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Aeroelastic Computational Fluid Dynamics simulations have traditionally been associated to a high 
computational cost, making them prohibitive in a initial phase of the design. Analytic models, which 
may not be accurate for nonlinear aerodynamics, have traditionally been utilized in order to size those 
structures. Recently, some authors have proposed the use of artificial neural networks to reduce the error 
in the prediction of aerodynamic coefficients of bluff bodies, which have separated flow over a substantial 
part of its wetted surface. This article proposes a method based on neural networks for calculating 
the dynamic aerodynamic coefficients of a flat plate. The procedure, which is applied for different 
network typologies (feed-forward and long-short term memory neural networks), is, then, coupled with 
a structural solver in order to create an aeroelastic reduced order model. The results are compared with 
CFD aeroelastic simulations, showing a high reduction of computational cost (99%) without penalties 
in the accuracy. The instabilities are captured and the mean deformation, amplitude and frequency of 
the motion are predicted. In addition, the different neural network models are compared evidencing 
that for the aeroelastic calculation feed-forward networks are most efficient in terms of accuracy and 
computational cost.

© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Modern structures are designed to reduce the amount of mate-
rial required to prevent failure. As the frame weight is decreased, 
the structure becomes more efficient and environmentally sustain-
able. Moreover, saving resources supposes a reduction on its cost 
of production, obtaining a more competitive product [1]. However, 
the improvement on the weight is also related with a decrease of 
the torsion and bending stiffness of the frame, evidencing the ne-
cessity of finding a Pareto-optimal solution of structural integrity 
and cost. For applications where the structure is exposed to wind 
loads, the reduction of stiffness may increase the effect of the 
aeroelastic phenomena, producing instabilities at low free stream 
velocities [2].

Due to the previous reasons, aeroelastic analysis has been a hot 
topic in aerospace [3], civil [4] or automotive [5] engineering, and 
a wide amount of literature dealing with these phenomena can be 
found. Some researchers analyzed divergence experimentally [6], 
analytically [7] or numerically [8]. Other authors focused on other 
effects as flutter [9], [10] or buffeting [11], [12].
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The study of the aeroelastic problem may be carried out using 
different tools and approaches. A research might be conducted an-
alytically [13], numerically [14] or experimentally [15]. Among the 
latest, the studies may be performed directly on a manufactured 
product or using a wind tunnel model. Relative to the first option, 
Evans et al. [16] carried out measurements of the deformation of a 
5 kW wind turbine. Argentini et al. [17] used a wind tunnel model 
to analyze the buffeting response of long span bridges. Although 
wind tunnels are useful to reproduce the wind flow under con-
trolled conditions, these experiments have many restrictions as the 
scale effects, wall and support interference and aerodynamic dis-
tortion [18]. These limitations evidence the importance of using 
other methods, such as Computational Fluid Dynamics (CFD) sim-
ulations, to verify the results.

Additionally, numerical simulations may also be used to calcu-
late aeroelastic phenomena. In order to calculate the whole set 
of equations, a CFD / Computational Solid Dynamics (CSD) anal-
ysis could be performed. For instance, Dong et al. [19] and Ren 
et al. [20] predicted flutter in turbomachinery and Wang et al. [21]
calculated a 3D wind turbine blade. Nevertheless, the computa-
tional cost associated with the resolution of the complete set 
of equations is unaffordable for most engineering problems and, 
therefore, many authors as Peng and Jinglong [22], Tsushima and 
Su [23], Amooozgar et al. [24] and Kwon et al. [25] reduced the 
ess article under the CC BY-NC-ND license 
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Nomenclature

Symbols

α Angle of attack
�α Angle of attack amplitude of the motion
�θ Pitch amplitude of the motion
�t Time step
�x Cell size
�w Plunge amplitude of the motion
εEcm Energetic error of the oscillation cycle
� Amplitude of the forced oscillations
θ Pitch of the section
θ∗ Nondimensional pitch of the section
θ0 Initial pitch of the section
θ̄ Mean pitch of the section
μ∞ Free stream viscosity
ρ∞ Free stream density
A Matrix of the linear system
a∞ Free stream sound speed�b Vector of the linear system
c Chord of the plate
cm Moment coefficient
cdyn

m Dynamic moment coefficient
cst

m Steady moment coefficient
cl Lift coefficient
cl0 Zero angle of attack lift coefficient
clα Lift coefficient angle of attack derivative
clα̇ Lift coefficient angle of attack velocity derivative

clα̈ Lift coefficient angle of attack acceleration derivative
cdyn

l Dynamic lift coefficient
cst

l Steady lift coefficient
cp Power coefficient
f Frequency of the motion
f1, f2, f3, f4 Intermediate steps in 4th order Runge-Kutta
H Width of the channel
h Thickness of the plate
I∗ Nondimensional inertia of the 2D section
I2D Inertia of the 2D section
k∗ Nondimensional stiffness
kθ Torsion stiffness
kw Bending stiffness
k∗

w Nondimensional bending stiffness
Lu Upstream length of the domain
Ld Downstream length of the domain
m∗ Nondimensional mass of the 2D section
m2D Mass of the 2D section
Ma Mach number
Re Reynolds number
T Period of the oscillation
t Time
V∞ Free stream velocity
w Plunge of the section
w̄ Mean plunge of the section
y+ Nondimensional wall distance
complexity of the problem by using Euler equations, 2D unsteady 
potential model and modified small disturbance theory, respec-
tively, for the calculation of the aerodynamic loads. Other re-
searchers, as You et al. [26] have simplified the structure to a 1D 
beam reducing the cost of the computation of the CSD solver.

In order to reduce the computational cost associated with the 
3D aeroelastic problem, many researchers calculate a characteris-
tic aeroelastic section [27], which has been traditionally used in 
literature [28]. For instance, in the work of Camilo et al. [29], the 
aeroelastic response of a 2D section using CFD is analyzed to ob-
tain the response of nonlinear structures. Even though, the cost of 
computing a wide range of unsteady 2D simulations is still high.

In order to reduce computing time, different Reduced Order 
Models (ROM) have been proposed [30]. A great amount of the 
aerodynamic ROMs are based on proper orthogonal decomposition 
(POD). Although these methods proved to be an accurate model in 
many problems, as the optimization of a compressor [31] or the 
aeroelastic calculation of a wing [32], POD “ROMs are only suitable 
for a frozen aeroelastic model configuration” [30]. The associated 
frequencies of the ROM are dependent upon the mass and stiffness 
distribution and, therefore, a change on the structure will lead to 
a different motion and eigenvalues of the flow field and, thus, to a 
different POD.

On the other hand, artificial neural networks (ANN) have 
demonstrated to be capable of predicting a wide range of physical 
phenomena, as compressor performance [33], volumetric efficiency 
of ICE [34] or diesel engine emissions [35]. Moreover, some authors 
have applied ANN to solve aerodynamic [36] and aeroelastic prob-
lems. For instance, Wu and Kareem [37] modeled the hysteretic 
nonlinear behavior of bridge decks under aerodynamic load. In 
their paper, the aerodynamic coefficient is splitted into static and 
dynamic coefficients in order to obtain the nonlinearities in a tur-
bulent flow. Another example is the research of Chen et al. [38], 
in which the flutter derivatives of a flat plate are calculated using 
an artificial neural network fed with experimental data. In other 
2

papers, as Abbas et al. [39] and Li et al. [40], the artificial neu-
ral network is fitted using CFD results. In Abbas et al. [39] the 
network is joined with a structural solver in order to obtain the 
aeroelastic response. However, the aerodynamic model only uses 
feed forward networks (FFN) and, thus, the capabilities of deep 
learning tools such as Long Short Term Memory (LSTM) networks 
are not evaluated. Furthermore, in Li et al. [40], an LSTM net-
work is used to calculate the unsteady aerodynamic behavior of a 
bridge deck. Nevertheless, the author does not compare the LSTM 
solutions with FFN, evaluating the convenience, precision and lim-
itations of each typology.

This paper aims at completing the research developed in the 
literature, proposing a reduced order model (ROM) for decreasing 
computing time in the initial design of beams under wind loads. 
The ROM will be applied to a 2D flat plate geometry immersed 
in a wind channel. The flat plate is chosen because it experiences 
nonlinear aerodynamic phenomena even for low values of the an-
gle of attack. In addition, the channel width is taken in a way such 
that the aerodynamics of the system will be influenced by the ver-
tical position of the plate. Two different surrogate models, using 
FFN and LSTM networks are developed to estimate the aerody-
namic loads. These models are fed by means of CFD calculations, 
and they are able to provide an accurate estimation of the nonlin-
ear unsteady aerodynamic forces acting over the plate. The ANNs 
are coupled with a structural model, allowing the estimation of the 
nonlinear aeroelastic features with a relatively low computational 
cost.

The paper is structured as follows. First, in Section 2, the main 
geometrical features of the test case will be described. Later, in 
Section 3, a full description of the theoretical bases of the problem 
are provided. After that, in Section 4, the ANN and CFD methodolo-
gies will be explained in order to obtain the main results, which 
will be collected later, at Section 5. Finally, the main conclusions 
of the work will be provided, at Section 6.
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Fig. 1. Domain of the simulation (not to scale), 3D plate simulation (left) and 2D simplification of the problem (right).
2. Description of the test case

The test case consists of a flat plate immersed in a wind tun-
nel, taken from Gil et al. [41], as shown in Fig. 1. The structure is 
reduced to a combination of linear and torsional springs, Fig. 1b. 
The flat plate section is selected due to its aerodynamic nonlineari-
ties for low angles of attack, as well as its similarities to important 
engineering elements such as solar panels. The channel is also in-
cluded in the analysis to take into account the effect of the vertical 
position in the aerodynamic steady coefficients. The plate has a 
chord c = 0.1 m, and a thickness h = 0.04c. The channel presents 
the following dimensions: upstream length Lu = 5c, downstream 
length Ld = 15c and a width of H = 4c, Fig. 1a. Upstream and 
downstream dimensions are taken in a manner that the inlet and 
outlet boundary conditions do not affect the simulation.

The walls of the channel are supposed sufficiently far from the 
plate for assuming slip boundary conditions (Euler walls) with-
out affecting substantially the aerodynamic response of the flat 
plate, similarly as in [42]. The inlet flow is perpendicular to the 
inlet section. The characteristics of the flow are: density ρ∞ =
1.18 kg/m3, viscosity μ∞ = 1.85 · 10−5 Pa s and a sound speed 
of a∞ = 340 m/s. The velocity V∞ is varied between 7 m/s and 
42 m/s. Thus, Reynolds number (Re = ρ∞ V∞c

μ∞ ) changes between 
4.5 · 104 and 2.7 · 105; and Mach number (Ma = V∞

a∞ ) between 
0.02 and 0.12. The holding structure of the plate is reproduced 
by means of two springs of torsional and linear stiffness kθ =
30.46 Nm/m and kw = 558.46 N/m2 respectively, Fig. 1b. Finally, 
the mass and inertia of the section are m2D = 0.36 kg/m and 
I2D = 3.9 · 10−4 kgm2/m.

3. Theoretical background

In this section, the main aeroelastic equations are introduced. In 
addition, the basis of artificial neural network is exposed, showing 
the principal typologies used in this work. Finally, the CFD models 
are presented.

3.1. Aeroelastic equivalent section

The motion of the equivalent 2D section is governed by Equa-
tions (1) and (2), which states the equilibrium for torsional and 
vertical degrees of freedom respectively.

I2Dθ̈ + kθ θ = 1
2ρ∞c2 V 2∞

(
cst

m(α, w) + cdyn
m (ᾱ,�α, α̇, α̈)

)
→

I∗θ̈∗ + k∗θ∗ = cst
m(α, w) + cdyn

m (ᾱ,�α, α̇, α̈)

(1)
3

m2D ẅ + kw w = 1
2ρ∞cV 2∞

(
cst

l (α, w) + cdyn
l (ᾱ,�α, α̇, α̈)

)
→

m∗ ẅ∗ + k∗
w w∗ = cst

l (α, w) + cdyn
l (ᾱ,�α, α̇, α̈)

(2)

where the angle of torsion of the plate is θ , the aerodynamic angle 
of attack is α, w is the plunge and θ∗ and w∗ are the nondimen-
sional torsion and plunge. The nondimensional numbers governing 
the behavior of the plate (the nondimensional torsional stiffness, 
Equation (3), the nondimensional inertia, Equation (4), the nondi-
mensional flexural stiffness, Equation (5) and the nondimensional 
mass, Equation (6)) may be calculated in order to reproduce a 
three-dimensional structure, as demonstrated by Gil et al. [41]:

k∗ = kθ

1
2ρ∞v2∞c2

(3)

I∗ = I2D
1
2ρ∞c4

(4)

k∗
w = kw

1
2ρ∞v2∞c

(5)

m∗ = m2D
1
2ρ∞c2

(6)

Following as Wu and Kareem [37], the aerodynamic coefficients 
(cl and cm) of equations (1) and (2) are expressed as the sum of 
the stationary, cst

l and cst
m , and the dynamic terms, cdyn

l and cdyn
m . 

In addition, ᾱ is the average value of the angle of attack of the 
oscillation and �α is the increment of angle of attack with respect 
to ᾱ. The angle of attack might be defined as a function of the 
motion variables θ and w:

α = θ − arctan

(
ẇ

V∞

)
≈ θ − ẇ

V∞
(7)

3.2. Artificial neural networks

ANN are routinely used for regression problems, easily approx-
imating any continuous function. In this work, ANN are trained 
with data from the aerodynamic simulations, leading to improve-
ments in the estimations of the aerodynamic performance of the 
plate over those of the stationary and linear aerodynamic mod-
els. The networks have been calculated by using TensorFlow with 
Keras engine. In this paper, two different models have been tested 
and compared for predicting the nonlinear aerodynamic coeffi-
cients of a flat plate: Feed Forward Networks and a Long Short 
Term Memory networks. FFN obtain the value of the coefficients 
using the input variables of the calculated time step. On the other 
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Fig. 2. Schematic architecture of the ANN.

Fig. 3. Scheme of the work flow of the aeroelastic ROM. The procedure includes training, validation and application of the ANN.
hand, LSTM networks accumulate the information of all the pre-
vious time steps [43]. Both types of networks have been tested 
with the same architecture, Fig. 2. All the studied networks use a 
multi layer perceptron with three layers: input layer, hidden layer 
and output layer. The number of neurons of the hidden layer, N1, 
is optimized in terms of computational cost and accuracy, as ex-
plained in Section 4. In addition, as the aerodynamic coefficients 
are continuous, the activation functions of the neurons must also 
be continuous.

In order to use ANN, the network must be trained using data, 
which can be obtained from different sources. In this work, a vir-
tual CFD wind tunnel has been used to generate the information 
of the training data. However, the method admits data obtained 
from different sources. The training process has been performed 
for both types of network using a RMSprop algorithm, until train-
ing and test loss function reach an asymptotic behavior or start to 
increase, to prevent from overfitting.

3.3. Computational fluid dynamics

The aerodynamic forces acting on the test case can be ob-
tained using different tools and approaches. One of these tools is 
CFD, which calculates the solution of the conservation equations 
of the fluid. Here, the simulations, which have been calculated us-
ing commercial software Simcenter STAR-CCM+®, make use of the 
Unsteady Reynolds-averaged Navier-Stokes equations [44]. A k − ω
with shear stress transport (SST) turbulence model is utilized be-
cause it has been proved to predict accurate results under adverse 
pressure gradient as the ones appearing in a flat plate ([45] and 
[46]). The k −ω SST was proposed by Wilcox [47] to solve the lim-
itations of the k − ω far from the walls, where a k − ε model is 
used. This model requires to maintain the value of the nondimen-
sional wall distance to the first layer of computational cells, y+ , in 
the viscous sublayer (y+ < 5) for the major part of the wall.

4. Methodology

Along this section the methodology for the different submodels 
and calculation is presented. First, the CFD data base construction 
is detailed: the oscillations are defined and CFD mesh and setup 
preparation is explained. Then the Artificial Neural Network model 
4

training and validation is presented. The optimum number of neu-
rons is calculated, the data set error is analyzed and the results of 
the training and test of the network are shown. Finally, the cou-
pled solver algorithm is described and the numerical models are 
described. The complete methodology of the paper is summarized 
in the diagram of Fig. 3.

4.1. CFD: data base construction

The training data set is constructed with a matrix of 324 CFD 
bidimensional forced oscillation simulations, which are selected to 
be representative of a wide range of physical conditions. In addi-
tion, the initial angle of attack and the amplitude of the movement 
is limited to the range in which vortex shedding is negligible, 
which is similar to many engineering problems, as solar panels 
in stow position [48]. Strong vortex shedding leads to important 
random oscillations of the aerodynamic coefficients, decreasing the 
accuracy of the network under interest conditions. Finally, the 
fluid-structure interaction is calculated through a strongly coupled 
algorithm, which shows stability under strong nonlinear interac-
tions [49].

The training simulations represent a forced oscillatory pitching 
motion with the formulation of equation (8):

θ = θ0 + � sin (2π f t) (8)

being θ0 the initial pitch angle, � the amplitude of the motion and 
f the frequency of the motion. The matrix of simulations contains 
the training cases shown in Fig. 4.

The simulation is performed using the commercial software 
Simcenter STAR-CCM+® over the domain of Fig. 1a. The discretiza-
tion of the domain is made with a polygonal mesh, as presented 
in Fig. 6. A coupled solver with second order upwind ROE FDS 
scheme is used for computing the advection terms ([50], [51]), 
whereas the gradients are computed with a hybrid Gauss-Least 
Squares Method with Venkatakrishnan limiter [52]. The rotation 
is established using an overset region in the near field [53]. A 
mesh of 5.1 · 104 elements has been chosen making a mesh in-
dependence process based on Richardson’s extrapolation (RE) [54]. 
A spatial discretization error lower than the 2% has been obtained 
for the major part of the aerodynamic domain. The value of the 
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Fig. 4. Training simulation data set matrix.

Fig. 5. Computation of aerodynamic lift and moment coefficient for different meshes. Comparison with RE. N is the number of elements of the mesh.

Fig. 6. Sketch of the computational mesh (not to scale) showing the different zones of refinement.
aerodynamic coefficients obtained using these methods can be ob-
served in Fig. 5. The final mesh has a size of �xglobal = 0.02 m, 
�xwake = 0.004 m in the wake, �xoverset = 0.002 m in the overset 
and �xwall = 0.0004 m. Some details of the computational mesh 
can be seen in Fig. 6.

Relative to the time discretization, a second order scheme is 
utilized. The time step is selected to keep Courant-Friedrichs-Levy 
number (C F L = �tV

�x ) below 1, as observed in Fig. 7, in order to 
obtain enough time resolution, similarly to Torregrosa et al. [42]
and Adeniyi et al. [55]. To reach the previous C F L, the simulation 
uses a nondimesional time step of tV∞ = 0.002 for the forced os-
c

5

cillations and between 7 · 10−4 and 0.0042 in the aeroelastic cases. 
In Fig. 7b, the distribution of the nondimensional wall distance y+
over the plate can be observed. Note that its value is lower than 5
in the whole wall, ensuring that the boundary layer remains in the 
viscous sublayer.

4.2. Artificial neural network: training and validation

In this section, the procedure to fit the phenomena of Sec-
tion 4.1 with a neural network is presented. The influence of the 
number of neurons is analyzed, evaluating the energetic global er-
ror of the cycles, in Section 4.2.1. In addition, the training and val-
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Fig. 7. CFL distribution and nondimensional wall distance over the plate.

Fig. 8. Power coefficient comparison between the ANNs and the CFD simulations for two representative number of neurons on the hidden layer. The cycle is shown for an 
initial incidence of 2.5 deg, an amplitude of 5 deg and a nondimensional frequency of f c

V∞ = 0.1250.
idation mean squared errors are evaluated and analyzed in order 
to define the number of epochs required for the training process. 
All the studied networks have been trained using a RMSprop al-
gorithm on 90% of the forced oscillation data. The remaining 10% 
which corresponds to arbitrary movements is used for the valida-
tion.

As stated in Section 3, the dynamic coefficient calculated by 
means of the neural networks is added to a stationary aero-
dynamic coefficient, called quasi-steady model. This quasi-steady 
model interpolates, linearly, the coefficients from the steady CFD 
results, as shown in Section 5. Therefore, the models shown in 
the section are: CFD (2D forced oscillations), quasi-steady (aerody-
namic coefficients interpolated from steady polar), FNN and LSTM 
(dynamic coefficient calculated by means of FNN and LSTM respec-
tively, added to the quasi-steady coefficient).

4.2.1. Neuron independence analysis
The number of neurons used to calculate the aerodynamic 

model states the number of weights and variables to adjust the 
ANN. Therefore, it determines the accuracy and computing cost of 
training the network [43], but also the probability of network over-
fitting. A neuron independence analysis is performed to reduce the 
number of neurons without affecting the results. This analysis is 
applied over the different configurations: FFN and LSTM. All the 
studied ANN consist of an input layer, a hidden layer with N1
neurons and an output layer with N2 = 2 neurons, as previously 
presented in Fig. 2.
6

To perform the neuron independence analysis, the energetic er-
ror of the aerodynamic cycle, εEcm , is calculated as the difference 
of power coefficients (cp = cm

θ̇c
V∞ ) integrated in time for CFD and 

ANN, as stated by Equation (9).

εEcm =
∫ t+T

t (cp AN N )dt − ∫ t+T
t (cpC F D )dt∫ t+T

t (cpC F D )dt
(9)

In Fig. 8, the power coefficient comparison between CFD and 
ANN is presented for a network of 2 and 50 neurons (Figs. 8a and 
8b respectively). In the figure, an improvement of accuracy com-
pared with the steady solution is observed.

In Fig. 9, the cycle energetic error density function is shown as 
a function of the number of neurons of the first layer for a FNN, 
Fig. 9a, and a LSTM network, Fig. 9b. Observe how for N1 = 50, the 
energetic error becomes approximately constant, being 50 neurons 
the optimal choice in terms of accuracy and computational cost.

In addition, the error of the network also depends on the num-
ber of epochs of the training process [56]. The number of training 
epochs is selected to ensure that the logarithmic validation er-
ror has either reached an asymptotic limit or started to increase. 
Fig. 10 shows how the validation mean squared error (MSE) flat-
tens for the previous number of epochs. In addition, a k-fold cross 
validation analysis [57] is performed, obtaining a mean prediction 
error of 5.34 · 10−4 for 10-folds using the FNN model.

The distribution of the error in the whole data set is shown in 
Fig. 11. This figure shows the distribution of the input variables, 
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Fig. 9. Distribution of the energy error for the different number of neurons. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 10. Evolution of the MSE as a function of the epoch of training for FNN and LSTM networks.

Fig. 11. Squared error distribution for the input variables. The plots on the diagonal show the distribution of the training variables, while the subfigures out of the diagonal 
show the squared error distribution for each pair of input variables.
7
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Fig. 12. Training and validation of the FNN neural network.
the points where the neural network has been evaluated and the 
areas with the higher error. The squared error is demonstrated to 
be low for the analysis domain, presenting the higher errors for 
the mean points of the oscillation near the stall point of the plate: 
incidence of 4.5 deg and null increment of the angle of attack.

In Figs. 12 and 13 the performance of the ANN is shown for 
training and validation data. Both typologies of networks show 
an accurate behavior in the simulation of nonlinear aerodynam-
ics compared with the quasi-steady approach. Real and predicted 
values overlap in the major part of the cycles. Although the large 
amount of data makes it difficult to visualize the training curves, 
Fig. 14 evidences similar behavior in training and testing.

In order to clarify the results shown in Figs. 12 and 13, Fig. 14
shows the linear regression between the real and the predicted 
value of the coefficient, comparing it with the ideal non-error so-
lution. A fair agreement between ANN predictions and CFD calcu-
lations can be observed in this Figure.

4.3. Aeroelastic ROM algorithm

The artificial neural network is coupled with a structural solver, 
Equations (1) and (2). The solution of the equations is integrated 
from the initial conditions using a four-step predictor-corrector al-
gorithm. The ROM algorithm is illustrated in Fig. 15.

The model starts setting the initial conditions. A fourth or-
der Runge-Kutta scheme is applied for the initialization due to 
its accurate results [58]. Finally, a four-step predictor-corrector is 
8

utilized to integrate the differential equations. For a deeper expla-
nation of the numerical methods, the reader is referred to Sec-
tions 4.3.1, 4.3.2 and 4.3.3. The aerodynamic forces are updated 
each time step, the steady coefficients are calculated by a 2D in-
terpolation function and the dynamic coefficients are obtained by 
using an artificial neural network.

4.3.1. Aeroelastic equations: state system
The aeroelastic equations are linearly solved updating the aero-

dynamic forces and moments every time step. The aeroelastic lin-
ear system can be expressed in terms of the matrix A and the 
vector �b. The vectors �xt and �̇xt represent the states of the system 
and its derivatives in the time step t respectively.

�̇xt = A�xt + �b →⎧⎪⎪⎨
⎪⎪⎩

θ̇t

ẇt

θ̈t

ẅt

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
− kθ

I2D
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(10)

4.3.2. 4th order Runge-Kutta
In the initial time steps of the calculation, the aeroelastic sys-

tem is linearly solved using Equations (11) and (12). In these equa-
tions, A is the coefficient matrix and �b the independent terms 
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Fig. 13. Training and validation of the LSTM neural network.

Fig. 14. Regression plots for the moment coefficient.
vector. The vectors �xt are the solution (pitch and plunge) of the 
problem.

�f1 = A�xt + �b �f2 = A
(
�xt + 1

2
�f1�t

)
+ �b

�f3 = A
(
�xt + 1

2
�f2�t

)
+ �b �f4 = A

(
�xt + �f3�t

)
+ �b

(11)

�xt+1 = �xt + 1 (�f1 + 2�f2 + 2�f3 + �f4

)
�t (12)
6

9

4.3.3. 4 steps predictor-corrector
Each time step, the aeroelastic system is linearly solved using a 

4 steps predictor-corrector method. This solver calculates the solu-
tion in a certain time step from the solution in the previous 4 time 
steps. Thus, it requires three steps of initialization using another 
algorithm, as 4th order Runge-Kutta. Using the same nomenclature 
than in 4.3.2, the numerical solver is presented in equations (13), 
(14) and (15).
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Fig. 15. Aeroelastic Reduced Order Model flow diagram.

Fig. 16. Stationary aerodynamic coefficients as a function of the angle of attack and the plunge of the plate.
�f = A�xt + �b (13)

�xpred = �xt + �t
24

(
55�f

(
�xt,A, �b

)
− 59�f

(
�xt−1,A, �b

)
+37�f

(
�xt−2,A, �b)

)
− 9�f

(
�xt−3,A, �b

)) (14)

�xt+1 = �xt + 1
720

(
251�f

(
�xpred,A, �b

)
+ 646�f

(
�xt,A, �b

)
−264�f

(
�xt−1,A, �b

)
+ 106�f

(
�xt−2,A, �b

)
− 19�f

(
�xt−3,A, �b

))
(15)

5. Results

5.1. CFD

The oscillating motion of the plate produces cycles which mod-
ify the value of the linear aerodynamic derivatives (Equation (16)). 
As mentioned in Section 3, the aerodynamic coefficients might be 
expressed as the sum of the stationary and the dynamic terms.

cl = cl0 + clαα + clα̇
cα̇

V∞
+ clα̈

c2α̈

V 2∞
+ ... (16)

As the section aerodynamics is nonlinear, CFD has been used 
for the calculation of the aerodynamic coefficients. In this section, 
10
the stationary coefficient interpolation curves and the forced oscil-
lation results are shown.

On one hand, in Fig. 16, the stationary coefficients are shown as 
a function of the angle of attack and the plunge. The coefficients 
exhibit a nonlinear behavior for angles of attack higher than 4 deg. 
In addition, the moment is significantly affected by the vertical 
position of the plate.

On the other hand, Fig. 17 shows the cyclic behavior of the 
aerodynamic coefficients due to the forced oscillation motion. 
Aerodynamic loops vary as a function of the initial angle of attack 
of the plate, the amplitude and the frequency of the movement. 
For low angles of attack, in the linear aerodynamic range (Figs. 17a 
and 17b), coefficient clα decreases with the frequency. In addition, 
the second derivative becomes higher, increasing the curvature of 
the loop. For post-stall conditions (Figs. 17c and 17d) the behav-
ior of the system is highly nonlinear. In these cases, the effects 
of nonlinearities tend to increase with frequency. Thus, the coeffi-
cient presents an oscillating cycle with the frequency of the vortex 
shedding. In addition, for high initial incidences of the plate, an in-
crease of the lift slope is noticed as an effect of the nonlinearities. 
The coefficient clα grows for the highest angles of attack becoming 
higher than the potential lift slope of 2π , as shown in Fig. 17c.
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Fig. 17. Aerodynamic cycles for a characteristic point of the dataset.
5.2. Aeroelastic ROM

The ROM is then tested on the equivalent rigid cross section 
of Fig. 1a. The nondimensional stiffness, k∗ , is varied in order to 
represent different working conditions: stability range, limit cycle 
oscillation (LCO) and postflutter.

The ROM shows good accuracy to predict mean values of the 
deformation, as can be observed in Fig. 18. As stated in the previ-
ous sections, the utilization of artificial neural networks improves 
in a significant way the prediction of oscillatory nonlinear aerody-
namics with respect to the steady polar, as it captures the dynamic 
effects on the flow which can damp the oscillation or prevent stall.
11
In addition, in Fig. 18 the instability zone may be identified 
as the characteristic stiffness in which there is an abrupt change 
in slope. The instability zone is represented by a shaded area. In-
side this area the motion of the plate is amplified with time. The 
prediction of LCO and instabilities are also accurate with the use 
artificial neural networks. To evaluate the LCO prediction and the 
limitations of the ROM transient results, the amplitude and fre-
quency of the predicted motion are analyzed.

Fig. 19 shows the amplitude of the simulated motion. Both FNN 
and LSTM show a fair similitude with the CFD simulation, while 
quasi-steady aerodynamics tend to overpredict the value of defor-
mation for higher values of k∗ . The stall flutter may be identified 
as the point where amplitude abruptly increases. The instability 
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Fig. 18. Comparison of the mean deformation of the ROM and CFD simulation for the different aerodynamic models.

Fig. 19. Comparison of the amplitude of the motion of the ROM and CFD simulation using different aerodynamic models.

Fig. 20. Time cycles of torsion and plunge for a nondimesional stiffness of k∗ = 8.5.
appears when the nondimensional stiffness decreases to the flut-
ter value k∗

f , in other words, when the free velocity reaches the 
flutter velocity V f .

However, although both typologies of neural networks show 
similar behaviors, slightly different results might be observed in 
the amplitude of the motion. FNN is more sensitive to the changes 
of stiffness. Therefore, before the stall flutter, the amplitude starts 
to increase. However, LSTM increases the aerodynamic damping. 
The motion is totally damped and only grows when it reaches 
the stall flutter condition. CFD aeroelastic simulation presents an 
12
intermediate situation. The motion starts to increase the ampli-
tude in the same conditions than the FNN. Nevertheless, it is con-
strained to low values, near to the damped aerodynamics, similarly 
to the LSTM (Fig. 20). In addition, when the stall flutter is reached, 
the CFD simulations increase the amplitude faster than the ANNs, 
Fig. 21.

Figs. 20 and 21 show the time evolution of the previous model 
for two different working conditions. In these figures, small differ-
ences in the frequency of the oscillation may be observed. The fre-
quency of the motion is also analyzed in Fig. 22, observing an error 
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Fig. 21. Time cycles of torsion and plunge for a nondimesional stiffness of k∗ = 6.5.

Fig. 22. Comparison of the frequency of the motion of the ROM and CFD simulation for the different aerodynamic models.
lower than 5% for the twist frequency. Differences in frequency are 
slightly more noticeable when analyzing plunge non-dimensional 
frequency, where they are of approximately 10% for nondimen-
sional stiffness far from the aeroelastic instability. However, as it 
was observed at Figs. 18 and 19, the influence of this frequency is 
of second order when estimating nonlinear aeroelastic instabilities.

Finally, it is important to compare computational cost of the 
different models performed during this work. Note that all the 
simulations were performed on an Intel® Xeon® CPU ES-2630 v2, 
using 5 parallel processes. As an example, the average time for 
computing each simulation was of 10 hours for the CFD compu-
tations, and between 3 and 5 minutes for FNN and LSTM, respec-
tively.

6. Conclusions

In this article, a Reduce Order Model (ROM), with a surrogate 
aerodynamic model based on Artificial Neural Networks (ANN), is 
developed for calculating an aeroelastic equivalent cross section. 
The main objective pursued is to test the accuracy of the ROM in 
the prediction of dynamic instabilities, as stall flutter, in nonlinear 
aerodynamic problems.

A flat plate is chosen as the studied geometry due to its nonlin-
ear behavior. The aerodynamic coefficients of the plate are proved 
to vary with respect to the initial angle of attack, the amplitude 
and the frequency of the motion. In order to reproduce the differ-
ent aerodynamic conditions that may appear around the plate, a 
set of CFD simulations have been calculated as the training dataset 
of the network. Nevertheless, the methodology and the test case 
13
are prepared to be capable of using wind tunnel data. The ANN 
have been trained to reduce both training and validation errors and 
have been proved to be independent of the number of neurons. 
Two different typologies of network (FNN and LSTM), which are 
utilized for similar problems in the literature, are tested to com-
pare the deformation obtained and the accuracy of the ROM.

The networks have been tested for different conditions, show-
ing high accuracy to reproduce the aerodynamic coefficients of the 
cross section given its motion as input. Although there is a gain 
of accuracy comparing with the nonlinear steady polar, some ef-
fects are lost with the use of the surrogate model. For instance, 
the variations of the aerodynamic coefficients due to the fluctua-
tions of the wake are not reproduced by the model. In addition, the 
ANNs tend to reproduce a sinusoidal oscillation of the coefficients, 
losing other effects as vortex shedding, which limits the range of 
application of the artificial neural networks. Thus, the procedure 
works for nonlinear aerodynamics, in a certain range of application 
in which the oscillations due to turbulence are small or negligible. 
For an oscillating plate, it may be applied for low angles of attack 
(approximately between −6 and 6 deg), low amplitudes of the os-
cillation (between 0 and 5 deg) and low or moderate frequencies 
(approximately a maximum of f c

V∞ = 0.3). For higher frequencies 
the vortex shedding generated becomes more important and can 
reduce in a significant way the accuracy of the network.

The validation of the ANN shows that there is not a significant 
difference between the feed-forward neural network and the long 
short term memory network. The previous fact, added to the eas-
ier definition and training of the feed forward neurons, make this 
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typology more efficient to obtain the aerodynamic coefficients of a 
plate under low or moderate angles of attack.

Finally the ANNs have been coupled to a simplified structural 
solver. The results show an accurate prediction of the mean defor-
mation in both torsion and plunge. The instability is also predicted 
accurately from the mean deformation curve as the point in which 
the slope of the curve increases abruptly. The time solutions have 
also been compared observing differences of behavior between the 
types of aerodynamic models. Quasi-steady aerodynamics shows 
a lack of accuracy when predicting a dynamic phenomenon. Both 
ANNs present similar results. However, the LSTM solution tends 
to damp the oscillation more than the CFD while FNN increases 
the amplitude and predicts the instability for a slightly lower free 
stream velocities.

As a summary, the previous facts lead to the following main 
conclusions:

• The aerodynamic loads in a dynamic problem are strongly con-
ditioned by the mean angle of attack, the amplitude and the 
frequency of the oscillation. Thus, the stationary polar cannot 
be used to obtain accurate solutions.

• The utilization of artificial neural networks (ANN) may reduce 
both the time of simulation (compared with CFD simulations) 
and the error (compared with linear or steady models) in 
aeroelastic nonlinear problems.

• Different typologies of neural networks can be applied with 
similar results. However, recursive structures, for instance 
LSTM networks with the previous dataset and activation func-
tions tend to damp the oscillation. On the other hand, FNN 
are faster and reduce the calculation cost, but they can be too 
conservative in the prediction of the aeroelastic instability.

Finally, this work completes the research developed in the lit-
erature, showing the applicability of the ANN to the aeroelastic 
problem, comparing different types of ANN and coupling the aero-
dynamics with the structure of the section. This procedure has 
been demonstrated to reduce in a significant way the computa-
tional cost and to preserve the accuracy of the solution for arbi-
trary sections and nonlinear aerodynamics.
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