and most advanced
open-source Spatial DBMS is, definitely, PostGIS [20] but it is discarded because it does
not implement the D or E operations on the ellipsoid. We will use instead one of the most
powerful spatial DBMS commercial solutions: the Oracle Spatial extension [21], which
allows us to solve operations D and E on the ellipsoid. Regarding geospatial libraries using
the ellipsoid in their algorithms we can find Google Earth Engine [22], which is one of the
most powerful Geospatial API solutions, with many new features in recent years.

Table 1. Point coordinates (latitude and longitude, in degrees) of the geodetic intersections AB-CD.

Case 1 Case 2 Case 3 Case 4

Oracle 21c
Enterprise 1

54◦3′26.28372′′ 51◦51′56.38240′′ 54◦40′18.17727′′ 50◦26′39.17191′′

14◦31′42.77221′′ 5◦13′38.84516′′ −14◦32′38.87404′′ −79◦15′0.53507′′

Google EE 1 54◦3′26.28372′′ 51◦51′56.38240′′ 54◦40′18.17727′′ 50◦26′39.17191′′

14◦31′42.77221′′ 5◦13′38.84516′′ −14◦32′38.87404′′ −79◦15′0.53507′′

ArcGIS Geodetic
densify 1

54◦3′26.12068′′ 51◦51′56.30439′′ 54◦43′1.24560′′ 50◦28′44.64889′′

14◦31′43.06034′′ 5◦13′38.81383′′ −14◦33′50.01202′′ −79◦16′58.15173′′
ArcGIS Geodetic
densify + local

projection 2

54◦3′26.28418′′ 51◦51′56.30657′′ 54◦43′1.30662′ 50◦28′44.65060′

14◦31′42.77421′′ 5◦13′38.81450′′ −14◦33′49.88149′′ −79◦16′58.15211′′

PostGIS with
local projection 2

54◦3′26.28481′′ 51◦51′56.39039′′ 40◦53′7.05995′′ 36◦1′21.18886
14◦31′42.77452′′ 5◦13′38.68764′′ −10◦56′51.90552′′ −63◦19′23.10184′′

Sphere 3 54◦3′26.28372′′ 51◦51′56.38240′′ 54◦40′18.17727′′ 50◦26′39.17191′′

14◦31′42.77221′′ 5◦13′38.84516′′ −14◦32′38.87404′′ −79◦15′0.53507′′

1 Software with computation on the ellipsoid. 2 Software with computation using Cartesian coordinates (local
projection). 3 By using a sphere and great circles (not geodesics on the ellipsoid).

The last row of Table 1 shows the geocentric coordinates from the result of intersecting
the two great circles AB-CD using a sphere. Solving the intersection is trivial if we consider
a sphere instead of an ellipsoid. In that case, the minimum distance between two points on
the surface of the sphere is not a geodesic of complicated geometry but a simple great circle
(orthodrome). The intersection of two great circles using some spherical trigonometry math
is solved by a very straightforward formula [23] but at the cost of possibly having huge
discrepancies with respect to the true intersection on the ellipsoid.

In this section we will prove that some spatial software are using great circles and
not geodesics on the ellipsoid. In Section 3, we design two tests to assess the errors of
the different software solutions. In Section 4, the true intersection on the ellipsoid will
be calculated and the designed tests from Section 3 will demonstrate the high accuracy
reached by the proposed algorithm.

2.1. Oracle Spatial

The official documentation mentions that Oracle supports geodetic coordinate systems
and says that computation involving large areas or requiring very precise accuracy must
account for the curvature of the Earth’s surface [24]. It also mentions that Oracle provides
a rational and complete treatment of geodetic coordinates.

Oracle Spatial uses the spatial SQL operator SDO_GEOM.SDO_INTERSECTION (AB,
CD) to intersect two geodesics on the ellipsoid. Scheme 1 shows how the geodesic AB is
defined with the coordinates (SDO_ORDINATE_ARRAY) and the reference system 4326
corresponding to WGS84.

Appl. Sci. 2021, 11, 5129 5 of 21

Appl. Sci. 2021, 11, 5129 5 of 23

2.1. Oracle Spatial
The official documentation mentions that Oracle supports geodetic coordinate sys-

tems and says that computation involving large areas or requiring very precise accuracy
must account for the curvature of the Earth’s surface [24]. It also mentions that Oracle
provides a rational and complete treatment of geodetic coordinates.

Oracle Spatial uses the spatial SQL operator SDO_GEOM.SDO_INTERSECTION
(AB, CD) to intersect two geodesics on the ellipsoid. Scheme 1 shows how the geodesic
AB is defined with the coordinates (SDO_ORDINATE_ARRAY) and the reference system
4326 corresponding to WGS84.

Scheme 1. Defining a geodesic geometry with Oracle.

Oracle needs a coordinate tolerance to perform any spatial operation. The command
shown in Scheme 2 intersects the geodesics AB and CD with a tolerance of 0.05 m, which
is the smallest tolerance, allowed by Oracle for geodetic calculations. The resulting coor-
dinates for the intersection are shown in Table 1.

Scheme 2. Intersection of two geodesics with Oracle.

Table 1 shows that the results from Oracle and the results using a sphere (last row)
are completely equal. This is enough to assert that Oracle is not using an ellipsoid in its
calculations and therefore does not intersect two geodesics on the ellipsoid but two great
circles on the sphere. The Oracle SQL code with the four intersection cases and the results
can be found in the GitHub repository [25] (journal_data/geodesicintersection_with_ora-
cle.sql).

2.2. Google Earth Engine
As Google mentions is its own site “Google Earth Engine combines a multi-petabyte

catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabil-
ities and makes it available for scientists, researchers, and developers to detect changes,
map trends, and quantify differences on the Earth’s Surface” [26].

It is a powerful platform to run geospatial algorithms. Besides that, the API is avail-
able in JavaScript which is really convenient, since you can try it from any modern
browser.

Scheme 1. Defining a geodesic geometry with Oracle.

Oracle needs a coordinate tolerance to perform any spatial operation. The command
shown in Scheme 2 intersects the geodesics AB and CD with a tolerance of 0.05 m, which is
the smallest tolerance, allowed by Oracle for geodetic calculations. The resulting coordi-
nates for the intersection are shown in Table 1.

Appl. Sci. 2021, 11, 5129 5 of 23

2.1. Oracle Spatial
The official documentation mentions that Oracle supports geodetic coordinate sys-

tems and says that computation involving large areas or requiring very precise accuracy
must account for the curvature of the Earth’s surface [24]. It also mentions that Oracle
provides a rational and complete treatment of geodetic coordinates.

Oracle Spatial uses the spatial SQL operator SDO_GEOM.SDO_INTERSECTION
(AB, CD) to intersect two geodesics on the ellipsoid. Scheme 1 shows how the geodesic
AB is defined with the coordinates (SDO_ORDINATE_ARRAY) and the reference system
4326 corresponding to WGS84.

Scheme 1. Defining a geodesic geometry with Oracle.

Oracle needs a coordinate tolerance to perform any spatial operation. The command
shown in Scheme 2 intersects the geodesics AB and CD with a tolerance of 0.05 m, which
is the smallest tolerance, allowed by Oracle for geodetic calculations. The resulting coor-
dinates for the intersection are shown in Table 1.

Scheme 2. Intersection of two geodesics with Oracle.

Table 1 shows that the results from Oracle and the results using a sphere (last row)
are completely equal. This is enough to assert that Oracle is not using an ellipsoid in its
calculations and therefore does not intersect two geodesics on the ellipsoid but two great
circles on the sphere. The Oracle SQL code with the four intersection cases and the results
can be found in the GitHub repository [25] (journal_data/geodesicintersection_with_ora-
cle.sql).

2.2. Google Earth Engine
As Google mentions is its own site “Google Earth Engine combines a multi-petabyte

catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabil-
ities and makes it available for scientists, researchers, and developers to detect changes,
map trends, and quantify differences on the Earth’s Surface” [26].

It is a powerful platform to run geospatial algorithms. Besides that, the API is avail-
able in JavaScript which is really convenient, since you can try it from any modern
browser.

Scheme 2. Intersection of two geodesics with Oracle.

Table 1 shows that the results from Oracle and the results using a sphere (last row) are
completely equal. This is enough to assert that Oracle is not using an ellipsoid in its calcu-
lations and therefore does not intersect two geodesics on the ellipsoid but two great circles
on the sphere. The Oracle SQL code with the four intersection cases and the results can be
found in the GitHub repository [25] (journal_data/geodesicintersection_with_oracle.sql).

2.2. Google Earth Engine

As Google mentions is its own site “Google Earth Engine combines a multi-petabyte
catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities
and makes it available for scientists, researchers, and developers to detect changes, map
trends, and quantify differences on the Earth’s Surface” [26].

It is a powerful platform to run geospatial algorithms. Besides that, the API is available
in JavaScript which is really convenient, since you can try it from any modern browser.

Google Earth Engine’s geometry constructors build geodetic geometries by default
using the WGS84 ellipsoid [26]. To make planar geometries (Cartesian coordinates) an
additional argument must be specified at the time the geometry is built.

One can use Google Earth Engine API for free after registering. A very easy way to
test the API is to use the “Earth Engine Code Editor” which is an online javascript editor
ready to use the API.

Notice in Scheme 3 the ErrorMargin function, which specifies a maximum error for
geometric operations only in the case of using map projections [27]. If this value is changed
the results remain still. For the first case the source code is.

Appl. Sci. 2021, 11, 5129 6 of 21

Appl. Sci. 2021, 11, 5129 6 of 23

Google Earth Engine’s geometry constructors build geodetic geometries by default
using the WGS84 ellipsoid [26]. To make planar geometries (Cartesian coordinates) an
additional argument must be specified at the time the geometry is built.

One can use Google Earth Engine API for free after registering. A very easy way to
test the API is to use the “Earth Engine Code Editor” which is an online javascript editor
ready to use the API.

Notice in Scheme 3 the ErrorMargin function, which specifies a maximum error for
geometric operations only in the case of using map projections [27]. If this value is changed
the results remain still. For the first case the source code is

Scheme 3. Intersection of two geodesics with Google Earth Engine.

Table 1 shows that the coordinates obtained from Google Earth and Oracle Spatial
are exactly the same. Actually, there is a negligible difference of about 1 × 10−12 degrees,
which represent around 0.3 µm, attributable to machine precision.

It proves that both Google Earth Engine and Oracle Spatial use the same methodol-
ogy, which consists in using a sphere instead of an ellipsoid.

2.3. ArcGIS
ArcGIS has been chosen as the renowned software representing the GIS Desktop

group. ArcGIS Desktop claims that it can create geodetic geometries that are spatially ac-
curate and geodetically correct in any projection, which is especially important when us-
ing large distances as airplanes flight paths or effective weapon ranges [28].

The intersection of the two geodesics can be by calculated through a spatial analysis
operation after introducing their coordinates from the graphical interface.

The ArcGIS official documentation [28] mentions that “Geodetic features contain
densified geometry, which is a shape created by a series of connected vertices”, which
means that ArcGIS is not using true geodesics either as we will prove in the next section.

For the test, we used a WGS84 dataset, an ArcGIS cluster tolerance and resolution of
0.000001” (some 0.03 mm) and 0.0000005” (some 0.015 mm), respectively.

Figure 2 shows a zoom of the intersection zone of geodesics AB-CD (Case 3 in Table
1) with ArcGIS. It can be seen how ArcGIS is splitting the original line, calculating each of
the new vertices on the ellipsoid, but every segment is treated as a straight line (Euclidian
geometry) and not a geodesic.

Scheme 3. Intersection of two geodesics with Google Earth Engine.

Table 1 shows that the coordinates obtained from Google Earth and Oracle Spatial
are exactly the same. Actually, there is a negligible difference of about 1 × 10−12 degrees,
which represent around 0.3 µm, attributable to machine precision.

It proves that both Google Earth Engine and Oracle Spatial use the same methodology,
which consists in using a sphere instead of an ellipsoid.

2.3. ArcGIS

ArcGIS has been chosen as the renowned software representing the GIS Desktop
group. ArcGIS Desktop claims that it can create geodetic geometries that are spatially
accurate and geodetically correct in any projection, which is especially important when
using large distances as airplanes flight paths or effective weapon ranges [28].

The intersection of the two geodesics can be by calculated through a spatial analysis
operation after introducing their coordinates from the graphical interface.

The ArcGIS official documentation [28] mentions that “Geodetic features contain
densified geometry, which is a shape created by a series of connected vertices”, which
means that ArcGIS is not using true geodesics either as we will prove in the next section.

For the test, we used a WGS84 dataset, an ArcGIS cluster tolerance and resolution of
0.000001” (some 0.03 mm) and 0.0000005” (some 0.015 mm), respectively.

Figure 2 shows a zoom of the intersection zone of geodesics AB-CD (Case 3 in Table 1)
with ArcGIS. It can be seen how ArcGIS is splitting the original line, calculating each of
the new vertices on the ellipsoid, but every segment is treated as a straight line (Euclidian
geometry) and not a geodesic.

Appl. Sci. 2021, 11, 5129 7 of 23

Figure 2. Intersection by densification of the geodesics in ArcGIS.

This ArcGIS methodology has two major drawbacks. First, it greatly densifies all the
geometries. Each geodesic is divided into thousands of segments (e.g., the geodesic AB
from the example 4, is divided into 947 segments), which seriously affects both the per-
formance and the complexity of any spatial operation. Although the segment size used by
ArcGIS to split the lines is user-defined, a noticeable improvement in accuracy requires
an enormous densification, which is clearly inefficient.

Apart from the computation-expensive densification, the most important drawback
is the approximate nature of the process, which uses planar calculations between split
segments (Cartesian coordinates instead of geographic coordinates).

2.4. ArcGIS Plus Local Projections
This solution offers a better result than the previous one because it combines the ge-

odetic densification with a local projection. It is not a solution directly built in ArcGIS. It
is a user defined process that requires several ArcGIS steps: first, a geodetic densification
and then to choose the appropriate projection according to the study area.

As we explained this method does not use calculations on the ellipsoid but local pro-
jections with all drawbacks mentioned above (limited area and appearance of distortions
including non-straight representation of geodetic lines).

We chose manually the best local projection for each example (e.g., example 4 covers
the UTM projection zones from 15 to 42) taking into account that in order to obtain the
highest precision, we have to choose the UTM zone that best fits the intersection area (zone
33 for case 1, zone 31 for case 2, 28 for case 3 and 17 for case 4).

Table 1 shows the results provided by ArcGIS using the geodetic densification and
calculating the intersection with the Geoprocessing tools [29] after transforming the data
to the best UTM zones. In addition to the drawback of densifying the geometry, using
local projections limits the achievable accuracy and the study area.

2.5. PostGIS Plus Local Projections
PostGIS uses Cartesian coordinates to perform operations D and E. PostGIS only uses

the ellipsoid to solve operations A, B and C (ST_Azimuth, ST_Distance, ST_Project and
ST_Area SQL methods).

We take PostGIS as an example to demonstrate the errors of the spatial analysis tools
that follow this methodology. PostGIS determines the best local projection that fits the

Figure 2. Intersection by densification of the geodesics in ArcGIS.

This ArcGIS methodology has two major drawbacks. First, it greatly densifies all
the geometries. Each geodesic is divided into thousands of segments (e.g., the geodesic

Appl. Sci. 2021, 11, 5129 7 of 21

AB from the example 4, is divided into 947 segments), which seriously affects both the
performance and the complexity of any spatial operation. Although the segment size used
by ArcGIS to split the lines is user-defined, a noticeable improvement in accuracy requires
an enormous densification, which is clearly inefficient.

Apart from the computation-expensive densification, the most important drawback
is the approximate nature of the process, which uses planar calculations between split
segments (Cartesian coordinates instead of geographic coordinates).

2.4. ArcGIS Plus Local Projections

This solution offers a better result than the previous one because it combines the
geodetic densification with a local projection. It is not a solution directly built in ArcGIS. It
is a user defined process that requires several ArcGIS steps: first, a geodetic densification
and then to choose the appropriate projection according to the study area.

As we explained this method does not use calculations on the ellipsoid but local
projections with all drawbacks mentioned above (limited area and appearance of distortions
including non-straight representation of geodetic lines).

We chose manually the best local projection for each example (e.g., example 4 covers
the UTM projection zones from 15 to 42) taking into account that in order to obtain the
highest precision, we have to choose the UTM zone that best fits the intersection area (zone
33 for case 1, zone 31 for case 2, 28 for case 3 and 17 for case 4).

Table 1 shows the results provided by ArcGIS using the geodetic densification and
calculating the intersection with the Geoprocessing tools [29] after transforming the data to
the best UTM zones. In addition to the drawback of densifying the geometry, using local
projections limits the achievable accuracy and the study area.

2.5. PostGIS Plus Local Projections

PostGIS uses Cartesian coordinates to perform operations D and E. PostGIS only uses
the ellipsoid to solve operations A, B and C (ST_Azimuth, ST_Distance, ST_Project and
ST_Area SQL methods).

We take PostGIS as an example to demonstrate the errors of the spatial analysis tools
that follow this methodology. PostGIS determines the best local projection that fits the
bounding box of the two geometries (favoring UTM or Lambert Azimuthal Equal Area
and falling back on Web Mercator in the worst case scenario). After computing the spatial
operation (e.g., intersection, buffering or union) PostGIS project back to WGS84 geographic
coordinates [30]. Table 1 shows the results obtained with PostGIS using this automatic
reprojection methodology.

3. Validation of Results

At this point, firstly we must prove in a quantitative way that the coordinates shown
in Table 1 are approximate and do not define the true intersection of two geodesics. Then,
in Section 4, the new proposed algorithm is presented, and we will assess its error with
this same quantitative methodology.

We can check the correctness by means of the direct and inverse problems of geodesy.
Sjöberg [31–33] deals with the problem directly on the ellipsoid by using numerical inte-
gration and there are some libraries like the GeographicLib suite [13] which is optimized to
deliver accuracy close to machine precision.

Some of the spatial databases like Oracle Spatial or PostGIS implement the direct and
inverse geodesy problems and expose them through SQL functions. All these solutions
make these calculations with high precision and yield identical results.

For this test, we only need a library or software that can solve the direct and inverse
problems of geodesy. Of the many available solutions, we used the GeographicLib library
through PostGIS [20] (PostGIS Geography Support Functions functions ST_Azimuth and
ST_Distance for the inverse problem, and ST_Project for the direct problem). We also tested
GeographicLib with a Java implementation that provides the same results.

Appl. Sci. 2021, 11, 5129 8 of 21

3.1. Tests

In order to check the geodesic intersection algorithms in a quantitative way we
designed two tests to show the deviation in azimuth (Test A) and distance (Test B).

3.1.1. Test A

We can check the accuracy of the intersection of geodesics AB-CD, point X, by in-
specting the azimuth equalities: αAX = αAB and αCX = αCD. The column deviation of
Table 2 shows the value in arcseconds of Test A, Maximum (|αAX − αAB|, |αCX − αCD|),
therefore, any value greater than zero means that point X does not lie on the geodesics
exactly.

Table 2. Azimuth and distance deviation (estimation).

Case Deviation
Oracle and
Google and

Sphere

ArcGIS
Geodetic
Densify

ArcGIS Geodetic
Densify +
Projection

PostGIS
Geography with
Local Projection

1 Test 0.57991 200.47001 1.20114 1.20015
2 A 2.83179 23.37880 22.83089 21.01461
3 (arcsec) −306.75159 −0.13274 −3.11587 −11,408.23193
4 434.55065 −0.10260 −0.10084 187,542.96132
1 Test 0.0272 6.4566 0.03871 0.03867
2 B 0.3093 2.4525 2.3951 2.20421
3 (m) 4887.9260 2.8386 0.0133 1,524,432.6228
4 4148.9669 3.0971 3.0440 2,227,566.4855

3.1.2. Test B

As explained below, this test provides a linear magnitude of deviation from the
intersection point X to both geodesics AB and CD. It has a clear geometric meaning easily
interpretable by the user, in contrast to the previous test.

Assume the calculated intersection point X has some error, then the intersection point
would be located at X′ instead of X. If so, there would be some deviation dAB (Figure 3),
between X′ and X”, greater than zero, where X” is the projection of X′ on the geodesic AB.

Appl. Sci. 2021, 11, 5129 9 of 23

Assume the calculated intersection point X has some error, then the intersection point
would be located at X’ instead of X. If so, there would be some deviation dAB (Figure 3),
between X’ and X’’, greater than zero, where X’’ is the projection of X’ on the geodesic AB.

Figure 3. Distance deviation (dAB) from the geodesic AB. X exact intersection, X’ intersection point
calculated by Oracle, Google, ArcGIS, etc., AX’ = Geodesic distance between A and X’, X’’ projection
of X’ on the geodesic AB.

From a starting point A, an azimuth αAB and a distance AX’ we can easily calculate
X’’ through the direct problem of geodesy.

The distance dAB is the distance from the calculated point X’ to the geodesic AB. The
same distance can be calculated from the point X’ the other geodesic CD and thus obtain
a second deviation distance dCD. If both distances are zero, the X’ point is the exact inter-
section of the geodesics AB and CD.

The column deviation of Table 2 shows the value in meters of Test B, Maximum (dAB,
dCD). The calculation is approximate (although quite accurate as it will be demonstrated
in next section) because, obviously, we still do not know where the true point of the inter-
section is.

As it can be seen in Table 2, Google Earth Engine and Oracle Spatial show a deviation
(test B) of almost 5 km. This is due to the computing with the sphere instead of the ellip-
soid. ArcGIS, even in the case of using local projections after applying a densified geo-
desic, shows deviations of several tens of meters.

Additionally, PostGIS, with its spatial operators (which internally use local reprojec-
tions) shows a deviation of several meters in case 2. Cases 3 and 4 should not count too
much, since PostGIS in these cases uses the Web Mercator projection that introduces huge
deformations. Hopefully PostGIS will improve the choice of the best projection for these
cases, which would limit the deviation to hundreds of meters.

The most favorable example, case 1, shows a deviation of several centimeters, an
amount that, according to the purpose of the spatial analysis, could already be intolerable.

4. Exact Solution and Validation
This section presents the implementation of the algorithms designed by the authors

of this paper for operations D and E on the ellipsoid by means of highly accurate fast-
convergent iterative algorithms which were initially presented in [18]. As explained later,
however, the iterative algorithm for operation E has been improved for the purpose of a
better and even faster convergence to the exact solution.

We made two different implementations of the algorithm: in Java, creating a library
(API) that allows the user to integrate it with their own applications, and in PL/SQL (SQL

Figure 3. Distance deviation (dAB) from the geodesic AB. X exact intersection, X′ intersection point
calculated by Oracle, Google, ArcGIS, etc., AX′ = Geodesic distance between A and X′, X” projection
of X′ on the geodesic AB.

From a starting point A, an azimuth αAB and a distance AX′ we can easily calculate
X” through the direct problem of geodesy.

The distance dAB is the distance from the calculated point X′ to the geodesic AB.
The same distance can be calculated from the point X′ the other geodesic CD and thus
obtain a second deviation distance dCD. If both distances are zero, the X′ point is the exact
intersection of the geodesics AB and CD.

Appl. Sci. 2021, 11, 5129 9 of 21

The column deviation of Table 2 shows the value in meters of Test B, Maximum (dAB,
dCD). The calculation is approximate (although quite accurate as it will be demonstrated
in next section) because, obviously, we still do not know where the true point of the
intersection is.

As it can be seen in Table 2, Google Earth Engine and Oracle Spatial show a deviation
(test B) of almost 5 km. This is due to the computing with the sphere instead of the ellipsoid.
ArcGIS, even in the case of using local projections after applying a densified geodesic,
shows deviations of several tens of meters.

Additionally, PostGIS, with its spatial operators (which internally use local reprojec-
tions) shows a deviation of several meters in case 2. Cases 3 and 4 should not count too
much, since PostGIS in these cases uses the Web Mercator projection that introduces huge
deformations. Hopefully PostGIS will improve the choice of the best projection for these
cases, which would limit the deviation to hundreds of meters.

The most favorable example, case 1, shows a deviation of several centimeters, an
amount that, according to the purpose of the spatial analysis, could already be intolerable.

4. Exact Solution and Validation

This section presents the implementation of the algorithms designed by the authors
of this paper for operations D and E on the ellipsoid by means of highly accurate fast-
convergent iterative algorithms which were initially presented in [18]. As explained later,
however, the iterative algorithm for operation E has been improved for the purpose of a
better and even faster convergence to the exact solution.

We made two different implementations of the algorithm: in Java, creating a library
(API) that allows the user to integrate it with their own applications, and in PL/SQL
(SQL stored procedures) with a PostGIS spatial DBMS. With PostGIS, a GIS user can take
advantage of all the spatial functionality and run the geodesic intersections with its own
cartography easily.

Both implementations can be found in a public repository [25], files src/GeodesicSpatial
Op.java and src/GeodesicSpatialOp.sql.

For the implementation of the algorithm, we need to call some functions to get the
inverse and direct solutions of geodesics on the ellipsoid. Any algorithm that gives a high
accuracy (100 nm or more) can be used. We chose Karney’s implementation [13], due to
its accuracy, robustness and a wide range of supporting programming languages. The
numeric precision for floating types is 64 bits, which is supported by PostgreSQL or Java.

Scheme 4 shows the inputs and outputs of the functions InverseGP and DirectGP that
solve the inverse and direct geodesic problem. All azimuths and coordinates are in radians.
Both functions are working with WGS84.

Appl. Sci. 2021, 11, 5129 10 of 23

stored procedures) with a PostGIS spatial DBMS. With PostGIS, a GIS user can take ad-
vantage of all the spatial functionality and run the geodesic intersections with its own
cartography easily.

Both implementations can be found in a public repository [25], files src/GeodesicSpa-
tialOp.java and src/GeodesicSpatialOp.sql.

For the implementation of the algorithm, we need to call some functions to get the
inverse and direct solutions of geodesics on the ellipsoid. Any algorithm that gives a high
accuracy (100 nm or more) can be used. We chose Karney’s implementation [13], due to
its accuracy, robustness and a wide range of supporting programming languages. The
numeric precision for floating types is 64 bits, which is supported by PostgreSQL or Java.

Scheme 4 shows the inputs and outputs of the functions InverseGP and DirectGP that
solve the inverse and direct geodesic problem. All azimuths and coordinates are in radi-
ans. Both functions are working with WGS84.

Scheme 4. Function signatures of direct and inverse geodesic problems.

Scheme 5 shows the pseudocode of the Geodesic Intersection algorithm which re-
turns the longitude and latitude of the intersection point X, and the number of iterations
needed. Comments are denoted by #.

Scheme 4. Function signatures of direct and inverse geodesic problems.

Scheme 5 shows the pseudocode of the Geodesic Intersection algorithm which returns
the longitude and latitude of the intersection point X, and the number of iterations needed.
Comments are denoted by #.

Appl. Sci. 2021, 11, 5129 10 of 21Appl. Sci. 2021, 11, 5129 11 of 23

Scheme 5. Pseudocode of the Geodesic Intersection algorithm.

The new spatial PostGIS SQL function “STX_GeodesicIntersection (a point, b point,
c point, c point)” calculates the intersection of the two geodesics AB-CD on the ellipsoid
WGS84 (ellipsoid by default). Scheme 6 shows how a SQL user can easily get the intersec-
tion of two geodesics.

Scheme 6. A simple SQL sentence with a geodesic intersection.

A GIS user will use the new function from a spatial table. Scheme 7 shows how to
create a small spatial table with the four example cases and run a query to get the inter-
sections. In addition, the query proves that the X point lies on both geodesics, hence the
azimuth αAB = αAX, and αCD = αCX. ST_Azimuth is the PostGIS solution to the inverse geo-
desic problem and it is using the Karney approach as well.

Scheme 5. Pseudocode of the Geodesic Intersection algorithm.

The new spatial PostGIS SQL function “STX_GeodesicIntersection (a point, b point,
c point, c point)” calculates the intersection of the two geodesics AB-CD on the ellip-
soid WGS84 (ellipsoid by default). Scheme 6 shows how a SQL user can easily get the
intersection of two geodesics.

Appl. Sci. 2021, 11, 5129 11 of 23

Scheme 5. Pseudocode of the Geodesic Intersection algorithm.

The new spatial PostGIS SQL function “STX_GeodesicIntersection (a point, b point,
c point, c point)” calculates the intersection of the two geodesics AB-CD on the ellipsoid
WGS84 (ellipsoid by default). Scheme 6 shows how a SQL user can easily get the intersec-
tion of two geodesics.

Scheme 6. A simple SQL sentence with a geodesic intersection.

A GIS user will use the new function from a spatial table. Scheme 7 shows how to
create a small spatial table with the four example cases and run a query to get the inter-
sections. In addition, the query proves that the X point lies on both geodesics, hence the
azimuth αAB = αAX, and αCD = αCX. ST_Azimuth is the PostGIS solution to the inverse geo-
desic problem and it is using the Karney approach as well.

Scheme 6. A simple SQL sentence with a geodesic intersection.

A GIS user will use the new function from a spatial table. Scheme 7 shows how
to create a small spatial table with the four example cases and run a query to get the
intersections. In addition, the query proves that the X point lies on both geodesics, hence
the azimuth αAB = αAX, and αCD = αCX. ST_Azimuth is the PostGIS solution to the inverse
geodesic problem and it is using the Karney approach as well.

Appl. Sci. 2021, 11, 5129 11 of 21Appl. Sci. 2021, 11, 5129 12 of 23

Scheme 7. Testing the exact intersection with the new function.

Table 3 shows the coordinates of the intersection points calculated with the proposed
algorithm in PostGIS (PL/SQL). The results with the java implementation are exactly the
same.

Table 3. Intersection of geodesics with an accuracy better than 100 nm using PostGIS through the
STX_GeodesicIntersection new implemented SQL function. Values of latitude and longitude given
in deg min sec as well as in decimal degrees. The column Ite is the number of iterations, the last
column (Deviation) gives the computation of deviation with extended precision using the Maxima
framework as explained in the next section.

Case Latitude Longitude Ite Deviation
Test A (m)

Deviation
Test B

(Arcsec)

1
54°3′26.284713088″
54.0573013091912°

14°31′42.772259538″
14.5285478498717° 2 5.87 × 10−8 2.74 × 10−9

2 51°51′56.395444955″
51.8656654013763°

5°13′38.845612278″
5.22745711452158°

2 3.10 × 10−8 4.01 × 10−9

3 54°43′1.306592212″
54.7170296089477°

−14°33′49.880679508″
−14.5638557443078°

4 1.18 × 10−10 2.82 × 10−9

4
50°28′44.750808360″
50.4790974467667°

−79°16′58.086071846″
−79.2828016866240° 5 2.02 × 10−10 5.75 × 10−9

Scheme 7. Testing the exact intersection with the new function.

Table 3 shows the coordinates of the intersection points calculated with the proposed
algorithm in PostGIS (PL/SQL). The results with the java implementation are exactly
the same.

Table 3. Intersection of geodesics with an accuracy better than 100 nm using PostGIS through the
STX_GeodesicIntersection new implemented SQL function. Values of latitude and longitude given
in deg min sec as well as in decimal degrees. The column Ite is the number of iterations, the last
column (Deviation) gives the computation of deviation with extended precision using the Maxima
framework as explained in the next section.

Case Latitude Longitude Ite Deviation
Test A (m)

Deviation
Test B

(Arcsec)

1 54◦3′26.284713088′′

54.0573013091912◦
14◦31′42.772259538′′

14.5285478498717◦ 2 5.87 × 10−8 2.74 × 10−9

2 51◦51′56.395444955′′

51.8656654013763◦
5◦13′38.845612278′′

5.22745711452158◦ 2 3.10 × 10−8 4.01 × 10−9

3 54◦43′1.306592212′′

54.7170296089477◦
−14◦33′49.880679508′′

−14.5638557443078◦ 4 1.18 × 10−10 2.82 × 10−9

4 50◦28′44.750808360′′

50.4790974467667◦
−79◦16′58.086071846′′

−79.2828016866240◦ 5 2.02 × 10−10 5.75 × 10−9

Appl. Sci. 2021, 11, 5129 12 of 21

4.1. Checking the Algorithm with Extended Precision

If we run the checking tests A and B using a 64 bits double precision, we may obtain
deviations equal to zero (e.g., aCD-aCX = 0, in Scheme 7), due to the rounding in floating
point arithmetic or machine epsilon ([34]).

The double precision is more than enough to prove the correctness of the algorithm,
since the accuracy needed is much smaller than the machine precision. Even so, we want to
be completely sure about the test accuracy, so we imported the already implemented tests
A and B to a scientific framework that offers extended precision, increasing the significant
digits from 15−16 (double precision) to 50−60.

To do this, we used the open source scientific framework “Maxima” and specifically
the Maxima implementation of Karney [13] to solve the direct and inverse problems of
geodesy using elliptical integrals.

Maxima provides arbitrarily high precision by using the bfloat function. The bfloat
Maxima type extends the number of digits for calculations from 14−15 digits (64 bits) to 60
digits in our case. The file tests/maxima_tests_intersection.mac ([25]) contains the Maxima
source code to obtain the results from tests A and B.

Table 3 shows that the largest deviation (Test B) for the 4 cases is 5.75 nm, therefore, it
is safe to show the coordinates of latitude and longitude with up to the ninth decimal place
of arc second units, which represents a maximum of 0.03 µm.

Table 4 shows the updated deviations from Table 2 considering the exact point inter-
section coordinates obtained from our algorithm.

Table 4. True distance deviation, in meters, for Test B.

Case
Oracle

ans
Google

ArcGIS
Geodetic
Densify

ArcGIS
Geodetic

Densify + Local
Projection

PostGIS
Geography
with Local
Projection

The Proposed
Algorithm:

PostGIS
Implementation

1 0.0307 7.2926 0.03912 0.04127 2.74 × 10−9

2 0.4032 2.8792 2.8107 3.02666 4.01 × 10−9

3 5202.0851 3.0142 0.0145 1,561,032.211 2.82 × 10−9

4 4520.2567 3.4048 3.3589 2,054,619.652 5.75 × 10−9

Regarding the running time, it is worth mentioning that we can easily get 20.000
calculations per second (case 4) in a Core i7 4771 (CPU Mark of 9868 score [35]).

If we take into account that the algorithm performance could be optimized and that a
more updated processor can run twice as fast, a target of 100.000 intersections per second,
in the near future, can be affordable. This means that we could think about stopping using
projections and making all the calculations on the ellipsoid as a normal rule. To achieve
this, the main libraries of computational geometry should incorporate this algorithm.

4.2. Special Geodesic Intersection Cases

The previous section proved that the proposed algorithm is working properly on the
ellipsoid and giving a high accuracy, giving a true intersection on the ellipsoid.

Even so, to make sure a GIS user can use the algorithm in any case, more problematic
geodesic intersections should be performed.

In this section, we add some new special cases that deal with polar, transpolar, very
long (more than 180◦) geodesics, etc. They are shown in Scheme 8.

Appl. Sci. 2021, 11, 5129 13 of 21
Appl. Sci. 2021, 11, 5129 14 of 23

Scheme 8. Cont.

Appl. Sci. 2021, 11, 5129 14 of 21Appl. Sci. 2021, 11, 5129 15 of 23

Scheme 8. Special cases of intersection of geodesics.

4.3. Minimum Distance from Point to Geodesic
Regarding the calculation of operation E (the minimum distance from a point P to a

geodesic AB), the outcome is similar to the one obtained for operation D, i.e., all the soft-
ware products discussed in Section 2 provide approximate results.

The algorithm introduced by the authors in the previous article [18] has a fast con-
vergence to a nearly exact solution. However, we have just discovered its instability near
the exact value due to a singularity in its Equation (10) which occurs at exactly the correct
solution. Therefore, we decided to improve the algorithm for computing the minimum
distance from a point P to a geodesic line AB as follows. Please note that steps (1) and (2)
remain the same as in the previous work, the novelty is the introduction of step (3) now

Scheme 8. Special cases of intersection of geodesics.

4.3. Minimum Distance from Point to Geodesic

Regarding the calculation of operation E (the minimum distance from a point P to
a geodesic AB), the outcome is similar to the one obtained for operation D, i.e., all the
software products discussed in Section 2 provide approximate results.

The algorithm introduced by the authors in the previous article [18] has a fast con-
vergence to a nearly exact solution. However, we have just discovered its instability near
the exact value due to a singularity in its Equation (10) which occurs at exactly the correct
solution. Therefore, we decided to improve the algorithm for computing the minimum
distance from a point P to a geodesic line AB as follows. Please note that steps (1) and
(2) remain the same as in the previous work, the novelty is the introduction of step (3)

Appl. Sci. 2021, 11, 5129 15 of 21

now (the subsequent equation numbers and symbols refer to expressions in the previous
article [18]).

1. Compute the distance sAP and azimuths αAP and αAB by means of the implementation
of the inverse problem of geodesy. Obtain angle A as the difference of these azimuths.

2. Obtain an approximate value for distances sPX and sAX by means of Equations (8) and
(10) and compute the direct problem of geodesy from A with the distance sAX and
azimuth αAX (which is the same as αAB) in order to obtain a point X which will act as
point A in the next iteration.

3. For subsequent iterations, go back to steps (1) and (2) to obtain first sPX but replace
the formula to obtain sAX by the following one, which has been obtained from the
Napier pentagon for right-angle spherical triangles and unlike the one used in step
(2) has no instabilities near the exact solution but a sharp convergence to it.

sAX = R arctan
(

cosA tan
sAP

R

)
(1)

This formula has a singularity when sAP/R equals π/2 (i.e., sAP of some 10,000 km),
which is the reason we preferred to obtain first an approximate sAP by means of Equation
(10), preventing this singularity to happen in subsequent iterations (for which sAP has
small values).

We implemented this algorithm in PostGIS and Java. The source code is publicly avail-
able in the repository [25], files src/GeodesicSpatialOp.java and src/GeodesicSpatialOp.sql.
Scheme 9 shows the pseudocode of the Geodesic Minimum Distance algorithm, which
returns the point X on the geodesic AB that is closest to the point P, and the minimum
distance which is the length of the geodesic XP. The constraint is the azimuth XP that must
be ±90◦.

Appl. Sci. 2021, 11, 5129 16 of 23

(the subsequent equation numbers and symbols refer to expressions in the previous article
[18]).
1. Compute the distance sAP and azimuths αAP and αAB by means of the implementation

of the inverse problem of geodesy. Obtain angle A as the difference of these azimuths.
2. Obtain an approximate value for distances sPX and sAX by means of Equations (8) and

(10) and compute the direct problem of geodesy from A with the distance sAX and
azimuth αAX (which is the same as αAB) in order to obtain a point X which will act as
point A in the next iteration.

3. For subsequent iterations, go back to steps (1) and (2) to obtain first sPX but replace
the formula to obtain sAX by the following one, which has been obtained from the
Napier pentagon for right-angle spherical triangles and unlike the one used in step
(2) has no instabilities near the exact solution but a sharp convergence to it. 𝑠 = 𝑅 𝑎𝑟𝑐𝑡𝑎𝑛 𝑐𝑜𝑠𝐴 𝑡𝑎𝑛 𝑠𝑅 (1)

This formula has a singularity when sAP/R equals π/2 (i.e., sAP of some 10000 km),
which is the reason we preferred to obtain first an approximate sAP by means of Equation
(10), preventing this singularity to happen in subsequent iterations (for which sAP has
small values).

We implemented this algorithm in PostGIS and Java. The source code is publicly
available in the repository [25], files src/GeodesicSpatialOp.java and src/GeodesicSpa-
tialOp.sql. Scheme 9 shows the pseudocode of the Geodesic Minimum Distance algorithm,
which returns the point X on the geodesic AB that is closest to the point P, and the mini-
mum distance which is the length of the geodesic XP. The constraint is the azimuth XP
that must be ±90°.

Scheme 9. Pseudocode of the Geodesic Minimum Distance algorithm. Scheme 9. Pseudocode of the Geodesic Minimum Distance algorithm.

Appl. Sci. 2021, 11, 5129 16 of 21

The new spatial PostGIS SQL function “STX_GeodesicMinDistance (a point, b point,
p point)” calculates the minimum distance from the point P to the geodesic AB on the
ellipsoid (WGS84 ellipsoid by default). Scheme 10 shows how a SQL user can easily get the
intersection of two geodesics. The example checks if the angle AXP is equal to 90 degrees.

Appl. Sci. 2021, 11, 5129 17 of 23

The new spatial PostGIS SQL function “STX_GeodesicMinDistance (a point, b point,
p point)” calculates the minimum distance from the point P to the geodesic AB on the
ellipsoid (WGS84 ellipsoid by default). Scheme 10 shows how a SQL user can easily get
the intersection of two geodesics. The example checks if the angle AXP is equal to 90 de-
grees.

Scheme 10. Testing the minimum distance with the new SQL function.

To check the errors, we use slightly different tests A and B. The test A is similar to
test A in the previous algorithm but considering now that the azimuth αXP must differ in
90 degrees with respect to the azimuths αXA and αXB, and, in addition, αAX = αAB. Test A
formula is: Maximum (|αAX − αAB|, |αXP − αXA ± 90°|, |αXP − αXB ± 90°|).

To perform test B, we calculate the deviation distance X’X’’, plus a second deviation
distance PP’’. If an azimuth αX’A ± 90° is applied from the point X’ plus a distance X’P (the
distance X’X’’ is close to zero), we will obtain a point P’’ that must coincide with the point
P. If the distance PP’’ is zero, it is guaranteed that the perpendicular to the geodesic
through the point X crosses point P. Test B formula is: Maximum (X’X’’, PP’’), Figure 4.
Table 5 shows the coordinates of the three examples used to test the algorithm whereas
the column deviation of Table 6 shows the result of both tests.

Figure 4. Distance deviations (X’X’’ and PP’’).

Scheme 10. Testing the minimum distance with the new SQL function.

To check the errors, we use slightly different tests A and B. The test A is similar to
test A in the previous algorithm but considering now that the azimuth αXP must differ in
90 degrees with respect to the azimuths αXA and αXB, and, in addition, αAX = αAB. Test A
formula is: Maximum (|αAX − αAB|, |αXP − αXA ± 90◦|, |αXP − αXB ± 90◦|).

To perform test B, we calculate the deviation distance X′X”, plus a second deviation
distance PP”. If an azimuth αX′A ± 90◦ is applied from the point X′ plus a distance X′P
(the distance X′X” is close to zero), we will obtain a point P” that must coincide with the
point P. If the distance PP” is zero, it is guaranteed that the perpendicular to the geodesic
through the point X crosses point P. Test B formula is: Maximum (X′X”, PP”), Figure 4.
Table 5 shows the coordinates of the three examples used to test the algorithm whereas the
column deviation of Table 6 shows the result of both tests.

Appl. Sci. 2021, 11, 5129 17 of 23

The new spatial PostGIS SQL function “STX_GeodesicMinDistance (a point, b point,
p point)” calculates the minimum distance from the point P to the geodesic AB on the
ellipsoid (WGS84 ellipsoid by default). Scheme 10 shows how a SQL user can easily get
the intersection of two geodesics. The example checks if the angle AXP is equal to 90 de-
grees.

Scheme 10. Testing the minimum distance with the new SQL function.

To check the errors, we use slightly different tests A and B. The test A is similar to
test A in the previous algorithm but considering now that the azimuth αXP must differ in
90 degrees with respect to the azimuths αXA and αXB, and, in addition, αAX = αAB. Test A
formula is: Maximum (|αAX − αAB|, |αXP − αXA ± 90°|, |αXP − αXB ± 90°|).

To perform test B, we calculate the deviation distance X’X’’, plus a second deviation
distance PP’’. If an azimuth αX’A ± 90° is applied from the point X’ plus a distance X’P (the
distance X’X’’ is close to zero), we will obtain a point P’’ that must coincide with the point
P. If the distance PP’’ is zero, it is guaranteed that the perpendicular to the geodesic
through the point X crosses point P. Test B formula is: Maximum (X’X’’, PP’’), Figure 4.
Table 5 shows the coordinates of the three examples used to test the algorithm whereas
the column deviation of Table 6 shows the result of both tests.

Figure 4. Distance deviations (X’X’’ and PP’’).

Figure 4. Distance deviations (X′X” and PP”).

Appl. Sci. 2021, 11, 5129 17 of 21

Table 5. Examples for the minimum distance tests. ϕ and λ denote latitude and longitude, in degrees,
for points A, B and C, respectively.

Case ϕA λA ϕB λB ϕC λC
XP

(km)
AX

(km)
BX

(km)

1 52 5 51.4 6 52 5.5 23 24 71
2 42 29 39 −77 64 −22 1010 3928 4411
3 42 29 −35 −70 64 −22 3928 1012 12,166

Table 6. Minimum distance solution using PostGIS through the ST_GeodesicMinDistance new
implemented SQL function. Values of latitude and longitude given in deg min sec as well as in
decimal degrees. The column Ite is the number of iterations, the last column (Deviation) gives the
computation of deviation with extended precision using the Maxima framework as explained in the
next section.

Case Latitude Longitude Ite Deviation
Test A (m)

Deviation
Test B

(Arcsec)

1 51◦50′45.921217384′′

51.8460892270512◦
5◦15′37.542581860′′

5.26042849496107◦ 3 4.1 × 10−9 3.49 × 10−8

2
54◦55′42.713389621′′ −21◦56′14.247837776′′

4 2.2 × 10−9 4.41 × 10−10
54.9285314971169◦ −21.9372910660488◦

3 37◦58′41.223640784′′

37.9781176779955◦
18◦20′56.627934277′′

18.3490633150769◦ 4 6.0 × 10−10 5.59 × 10−11

The largest difference of test B obtained for the 3 cases is 0.0041 µm. The computation
coordinates of X are exact up to the ninth decimal place of arc seconds units, which
represents a maximum of 0.03 µm. The minimum distance obtained can be correctly
represented with up to the eighth decimal place (meters). We run these tests with Maxima,
source code in tests/maxima_tests_minimumdistance.mac available at [25].

Regarding to the running time, the operation E is approximately twice as fast as
operation D, obtaining 40,000 times per second in cases 2 and 3 (four iterations to converge)
and 60,000 times per second in case 1 (three iterations).

Table 7 shows the minimum distance differences obtained between the software
products and the results from Table 6.

Table 7. Minimum distance deviation by the different products and methods, values in m.

Case Oracle Google Geocentric ϕ, λ
Sphere

ArcGIS Geodetic
Densify

PostGIS with
Local Projection

1 −44.068 0.456 −17.51 0.0015 0.403
2 3141.29 5029.43 4275.75 0.0103 5024.505
3 −4914.61 1572.71 −523.79 0.0082 1565.01

We can see that ArcGIS is the only studied software with deviations of 1 cm or less,
although the distance PP” (test B) happens to lie up to several meters off (0.05 m for Case 1,
2.5 m for Case 2 and 4.2 m for Case 3), which means the point X on the geodesic is indeed
not well calculated.

Unlike operation D, Oracle and Google implement different algorithms. The devia-
tions in cases 2 and 3 reach up to 5000 m.

Scheme 11 shows some additional special cases: polar, transpolar, 180◦ long geodesics, etc.

Appl. Sci. 2021, 11, 5129 18 of 21

Appl. Sci. 2021, 11, 5129 19 of 23

Appl. Sci. 2021, 11, 5129 20 of 23

Scheme 11. Some special cases of minimum point-to-geodesic distance.

5. Conclusions
We demonstrated that some of the most powerful spatial analysis software solutions

perform some geodetic calculations approximately. Two of these operations are the inter-
section of two geodesics and the minimum distance from a point to a geodesic.

These operations are critical to implement a true geodetic spatial analysis engine,
since many other more complex spatial processes are based on them, therefore, they must

Scheme 11. Some special cases of minimum point-to-geodesic distance.

Appl. Sci. 2021, 11, 5129 19 of 21

5. Conclusions

We demonstrated that some of the most powerful spatial analysis software solu-
tions perform some geodetic calculations approximately. Two of these operations are the
intersection of two geodesics and the minimum distance from a point to a geodesic.

These operations are critical to implement a true geodetic spatial analysis engine, since
many other more complex spatial processes are based on them, therefore, they must be
calculated with high accuracy, that is close to machine precision (so that, in practice, they
are insignificantly affected by numerical truncations).

The deviations committed by these popular spatial analysis software are large, easily
exceeding the necessary tolerances according to the spatial analysis objectives. Even for
geodesics of a few kilometers the best studied solution gave us deviations of centimeters.
For longer lines they showed deviations of meters.

We presented two algorithms in Java and PostGIS that perform high accuracy calcula-
tions on the ellipsoid using double precision types, achieving an error lower than 100 nm
in both operations. The implementation of this algorithm provides the following features:

• The accuracy obtained is higher than using local projections even considering very
short distances.

• It allows a highly accurate spatial analysis even in large extensions of territory (na-
tional, continental or global).

• Worrying about choosing the best-fit projection for analyzing the data becomes unnec-
essary, since we do not need to use any projection.

• A good performance (considering the spatial analysis is on the ellipsoid) is achieved
(20,000 geodesic intersections per second) due to a fast convergence process. The
worst scenario took six iterations, if the final accuracy goal is µm instead of nm we can
reduce the number of iterations by one or two. The proposed algorithm is fast enough
to allow the migration of flat computational geometry libraries (JTS, GDAL, etc.) to
computational geometries libraries on the ellipsoid. This way, a full spatial analysis
software solution on the ellipsoid could be offered for the first time.

Consequently, we propose the following final recommendations for practical use when
preparing a geodetic spatial analysis engine:

• Some of the most renowned spatial analysis software solutions rely on the use of
auxiliary map projections to solve problems on the surface of the ellipsoid which
may produce manifestly incorrect results. These auxiliary map projections must be
abandoned altogether in favor of reliable algorithms for direct computation on the
ellipsoid surface that produce accurate results irrespectively of the extension of the
area of interest.

• In recent times: algorithms that yield results of an accuracy close to machine precision
have been developed. This is the case of Karney’s implementation of the direct and
inverse problems of geodesy [14] and Transverse Mercator formulas with an accuracy
of a few nanometers [36], which are included in GeographicLib [13]. This is also the
case of the algorithms for intersection of geodesics and minimum point-to-geodesic
distance presented in this paper. Spatial analysis software solutions should incorporate
these solutions in order to provide the user with the highest possible accuracy, that is,
an accuracy close to machine precision.

• When performing geometric calculations on the ellipsoid surface, such as determina-
tion of the intersection of geodesics or minimum point-to-geodesic distance, suitable
tests for validating the solution (such as the ones used in this paper) should be applied
to ensure the degree of accuracy of the solution obtained.

Author Contributions: Conceptualization, J.C.M.-L. and S.B.; methodology, J.C.M.-L., S.B. and E.C.;
software, J.C.M.-L. and S.B.; validation, J.C.M.-L. and S.B.; formal analysis, E.C.; resources, E.C.; data
curation, E.C.; writing—original draft preparation, J.C.M.-L. and S.B.; writing—review and editing,
J.C.M.-L., S.B. and E.C.; funding acquisition, J.C.M.-L., S.B. and E.C. All authors have read and agreed
to the published version of the manuscript.

Appl. Sci. 2021, 11, 5129 20 of 21

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article. The computer codes can be
accessed at https://figshare.com/s/58f3bf16ac8523a378e9 (accessed on 22 April 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Steiniger, S.; Hunter, A.J.S. The 2012 free and open source GIS software map-A guide to facilitate research, development, and

adoption. Comput. Environ. Urban Syst. 2013, 39, 136–150. [CrossRef]
2. Meyer, T.H. Introduction to Geometrical and Physical Geodesy: Foundations of Geomatics; ESRI Press: Redlands, CA, USA, 2010.
3. Torge, W. Geodesy; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2001.
4. DMA Geodesy for the Layman; Defense Mapping Agency: Washington, DC, USA, 1983.
5. NIMA Department of Defense World Geodetic System 1984; National Imagery and Mapping Agency Technical Report TR 8350.2, 3.

ed.; National Imagery and Mapping Agency: Washington, DC, USA, 2000.
6. Petit, G.; Luzum, B. IERS Conventions (2010). IERS Technical Note 36; Verlag des Bundesamts für Kartographie und Geodäsie:

Frankfurt am Main, Germany, 2010.
7. Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame

modeling non-linear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [CrossRef]
8. ISO. Geographic Information-Geodetic References-Part 1: International Terrestrial Reference System (ITRS); 19161-1; ISO: Geneva,

Switzerland, 2020.
9. Burch, T. Data Collection of WGS 84 Information–Or Is It? GPS World. 2016. Available online: https://www.gpsworld.com/data-

collection-of-wgs-84-information-or-is-it/ (accessed on 27 May 2021).
10. Malys, S.; Wong, R.; True, S. The WGS 84 Terrestrial Reference Frame in 2016. In Proceedings of the Eleventh Meeting of the

International Committee on GNSS, ICG-11, UNOOSA, Sochi, Russia, 6–11 November 2016.
11. Quality Positioning Services, B.V. International Terrestrial Reference Frame 2014 (ITRF2014). 2020. Available online: https:

//confluence.qps.nl/qinsy/latest/en/international-terrestrial-reference-frame-2014-itrf2014-182618383.html (accessed on 27
May 2021).

12. Jenny, B.; Šavrič, B.; Arnold, N.D.; Marston, B.E.; Preppernau, C.A. A Guide to Selecting Map Projections for World and
Hemisphere Maps. In Choosing a Map Projection. Lecture Notes in Geoinformation and Cartography; Lapaine, M., Usery, E., Eds.;
Springer: Cham, Switzerland, 2017; pp. 213–228. [CrossRef]

13. Karney, C.F.F. GeographicLib 1.51. 2021. Available online: https://geographiclib.sourceforge.io/html/ (accessed on 16 January
2021).

14. Karney, C.F.F. Algorithms for geodesics. J. Geod. 2013, 87, 43–55. [CrossRef]
15. PostGIS Geography Support Functions. 2021. Available online: https://postgis.net/docs/manual-3.1/PostGIS_Special_

Functions_Index.html#PostGIS_GeographyFunctions (accessed on 28 February 2021).
16. Kothuri, R.; Godfrind, A.; Beinat, E. Pro Oracle Spatial for Oracle Database 11 g; Apress: Berkeley, CA, USA, 2007.
17. PostGIS ST_Area with GeographicLib. 2021. Available online: https://postgis.net/docs/ST_Area.html (accessed on 27 Febru-

ary 2021).
18. Baselga, S.; Martínez-Llario, J.C. Intersection and point-to-line solutions for geodesics on the ellipsoid. Stud. Geophys. Geod. 2018,

62, 353–363. [CrossRef]
19. ESRI. ArcGIS Desktop. 2021. Available online: https://www.esri.com/ (accessed on 27 February 2021).
20. PostGIS. 2021. Available online: https://postgis.net/ (accessed on 27 February 2021).
21. Oracle. Oracle Spatial. 2021. Available online: https://docs.oracle.com/en/database/oracle/oracle-database/21/spatl (accessed

on 27 February 2021).
22. Google. Google Earth Engine. 2021. Available online: https://earthengine.google.com/ (accessed on 27 February 2021).
23. Van Brummelen, G. Heavenly Mathematics: The Forgotten art of Spherical Trigonometry; Princeton University Press: Princeton, NJ,

USA, 2013.
24. Jayapalan, J. Coordinate System. Oracle Spatial Spatial Developer’s Guide, 21c. 2021. Available online: https://docs.oracle.com/

en/database/oracle/oracle-database/21/spatl/spatial-concepts.html (accessed on 11 March 2021).
25. Martinez-Llario, J.C.; Baselga, S. Geodesy Spatial Geometry Operators. 2021. Available online: https://figshare.com/s/58f3bf1

6ac8523a378e9 (accessed on 11 March 2021). it will be uploaded into GitHub for public use after approval of the manuscript.
26. Google. Geodesic vs. Planar Geometries, Google Earth Engine. 2021. Available online: https://developers.google.com/earth-

engine/geometries_planar_geodesic (accessed on 28 February 2021).
27. Google. Geometric Operations, Google Earth Engine. 2021. Available online: https://developers.google.com/earth-engine/

geometric_operations (accessed on 28 February 2021).
28. ArcGIS Desktop. Creating Geodetic Features. 2020. Available online: https://desktop.arcgis.com/en/arcmap/latest/manage-

data/creating-new-features/creating-geodetic-features.htm (accessed on 28 February 2021).
29. ArcGIS Desktop. Spatial Reference and Geoprocessing. 2021. Available online: https://desktop.arcgis.com/en/arcmap/latest/

tools/supplement/spatial-reference-and-geoprocessing.htm (accessed on 28 February 2021).

https://figshare.com/s/58f3bf16ac8523a378e9
http://doi.org/10.1016/j.compenvurbsys.2012.10.003
http://doi.org/10.1002/2016JB013098
https://www.gpsworld.com/data-collection-of-wgs-84-information-or-is-it/
https://www.gpsworld.com/data-collection-of-wgs-84-information-or-is-it/
https://confluence.qps.nl/qinsy/latest/en/international-terrestrial-reference-frame-2014-itrf2014-182618383.html
https://confluence.qps.nl/qinsy/latest/en/international-terrestrial-reference-frame-2014-itrf2014-182618383.html
http://doi.org/10.1007/978-3-319-51835-0_9
https://geographiclib.sourceforge.io/html/
http://doi.org/10.1007/s00190-012-0578-z
https://postgis.net/docs/manual-3.1/PostGIS_Special_Functions_Index.html#PostGIS_GeographyFunctions
https://postgis.net/docs/manual-3.1/PostGIS_Special_Functions_Index.html#PostGIS_GeographyFunctions
https://postgis.net/docs/ST_Area.html
http://doi.org/10.1007/s11200-017-1020-z
https://www.esri.com/
https://postgis.net/
https://docs.oracle.com/en/database/oracle/oracle-database/21/spatl
https://earthengine.google.com/
https://docs.oracle.com/en/database/oracle/oracle-database/21/spatl/spatial-concepts.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/spatl/spatial-concepts.html
https://figshare.com/s/58f3bf16ac8523a378e9
https://figshare.com/s/58f3bf16ac8523a378e9
https://developers.google.com/earth-engine/geometries_planar_geodesic
https://developers.google.com/earth-engine/geometries_planar_geodesic
https://developers.google.com/earth-engine/geometric_operations
https://developers.google.com/earth-engine/geometric_operations
https://desktop.arcgis.com/en/arcmap/latest/manage-data/creating-new-features/creating-geodetic-features.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/creating-new-features/creating-geodetic-features.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/supplement/spatial-reference-and-geoprocessing.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/supplement/spatial-reference-and-geoprocessing.htm

Appl. Sci. 2021, 11, 5129 21 of 21

30. PostGIS. ST_Intersection Best Fit Projection. 2021. Available online: https://postgis.net/docs/ST_Intersection.html/ (accessed
on 28 February 2021).

31. Sjöberg, L.E. New Solutions to Classical Geodetic Problems on the Ellipsoid. In Observing our Changing Earth; Sideris, M.G., Ed.;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 781–784.

32. Sjöberg, L.E. Geodetic intersection on the ellipsoid. J. Geod. 2008, 82, 565–567. [CrossRef]
33. Sjöberg, L.E. Intersections on the sphere and ellipsoid. J. Geod. 2002. [CrossRef]
34. Goldberg, D. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Comput. Surv. 1991, 23, 5–48.

[CrossRef]
35. Passmark Software. CPU Benchmarks. 2021. Available online: https://www.cpubenchmark.net/ (accessed on 17 March 2021).
36. Karney, C.F.F. Transverse Mercator with an accuracy of a few nanometers. J. Geod. 2011, 85, 475–485. [CrossRef]

https://postgis.net/docs/ST_Intersection.html/
http://doi.org/10.1007/s00190-007-0204-7
http://doi.org/10.1007/s00190-001-0230-9
http://doi.org/10.1145/103162.103163
https://www.cpubenchmark.net/
http://doi.org/10.1007/s00190-011-0445-3

	Introduction
	Experiments
	Oracle Spatial
	Google Earth Engine
	ArcGIS
	ArcGIS Plus Local Projections
	PostGIS Plus Local Projections

	Validation of Results
	Tests
	Test A
	Test B

	Exact Solution and Validation
	Checking the Algorithm with Extended Precision
	Special Geodesic Intersection Cases
	Minimum Distance from Point to Geodesic

	Conclusions
	References

