
25

Advances in the physical approach to personality

dynamics

Antonio Caselles♭, Joan C. Micó♮ 1 and Salvador Amigó♦
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1 Introduction

The objective of this paper is to advance in the mathematical formalism that states a bridge
between Physics and Psychology presented in [1]. The short-term personality dynamics can be
modelled by a stimulus-response model: an integro-differential equation. The bridge between
Physics and Psychology is provided when the stimulus-response model can be formulated as a
Newtonian equation with its corresponding minimum action principle. This principle provides
the current Lagrangian and Hamiltonian functions. This Hamiltonian function is a non-conserved
energy because it depends explicitly on time. Then, some changes provided by the physical
scientific literature of the last decades [2, 3] can derive into an approach where a Hamiltonian
function is conserved: the Ermakov-Lewis energy. A theoretical application case is presented for
the case of an individual that consumes 10 mg of methylphenidate. The stimulus dynamics, the
Ermakov-Lewis energy with its kinetic and potential energies, and the GFP dynamical response
are presented and discussed for this case.

2 Precedents

The stimulus-response model is given by the following integro-differential equation:

q̇(t) = a(b − q(t)) + δ · s(t) · q(t) − σ ·
∫ t

t0
e

r−t

τ · s(r) · q(r)dr

q(t0) = q0

}

(1)

In Eq. 1 q(t) is the General Factor of Personality (GFP) dynamics measured in activation units
(au) and s(t) an arbitrary stimulus. The conserved Ermakov-Lewis energy obtained in [1] is:
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2
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2
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+
k

2

(

√

u (t)

C (t)
q + A (t)

)2

(2)

In Eq. 2 k is an arbitrary constant and u(t) is the generalized mass, given by u (t) =

u0e
(a+ τ

t
)(t−t0)−δ

∫

t

t0

s(r)dr
, where u0 is an arbitrary constant, and the C(t) and A(t) variables hold

the equations:

C̈(t) + Ω(t) · C(t) =
k

C3(t)
(3)

Ä(t) + 2
Ċ(t)

C(t)
Ȧ(t) + kA(t)C4(t) +

a · b

τ

√

u(t)

C(t)
= 0 (4)

The analytical solution of q(t) can be written in function of these two variables as:
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


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(5)

3 Advances

The advances presented in the present work are specified in the following. First of all, in order to
choose the initial conditions for A(t) and C(t), the following assumptions in t = t0 in Eq. 2 are
done: u0 = 1, C0 = 1, A0 = 0 au, Ȧ0 = 0 au ·t−1 and 1

2C0
u̇0√
u0) − √

u0 · Ċ0 = 0, which provide

Ċ0 = 1/2u̇0t−1 = 1/2(a + 1
τ − δ · s0)t

−1, and also provide the initial value of the Ermakov-Lewis
energy:

E = E0 =
1

2
q̇2

0 +
k

2
q2

0 au2 · t−2 =
1

2
(a(b − q0) + δ · s0 · q0)

2 +
k

2
q2

0 au2 · t−2 (6)

Note that Eq. 2 is a classical addition of kinetic and potential energy, whose value is conserved
for all the GFP evolution period as a consequence of a stimulus, which is equal to the value of Eq.
6. In addition the choice of q(t) in Eq. 5 is clear: the k > 0 case. The case k=0 has the unstable

term k1
∫ t

t0

dr
C2(r)

, and the k < 0 case has the unstable term k1 · exp
(√

−k
∫ t

t0

dr
C2(r)

)

. Once the

case k > 0 has been chosen as the stable one, the comparison of Eq. 5 in t = t0 with the initial
values in Eq. 1 provides that k1 = q̇0√

k
and k2 = q0 with q̇0 = a(b − q0) + δ · s0 · q0. Observe that

finally one parameter is non-fixed. The preferred option is taking k1 as the free parameter due
to the k parameter (with dimensions T-2) can be considered in future studies as a measure of the
resistance of the individual to change its personality (as compared with a harmonic oscillator in
Physics).
Then, the conclusion is that the Ermakov-Lewis energy of Eq. 2 can be written as:
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Moreover, the q(t) dynamics is written as:

q(t) =
C (t)

√

u (t)

(

−A(t) + k1 · sin
(

q̇2
0

k2
1

∫ t

t0

dr

C2r

)

+ q0 cos

(

q̇2
0

k2
1

∫ t

t0
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))

(8)

Note in Eqs. 7 and 8 that q̇0 = a(b − q0) + δ · s0 · q0, and that k1 is a free but positive-valued
parameter.

4 Application case

An application of the theoretical approach here developed is presented now in order to study the
personality dynamics as a consequence of one methylphenidate dose consumption. To obtain the
simplest mathematical structure of methylphenidate dynamics s(t) a two level pharmacokinetics
model [4] is considered:

dm(t)
dt = −α · m(t)

m(t0) = M

}

(9)

ds(t)
dt = α · m(t) − β · s(t)

s(t0) = s0

}

(10)

In Eq. 9 m(t) represents the evolution of methylphenidate before entering in the organism’s
plasma and metabolizing system, being M the methylphenidate initial amount and being α the
methylphenidate assimilation rate. In Eq. 10 the s(t) variable represents the methylphenidate
amount in organism, assuming that its initial value is s0, i.e., the neither metabolized nor excreted
methylphenidate of a possible previous consumption, and β is the methylphenidate elimination
rate. This coupled differential equations system can be integrated:

s (t) = s0e−β·t +

{

α · Mβ − αe − α · t − e−β·t : α Ó= β,

α · M · t · e − α · t : α = β.
(11)

The application case is a theoretical case in which one subject consumes 10 mg of methylphenidate,
and his GFP is measured every 7.5 minutes during 180 minutes (3 hours), with the 5 adjectives
scale of the GFP-FAS in the hedonic scale [5] in units called as activation units (au), inside the
interval [0,50] au, i.e., each adjective is scored inside the interval [0,10] in the hedonic scale. A
real ABC experimental design can be seen in [6]. The initial condition q0 is also measured before
consumption, and its value is q0 = 20.0 au. The model parameters are chosen to reproduce
a U-inverted GFP response with a recovering period under the tonic level with an asymptotic
convergence to this value as t → +∞. Besides, the assimilation and elimination rates values for
methylphenidate vary inside the following confidence intervals: α ∈ [0.00617, 0.02173] min-1 and
β ∈ [0.00566, 0.01451] min-1 (95% confidence) [7]. The concrete parameter values proposed for
this application case but inspired in [6] are presented in Table 1.
Observe in Table 1 that the initial value of methylphenidate is s0 = 0 mg, i.e., the individual
has not consumed methylphenidate from very long before. In addition, all the computations and
figures here presented have been done with MATHEMATICA in a period three times the period
of the experimental design of [7], i.e., in a period of 3·180 min = 540 min = 9 hours, in order to
appreciate its asymptotic dynamical behaviours. Note that Figure 1 presents the methylphenidate
dynamics given by Eq. 11 and its asymptotic trend to zero.
Take into account to compute the evolution of the Ermakov-Lewis energy and the kinetic and
potential energies given by Eq. 7, as well as the q(t) or GFP dynamics by Eq. 8, that: (a) the
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Table 1: Parameter values of the application case

Parameter name Symbol Values with units

Initial GFP q0 20 au

Initial stimulus s0 0 mg

Methylphenidate initial amount M 10 mg

Methylphenidate assimilation rate α 0.01746 min-1

Methylphenidate elimination rate β 0.01385 min-1

Homeostatic control power a 0.00536 min-1

Tonic level b 27.49 au

Excitation effect power δ 0.0061267 mg-1
·min-1

Inhibitor effect power σ 0.000161 mg-1
·min-2

Inhibitor effect delay τ 40.64 min

Figure 1: Stimulus dynamics (methylphenidate’s amount evolution inside organism) given by Eq.
11 versus time.
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Figure 2: Ermakov-Lewis energy (E, upper straight line), kinetic energy (Te, first increasing line),
and potential energy (Ve, first decreasing dotted line), versus time.

Figure 3: GFP or q(t) dynamics (curve line) and the tonic level b = 27.49 au (dotted straight
line), versus time.

A(t) and C(t) auxiliary variables dynamics have been solved numerically by Eqs. 3 and 4 with
the initial values provided in above; (b) the free parameter value k1 has been chosen as k1 = 1

au, thus k =
q̇2

0

k2

1

= (a(b−q0)+δ·s0·q0)2

1 = 0.0016 min−2 (note that s0 = 0 mg).

In addition, Figure 2 presents the evolution of the Ermakov-Lewis energy with value E = E0 =
1
2 q̇2

0 + 1
2

q̇2

0

k2

1

q2
0 = 0.3228 au (constant), jointly with its kinetic and potential partial energies. Note

that, at the beginning, almost all energy is potential but it transforms continuously into kinetic
energy, until an instant after 200 minutes in which suddenly the evolution is inverted to converge
towards a common value, approximately to half the total Ermakov-Lewis energy.
Moreover, Figure 3 presents the GFP evolution or q(t) dynamics together with the tonic level
(b = 27.49 au). Note the U-inverted shape GFP response with a recovering period under the
tonic level (b = 27.49 au) and an asymptotic convergence to this value as t → +∞. Thus, this
hypothetical individual clearly reproduces the response pattern pointed out by the literature as a
consequence of a stimulant drug.
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5 Conclusions and Future work

The here presented finding about a bridge or “isomorphism” between Physics and Psychology,
concretely between analytical dynamics and personality theory, must be emphasized. The con-
clusion is that we can apply the energy conservation principle of Physics to obtain the GFP
dynamics produced by some environmental stimuli; in fact we can consider some psychological
mechanisms as analogous to those of Physics. An application of the theoretical concept of energy
is to consider the invariant Ermakov-Lewis energy as an amount of personality energy involved in
a dynamic response to a stimulus, i.e., having a characteristic number that represents this com-
plex dynamics, since energy is a scalar magnitude. This characteristic energy amount could be
used in inferential statistics, with the sense that a dynamics could be reduced to a representative
scalar. In fact, it has been done already in the context of an application case where 28 individuals
consumed alcohol [8]. On the other hand, the inspiration obtained from the application cases of
the Ermakov-Lewis energy in Physics should be considered. One of the most important applica-
tion for the authors is the one related with the quantum approach, similar for instance to that
considered in the work [9]. In this approach, the tonic level as asymptotic state in Eq. 1 is not
considered, and the quantization rules are applied on the Hamiltonian. Then, a time-dependent
Schrödinger equation arises, from which the wave function can be solved analytically in a similar
way that it has been provided for the Ermakov-Lewis energy. The wave function provides the
quantum version of Hamilton equations deduced by Bohm & Hiley [10] from the Schrödinger
equation, which are stochastic, and from which quantized trajectories and bifurcations can be
studied. Thus, multiple GFP dynamical response patterns with their corresponding asymptotic
states can arise. Therefore, the authors’ hypothesis is that this approach could provide: (a) a way
to study the normal and the disorder dynamical patterns of personality; (b) how a bifurcation
can steer, as a consequence of a stimulus, from a normal pattern of personality to a disordered
one. Then, those sudden changes that many times are observed in personality theory could have
a mathematical explanation.
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[6] Amigó, S., Micó, J.C., & Caselles, A. (2018). Methylphenidate and the Self-Regulation Therapy
increase happiness and reduce depression: a dynamical mathematical model. Modelling for Engineering
& Human Behaviour 2018, Valencia (Spain), 6-9.

[7] Lyauk, Y.K., Stage, C., Bergmann, T.K., Ferrero-Milliani, L., Bjerre, D., Thomsen, R., Dalhoff, K.P.,
Rasmussen, H.B., & Jürgens, G. (2016). Population Pharmacokinetics of Methylphenidate in Healthy
Adults Emphasizing Novel and Known Effects of Several Carboxylesterase 1 (CES1) Variants, Clinical
and Translational Science, 9, 337–345.
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