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ON THE BOUNDEDNESS OF TOEPLITZ OPERATORS WITH

RADIAL SYMBOLS OVER WEIGHTED SUP-NORM SPACES OF

HOLOMORPHIC FUNCTIONS

JOSÉ BONET, WOLFGANG LUSKY, AND JARI TASKINEN

Abstract. We prove sufficient conditions for the boundedness and compactness
of Toeplitz operators Ta in weighted sup-normed Banach spaces H∞

v of holomor-
phic functions defined on the open unit disc D of the complex plane; both the
weights v and symbols a are assumed to be radial functions on D. In an earlier
work by the authors it was shown that there exists a bounded, harmonic (thus non-
radial) symbol a such that Ta is not bounded in any space H∞

v with an admissible
weight v. Here, we show that a mild additional assumption on the logarithmic
decay rate of a radial symbol a at the boundary of D guarantees the boundedness
of Ta.

The sufficient conditions for the boundedness and compactness of Ta, in a num-
ber of variations, are derived from the general, abstract necessary and sufficient
condition recently found by the authors. The results apply for a large class of
weights satisfying the so called condition (B), which includes in addition to stan-
dard weight classes also many rapidly decreasing weights.

1. Introduction and main results.

In the article [2] we studied Toeplitz operators Ta with radial symbols a on the
analytic function spaces H∞

v on the unit disc D ⊂ C, endowed with weighted sup-
norms for a large class of radial weights v satisfying the so called condition (B); this
excludes the unweighted or constant weight case. In particular, in Theorem 3.6 of the
citation (repeated in this paper in Theorem 2.1) we obtained a general sufficient and
necessary condition for the boundedness and compactness of Ta : H

∞
v → H∞

v . Also,
we observed that the boundedness of a non-radial symbol does not necessarily imply
the boundedness of the Toeplitz operator. In fact, Theorem 2.3 of [2] contains an
example of a bounded harmonic symbol a such that Ta : H

∞
v → H∞

v is not bounded
for any weight v under consideration.

The criterion for the boundedness of the Toeplitz operator in Theorem 3.6 of [2] is
quite abstract, and it may not be easy to verify it for concrete weights and symbols.
Some examples were presented in the citation under quite special assumptions either
on the symbol or on the weight. Here, our aim is to use Theorem 3.6 of [2] to prove
concrete sufficient conditions for the boundedness and compactness of Ta : H∞

v →
H∞

v . These conditions are much more general than in the examples of the citation,
and the sufficient conditions for the symbol are easy to formulate and control. In
all of our results we assume that the weight v satisfies condition (B) of [10], see also
Definition 1.1 below, and a mild technical condition (1.1). These assumptions hold
for example for the important classes of standard, normal and exponential weights
(Proposition 1.3). Then, in the first main result, Theorem 1.2, we show that for the
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2 JOSÉ BONET, WOLFGANG LUSKY, AND JARI TASKINEN

boundedness of Ta : H∞
v → H∞

v it suffices that the symbol a is differentiable near
the unit circle and lim sup a′ or − lim sup a′ is bounded from above, and a → 0 at a
slow, logarithmic speed as r → 1. In Theorem 1.4 the decay requirements for a are
replaced by decay conditions on a′. In the case of normal weights the smoothness
requirements of the symbol can be relaxed, see Theorem 1.6. Finally, in Theorem
1.7 we find a stronger decay condition for a which guarantees the boundedness of
Ta in the case of exponential weights without a smoothness assumption on a.

All of these theorems also contain the analogous statements on the compactness
of the Toeplitz operator. The proofs of Theorems 1.2 and 1.6 will be presented in
Section 3 and that of Theorem 1.7 in Section 4.

We refer to the papers [3], [4], [5], [7], [8], [11], [12], [13], [14], [15], [16], [17],
[19], [20], [21], [22], [23] for classical and recent results on the boundedness and
compactness of Toeplitz operators on Bergman spaces

Let us turn to the exact definitions and formulation of the main results. By a
weight v on the unit disc D we mean a continuous function with v(z) = v(|z|) for
all z ∈ D, lim|z|→1 v(z) = 0 and v(r) ≥ v(s) if 1 > s > r > 0. Put

H∞
v =

{

h : D → C : h holomorphic, ‖h‖v := sup
z∈D

|h(z)|v(|z|) < ∞
}

,

L∞
v =

{

h : D → C : h measurable , ‖h‖v := ess sup
z∈D

|h(z)|v(|z|) < ∞
}

.

Let µ be the Lebesgue area measure on D endowed with v as density, i.e. dµ(reiϕ) =
v(r)rdrdϕ and denote the weighted Lp- and Bergman spaces by

Lp
v =

{

g : D → C : ‖g‖pp,v :=

∫

D

|f |pdµ < ∞
}

and Ap
v = {h ∈ Lp

v : h holomorphic},

where 1 ≤ p < ∞. In the unweighted case v is omitted in the notation.
Now let a ∈ L1. We define the Toeplitz operator Ta with symbol a on H∞

v by
Tah = Pv(a ·h) for h ∈ H∞

v , where Pv : L
2
v → H2

v is the orthogonal projection. Then
Tah is a holomorphic function, at least if a · h ∈ L2

v. The definition of the Toeplitz
operator in the present setting is discussed in detail in Section 1 of [2] and we do not
wish to repeat the details here. However, we emphasize that even if Tah is a well a
well defined analytic function, is not necessarily an element of H∞

v and Ta need not
be a bounded operator.

In the following we consider radial symbols a ∈ L1, i.e. functions with a(z) =
a(|z|) for almost all z ∈ D. As for general notation, N = {1, 2, 3, . . .}, N0 = N∪{0},
and c, C, C ′ denote generic positive constants, the exact value of which may change
from place to place, but does not depend on the variables, indices or functions in the
given expressions, unless otherwise indicated. By 1A we denote the characteristic
function of a set A, i.e. a function which equals 1 on A and 0 outside A; the domain
of 1A will be clear from the context. For other general terminology and definitions,
see [6] and [22].

We will need the following definition. Let v be a weight on D. Consider m > 0
and let rm be a point where the function rmv(r) attains its absolute maximum on
[0, 1]. It is easy to see that rn ≥ rm if n ≥ m and limm→∞ rm = 1.

Definition 1.1. (i) The weight v satisfies condition (B), if

∀b1 > 1 ∃b2 > 1 ∃c > 0 ∀m,n > 0
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(

rm
rn

)m
v(rm)

v(rn)
≤ b1 and m,n, |m− n| ≥ c ⇒

(

rn
rm

)n
v(rn)

v(rm)
≤ b2,

(ii) v is called normal if

sup
n∈N

v(1− 2−n)

v(1− 2−n−1)
< ∞ and inf

k
lim sup
n→∞

v(1− 2−n−k)

v(1− 2−n)
< 1,

(iii) v is called an exponential weight of type (α, β) for some constants α > 0 and
β > 0 if v(r) = exp(−α/(1− r)β) for all r.

Note that the numbersm and n in (i) need not be integers. For example all normal
weights as well as all exponential weights satisfy (B) (see [10]). Standard weights
(1− r)α and (1− r2)α are normal for all α > 0, but no exponential weight is normal:
the first condition in (ii) is not satisfied. Neither is the weight v(r) = 1/(1−log(1−r))
is normal, since it decays too slowly to 0 in order to satisfy the second condition in
(i).

We show

Theorem 1.2. Let v satisfy (B) and assume that there is some ǫ > 0 with

sup
n=1,2,...

∫ 1

0
rn−nǫ

v(r)dr
∫ 1

0
rnv(r)dr

< ∞.(1.1)

Let a ∈ L1 be real valued and radial such that the restriction a|[δ,1[ is differentiable
for some δ ∈]0, 1[ with

lim sup
r→1

a′(r) < ∞ or lim inf
r→1

a′(r) > −∞.(1.2)

If

lim sup
r→1

|a(r) log(1− r)| < ∞(1.3)

then Ta is a bounded operator H∞
v → H∞

v .
If

lim sup
r→1

|a(r) log(1− r)| = 0(1.4)

then Ta is compact on H∞
v .

Of course, Theorem 1.2 can be applied to complex valued symbols a as well. Here
Re a and Im a have to satisfy the assumptions of the theorem.

We prove Theorem 1.2 in Section 3. Condition (B) and (1.1) are satisfied for
many weights, in particular we have

Proposition 1.3. All normal and exponential weights (see Definition 1.1) satisfy
(B) and condition (1.1).

Indeed, it was proven in [10] that normal and exponential weights satisfy (B).
Condition (1.1) with ǫ = 1/2 follows for normal weights from Lemma 4.5. of [3].
The remaining claim in Proposition 1.3 about condition (1.1) for exponential weights
will be proved in Section 4; see the remark after the proof of Corollary 4.2.

Examples. Assume that v is a weight satisfying (B). The symbol a(r) = 1/(1−
log(1 − r)) satisfies the second condition (1.2) and, of course, (1.3) so that Ta :
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H∞
v → H∞

v is bounded. The same is true for a(r) = (1 − r)δ with any δ > 0, and
this symbol even satisfies (1.4) so that Ta is compact on H∞

v . (1.3). Moreover,

a(r) =

{

log 2 , if 0 ≤ r ≤ 1/2,
− log r , if 1/2 < r < 1,

satisfies (1.2), (1.4) as well.
Next we present a reformulation of Theorem 1.2.

Theorem 1.4. Let v satisfy (B) and (1.1). Let a ∈ L1 be a radial symbol, and
assume that a|[δ,1[ is differentiable for some δ ∈]0, 1[, a′ satisfies (1.2) and, for some
constant C > 0, there holds the bound

|a′(r)| ≤
C

(1− r)
(

log(1− r)
)2 for r ∈]δ, 1[.(1.5)

Then, Ta is a bounded operator H∞
v → H∞

v . Moreover, if

lim
r→1

|a′(r)|(1− r)
(

log(1− r)
)2

= 0(1.6)

holds, then Ta is compact, if and only if limr→1 a(r) = 0.

Proof. We can assume that a is real-valued (otherwise consider Re a and Im
a separately). Assume (1.5) holds. For all r ∈]δ, 1[ we get by the change of the
integration variable log(1− s) =: x and dx/ds = −1/(1− s) that

1
∫

r

|a′(s)|ds ≤ C

1
∫

r

1

(1− s)
(

log(1− s)
)2ds = C

log(1−r)
∫

−∞

1

x2
dx =

C

| log(1− r)|
.(1.7)

Thus, we can extend a as a continuous function to ]δ, 1] by defining

a(1) =

1
∫

δ

a′(s)ds+ a(δ)
(

= lim
r→1

a(r)
)

,

and by (1.7) we obtain for all r ∈]δ, 1[

|a(r)− a(1)| =
∣

∣

∣

1
∫

r

a′(s)ds
∣

∣

∣
≤

C

| log(1− r)|
.(1.8)

This means, the function a−a(1) satisfies (1.3) so that the Toeplitz operator Ta−a(1)

is bounded. Since Ta(1) is a multiple of the identity, Ta = Ta−a(1) + Ta(1) is bounded.
If (1.6) holds, then we can repeat the calculation (1.7)–(1.8) so that the constant

C is replaced by a positive function C(r) with C(r) → 0 as r → 1. Then, we see
from the analogue of (1.8) that the function a− a(1) even satisfies (1.4); hence the
operator Ta−a(1) is compact, and if in addition a(1) = 0 then also Ta is compact. If
limr→1 a(r) = a(1) 6= 0, then Ta is a compact perturbation of a non-zero multiple of
the identity which is not compact. �

All examples presented after Proposition 1.3 also satisfy the assumptions of The-
orem 1.4.

The sufficient condition for the boundedness can be put into the following, very
simple form. This should be compared with corresponding results for non-radial
symbols in [3]: we proved that for holomorphic f on D, the operator Tf is bounded,
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if and only f is bounded while there are bounded harmonic g on D where Tg is
unbounded on H∞

v .

Corollary 1.5. If the symbol a is radial and continuously differentiable on [0, 1], then
Ta : H

∞
v → H∞

v is bounded.

For normal weights we can relax the assumptions on a of Theorem 1.2 consider-
ably.

Theorem 1.6. Let v be a normal weight. If a ∈ L1 is radial and satisfies (1.3) then
Ta is a bounded operator H∞

v → H∞
v .

If a satisfies (1.4) then Ta is compact on H∞
v .

We prove Theorem 1.6 in Section 3. There is a variant of Theorem 1.2 for expo-
nential weights, too, without the restrictive smoothness requirements on a.

Theorem 1.7. Let v be an exponential weight of type (α, β). Assume that a ∈ L1 is
radial and

lim sup
r→1

|a(r)|(1− r)−1/2−β/4 < ∞.(1.9)

Then, Ta is a bounded operator H∞
v → H∞

v .
If

lim sup
r→1

|a(r)|(1− r)−1/2−β/4 = 0(1.10)

then Ta is compact on H∞
v .

We prove Theorem 1.7 in Section 4.

2. Preliminaries.

To prove the theorems of Section 1 we need to recall some results of [10] and [2].
We refer to these papers for a more detailed exposition.

Let v be a weight on D. Fix b > 2. We define by induction the indices 0 ≤ m1 <
m2 < . . . such that

b = min

(

( rmn

rmn+1

)mn v(rmn)

v(rmn+1)
,
(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

)

.

This is always possible according to Lemma 5.1. of [10]. (Actually it suffices to
choose the indices such that the preceding minimum lies between b and some con-
stant b1 > b.) Formula (6.1) of [10] implies that

sup
n

mn+1 −mn

mn −mn−1

< ∞(2.1)

so that we also have supnmn+1/mn < ∞ and supn(mn+1 −mn−1)/mn−1 < ∞.
Now let h(ϕ) =

∑

k∈Z bke
ikϕ be a formal series with some numbers bk ∈ C and

ϕ ∈ [0, 2π]. Take the preceding numbers mk and define for every n ∈ N the operator

(Wnh)(ϕ) =
∑

mn−1<|k|≤mn

|k| − [mn−1]

[mn]− [mn−1]
bke

ikϕ +
∑

mn<|k|≤mn+1

[mn+1]− |k|

[mn+1]− [mn]
bke

ikϕ

=:
∑

k∈Z

βkbke
ikϕ(2.2)
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with coefficients βk = βk(n) satisfying |βk| ≤ 1 for all k and n. Here [r] is the
largest integer not larger than r. Obviously, Wnh is always a continuous function
[0, 2π] → C. The following is Theorem 3.6. of [2].

Theorem 2.1. Let the weight v satisfy (B). If a ∈ L1 is radial then Ta is bounded
as operator H∞

v → H∞
v if and only if

sup
n

∫ 2π

0

|(Wnfa)(ϕ)|dϕ < ∞

and Ta is a compact operator H∞
v → H∞

v , if and only if

lim
n→∞

2π
∫

0

|(Wnfa)(ϕ)|dϕ = 0.

Here, fa(ϕ) is for ϕ ∈ [0, 2π] the formal series

fa(ϕ) =
∞
∑

j=0

γje
ijϕ with γn =

∫ 1

0
r2n+1v(r)a(r)dr
∫ 1

0
r2n+1v(r)dr

.

We recall that for radial symbols the Toeplitz operators reduces into a Taylor
coefficient multiplier: if h(z) =

∑∞
n=0 hnz

n, then Ta(z) =
∑∞

n=0 γnhnz
n.

Examples. If v is normal, then one can take mn = 2kn for suitable fixed k > 0
(see [10], Example 2.4, and [9]).

For v(r) = exp(−α/(1 − r)β) one can take mn = β2(β/α)1/βn2+2/β − β2n2, and

rmn = 1 − (α/(βn2))
1/β

. This follows from (3.15), (3.16) and (3.30) of [1]. (There
is a misprint in Theorem 3.1. of [1], two times the exponent 2 is missing in the
description of mn.)

Corollary 2.2. Let the weight satisfy (B) and assume that a ∈ L1 is radial and
satisfies a|[s,1] = 0 for some s ∈]0, 1[. Then Ta : H

∞
v → H∞

v is compact.

Proof. We have
∣

∣

∣

∣

∣

∫ 1

0
a(r)rkv(r)dr
∫ 1

0
rkv(r)dr

∣

∣

∣

∣

∣

≤

∫ s

0
|a(r)|rkv(r)dr

∫ 1

(1+s)/2
rkv(r)dr

≤

(

2s

1 + s

)k
∫ s

0
|a(r)|v(r)dr

∫ 1

(1+s)/2
v(r)dr

.

Hence, with fa as in Theorem 2.1,
∫ 2π

0

|(Wnfa)(ϕ)|dϕ ≤ c1(mn+1 −mn−1)

(

2s

1 + s

)mn−1

≤ c2mn−1

(

2s

1 + s

)mn−1

for universal constants c1, c2. Here we used (2.1). The right-hand side goes to 0 as
n goes to ∞. Hence Theorem 2.1 finishes the proof. �

For r > 0 and an integrable function f on r · ∂D we put

M1(f, r) =
1

2π

∫ 2π

0

|f(reiϕ)|dϕ.

It is well-known that M1(f, r) is increasing with respect to r if f is a harmonic
function.
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Let R be the Riesz projection, R :
∑∞

k=−∞ akr
|k|eikϕ 7→

∑∞
0 akr

|k|eikϕ. In the
following we consider the Poisson kernel p,

p(reiϕ) =
∞
∑

k=−∞

r|k|eikϕ , where reiϕ ∈ D.

It is well-known that p ≥ 0 and that M1(p, r) = 1 for all r ∈ [0, 1[. The following
lemma will be needed later.

Lemma 2.3. Let v satisfy condition (B) and consider the preceding numbers mn and
operators Wn. Then we have

sup
n

sup
0≤r<1

M1(RWnp, r) < ∞.

Proof. According to Lemma 3.3 of [10] we have

M1(RWnp, r) ≤ 4
( [mn+1]− [mn−1]

[mn]− [mn−1]

)(

3 + 4
[mn+1]− [mn−1]

[mn+1]− [mn]

)

·
(

1 +
[mn+1]− [mn−1]

[mn−1]

)

M1(p, r).

Since M1(p, r) = 1, the lemma follows in view of (2.1). �

3. Estimates for
∫ 2π

0
|(Wnfa)(ϕ)|dϕ.

For the proofs of the theorems of Section 1 we will need the following estimate.

Proposition 3.1. Let v be a weight which satisfies (B) and let mn be the numbers
defined above Theorem 2.1. Assume that a ∈ L1 is radial. Then there is a universal
constant c > 0 with
∫ 2π

0

|(Wnfa)(ϕ)|dϕ ≤ c log(mn) ·

(
∣

∣

∣

∣

∣

∫ 1

0
a(r)r2[mn−1]+1v(r)dr
∫ 1

0
r2[mn−1]+1v(r)dr

∣

∣

∣

∣

∣

+
∑

[mn−1]<k≤[mn+1]

∣

∣

∣

∣

∣

∫ 1

0
a(r)r2k+1v(r)dr
∫ 1

0
r2k+1v(r)dr

−

∫ 1

0
a(r)r2k−1v(r)dr
∫ 1

0
r2k−1v(r)dr

∣

∣

∣

∣

∣

)

(3.1)

and
∫ 2π

0

|(Wnfa)(ϕ)|dϕ ≤ c log(mn)

∫ 1

0
|a(r)|r2[mn−1]+1v(r)dr
∫ 1

0
r2[mn+1]+1v(r)dr

(3.2)

for all n large enough.

To prove Proposition 3.1 we need a lemma. Given m ∈ N, let Qm be the following
projection acting on formal series (cf. (2.2)),

Qm

(

∞
∑

l=0

ble
ilϕ
)

=

m
∑

l=0

ble
ilϕ.

It is well-known (see for example (2.7) in Ch. I, [18]) that
∫ 2π

0

∣

∣

∣
Qm

(

∞
∑

l=0

ble
ilϕ
)
∣

∣

∣
dϕ ≤ d logm

∫ 2π

0

∣

∣

∣

∞
∑

l=0

ble
ilϕ
∣

∣

∣
dϕ(3.3)

where the coefficients bl for example form an ℓ2-sequence so that the sum and the
integral on the right converge and d > 0 is a constant independent of m.
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Lemma 3.2. Let f(eiϕ) =
∑n

k=0 bke
ikϕ for some bk ∈ C and n ∈ N, and let g(eiϕ) =

∑n
k=0 αkbke

ikϕ for some coefficients αk ∈ C. Then,
∫ 2π

0

|g(eiϕ)|dϕ ≤ c log n
(

|α0|+
n
∑

k=1

|αk − αk−1|
)

∫ 2π

0

|f(eiϕ)|dϕ(3.4)

where c > 0 is a constant independent of n and f .

Proof. We obtain, with βj = αj − αj−1 for j = 1, . . . , n and β0 = α0,

g(eiϕ) =

n
∑

j=0

βj

n
∑

k=j

bke
ikϕ.

Hence
∫ 2π

0

|g(eiϕ)|dϕ ≤

(

|α0|+
n
∑

k=1

|αk − αk−1|

)

sup
j

∫ 2π

0

∣

∣

(

(id−Qj−1)f
)

(eiϕ)
∣

∣dϕ

from which we infer (3.4), in view of (3.3). �

Proof of Proposition 3.1. Let fa be again as in Theorem 2.1. We have

(Wnfa)(e
iϕ) =

[mn+1]
∑

k=[mn−1]

∫ 1

0
a(r)r2k+1v(r)dr
∫ 1

0
r2k+1v(r)dr

· βke
ikϕ

for certain βk with |βk| ≤ 1 (where β[mn−1] = β[mn+1] = 0; see (2.2)). Now put

h(reiϕ) =
∑[mn+1]−[mn−1]

j=0 βj+mn−1r
jeijϕ so that h is a polynomial, hence a holomor-

phic function. We obtain

M1(h, r) ≤ M1(h, 1) = M1(WnRp, 1) for r ≤ 1,

where p is the Poisson kernel. Since WnRp is a polynomial we clearly find a radius
r(n) ∈ [0, 1[ such that

M1(WnRp, 1) ≤ 2M1(WnRp, r(n)) for all n.(3.5)

We use Lemma 3.2 with f(eiϕ) = h(reiϕ) for fixed r, bj = βj+[mn−1] and

αj =

∫ 1

0
a(s)s2(j+[mn−1])+1v(s)ds
∫ 1

0
s2(j+[mn−1])+1v(s)ds

and obtain
∫ 2π

0

|Wnfa(e
iϕ)|dϕ

≤ c log([mn+1]− [mn−1])

(

|α0|+

[mn+1]−[mn−1]
∑

k=1

|αk − αk−1|

)

M1(WnRp, 1).

Then Lemma 2.3 proves (3.1).
To show (3.2) we see that

∫ 2π

0

|Wnfa(e
iϕ)|dϕ

≤

∫ 1

0

∫ 2π

0

∣

∣

∣

∣

[mn+1]
∑

k=[mn−1]

r2k+1a(r)v(r)
∫ 1

0
s2k+1v(s)ds

· βke
ikϕ

∣

∣

∣

∣

dϕdr
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=

∫ 1

0

|a(r)|r2[mn−1]+1v(r)

·

∫ 2π

0

∣

∣

∣

∣

[mn+1]
∑

k=[mn−1]

1
∫ 1

0
s2k+1v(s)ds

· r2(k−[mn−1])βke
i(k−[mn−1])ϕ

∣

∣

∣

∣

dϕdr.

Now put

h̃(reiϕ) =

[mn+1]−[mn−1]
∑

j=0

βj+[mn−1]r
jeijϕ.

Again we obtain

M1(h̃, r) ≤ M1(h̃, 1) = M1(WnRp, 1) for r ≤ 1.

We use Lemma 3.2 with f(eiϕ) = h̃(reiϕ) for fixed r, bj = βj+[mn−1]r
j and

αj =
(

∫ 1

0

s2(j+[mn−1])+1v(s)ds
)−1

.

Then αj is increasing and

|α0|+

[mn+1]−[mn−1]
∑

k=1

|αk − αk−1| = |α[mn+1]−[mn−1]|

The preceding estimate and (2.1), (3.4), (3.5) yield constants c1, c2 > 0 with
∫ 2π

0

|Wnfa(e
iϕ)|dϕ

≤ 2πc1 log([mn+1]− [mn−1])

∫ 1

0

|a(r)|r2[mn−1]+1

∫ 1

0
s2[mn+1]+1v(s)ds

· v(r)M1(h̃, r)dr

≤ 2πc2 log([mn])

∫ 1

0

|a(r)|r2[mn−1]+1

∫ 1

0
s2[mn+1]+1v(s)ds

· v(r)M1(h̃, 1)dr.

Now, Lemma 2.3 also shows (3.2). �

We recall the following

Lemma 3.3. Let v be normal. Then there is a universal constant c > 0 such that,
for any k,m with 0 < k ≤ m ≤ 2k, we have

∫ 1

0
rkv(r)dr

∫ 1

0
rmv(r)dr

≤ c.

Proof. This is Lemma 4.5. of [2].

Lemma 3.4. For a function a : [0, 1] → C, ǫ > 0 and δ ∈ [0, 1[ there are constants
c1, c2 > 0 with

(a) c1 sup
n≥1/(1−δ)

sup
δ≤r≤1

|a(r)|rn log n ≤ sup
δ≤r<1

|a(r) log(1− r)|

≤ c2 sup
n≥1/(1−δ)

sup
δ≤r≤1

|a(r)|rn log n
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(b) c1 sup
n≥1/(1−δ)

sup
δ≤r≤1

|a(r)|rnnǫ ≤ sup
δ≤r<1

|a(r)|/(1− r)ǫ

≤ c2 sup
n≥1/(1−δ)

sup
δ≤r≤1

|a(r)|rnnǫ

Proof. Put r = 1−1/n, n ≥ 1/(1−δ), and observe that 1/(1−1/n)n is bounded.
�

Proof of Theorem 1.6. The inequalities (1.3) or (1.4) and Lemma 3.4 imply
that there is δ ∈ [0, 1[ such that supδ≤r<1 |a(r)r

n| ≤ c0/ logn for all n > 1 and some
constant c0. Without loss of generality, we may assume that δ = 0, otherwise we
take a1 = a · 1[δ,1] instead of a and use the fact that a = a1 + a2 where a2 = a · 1[0,δ]
yields the compact operator Ta2 . We apply Proposition 3.1. At first, we get

∫ 1

0
|a(r)|r2mn−1+1v(r)dr
∫ 1

0
r2mn+1+1v(r)dr

≤
(

sup
0≤r<1

|a(r)|rmn−1

)

∫ 1

0
rmn−1+1v(r)dr

∫ 1

0
r2mn+1+1v(r)dr

According to (2.1) we have supk(mk+1 −mk)/(mk −mk−1) < ∞. This implies that
mn−1 + 1 ≤ mn+1 + 1 ≤ 2q(mn−1 + 1) for some q ∈ N which is independent of n. If
we apply Lemma 3.3 q times we see that

∫ 1

0
smn−1+1v(s)ds

∫ 1

0
s2mn+1+1v(s)ds

≤ cq

where c is the constant of Lemma 3.3. By (3.2) this shows, for some constant c1
∫ 2π

0

|(Wnfa)(ϕ)|dϕ ≤ c1 log(mn)

(

sup
0≤r<1

|a(r)|rmn−1

)

cq

≤
log(mn)

log(mn−1)
cq

where we used (1.3) and Lemma 3.4(a). With (2.1) we see that supn

∫ 2π

0
|(Wnfa)(ϕ)|dϕ <

∞. If (1.4) holds then the same estimate yields

lim
n→∞

∫ 2π

0

|(Wnfa)(ϕ)|dϕ = 0.

So Theorem 1.6 follows from Theorem 2.1. �

In order to prove Theorem 1.2 we need

Lemma 3.5. Let v be a weight on D and let a : [0, 1] → R+ be continuous and
non-increasing. Then

∫ 1

0
a(r)rkv(r)dr
∫ 1

0
rkv(r)dr

≥

∫ 1

0
a(r)rk+1v(r)dr
∫ 1

0
rk+1v(r)dr

for all k = 1, 2, . . . .

Proof. For t ∈ [0, 1] put

F (t) =

(
∫ t

0

a(r)rkv(r)dr

)(
∫ t

0

rk+1v(r)dr

)

,

G(t) =

(
∫ t

0

a(r)rk+1v(r)dr

)(
∫ t

0

rkv(r)dr

)

.
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Then F and G are differentiable and the mean value theorem yields s ∈]0, 1[ with

F (1)− F (0)

G(1)−G(0)
=

F ′(s)

G′(s)

(Here we can assume that a is not the zero function.) Hence
(

∫ 1

0
a(r)rkv(r)dr

)(

∫ 1

0
rk+1v(r)dr

)

(

∫ 1

0
a(r)rk+1v(r)dr

)(

∫ 1

0
rkv(r)dr

)

=

(∫ s

0
a(r)rkv(r)dr

)

sk+1v(s) + a(s)skv(s)
(∫ s

0
rk+1v(r)dr

)

(∫ s

0
a(r)rk+1v(r)dr

)

skv(s) + a(s)sk+1v(s)
(∫ s

0
rkv(r)dr

) .

Since a is non-increasing we have

skv(s)

∫ s

0

(

a(s)− a(r)
)

rk(s− r)v(r)dr ≤ 0

which implies
(

∫ s

0

a(r)rkv(r)dr
)

sk+1v(s) + a(s)skv(s)
(

∫ s

0

rk+1v(r)dr
)

≥
(

∫ s

0

a(r)rk+1v(r)dr
)

skv(s) + a(s)sk+1v(s)
(

∫ s

0

rkv(r)dr
)

.

Since a is non-negative we obtain

F (1)− F (0)

G(1)−G(0)
≥ 1

and hence
∫ 1

0
a(r)rkv(r)dr
∫ 1

0
rkv(r)dr

≥

∫ 1

0
a(r)rk+1v(r)dr
∫ 1

0
rk+1v(r)dr

. �

Proof of Theorem 1.2. Let the symbol a satisfy the assumptions of Theorem
1.2. Let us assume that

lim sup
r→1

a′(r) < ∞,(3.6)

otherwise we can consider −a. We may even assume that a is differentiable on [0, 1[.
Indeed put

a1(r) =

{

a(r) r ∈ [δ, 1]
a(δ)− a′(δ)(δ − r) r ∈ [0, δ]

Then a1 is differentiable on [0, 1[. Let a2 = a · 1[0,δ] and a3 = a1 · 1[0,δ]. According to
Corollary 2.2, Ta2 and Ta3 are compact. Since a = a1 + a2 − a3 it suffices to assume
(by perhaps taking a1 instead of a) that a is differentiable on [0, 1[.

Moreover it suffices to assume that a is decreasing. Indeed otherwise consider

ã(r) = a(r) + d(1− r)(3.7)

instead of a where d > 0 is a constant so large that ã′ < 0 which exists in view of
(3.6). The symbol ã satisfies (1.3) or (1.4), too. If we have proved Theorem 1.2 for
ã then it is also correct for the symbol 1 − r. (Here take a = 0 in (3.7)). So let us
assume that a is differentiable everywhere, satisfies (1.3) or (1.4) and is decreasing.
Since limr→∞ a(r) = 0 we obtain a(r) ≥ 0 for all r.
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We use again the terminology of Theorem 2.1. In view of Lemma 3.5 with Propo-
sition 3.1 we see that

∫ 2π

0

|(Wnfa)(ϕ)|dϕ

≤ c log(mn) ·

(

∫ 1

0
a(r)r2[mn−1]+1v(r)dr
∫ 1

0
r2[mn−1]+1v(r)dr

+

∫ 1

0
a(r)r2[mn+1]+1v(r)dr
∫ 1

0
r2[mn+1]+1v(r)dr

)

(3.8)

With (1.1) we obtain, for k = mn−1 and k = mn+1,
∫ 1

0
a(r)r2k+1v(r)dr
∫ 1

0
r2k+1v(r)dr

≤ c1 sup
r

a(r)rk
ǫ

for a universal constant c1. According to Lemma 3.4(a) and (1.3) we obtain a
constant c2 > 0 with

sup
r

a(r)rk
ǫ

≤ c2(ǫ log k)
−1.

If we insert the last estimates in (3.8) we obtain supn

∫ 2π

0
|(Wnfa)(ϕ)|dϕ < ∞ and

we can apply Theorem 2.1. If we even have (1.4), then the same estimates yield

limn→∞

∫ 2π

0
|(Wnfa)(ϕ)|dϕ = 0 and again Theorem 2.1 finishes the proof. �

4. Exponential weights.

We now turn to the proof of Theorem 1.7. Let us fix an exponential weight v
of type (α, β), i.e. v(r) = exp(−α/(1 − r)β) for all r. By analyzing the function
j 7→ jβ+1 − jβ we see that for every k > 0 there is exactly one j = j(k) > 1 with

k = αβ(jβ+1 − jβ).(4.1)

With this notation we see that rk := 1 − 1/j is the unique maximum point of the
function f(r) = rkv(r). Hence f is increasing for 0 ≤ r ≤ rk and decreasing for
rk ≤ r < 1. Moreover, in view of (4.1), there are constants c1, c2 > 0 with

c1k
1/(β+1) ≤ j ≤ c2k

1/(β+1) for all k ≥ 1.(4.2)

Proposition 4.1. Let k ≥ 1 and the number j = j(k) > 1 be as chosen above and
let 0 < δ < 1. Then there is a constant d > 0, independent of k, such that

∫ 1

0

rk exp
(

−
α

(1− r)β

)

dr ≤ d

∫ 1

1−1/(δj)

rk exp
(

−
α

(1− r)β

)

dr.

Proof. Fix 1 > γ > δ and put x = 1 − 1/(δj), y = 1 − 1/(γj). We may only
consider large enough j (and hence k) such that 0 < x and δj > 1. Then we have
0 < x < y < 1. We use

exp
(

−
k

t− 1

)

≤
(

1−
1

t

)k

≤ exp
(

−
k

t

)

whenever 1 < t. This implies
∫ x

0

rk exp
(

−
α

(1− r)β

)

dr ≤ xk+1 exp
(

−
α

(1− x)β

)

≤ xk exp
(

−
α

(1− x)β

)

≤ exp
(

− α
(β

δ
+ δβ

)

jβ +
αβ

δ
jβ−1

)

=: u1.
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Moreover we have
∫ rk

y

rk exp
(

−
α

(1− r)β

)

dr ≥ yk exp
(

−
α

(1− y)β

)(

1−
1

j
− y
)

≥ exp
(

− αβ
jβ+1

γj − 1
+ αβ

jβ

γj − 1
− αγβjβ

)1− γ

γj

= exp

(

− α
(β

γ
+ γβ

)

jβ −
αβ

γ
jβ−1

( 1

γ − 1/j

)

+αβ
jβ−1

γ − 1/j
− log

( γj

1− γ

)

)

=: u2.

Put g(t) = β/t + tβ for t > 0. We easily see that g is decreasing for 0 < t < 1.
Moreover

u1

u2

≤ exp
(

− α
(

g(δ)− g(γ)
)

jβ + d1j
β−1 + d′1 log j

)

for some universal constants d1, d
′
1. Since g(δ)−g(γ) > 0 this implies lim supr→∞ u1/u2 <

∞. Hence u1 ≤ d2u2 for some universal constant d2. We obtain
∫ 1

0

rk exp
(

−
α

(1− r)β

)

dr

=

∫ x

0

rk exp
(

−
α

(1− r)β

)

dr +

∫ 1

x

rk exp
(

−
α

(1− r)β

)

dr

≤ d2

∫ rk

y

rk exp
(

−
α

(1− r)β

)

dr +

∫ 1

x

rk exp
(

−
α

(1− r)β

)

dr

≤ (1 + d2)

∫ 1

x

rk exp
(

−
α

(1− r)β

)

dr.

We finally put d = 1 + d2. �

Corollary 4.2. There is a constant c > 0 such that
∫ 1

0

rk−k1/(β+1)

exp
(

−
α

(1− r)β

)

dr ≤ c

∫ 1

0

rk exp
(

−
α

(1− r)β

)

dr

whenever k ≥ 1.

Proof. It is enough to consider sufficiently large k. Let l = l(k) be such that

k − k1/(β+1) = αβ(lβ+1 − lβ).

For k ≥ k0, k0 sufficiently large, there is a constant c0 > 0 such that

(k − k1/(β+1))1/(β+1) ≥ c0k
1/(β+1).

Taking into account (4.2) for k−k1/(β+1) instead of k we find a constant c1 > 0 with

l ≥ c1k
1/(β+1).(4.3)

Let δ = 1/2 and apply Proposition 4.1 for k − k1/(β+1) instead of k. Together with
(4.3) this yields

∫ 1

0

rk−k1/(β+1)

exp
(

−
α

(1− r)β

)

dr

≤ d

∫ 1

1−2/l

rk−k1/(β+1)

exp
(

−
α

(1− r)β

)

dr
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≤
d

(1− 2/l)k1/(β+1)

∫ 1

0

rk exp
(

−
α

(1− r)β

)

dr

≤
d

(

1− 2c1k−1/(β+1)
)k1/(β+1)

∫ 1

0

rk exp
(

−
α

(1− r)β

)

dr.

In order to complete the proof it is enough to take c such that

d
(

1− 2c1k−1/(β+1)
)k1/(β+1)

≤ c. �

Corollary 4.2 proves (1.1) (with ǫ = 1/(β + 1)) for exponential weights and thus
completes the proof of Proposition 1.3 .

Proof of Theorem 1.7. By possibly taking a ·1[δ,1] instead of a for suitable δ we
can assume without loss of generality, in view of Lemma 3.4, that sup0≤r≤1 |a(r)|r

k ≤

c0/k
1/2+β/4 for all k and some constant c0. To obtain the indices mn of Theorem 2.1

we use (4.1) with j = (βn2/α)1/β (see (3.30), (3.15) and (3.16) of [1]). Hence

mn =
β2+1/β

α1/β
n2+2/β − β2n2.(4.4)

Let fa be again as in Theorem 2.1. We need to show that

sup
n

∫ 1

0

|Wnfa(e
iϕ)|dϕ < ∞.

We have

(Wnfa)(e
iϕ) =

[mn+1]
∑

k=[mn−1]

∫ 1

0
a(r)r2k+1v(r)dr
∫ 1

0
r2k+1v(r)dr

· δke
ikϕ

for certain δk with |δk| ≤ 1.
The equality (4.4) implies that there is a constant c1 > 0 such that

(2k + 1)1/(β+1) ≥ c1n
(2+2/β)/(β+1) = c1n

2/β(4.5)

for all k ≥ mn−1. Moreover, by an application of the mean value theorem to the
function n 7→ mn of (4.4) we may assume that

2(mn+1 −mn−1) + 1 ≤ c2n
1+2/β .(4.6)

The remark in the beginning of the proof, Corollary 4.2, (4.5) and the assumption
(1.9) on a yield a constant c3 > 0 such that, for mn−1 ≤ k < mn+1, we have

∣

∣

∣

∣

∣

∫ 1

0
a(r)r2k+1v(r)dr
∫ 1

0
r2k+1v(r)dr

∣

∣

∣

∣

∣

≤
(

sup
r

|a(r)|r(2k+1)1/(β+1)
)

·

∫ 1

0
r2k+1−(2k+1)1/(β+1)

v(r)dr
∫ 1

0
r2k+1v(r)dr

≤ c3
1

(n2/β)1/2+β/4
= c3

1

n1/β+1/2
.

This implies by (4.6)
∫ 1

0

|Wnfa(e
iϕ)|dϕ ≤

(
∫ 1

0

|Wnfa(e
iϕ)|2dϕ

)1/2
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=

(

mn+1
∑

k=mn−1

∣

∣

∣

∣

∣

∫ 1

0
a(r)r2k+1v(r)dr
∫ 1

0
r2k+1v(r)dr

∣

∣

∣

∣

∣

2

|δk|
2

)1/2

≤
(

(2(mn+1 −mn−1) + 1)
c23

n1+2/β

)1/2

≤ c
1/2
2 c3.

Hence, supn

∫ 2π

0
|(Wnfa)(ϕ)|dϕ < ∞. So Theorem 2.1 concludes the first part of

Theorem 1.7. If (1.10) holds then the same estimates as above show that

limn→∞

∫ 2π

0
|Wnfa(e

iϕ)|dϕ = 0. Again, with Theorem 2.1 we see that then Ta is
compact. �
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