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Abstract
In this study, our aim is to explore the dynamics of COVID-19 or 2019-nCOV in
Argentina considering the parameter values based on the real data of this virus from
March 03, 2020 toMarch 29, 2021 which is a data range of more than one complete
year. We propose a Atangana–Baleanu type fractional-order model and simulate it by
using predictor–corrector (P-C) method. First we introduce the biological nature of
this virus in theoretical way and then formulate a mathematical model to define its
dynamics. We use a well-known effective optimization scheme based on the
renowned trust-region-reflective (TRR) method to perform the model calibration. We
have plotted the real cases of COVID-19 and compared our integer-order model with
the simulated data along with the calculation of basic reproductive number.
Concerning fractional-order simulations, first we prove the existence and uniqueness
of solution and then write the solution along with the stability of the given P-C
method. A number of graphs at various fractional-order values are simulated to
predict the future dynamics of the virus in Argentina which is the main contribution
of this paper.
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1 Introduction
The coronavirus disease 2019 (COVID-19) is considered as the most dangerous epidemic
disease of this decade, which appeared for the first time in Wuhan (China) in the last
month of 2019. It has been observed that coronavirus disease 2019 (COVID-19) is a vital
health concern as it can be fatal specially in old-aged people. SARS-CoV-2 virus causes
COVID-19 disease. Researchers and medical practitioners have much information about
the death due to the clinical disease but they do not know much about its pathobiology.
It has been seen that the characteristics of cellular responses to COVID-19 are not clearly
known and understood, but based on the previous studies on SARS-CoV, a predictable
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sequence of events can be hypothesized. According to the cells that SARS-CoV infects,
COVID-19 can be separated into three periods that coincide with the clinical parts of the
disease [1].

The structure of SARS-CoV-2 needs to be understood. It has been found that SARS-
CoV-2 is part of the family of beta-coronavirus, some of which caused two other epidemics
named as MERS-CoV and SARS-CoV as can be found in Ref. [2]. In [3] Hui et al. ana-
lyzed the structure of such coronaviruses. According to the World Health Organisation
(WHO), the rate of death due to SARS-CoV-2 is lower than the one due to SARS-CoV
though the rate of transmission is higher in the case of SARS-CoV-2 than SARS-CoV. The
RNA structure of different coronaviruses has been stated in [4]. It has been observed that
SARS-CoV-2 has distinctive spike proteins and presents a specific peptide, namely PrrA,
which allows one to divide the spike protein using cellular protease enzymes in order to
disseminate the virus from the cell of the host easily [5, 6]. So, the rate of transmission of
SARS CoV-2 is much higher and this is the prime cause of its spreading throughout the
globe in a very short period of time.

It has been observed that as soon as SARS-CoV-2 makes its entrance into the epithelial
cell of alveoli of the respiratory tract of human being, the virus activates the immune re-
sponse of human being due to the fast multiplication rate of SARS-CoV-2 cells. After that,
the pulmonary tissue from the respiratory tract of human being is damaged causing the
stimulation of more and more white blood cells. This process is known as the cytokine
release syndrome [7], which can cause a multiple organ failure [8].

There are a number of stages included in the infection of COVID-19. The initial stage is
asymptomatic and covers 1 to 2 days after getting infected. It has been noticed that after
inhaling the virus it attaches to epithelial cells from the nasal cavity of human being and
the virus starts the process of replication [9]. In this initial stage, infected people are able to
spread the infection. During the second stage the virus is able to spread and move quickly
down to the respiratory tract along with the conducting passage of air [10]. It has been
observed that for 80% of the infected individuals the COVID-19 illness will be lenient and
it is restricted to upper as well as conducting passages of air. The third stage of the disease
involves hypoxia and ground glass infiltrates along with the growth of acute respiratory
distress syndrome (ARDS). It has been seen that 20% of the infected individuals will move
to third stage of the disease and they will develop pulmonary invasions which will lead to
severe disease. From the initial estimation the rate of severity is about 2% but it varies
with age [1]. In this stage SARS-Cov-2 virus is able to reach the units of the lung which
are responsible for exchange of gas and infect the type II cells of alveoli. SARS-CoV is
able to spread within type II cells and huge viral particles are liberated [11]. Old-aged
people are at high risk since they have a low immune response, which can lead to severe
consequences [12].

Mathematical models are the best way to describe the dynamics of the disease. Many
mathematical models have been provided to illustrate the behavior of COVID-19 by us-
ing integer- and fractional-order derivatives [13–18]. A fractional-order COVID-19 model
with delay has been proposed in [19]. Atangana et al. in [20] have discussed a mathe-
matical model of COVID-19 with deterministic and stochastic approaches. The authors
in [21–23] have also simulated the dynamics of 2019-nCOV by using effective mathe-
matical models. A study of a fractional-order model of HIV is given in [24]. The au-
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thors in [25] proposed a research on the dynamics of a population model. In [26], a
COVID-19 model along with necessary awareness programs has been explored. The roles
of isolation and quarantine measures for COVID-19 outbreaks are given in [27]. The au-
thors in [28] have solved a model of huanglongbing transmission with an effective nu-
merical algorithm. A psychological model in fractional-order sense has been introduced
in [29]. Kumar et al. in [30] have described a time-delay fractional-order mathemati-
cal model of oncolytic virotherapy. Many other epidemics have been described by using
fractional mathematical models [31, 32]. Recently, the authors in [33] studied the struc-
ture of rabies, and canine distemper virus epidemics by using generalised Caputo non-
classical derivative. Two fractional-order mathematical models for describing mosaic dis-
ease have been given in [34]. A environmental study in the fractional-order sense is given
in [35].

This paper is formulated to trace the dynamics of COVID-19 cases in Argentina by using
Atangana–Baleanu type fractional mathematical model. The study is organized as follows:
In Sect. 2, we describe the integer-order model dynamics. In Sect. 3, we plot the real-data
cases of COVID-19 in Argentina and calculate the parameter values for our simulations.
Section 4 is organized in a number of sub-sections where we simulate the fractional-order
model and perform all theoretical and graphical simulations. Finally in Sect. 5, we present
our conclusions about the study.

2 Model description

In this paper, we consider a compartmental mathematical model [36]. Natural births and
death rates have not been considered in the model as those have no impact on the short-
term outbreaks of COVID-19. The mentioned model focuses on two distinct groups of
susceptible individuals: susceptible individuals given by S(t) and confined individuals who
follow lockdown or confinement intervention partially as the confinement is not perfect.
We symbolize the class of confined individuals as C(t). The rest of the population is com-
partmentalized as follows: exposed individuals E(t) at time t, asymptomatic (having no
clinical symptoms or mild symptoms) individuals A(t), quarantined symptomatic infec-
tious individuals Q(t), hospitalized or isolated individuals H(t) and recovered individuals
R(t).

In the given model, p is the transmission rate from confined susceptible humans to re-
joined unconfined susceptible humans, qγ is the exposure rate of the asymptomatic hu-
mans, r4σ2 is the progression rate from severely infected to hospitalization and quarantine
rate is given by (1–q)γ . r1σ1 denotes the transmission rate of the asymptomatic humans to
become severely infectious. r2σ1 shows the transmission rate of confinement or hospital-
ization to isolation of the asymptomatic group. The natural recovery of soft symptomatic
humans is represented by the rate (1 – r1 – r2)σ1, whereas (1 – r3 – r4)σ2 is the recovery
rate for Q classes. In the model, δh, δq, and δa are stood for the COVID-19 death rates in
the given model classes, respectively. The structure of the non-linear model based on the
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given parameters explanation is provided as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt (t) = pC(t) – cS(t) – [ β(A(t)+ηQ(t))

N(t) ]S(t),
dC
dt (t) = cS(t) – pC(t) – (1 – ε)[ β(A(t)+ηQ(t))

N(t) ]C(t),
dE
dt (t) = [ β(A(t)+ηQ(t))

N(t) ][S(t) + (1 – ε)C(t)] – γ E(t),
dA
dt (t) = qγ E(t) + r3σ2Q(t) – (σ1 + δa)A(t),
dQ
dt (t) = (1 – q)γ E(t) + r1σ1A(t) – (σ2 + δq)Q(t),
dH
dt (t) = r2σ1A(t) + r4σ2Q(t) – (σ3 + δh)H(t),
dR
dt (t) = (1 – r1 – r2)σ1A(t) + (1 – r3 – r4)σ2Q(t) + σ3H(t).

(1)

The parameters are given in Table 1 and the model structure is provided in Fig. 1. A brief
discussion on the model characteristics like boundedness and positivity of solutions is
given in reference [36]. The authors in [36] calculated the greatest disease-free equilibrium
point, which is defined by

x0 = (S0, C0, 0, 0, 0, 0, 0)′ =
(

pN0

p + c
,

cN0

p + c
, 0, 0, 0, 0, 0

)′
.

Table 1 Model parameters and their description

Parameter Description

β Contact rate
η Relative transmissibility of quarantined infected carrier
p Rate of transition from C(t) to S(t)
c Confinement rate
ε Confinement efficacy
γ Rate of transition from E(t) to Q(t)
q Rate of exposed individuals becoming quarantined
σ1 Rate of transition from A(t) to Q(t)
σ2 Transition rate from Q(t) to A(t)
σ3 Rate of transition from hospitalized to recovered group
r1 Fraction of A(t) becoming quarantined humans
r2 Rate of unquarantined infected humans going to be hospitalized
r3 Rate of quarantined infected humans moving to unquarantined infected humans
r4 Rate of quarantined infected humans going to be hospitalized
δa Rate of 2019-nCOV deaths in unquarantined infected humans
δq Rate of 2019-nCOV deaths in quarantined infected humans
δh Rate of 2019-nCOV deaths in hospitalized

Figure 1 Model frame
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Using the procedure given in [37], the matrices F and V for calculating the basic repro-
ductive number are given by

F =

⎛

⎜
⎝

0 β
S0+(1–ε)C0

N0
ηβ

S0+(1–ε)C0
N0

0 0 0
0 0 0

⎞

⎟
⎠ ,

V =

⎛

⎜
⎝

γ 0 0
–qγ (σ1 + δa) –r3σ2

–(1 – q)γ –r1σ1 (σ2 + δq)

⎞

⎟
⎠ .

(2)

As a consequence, they obtained the basic reproductive number as the spectral-radius of
the generation matrix, FV –1:

Rc = ρ
(
FV –1)

= β
S0 + (1 – ε)C0

N0

(r1σ1η + (σ2 + δq))q + ((σ1 + δa)η + σ2r3)(1 – q)
(σ1 + δa)(σ2 + δq) – r1r3σ1σ2

. (3)

Here ρ(·) denotes the spectral-radius operator.

Lemma 1 If Rc < 1, the epidemic-free equilibrium x0 is locally asymptotically stable and
unstable if Rc > 1.

Proof First, we observe that the last two equations of (1) are not coupled to the rest of
equations of the model. As the total population size, N0, is constant, we get S + C = N0 –
(E + A + Q + H + R). Then the local stability of the given system (1) can be analyzed via
remaining model of variables (E, A, Q). As a consequence, we establish that the Jacobian
matrix related to these variables is written by

J =

⎛

⎜
⎝

–γ β
(S0+(1–ε)C0)

N0
βη

(S0+(1–ε)C0)
N0

qγ –(σ1 + δa) r3σ2

(1 – q)γ r1σ1 –(σ2 + δq)

⎞

⎟
⎠ .

The roots of the next characteristic polynomial correspond to the eigenvalues of J :

PJ (x) = x3 + a2x2 + a1x + a0,

where

a2 = γ + k2 + k1,

a2 = (k1k2 – σ1σ2r1r3)

×
[

N0k2 + N0k1

N0(k1k2 – σ1σ2r1r3)
γ + 1 – γ

(η(1 – q) + q)
q(k2 + r1σ1η) + (1 – q)(ηk1 + r3σ2)

Rc

]

and a0 = γ (k1k2 – r1r3σ1σ2)(1 – Rc). Note that a2 is always positive. a0 and a1 are positive
as long as Rc < 1. Therefore, all eigenvalues of J have negative real parts. Consequently,
the epidemic-free equilibrium x0, is locally asymptotically stable if Rc < 1. �
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Excluding confinement measures, i.e. if ε = 0, Rc is convergent to the basic reproductive
number, R0, written by

R0 = β
(r1σ1η + (σ2 + δq))q + ((σ1 + δa)η + σ2r3)(1 – q)

(σ1 + δa)(σ2 + δq) – r1r3σ1σ2
. (4)

Using (3), it follows that

Rc = R0

(
S0 + (1 – ε)C0

N0

)

= R0

(
p + (1 – ε)c

p + c

)

. (5)

3 Model calibration and forecasting
A recently proposed optimization scheme, which is an evolution of Levenberg–Marquardt
one [36, 38] and depends on trust-region-reflective (TRR) scheme, is employed to perform
the model (1) calibration. This robust optimization method can be applied for simulating
non-linear least-squares problems. The implementation of the scheme is done with the
help of lsqcurvefit function, which is included in Optimization Toolbox from MATLAB.
Possible parameter values are calculated by this function. The real data of daily collected
cases in Argentina are collected from the trusted data website which can be verified in
[39]. We used 7-day running average of the given reported COVID-19 cases analyzed in
the calibration of model because of changeable structure of real data as can be seen in
Fig. 2. The daily testing in Argentina is really inconsistent as in all nations. By the early
updates, the total population size of Argentina is around 45,481,402 [39]. As initial pop-
ulation amount, we get S(0) = 45,481,396, C(0) = 0, E(0) = 0, A(0) = 0, H(0) = 0, R(0) = 0
and Q(0) = 1. The numerical solutions are achieved solving the following optimization

Figure 2 Output of the model performance fitting for daily cases of infection in Argentina from March 03,
2020 to March 29, 2021
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Table 2 Model parameters calibration by using the mentioned scheme

Parameters Probable range Base value TRR output Reference

β 0.5–1.5 0.5 1.2757 Fitted
σ1 0.001–0.1 0.03 0.01 Fitted
σ2 0.1–0.9 0.3 0.3488 Fitted
σ3 0.1–0.9 0.3 0.6917 Fitted
r1 0.1–0.9 0.5 0.302 Estimated
r2 0.1–0.9 0.5 0.302 Estimated
r3 0.1–0.9 0.5 0.2227 Estimated
r4 0.1–0.9 0.5 0.3172 Estimated
δa 0.001–0.1 0.01 0.1 Fitted
δq 0.001–0.1 0.01 0.09 Fitted
δh 0.001–0.1 0.01 0.0998 Fitted
p 0.0005–0.1 0.05 0.00051 Estimated
η 0.4–0.6 0.5 0.5077 Fitted
c 0.001–0.1 0.005 0.0155 Estimated
γ 1/14–1/3 1/5.1 0.1673 Fitted
ε 0.1–0.99 0.7 0.8417 Estimated
q 0.001–0.5 0.2 0.1181 Estimated

Figure 3 Output of the model performance fitting for cumulative cases of infection in Argentina from March
03, 2020 to March 29, 2021

equation:

min
ψ

∥
∥
(
NPCpredict(t), NRCpredict(t)

)
– (NPCdata, NRCdata)

∥
∥, (6)

where ψ = {β ,σ1,σ2,σ3, r1, r2, r3, r4, δa, δq, δh,η, p, c, ε,γ , q} is shown in Table 2.
In Figs. 2 and 3 it is shown that our model fits really well to the given real data of Ar-

gentina. The estimated value of the basic reproductive number R0 is about ∼1.41 (95%
CI: 1.2–1.6) as of March 10, 2021. This value could change (increase or decrease) in future
cause of the new wave of Covid-19 which will totally depend on our health care measures.
The disease could fade out at the end of December 2021. All necessary parameter values
aspects applied to justify this scenario are mentioned in Table 2. In Fig. 4 the new daily
and reported cases projected in Argentina from March 2020 to late May 2021 are given.
In Fig. 5 cumulative infected cases and projected in the same dates are provided.
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Figure 4 New daily reported cases projected and calibrated for Argentina from early March 2020 to late May
2021

Figure 5 Cumulative infected cases fitted and projected for Argentina from early March to 2020 late May
2021

4 Atangana–Baleanu fractional-order model
From the above integer-order simulations, we can see that the given model is working good
to project real data for future. However, the integer-order model is not giving us much
varieties in our predictions. In such cases, fractional-order derivatives always provide us
a chance to obtain better predictions under the given real-data range. Motivated by this
fact, we replace the above classical model into Atangana–Baleanu type fractional-order
model which is defined under the Mittag-Leffler kernel.

4.1 Preliminaries
Some important definitions are recalled here.
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Definition 1 ([40]) Given S ∈H1(u, v), where v > u and 0 ≤ Φ ≤ 1, the non-classical type
Atangana–Baleanu (AB) derivative is stated as

ABC
u DΦ

t
(
S(t)

)
=

ABC[Φ]
1 – Φ

∫ t

u
S ′(η)EΦ

[

Φ
(t – η)Φ

Φ – 1

]

dη, (7)

where ABC[Φ] verifying ABC[0] = ABC[1] = 1 designates the normalization function and
EΦ (·) is the Mittag-Leffler function with one-parameter.

Definition 2 ([40]) The non-classical type AB integral for normalization function
ABC[Φ] is set as

ABC
u IΦ

t
(
S(t)

)
=

1 – Φ

ABC[Φ]
S(t) +

Φ

�(Φ)ABC[Φ]

∫ t

u
S(η)(t – η)Φ–1 dη. (8)

Lemma 2 ([40]) The solution of the given system for 0 < Φ < 1

ABCDΦ
0 x(t) = z(t), t ∈ [0, T],

x(0) = x0,

is stated as

x(t) = x0 +
(1 – Φ)

ABC(Φ)
z(t) +

Φ

ABC(Φ)�(r)

∫ t

0
(t – ω)Φ–1z(ω) dω.

Lemma 3 ([41]) If 0 < Φ < 1 and a1 is a non-negative integer, then there exist constants
CΦ ,1 > 0 and CΦ ,2 > 0 only dependent on Φ , such that

(a1 + 1)Φ – aΦ
1 ≤ CΦ ,1(a1 + 1)Φ–1

and

(a1 + 2)Φ+1 – 2(a1 + 1)Φ+1 + aΦ+1
1 ≤ CΦ ,2(a1 + 1)Φ–1.

Lemma 4 ([41]) Let us suppose νp,n = (n – p)Φ–1 (p = 1, 2, . . . , n – 1) and νp,n = 0 for p ≥ n,
Φ , M, h, T > 0, a1h ≤ T and a1 is a positive integer. Let

∑p=n
p=a1

νp,n|ep| = 0 for k > n ≥ 1. If

|en| ≤ MhΦ

n–1∑

p=1

νp,n|ep| + |η0|, n = 1, 2, . . . , a1,

then

|ea1 | ≤ C|η0|, a1 = 1, 2, . . . ,

where C is a positive constant independent of a1 and h.
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4.2 Unique solution existence for fractional-order model
Let consider the Banach space Z = X × X × X × X × X × X × X, where X = C[0, T]
endowed with the norm-function ‖A‖ = ‖(S, C, E, A, Q, H , R)‖ = maxt∈[0,T][|S(t) + |C(t)| +
|E(t)| + |A(t)| + |Q(t)| + |H(t)| + |R(t)|].

Theorem 1 ([42]) Consider B to be a convex subset of Z and let F, G depict couple operators
satisfying

1. Fu + Gu ∈ B ∀u ∈ B;
2. F is a contraction;
3. G is compact and continuous.

Then Fu + Gu = u possesses at least one solution.”

Now the generalization of the classical model (1) in the Atangana–Baleanu fractional
derivative sense reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABCDΦ
t S(t) = pC(t) – cS(t) – [ β(A(t)+ηQ(t))

N(t) ]S(t),
ABCDΦ

t C(t) = cS(t) – pC(t) – (1 – ε)[ β(A(t)+ηQ(t))
N(t) ]C(t),

ABCDΦ
t E(t) = [ β(A(t)+ηQ(t))

N(t) ][S(t) + (1 – ε)C(t)] – γ E(t),
ABCDΦ

t A(t) = qγ E(t) + r3σ2Q(t) – (σ1 + δa)A(t),
ABCDΦ

t Q(t) = (1 – q)γ E(t) + r1σ1A(t) – (σ2 + δq)Q(t),
ABCDΦ

t H(t) = r2σ1A(t) + r4σ2Q(t) – (σ3 + δh)H(t),
ABCDΦ

t R(t) = (1 – r1 – r2)σ1A(t) + (1 – r3 – r4)σ2Q(t) + σ3H(t),

(9)

where ABCDΦ
t is the Atangana–Baleanu operator of fractional order Φ . Now we rewrite

the right-hand side of model (9) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, S, . . . , R) = pC(t) – cS(t) – [ β(A(t)+ηQ(t))
N(t) ]S(t),

f2(t, S, . . . , R) = cS(t) – pC(t) – (1 – ε)[ β(A(t)+ηQ(t))
N(t) ]C(t),

f3(t, S, . . . , R) = [ β(A(t)+ηQ(t))
N(t) ][S(t) + (1 – ε)C(t)] – γ E(t),

f4(t, S, . . . , R) = qγ E(t) + r3σ2Q(t) – (σ1 + δa)A(t),

f5(t, S, . . . , R) = (1 – q)γ E(t) + r1σ1A(t) – (σ2 + δq)Q(t),

f6(t, S, . . . , R) = r2σ1A(t) + r4σ2Q(t) – (σ3 + δh)H(t),

f7(t, S, . . . , R) = (1 – r1 – r2)σ1A(t) + (1 – r3 – r4)σ2Q(t) + σ3H(t).

(10)

By using (10), we have

ABCDΦ
t A(t) = �

(
t,A(t)

)
, t ∈ [0, τ ], 0 < Φ ≤ 1,

A(0) = A0. (11)

According to Lemma 2, (11) yields

A(t) = A0(t) +
[
�

(
t,A(t)

)
– �0(t)

] (1 – Φ)
ABC(Φ)

+
Φ

�(Φ)ABC(Φ)

∫ t

0
(t – ω)Φ–1�

(
ω,A(ω)

)
dω, (12)
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where

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t),

C(t),

E(t),

A(t),

Q(t),

H(t),

R(t),

A0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0,

C0,

E0,

A0,

Q0,

H0,

R0,

�
(
t,A(t)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, S, . . . , R),

f2(t, S, . . . , R),

f3(t, S, . . . , R),

f4(t, S, . . . , R),

f5(t, S, . . . , R),

f6(t, S, . . . , R),

f7(t, S, . . . , R),

�0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(0, S0, . . . , R0),

f2(0, S0, . . . , R0),

f3(0, S0, . . . , R0),

f4(0, S0, . . . , R0),

f5(0, S0, . . . , R0),

f6(0, S0, . . . , R0),

f7(0, S0, . . . , R0).

(13)

Applying (12) and (13), the two operators F, G are defined as

F(A) = A0(t) +
[
�

(
t,A(t)

)
– �0(t)

] (1 – Φ)
ABC(Φ)

,

G(A) =
Φ

�(Φ)ABC(Φ)

∫ t

0
(t – ω)θ–1�

(
ω,A(ω)

)
dω. (14)

We now state some basic axioms and the Lipschitzian hypothesis for showing the existence
and uniqueness of a solution:

(H1) There are C�, D� > 0 such that

∣
∣�

(
t,A(t)

)∣
∣ ≤ C�|A| + D�.

(H2) There is L� > 0 such that ∀A, Ā ∈ Z and it follows that

∣
∣�(t,A) – �(t, Ā)

∣
∣ ≤ L�

[|A – Ā|].

Theorem 2 Under the hypotheses (H1), (H2), Eq. (12) possesses at least one solution,
which implies that fractional model (9) possesses an equal number of solutions only if

(1–Φ)
ABC(Φ) L� < 1.

Proof The proof is given in two parts.
Step I: Consider Ā ∈ B, where B = {A ∈ Z : ‖A‖ ≤ ρ,ρ > 0} is closed and convex. The

operator F provided in (14) gives

∥
∥F(A) – F(Ā)

∥
∥ =

(1 – Φ)
ABC(Φ)

max
t∈[0,τ ]

∣
∣�

(
t,A(t)

)
– �

(
t, Ā(t)

)∣
∣,
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≤ (1 – Φ)
ABC(Φ)

L�‖A – Ā‖. (15)

Thus, F is a contraction.
Step-II: We want G to be relatively compact. Clearly, it is sufficient if G is equicontinuous

and bounded. Indeed, G is continuous as � is continuous and for all A ∈ B, one has

∥
∥G(A)

∥
∥ = max

t∈[0,τ ]
‖ Φ

�(Φ)ABC(Φ)

∫ t

0
(t – ω)Φ–1�

(
ω,A(ω)

)
dω|,

≤ Φ

�(Φ)ABC(Φ)

∫ τ

0
(τ – ω)Φ–1∣∣�

(
ω,A(ω)

)∣
∣dω,

≤ τΦ

ABC(Φ)�(Φ)
[C�ρ + D�]. (16)

Hence (16) shows the boundedness of G. For equicontinuity we assume t1 > t2 ∈ [0, τ ], so
that

∣
∣G(A(t1) – G(A(t1)

∣
∣

=
Φ

ABC(Φ)�(Φ)

∣
∣
∣
∣

∫ t1

0
(t1 – ω)Φ–1�

(
ω,A(ω)

)
dω –

∫ t1

0
(t1 – ω)Φ–1�

(
ω,A(ω)

)
dω

∣
∣
∣
∣,

≤ [C�ρ + D�]
ABC(Φ)�(Φ)

[
tΦ
1 – tΦ

2
]
. (17)

The right-hand side in (17) goes to zero as t1 → t2 and then

∣
∣G(A(t1) – G(A(t1)

∣
∣ → 0, as t1 → t2

since G is continuous. Because of the boundedness and continuity of G, then G is uni-
formly continuous and bounded. According to the Arzelá–Ascoli theorem, G is thus rela-
tively compact and therefore entirely continuous. Consequently, the integral equation (12)
and also the method have at least one solution. �

We now proceed to show the uniqueness of the solution.

Theorem 3 Assuming (H2), Eq. (12) has a unique solution and this implies that model (9)
has a unique solution only if [ (1–Φ)L�

ABC(Φ) + τΦ L�

ABC(Φ)�(Φ) ] < 1.

Proof Consider T : Z → Z defined as

TA(t) = A0(t) +
[
�

(
t,A(t)

)
– �0(t)

] (1 – Φ)
ABC(Φ)

+
Φ

ABC(Φ)�(Φ)

∫ t

0
(t – ω)Φ–1�

(
ω,A(ω)

)
dω, t ∈ [0, τ ]. (18)

Given A, Ā ∈ Z, then one can take

‖TA – TĀ‖ ≤ (1 – Φ)
ABC(Φ)

max
t∈[0,τ ]

∣
∣�

(
t,A(t)

)
– �

(
t, Ā(t)

)∣
∣,
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+
Φ

�(Φ)ABC(Φ)

× max
t∈[0,τ ]

∣
∣
∣
∣

∫ t

0
(t – ω)Φ–1�

(
ω,A(ω)

)
dω –

∫ t

0
(t – ω)Φ–1�

(
ω, Ā(ω)

)
dω

∣
∣
∣
∣,

≤ �‖A – Ā‖, (19)

where

� =
[

(1 – Φ)L�

ABC(Φ)
+

τΦL�

�(Φ)ABC(Φ)

]

. (20)

Thus, T is a contraction. Therefore, Eq. (12) possesses a unique solution and so does model
(9). �

4.3 Derivation of solution
To date, number of numerical approximation algorithms have been proposed to solve the
various kind of models describing the real world problems. When we apply such algo-
rithms the analysis of convergence and stability are two important aspects of the effec-
tiveness of the method. For solving our model, we are going to use predictor–corrector
method, which has been defined probably for all fractional-order operators. Here we im-
plement this algorithm in the sense of Atangana–Baleanu operator for writing the solu-
tion of the proposed COVID-19 model. For more information about this technique see
Ref. [43]. We first recall Eq. (11) and consider

ABCDΦ
t A(t) = �

(
t,A(t)

)
, t ∈ [0, τ ], 0 < Φ ≤ 1,

A(0) = A0. (21)

The fractional Volterra integral equation is stated as

Ai+1 = A0 + (1 – Φ)�(ti+1,Ai+1) +
Φ

�(Φ)

∫ ti+1

0
(ti+1 – s)Φ–1�

(
s,A(s)

)
ds. (22)

According to the method proposed in [43] for Φ ∈ [0, 1], 0 ≤ t ≤ T and considering h =
T/N and tn = nh, for n = 0, 1, 2, . . . , N ∈ Z

+, the corrector formula for the given system is

Ai+1 = A0 +
Φhζ

�(Φ + 2)

(

ai+1,i+1�
(
ti+1,AP

i+1
)

+
i∑

j=0

ai+1,j�(tj,Aj)

)

, (23)

where

ai+1,j =

⎧
⎪⎪⎨

⎪⎪⎩

iΦ+1 – (i – Φ)(i + 1)Φ if j = 0,

(i – j + 2)Φ+1 + (i – j)Φ+1 – 2(i – j + 1)Φ+1 if 1 ≤ j ≤ i,

1, j = i + 1,

(24)

and

ai+1,i+1 = 1 +
(1 – Φ)�(Φ + 2)

ΦhΦ
.
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The predictor formula is attained as

AP
i+1 = A0 +

hΦ

�(Φ)

i∑

j=0

bi+1,j�(tj,Aj), (25)

where

bi+1,j =

⎧
⎨

⎩

–(i – j)Φ + (i – j + 1)Φ , j = 0, . . . , i – 1,

1 + (1–Φ)�(Φ)
hΦ , j = i.

(26)

Hence the corrector formulas for the given model (9) are stated as

Si+1 = S0 +
ΦhΦ

�(Φ + 2)

(

(ai+1,i+1)f1
(
ti+1, SP

i+1, CP
i+1, EP

i+1, AP
i+1, QP

i+1, HP
i+1, RP

i+1
)

+
i∑

j=0

(ai+1,j)f1(ti, Sj, Cj, Ej, Aj, Qj, Hj, Rj)

)

,

Ci+1 = C0 +
ΦhΦ

�(Φ + 2)

(

(ai+1,i+1)f2
(
ti+1, SP

i+1, CP
i+1, EP

i+1, AP
i+1, QP

i+1, HP
i+1, RP

i+1
)

+
i∑

j=0

(ai+1,j)f2(ti, Sj, Cj, Ej, Aj, Qj, Hj, Rj)

)

,

Ei+1 = E0 +
ΦhΦ

�(Φ + 2)

(

(ai+1,i+1)f3
(
ti+1, SP

i+1, CP
i+1, EP

i+1, AP
i+1, QP

i+1, HP
i+1, RP

i+1
)

+
i∑

j=0

(ai+1,j)f3(ti, Sj, Cj, Ej, Aj, Qj, Hj, Rj)

)

,

Ai+1 = A0 +
ΦhΦ

�(Φ + 2)

(

(ai+1,i+1)f4
(
ti+1, SP

i+1, CP
i+1, EP

i+1, AP
i+1, QP

i+1, HP
i+1, RP

i+1
)

+
i∑

j=0

(ai+1,j)f4(ti, Sj, Cj, Ej, Aj, Qj, Hj, Rj)

)

,

(27)

Qi+1 = Q0 +
ΦhΦ

�(Φ + 2)

(

(ai+1,i+1)f5
(
ti+1, SP

i+1, CP
i+1, EP

i+1, AP
i+1, QP

i+1, HP
i+1, RP

i+1
)

+
i∑

j=0

(ai+1,j)f5(ti, Sj, Cj, Ej, Aj, Qj, Hj, Rj)

)

,

Hi+1 = H0 +
ΦhΦ

�(Φ + 2)

(

(ai+1,i+1)f6
(
ti+1, SP

i+1, CP
i+1, EP

i+1, AP
i+1, QP

i+1, HP
i+1, RP

i+1
)

+
i∑

j=0

(ai+1,j)f6(ti, Sj, Cj, Ej, Aj, Qj, Hj, Rj)

)

,

Ri+1 = R0 +
ΦhΦ

�(Φ + 2)

(

(ai+1,i+1)f7
(
ti+1, SP

i+1, CP
i+1, EP

i+1, AP
i+1, QP

i+1, HP
i+1, RP

i+1
)
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+
i∑

j=0

(ai+1,j)f7(ti, Sj, Cj, Ej, Aj, Qj, Hj, Rj)

)

,

where

SP
i+1 = S0 +

hΦ

�(Φ)

i∑

j=0

bi+1,jf1(tj, Sj, Cj, Ej, Aj, Qj, Hj, Rj),

CP
i+1 = C0 +

hΦ

�(Φ)

i∑

j=0

bi+1,jf2(tj, Sj, Cj, Ej, Aj, Qj, Hj, Rj),

EP
i+1 = E0 +

hΦ

�(Φ)

i∑

j=0

bi+1,jf3(tj, Sj, Cj, Ej, Aj, Qj, Hj, Rj),

AP
i+1 = A0 +

hΦ

�(Φ)

i∑

j=0

bi+1,jf4(tj, Sj, Cj, Ej, Aj, Qj, Hj, Rj),

QP
i+1 = Q0 +

hΦ

�(Φ)

i∑

j=0

bi+1,jf5(tj, Sj, Cj, Ej, Aj, Qj, Hj, Rj),

HP
i+1 = H0 +

hΦ

�(Φ)

i∑

j=0

bi+1,jf6(tj, Sj, Cj, Ej, Aj, Qj, Hj, Rj),

RP
i+1 = R0 +

hΦ

�(Φ)

i∑

j=0

bi+1,jf7(tj, Sj, Cj, Ej, Aj, Qj, Hj, Rj).

(28)

4.3.1 Stability of the method
Theorem 4 The given algorithm (27)–(28) is conditionally stable.

Proof Let Ã0, Ãj (j = 0, . . . , i + 1) and ÃP
i+1 (i = 0, . . . , N – 1) be perturbations of A0, Aj and

AP
i+1, respectively. Then the perturbation equations derived by using Eqs. (27) and (28) are

given by

ÃP
i+1 = Ã0 +

hΦ

�(Φ)

i∑

j=0

bi+1,j
(
�(tj,Aj + Ãj) – �(tj,Aj)

)
, (29)

Ãi+1 = Ã0 +
ΦhΦ

�(Φ + 2)

(

ai+1,i+1
(
�

(
ti+1,AP

i+1 + ÃP
i+1

)
– �

(
ti+1,AP

i+1
))

+
i∑

j=0

ai+1,j
(
�(tj,Aj + Ãj) – �(tj,Aj)

)
)

.

(30)

According to the Lipschitz condition, we get

|Ãi+1| ≤ Φ0 +
ΦhΦM

�(Φ + 2)

(

ai+1,i+1
∣
∣ÃP

i+1
∣
∣ +

i∑

j=1

aj,i+1|Ãj|
)

, (31)
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where Φ0 = max0≤i≤N {|Ã0| + ΦhΦ Mai,0
�(Φ+2) |Ã0|}. Also, from Eq. (3.18) in [41] we write

∣
∣ÃP

i+1
∣
∣ ≤ η0 +

hΦM
�(Φ)

i∑

j=1

bj,i+1|Ãj|, (32)

where η0 = max0≤i≤N {|Ã0| + hΦ Mbn,0
�(Φ) |Ã0|}. Substituting |ÃP

i+1| from Eq. (32) into Eq. (31)
we find

|Ãi+1| ≤ γ0 +
ΦhΦM

�(Φ + 2)

i∑

j=1

(

ai+1,j +
hΦMai+1,i+1bi+1,j

�(Φ)

)

|Ãj|

≤ γ0 +
ΦhΦMCΦ ,2

�(Φ + 2)

i∑

j=1

(i + 1 – j)Φ–1|Ãj|,
(33)

where γ0 = max{Φ0 + ΦhΦ Mai+1,i+1
�(Φ+2) η0}. CΦ ,2 > 0 is constant and only depends on Φ (see

Lemma 3) and h is surmised to be small enough. From Lemma 4 we get |Ãi+1| ≤ Cγ0,
which finishes the requirement. �

4.4 Graphical justifications
Now we plot the fractional-order solution by considering the parameter values simulated
in Table 2. This time we used Mathematica software. In Fig. 6, we plotted the susceptible
population S(t) and in Fig. 7, the plot of confined individuals C(t) is given. We can ob-
serve that when time increases then the population of susceptible individuals is decreasing
which is a good indication for Argentina. In Fig. 8, we plotted the nature of exposed indi-
viduals E(t). We notice that when the fractional-order values decreases then the peak of
E(t) shifts to the next month. At fractional order Φ = 1, a peak occurs at near around 1 July
2020 and when we shifted to lower values of fractional order then we receive the peak near
around 31 July 2020, at Φ = 0.95, near around 29 Sep 2020, at Φ = 0.85, and near around

Figure 6 Dynamics of S(t) population
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Figure 7 Dynamics of C(t) population

Figure 8 Dynamics of E(t) population

28 Dec 2020 when Φ = 0.75. This shows how the fractional-order derivatives give us more
varieties to predict the real-data structure for the future. Similarly, in Fig. 9, we plotted the
nature of asymptomatic individuals A(t) where we can see that at fractional-order Φ = 1,
peak occurs at near around 31 July 2020 and when we shift to lower values of fractional
order then we receive the peak near around 15 Aug 2020 at Φ = 0.95, near around 15 Oct
2020 at Φ = 0.85, and near around 27 Jan 2021 when Φ = 0.75. In this series, Fig. 10 plot-
ted the nature of quarantined individuals Q(t) where different peaks can be seen. Here at
fractional order Φ = 1, peak occurs at near around 15 July 2020 and when we shifted to
lower values of fractional order then we obtain the peak around 31 July 2020 at Φ = 0.95,
around 29 Sep 2020 at Φ = 0.85, and around 28 Dec 2020 at Φ = 0.75. Figure 11 described
the behavior of hospitalized individuals H(t) for the given time range. Here at fractional
order Φ = 1, a peak occurs around 15 July 2020 and when we shifted to lower values of
fractional order then we receive the peak around 31 July 2020 at Φ = 0.95, around 29 Sep
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Figure 9 Dynamics of A(t) population

Figure 10 Dynamics of Q(t) population

2020 at Φ = 0.85, and around 30 Dec 2020 at Φ = 0.75. Finally, Fig. 12 shows the nature of
recovered individuals R(t) versus given time range.

All above given graphs confirm that the COVID-19 disease is under control in Argentina
at this time stage (based on the given data simulations). However, it is well known that if
the population does not follow all health care measures then the situation may change in
the future. The given fractional-order model under Mittag-Leffler kernel gives very well
outputs to predict the dynamics of COVID-19 in Argentina. We used different fractional-
order values for the comparisons because an integer-order model can provide a single
peak prediction which does not show the varieties in the predictions. Different fractional-
order values give various predictions which may in the future be more accurate. This is
the ultimate advantage of using fractional derivatives.



Kumar et al. Advances in Difference Equations        (2021) 2021:341 Page 19 of 21

Figure 11 Dynamics of H(t) population

Figure 12 Dynamics of R(t) population

5 Conclusion
In our observations, we have explored the dynamics of the most deathly disease of this
decade, COVID-19 in Argentina by considering parameter values based on real data.
Firstly, we considered the reported cases of this virus from March 03, 2020 to March
29, 2021 and projected it for the future time period by using our models. We proposed
a Atangana–Baleanu type fractional-order model and solved it employing predictor–
corrector (P-C) algorithm. After analyzing the biological nature of this virus, we formu-
lated a mathematical structure to define its dynamics. We used a well-known effective
optimization method based on the renowned trust-region-reflective (TRR) scheme to per-
form the model calibration. We plotted the real cases of COVID-19 and fitted our integer-
order model with the data along with the calculation of basic reproductive number. In the
simulations of fractional-order analysis, first we proved the existence of unique solution
and then wrote the solution of the model along with the stability of the given P-C method.
We performed separate graphs for every model class at different fractional-order values to
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predict the future dynamics of the virus in Argentina. Finally, we conclude that this virus
is under control in Argentina for future under the given data range and all health care
measures. In the future, the given estimated parameter values and models can be used to
provide further predictions on the transmission of this virus. The proposed mathemat-
ical model is effective and trustable for future use. Not only from a mathematical point
of view but also from a medical perspective, this research study may become very useful
for the medical authorities to simulate the outbreaks of COVID-19 in Argentina for a fu-
ture time period. Still, all the peak predictions which have been simulated in this paper,
do not claim with 100% certainty that the dynamics of COVID-19 will be as it is. It may
differ because of many health care measures (like isolation strategies, hospital facilities,
and vaccine availability) which have been mentioned in this study.
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