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Abstract: Exsolution is emerging as a promising route for the creation of nanoparticles that remain
anchored to the oxide support, imparting remarkable stability in high temperature chemical processes
such as dry reforming of methane. This process takes place at temperatures around 850 ◦C, which
causes sintering-related issues in catalysts prepared using conventional impregnation methods,
which could be overcome by using exsolution functionalized oxides. In this work, FeNi3 alloy
nanoparticles exsolved from Sr2FexNi1-xMoO6-δ double-layered perovskites were evaluated as a dry
reforming catalyst, paying special attention to structure–activity relationships. Our results indicate
that increasing the Ni content favors the nanoparticle dispersion, eventually leading to increased
CO2 and CH4 conversions. The exsolved nanoparticles presented remarkable nanoparticle size (ca.
30 nm) stability after the 10 h treatment, although the formation of some phase segregations over the
course of the reaction caused a minor decrease in the nanoparticle population. Overall, the results
presented here serve as materials processing guidelines that could find further potential use in the
design of more efficient (electro)catalysts in other fuel production or energy conversion technologies.

Keywords: exsolution; alloy nanoparticle; dry methane reforming; double-layer perovskite

1. Introduction

A myriad of chemical processes for the production of fuels, pharmaceuticals, fertilizers,
or for environmental remediation rely on the use of a metal catalyst dispersed onto oxide
supports [1]. These metallic nanoparticles represent the active sites in the heterogeneous
reactions and are conventionally deposited on oxide supports (e.g., Al2O3, ZrO2, CeO2)
using impregnation methods. However, in some chemical processes operating at high
temperatures, metal nanoparticles created by impregnation can grow due to sintering
related processes, resulting in an increase in the particle size and a decrease in the catalyst
dispersion [2], which will eventually negatively affect their catalytic activity (Figure 1). This
is, for example, the case of the dry reforming of methane (DMR) reaction (Equation (1)).

CH4 + CO2 → 2CO + 2H2 ∆Hr = 247 kJ mol−1 (1)

DMR is a promising technology for the conversion of CH4 and CO2 into syngas, which
could be further transformed into liquid fuels through Fischer–Tropsch units. However,
DMR faces two major issues related to (i) carbon depositions and (ii) metallic nanoparticle
sintering, the latter being caused by the elevated process temperatures (600-900 ◦C) [3].

In order to overcome these challenges, several alternatives have been pursued to
obtain more stable metallic catalysts and supports. One method that has attracted attention
in the past few years is nanoparticle exsolution due to the high stability that it confers
to the metallic catalyst and the strong interaction with the support [2,4–6]. Exsolution
consists of the creation of nanoparticles by the migration, under a reductive atmosphere, of
cations contained in the bulk of the oxide support that nucleate and grow in the surface.
Since the nanoparticles grow from inside, in contrast to the deposited particles, they re-
main anchored to the oxide surface, which provides high stability against sintering and
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coking (Figure 1) [7]. Most works have been focused on nanoparticle exsolution on per-
ovskites [2,4,5], although lately, exsolution has also been observed on other oxides like in
fluorite structures [8,9]. Perovskites, of the ABO3 formula (with A = La, Sr, Ca, Ba, and B, a
transition metal cation) have been widely explored as catalysts for DMR based on their high
thermal stability [10]. Therefore, it became apparent that exsolution-decorated metallic cat-
alysts based on perovskites could find a remarkable niche of application in DMR [10,11] or
other high-temperature thermocatalytic processes such as the chemical looping reforming
of methane [12–15]. To our knowledge, the first work devoted to DMR using nanoparticle
exsolution was by Zubenko et al., who developed Re–Ni–Fe alloy nanoparticles exsolved
from LaNi0.2Re0.2Fe0.6O3+δ-La3ReO8 oxide with x < 0.2, with ca. 100% CH4 and CO2
conversion at 900 ◦C [16]. One of the additional advantages of exsolution is the ability to
create alloy nanoparticles in a facile manner by just adjusting the B-site composition in the
perovskite host [16]. As illustrated by Zubenko et al., alloy exsolution can result in high cat-
alytic activity. Other works that have explored bimetallic exsolution for DMR synthesized
Fe–Ni, Co–Fe, and Co–Ni alloys exsolved from (La0.75Sr0.25)(Cr0.5Fe0.35Ni0.15)O3−δ [17],
Pr0.5Ba0.5Mn0.85Co0.15O3−δ (infiltrated with Fe) [18], Pr0.5Ba0.5Mn0.85Co0.05Ni0.1O3−δ [19],
and La(Co0.1Ni0.9)0.5Fe0.5O3 [20], respectively. The reported CO2 conversion values using
exsolved alloys range from 81% for Fe–Ni [17] to 30% for Co–Fe [18], indicating a better
DMR performance of the former. Interestingly, previous reports on bimetallic Fe–Ni cata-
lysts over La2O3 showed that this catalyst has no activity to DMR due to encapsulation
of Ni by a LaFeO3 phase [21]. Besides the work of Papargyriou et al., for DMR, several
authors have explored Fe–Ni alloy exsolution, especially for solid oxide fuel cells and
electrolyzers [22–25]. From these works, it can be noted that the double layer perovskite
family Sr2Fe1-xMoxO6 has been found to have excellent exsolution properties, in which Ni
incorporation on the B-site allows for exsolving Fe–Ni alloy nanoparticles after a reduction
in H2. Despite the promise, these oxides have not been tested for DMR yet. For this reason,
in this work, we performed a systematic analysis of the intrinsic (B-site composition) and
extrinsic factors (time and temperature) to elucidate their effect on the nanoparticle size
and dispersion, and, eventually, the structure–activity relationships in DMR.
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Figure 1. Schematic depicting the morphological evolution differences of dispersed metallic nanopar-
ticles on oxide supports when prepared by impregnation or exsolution methods.

2. Results
2.1. Understanding Fe–Ni Alloy Exsolution on Sr2FexNi1-xMoO6-δ

A series of four samples with Sr2FexNi1-xMoO6-δ composition (x = 0.35–1, see Table 1)
were synthesized via the Pechini method varying the Fe/Ni content. The X-ray patterns
depicted in Figure 2a show that all the samples exhibited the tetragonal double-layer
perovskite (ICSD 150701, space group, I4/m) as the main phase after the calcination
treatment at 1100 ◦C. However, the presence of a secondary impurity phase corresponding
to SrMoO4 was observed for the four samples, in agreement with previous reports in
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the literature [26], caused by the high concentration of Mo above the solid solubility [27].
The presence of the impurity decreased with increasing amounts of Ni from 33.4 wt%
for SFMO to 9.3 wt% for SFNM35, as analyzed by Rietveld refinement (see example
in Figure S1). The increasing presence of Ni stabilized the double-layered perovskite
due to its lower oxidation state (+2), which facilitated the presence of Mo in +6 while
maintaining charge neutrality. In order to drive the exsolution of metallic nanoparticles, the
as-synthesized perovskite powders were treated with a 5% H2 atmosphere at 900 ◦C for 2 h.
Figure 2b depicts the XRD patterns of the four samples after such treatment. It can be seen
that the amount of SrMoO4 impurities decreased after the treatment in H2, whereas for
SFNM50 and SFNM35, the appearance of minor impurities of a Ruddlesden–Popper-like
phase Sr3MoO7 was observed. Nevertheless, the double-layered perovskite phase purity
increased for the four samples upon hydrogen treatment (Table 1). For instance, SFNM65
purity increased from 83.5 to 86.7%. Importantly, after the 2 h treatment, a negligible
phase transition from the double layer perovskite structure to a Ruddlesden–Popper
could be ascertained, which was observed previously with other similar compositions
(e.g., Sr2Fe1.35Mo0.45Co0.2O6-δ) [28]. The differences between both works might arise from
the different concentration of Fe and Mo on the B-site. In order to provide more insights
on the crystallographic changes that occur upon exsolution, we conducted an in situ XRD
analysis by heating the SFNM50 sample up to 800 ◦C under a 5% H2 atmosphere. Figure 2c
shows the evolution of the (1 1 2) reflection located at ca. 32◦ (room temperature). Upon
heating in the H2 reductive atmosphere, the main reflection gradually shifted toward lower
2θ values. This behavior can be ascribed to the lattice expansion originated by the formation
of oxygen vacancies upon reduction and confirms the rise in cell volume as determined
from the ex-situ XRD analyses (Table 1). Unfortunately, we were not able to detect the
appearance of metal nanoparticles with the current setup, although, as it will be discussed
later, these conditions led to metallic nanoparticle exsolution (Figure 3). Figure 2d collects
the temperature evolution of the cell volume and lattice parameters as determined by
Rietveld refinement. Cell volume for SFNM50 increased from ca. 244 Å3 at 100 ◦C to ca.
251 Å3 at 800 ◦C. Both a- and c-axes from the tetragonal double-layer perovskite lattice
elongated upon heating up in the H2 atmosphere.

Now we turn to the morphological analyses of the materials after the exsolution
treatment. Figure 3 depicts the SEM images of the four Sr2FexNi1-xMoO6-δ samples after
2 h exposure to a 5% H2 atmosphere at 900 ◦C. As observed in the SEM images, all the
samples exhibited the presence of well-dispersed nanoparticles covering the surface of the
porous perovskite except for the sample without Ni, SFMO. Based on this fact, it seems that
the presence of Ni on the B-site boosts the metallic nanoparticle exsolution. In the literature,
there is a certain discrepancy about the possible exsolution of Fe from SFMO materials.
On one hand, Lv and coauthors stated that Sr2Fe1.5MoO6-δ was stable under reductive
environments at high temperatures without evidence of metallic Fe nanoparticle exsolu-
tion [28]. They obtained the segregation energy of Fe through DFT calculations, which was
0.91 eV, whereas that of Co was −0.64 eV. These results show that Co exsolution is more
thermodynamically favored with respect to Fe in SFMO-like double-layered perovskites.
On the other hand, Chen et al. obtained a metallic Fe exsolution from Sr2Fe1.5+xMo0.5O6-δ
(x = 0–0.1) [29]. In that work, the authors increased the concentration of Fe on the B-site to
promote the exsolution of Fe nanoparticles of about 95 nm after 3 h exsolution at 850 ◦C.
Thus, it seems that without Fe excess, as was the case of the present work, Fe exsolu-
tion will unlikely happen due to thermodynamic unfavorability, which can be altered
by compositional modifications. In the case of the three samples with the presence of
Ni on the B-site, nanoparticle exsolution was observed on the surface of the oxide. The
nanoparticles were well dispersed over the double-layered perovskite, without evidence
of preferential location for the exsolution. Regarding the size, most of the nanoparticles
presented diameters in the 20–50 nm range. A more thorough analysis of the nanoparticle
size and distribution, and its dependence with exsolution conditions will be covered in the
following sections.
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Table 1. Label, formula, and crystallographic data of the four Sr2FexNi1-xMoO6-δ samples before and after exsolution.

Label Formula As Prepared After Exsolution 2 h, 900 ◦C, 5% H2

Crystal Phase
(Space Group)

Cell Vol.
(Å3)

Phase
Purity %

Crystal Phase
(Space Group)

Cell Vol.
(Å3)

Phase
Purity %

SFMO Sr2FeMoO6-δ
Tetragonal

(I4/m) 244.2 66.6 Tetragonal
(I4/m) 244.9 69.1

SFNM65 Sr2Fe0.65Ni0.35MoO6-δ
Tetragonal

(I4/m) 244.4 83.5 Tetragonal
(I4/m) 244.6 86.7

SFNM50 Sr2Fe0.5Ni0.5MoO6-δ
Tetragonal

(I4/m) 243.9 86.6 Tetragonal
(I4/m) 244.4 90.6

SFNM35 Sr2Fe0.35Ni0.65MoO6-δ
Tetragonal

(I4/m) 243.8 90.7 Tetragonal
(I4/m) 244.5 92.2
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Figure 2. (a) XRD diffractograms of the Sr2FexNi1-xMoO6-δ materials as-synthesized (calcination at 1100 ◦C in air). (b) XRD
diffractograms of the Sr2FexNi1-xMoO6-δ materials after the exsolution treatment (5% H2, 900 ◦C, 2 h). (c) In situ XRD
experiment performed to SFNM50, heating up to 800 ◦C under 5% H2. The selected zone depicts the most intense reflection
of the tetragonal double layer perovskite. (d) Tetragonal lattice parameters (a,c) and lattice volume variation extracted from
the in situ XRD tests for the SFNM50 sample. The schematic inside the figure depicts the tetragonal double layer perovskite
crystalline structure (green, red, purple, and brown spheres are Sr, O, Mo, and Fe/Ni atoms, respectively).

Next, we analyzed SFNM65 samples with TEM in order to better understand the
nature of the exsolved nanoparticles. Figure 4a shows the HRTEM images of the SFNM65
sample after 2 h exsolution under 5% H2 at 900 ◦C. The presence of exsolved nanoparticles
of about 20 nm size were observed, which were partly submerged into the perovskite
backbone. This characteristic anchoring, typical of nanoparticle exsolution, avoids sintering
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with neighboring particles due to the high degree of attachment of the nanoparticles
to the oxide surface. Figure 4b–f shows the HAADF-STEM image and EDX mapping
of the five elements that compose the double-layer perovskite. These images provide
important insights on the composition of the exsolved nanoparticles. As can be seen in the
EDX mapping in Figure 4c,d, the nanoparticles were composed of both Ni and Fe, thus
the reductive treatment performed in this work resulted in the exsolution of the Ni–Fe
alloy nanoparticles from Sr2FexNi1-xMoO6-δ materials while maintaining the double-layer
perovskite structure. As observed in Figure 4c–g, the presence of the initial five elements
that composed the perovskite was detected in the backbone, whereas only Fe and Ni
were observed in the exsolved nanoparticles. Fe–Ni alloy exsolution has been previously
reported in Sr–Fe–Mo based perovskites [22,30–32], titanates [25], and chromites [17,33].
In most of these cases, the composition of the exsolved alloy was FeNi3. For instance, in
the work of Du et al., they obtained FeNi3 exsolution from Sr2FeMo0.65Ni0.35O6−δ after
10 h of treatment in pure H2 [22]. Increased exposure times and higher H2 concentrations,
as performed by Du et al. compared to our work, commonly resulted in larger particle
sizes [34,35]. Formation of larger particles could eventually ease their detection by XRD,
and, thus the identification of the actual alloy composition of the exsolved nanoparticles.
For that reason, we performed a 20 h exsolution treatment at 900 ◦C in a 5% H2 atmosphere.
Figure 5a depicts a comparison of the XRD patterns for SFNM65 as-synthesized, and
after 2 and 20 h exsolution. The exsolution time increase lead to several changes in the
crystal structure of the SFNM65 material. First, the impurities of SrMoO4 disappeared.
Second, there was a remarkable phase transformation, resulting in the formation of a
Ruddlesden–Popper phase Sr3FeMoO7 (ICSD 152243). This result is in line with previous
reports by Du et al. (FeNi3 exsolution from Sr2FeMo0.65Ni0.35O6−δ) [22] and Lv et al. (CoFe
exsolution on Sr2(Fe1.35Mo0.45Co0.2)1-zO6−δ) [28], in which the Ruddlesden–Popper phase
appeared after 10 h and 4 h treatment, respectively. Third, the presence of a Fe–Ni alloy
with composition FeNi3 (cubic, ICSD 5116, space group, Pm-3m) was detected, with the
main reflections appearing at 2θ = 44.0 and 51.3◦. For the sake of comparison, the main
XRD reflections of Fe and Ni metal are plotted in Figure 5a, which did not correspond
to any of the peaks present in the SFNM65 material after 20 h exsolution treatment. The
detection of the alloy phase was possible by the larger particle size obtained after using
a more prolonged treatment (20 h instead of 2 h). As observed in Figure 5b, the longer
exsolution treatment time resulted in larger nanoparticles, with a particle size of 65 nm,
although particles as large as 110 nm were also observed, which facilitated the detection of
the exsolved alloy phase by XRD. Although the goal of this treatment was to determine
the composition of the exsolved alloy nanoparticles, it also provided information about
the effects of prolonged exsolution treatment on the particle size, and eventually on the
perovskite backbone stability. Here, it is shown that the particle size can be modified by
exposing the materials to more prolonged times, however, it results in larger particles, and,
especially, in a phase transition of the perovskite backbone, which might have detrimental
effects on the catalytic activity. Our results, however, are in contrast with Wang et al., who
did not observe particle size enlargement when increasing the treatment time from 3 to 40 h
in humidified H2 at 800 ◦C using Sr2Fe1.3Ni0.2Mo0.5O6-δ sintered bars (exsolution of 26 nm
Fe–Ni alloys) [23]. Probable causes from the discrepancies of both works can arise from
differences in the materials’ composition and processing. The use of dense sintered bars
could affect the mechanism of nanoparticle growth, since it has been shown that smaller
grain sizes could favor the exsolution extent [36].
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An alternative way to tune the particle size in exsolution is with temperature [12,34,35,38].
In order to explore this aspect, we treated the double layer perovskite materials at 700
and 800 ◦C and compared them with the original exsolution temperature, 900 ◦C. As
observed in Figure 6a, there were remarkable differences on the exsolved nanoparticle
sizes when lowering the temperature. Namely, the exsolved nanoparticle sizes (d50) were
15.6 ± 4.6, 24.4 ± 5.4, and 31.0 ± 8.4 nm at 600, 700, and 900 ◦C, respectively. The
monotonic increase in the particle size with temperature observed in this work was in
line with previous reports that indicate, based on the nucleation theory, that increasing
the temperature particularly affects the particle growth [12]. It can also be observed that
lowering the temperature (700 ◦C) resulted in a more uniform particle size distribution,
whereas at 900 ◦C, the distribution was much wider (Figure 6b). On the other hand, we
did not observe a clear trend when analyzing the effect of temperature in the exsolved
particle population (Figure 6c). The treatment at 700 ◦C resulted in a particle population of
84 µm−2, which decreased at 800 ◦C (59 µm−2) and reached a maximum value at 900 ◦C
(88 µm−2). In other perovskite oxide systems, especially the widely studied Ni exsolution
on titanates, the increase in temperature leads to an increase in particle size and a decrease
in nanoparticle dispersion [12,34]. Interestingly, in the Sr2FexNi1-xMoO6-δ system studied
here, the standard treatment performed initially (900 ◦C, 2 h) led to the highest degree of
nanoparticle dispersion (also observed in SFNM35 and SFNM65, Figure 3).
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In summary, throughout this section, the effect that extrinsic (temperature, time) and in-
trinsic (B-site composition) factors have on the nanoparticle exsolution in Sr2FexNi1-xMoO6-δ
double-layer perovskites was studied. We confirmed nanoparticle exsolution of an alloy
composition of FeNi3. Additionally, in the absence of Ni (i.e., SFMO sample), metallic
exsolution was not observed. Increasing exsolution time and temperature led to larger
particles, and, in the case of the former, also to a major phase transformation into a
Ruddlesden–Popper phase.

2.2. Dry Reforming Tests on Fe–Ni Alloy Exsolved Nanoparticles

In the previous section, we showed that by appropriately selecting the reductive
treatment conditions, it is possible to tune the exsolved nanoparticle size and dispersion.
Regarding the time, the shortest treatment of 2 h led to the optimum results in terms of
particle size and perovskite-backbone stability. In the case of temperature, the smallest
particles were obtained at 700 ◦C (ca. 15 nm), whereas the highest dispersion was observed
at 900 ◦C (87 µm−2, d50 ~ 31 nm). Although materials with smaller nanoparticles will be
ideally preferred for the catalysis, the reaction process temperature adds some restrictions
to the exsolution temperature. Even if exsolution is known to alleviate particle sintering, it
is not advisable to perform nanoparticle exsolution at temperatures lower than the reaction
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temperature, since the particles could eventually grow, even if anchored, during the reac-
tion, resulting in variations in the catalytic activity. For the catalytic test, the temperature of
choice was 850 ◦C, since it is the optimal temperature for dry reforming of methane [3]. Due
to the endothermic nature of the reaction, lowering the process temperature will decrease
the equilibrium conversion [8]. Thus, the materials used for the dry reforming test were
treated at 900 ◦C for 2 h in a 5% H2 atmosphere in order to drive the exsolution (Figure 3).

The dry reforming catalytic tests were performed in a fixed bed quartz reactor. The
exsolution-treated samples were heated in an Ar atmosphere up to 850 ◦C, the temperature
at which the dry reforming reaction was performed for 10 h. The main goals of these
catalytic tests were two-fold. First, to evaluate the catalytic activity of the four synthesized
samples to ascertain the possible structure–activity relationships derived from the different
compositions of the B-site sublattice (i.e., different Fe/Ni ratios). Second, to determine the
stability of the exsolved nanoparticles after 10 h under dry reforming conditions at 850 ◦C.
Here, we would like to note that our experiments were carried out with dilute streams of
CH4 and CO2 to facilitate the screening of our materials. Ideally, pure streams of CH4 and
CO2 will be used in industrial operation.

Figure 7a,b show the CO2 and CH4 conversion (XCO2 and XCH4) versus time for the
four samples, respectively. Regarding the XCO2, it can be observed that, overall, for the
four samples, it was stable during the 10 h test excluding the first injection. From the
four samples tested, SFNM50 showed the highest decay in XCO2 going from 72% (second
injection) to ca. 70% (10 h). For SFMO and SFM35, the CO2 conversion slightly increased
during the first 2 h of reaction. SFNM35 and SFNM50 showed the highest CO2 conversion
values, which progressively decay with lowering the Ni content. In Figure 7c, the XCO2
after 10 h is shown and plotted versus the Ni content. The XCO2 values with decreasing
Ni content in Sr2FexNi1-xMoO6-δ were 72, 70, 64, and 45% for x = 0.65, 0.5, 0.35, and 0,
respectively. A similar trend was observed for the CH4 conversion in Figure 7b, although
the overall conversion values were lower than for CO2. After 10 h, the XCH4 values with
decreasing Ni content were 47, 43, 37, and 26% for x = 0.65, 0.5, 0.35, and 0, respectively.
In terms of stability, the SFNM50 exhibited a progressive decay on its XCH4 values, which
limits its further applicability, which went from 52 to 43% in 10 h on stream. For all the
samples tested, CO2 conversion was higher than CH4 conversion. This fact resulted in
H2/CO ratios below the stoichiometric value (Figure 7c), which according to Equation
(1), should be equal to 1. This is caused by the competing reverse water-gas shift reaction
(Equation (2)). Regarding the H2/CO ratios, the trends are analogous to the CO2 and
CH4 conversion, being the highest value achieved (H2/CO = 0.49) for the sample with the
highest Ni content, SNM35 (Figure 7c). H2 (SH2) and CO selectivity (SCO) are depicted in
Figure S2 (Supplementary Materials). The values, taken at the end of the reaction, show
that both parameters increase with increasing Ni content. Namely, SFMO showed ca. 20%
selectivity toward CO production, whereas for SFNM35 (the highest Ni content), SCO was
around 52%. As expected from the H2/CO ratios lower than 1, SCO values were higher
than SH2. For instance, H2 selectivity for SFNM35 was ca. 32%.

H2 + CO2 ↔ CO + H2O (2)

To check the stability of the exsolved nanoparticles, the four samples were analyzed
by SEM after the 10 h dry reforming reaction test (Figure 8a). It can be observed that
the three samples that presented nanoparticle exsolution before the reaction (those with
Ni on B-site) also exhibited exsolved nanoparticles after the 10 h of the dry reforming
test at 850 ◦C. Through image analyses of the materials after the reaction, we observed
that the particle size values were in the range of the values obtained before the reaction.
This result emphasizes the robustness of nanoparticles created by the exsolution method.
For instance, the SFNM50 material showed exsolved nanoparticles of ~31 nm before
(Figure 6c) and after the reaction (Figure 7c), maintaining the initial values. SFNM35
and SFNM65 presented nanoparticle sizes of ~29 and 26 nm after the reaction, which
in both cases were lower than SFNM50. The exsolved nanoparticle dispersion after the
reaction is shown in Figure 7c. The observed trend indicates that the amount of exsolved
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nanoparticles increased with the Ni content. Namely, the nanoparticle population was
51, 70, and 85 µm−2 for SFNM65, SFNM50, and SFNM35, respectively. Interestingly,
SFNM50 showed a nanoparticle population of 88 µm−2 before the reaction (Figure 6c),
which decreased to 70 µm−2 after the reaction. This decay on the nanoparticle dispersion
correlates well with the decay in the catalytic activity by SFNM50, especially observed for
the CH4 conversion (Figure 7b). In addition, the SFNM50 image after the reaction depicted
in Figure 8 revealed the appearance of a major phase segregation that was not observed
before the reaction (Figure 3). The formation of this additional phase (characterized by its
darker color) could be the responsible for the decay on the nanoparticle population after
reaction. As observed in the SEM image (Figure 8), this segregated phase did not exhibit
nanoparticle exsolution. XRD was utilized to confirm the nature of this phase. Figure 8b
shows the XRD patterns of the four samples after the dry reforming reaction tests. The
main impurity corresponds to SrMoO4, which was present on the as-synthesized materials
(Figure 2a), disappeared after the exsolution treatment (Figure 2b), and regenerated during
the 10 h dry reforming test. In addition, we identified the presence of SrCO3 signatures at
2θ = 25–26◦ (Figure 8b) as a consequence of the reaction of Sr2+ with the CO2 used for the
dry reforming tests. Carbonation of A-site cations in perovskites (e.g., Sr, Ca, Ba) is known
to be a major issue in several CO2 valorization processes [39,40], although for most of the
samples, its presence was negligible. The material that was more affected by Sr carbonation
was SFNM50. The concentration of impurity phases after the reaction was determined
by Rietveld refinement, indicating a 7.9% of SrCO3 in SFNM50 material after the reaction.
Furthermore, it showed 51.6% of SrMoO4, making SFNM50 the sample in which the double
perovskite phase, which supports the exsolved nanoparticles, was more degraded after
the dry reforming test. This fact had strong implications on the exsolved nanoparticle
dispersion, since SrMoO4 and SrCO3 were not expected to allocate Ni and/or Fe cations in
their crystal lattices, thus, limiting the amount of available surface with the presence of alloy
nanoparticles. In particular, the exsolved nanoparticle dispersion of SFNM50 decreased
from 88 particles µm−2 (Figure 6c) to 70 particles µm−2 (Figure 7c). The combination of both
facts, the appearance of the SrMoO4 segregated phase and the decrease in the nanoparticle
dispersion, might be responsible for the progressive decay in the SFNM50 CH4 conversion
observed in Figure 7b. In the case of SFNM35, such decay was more attenuated, which
could correlate well with a lower amount of detected phase segregation after reaction.
Namely, SFNM35 exhibited 3.9% and 44.3% for the SrCO3 and SrMoO4 impurity phases,
respectively. Interestingly, samples SFMO and SFM65, which exhibited lower CH4 and CO2
conversion values, presented minor contributions of the phase segregation after the reaction.
For instance, SFMO showed a negligible presence of SrCO3 (0.1%) and 27.8% of SrMoO4,
with the latter in the concentration range detected before the reaction (Table 1). Next,
we conducted Raman spectroscopy to analyze the possible formation of carbon deposits
during the 10 h reaction test. Figure 8c shows the Raman spectra of the four samples after
the reaction, depicting the 1000–2500 cm−1 wavenumber region, in which modes related
to carbon species are expected to appear. Namely, the D and G bands were located at
1368 and 1560 cm−1, respectively [41]. Only a minor contribution of the mode at around
1560 cm−1 (ascribed to the G band) was observed for the samples SFNM50 and SFNM65,
whereas no modes related to carbon deposition were observed for SFNM35, confirming the
high resistance to coking obtained with the exsolution method [7]. With these postmortem
analyses, we can conclude that the morphological changes suffered by the materials were
mostly related with phase segregations occurring in the host perovskite matrix, whereas the
exsolved nanoparticles exhibited high stability, which were responsible for an increase in
the catalytic activity. It was observed that a higher Ni/Fe ratio favors a higher population
of FeNi3 nanoparticles, ascribed to the thermodynamically favorability for Ni cations to
exsolve over Fe cations, resulting in these Ni rich metallic alloys. Nonetheless, even if the
nanoparticles retain its initial particle size and level of anchoring, the presence of phase
segregations alter the nanoparticle population if, as was the case here, the segregations do
not allocate exsolved nanoparticles. This fact caused a decrease in the CH4 conversion for
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the SFM50 sample (Figure 7b), which is the material that presented the highest presence of
phase impurities (SrCO3 and SrMoO4) after the reaction (Figure 8b). Eventually, this issue
could be tackled by designing perovskite compositions with A-site deficiency and with a
higher Fe(Ni)/Mo ratio on the B-site. In this case, A-site deficiency could favor a higher
extent of nanoparticle exsolution.
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3. Conclusions

In this work, we investigated the influence that extrinsic (time, temperature) and intrin-
sic (B-site composition) factors had on the exsolution of Fe–Ni alloys in Sr2FexNi1-xMoO6-δ
double-layer perovskite materials, and eventually, to its catalytic activity in the dry reform-
ing of methane. Our results indicate that a higher Ni content facilitates the exsolution,
illustrated by higher values of nanoparticle population for Ni-rich compositions and the
absence of nanoparticle exsolution on the Sr2FeMoO6 sample. These results connect well
with literature reports that indicate that Ni has more favorable thermodynamics to exsolve
than Fe. This fact might be the reason behind obtaining a Ni-rich alloy composition (FeNi3)
after exsolution, as observed by EDX and XRD. The evaluation of the extrinsic factors
pointed to larger nanoparticles with increasing temperature and time, and in the latter case,
to a crystallographic phase transition in which a Ruddlesden–Popper phase is predominant.
Dry reforming tests indicate that increasing Ni/Fe ratio in the B-site favored both CO2
and CH4 conversion, which was ascribed to a higher nanoparticle population obtained
with higher Ni content. The nanoparticle size (ca. 30 nm) was remarkably stable after the
10 h dry reforming reaction, corroborating the benefits of exsolution in high temperature
thermochemical processes. In addition, Raman spectroscopy illustrated the low tendency
to form carbon depositions. However, oxide and carbonate segregations, observed after
the catalytic test, caused a decrease in nanoparticle population that especially affected the
CH4 conversion in the Fe/Ni = 1 sample. The results presented here illustrate the potential
of double-layered perovskites as host for alloy nanoparticle exsolution and its potential
use in high temperature thermocatalytic fuel production. Optimization of the perovskite
host to avoid phase segregations via A-site deficiency or B-site doping could eventually
increase the nanoparticle dispersion and catalytic activity for the dry reforming of methane
or other energy related high temperature chemical processes.

4. Materials and Methods
4.1. Materials Synthesis

Sr2FexNi1-xMoO6-δ materials with x = 0.35–1 were synthesized through a modified ver-
sion of the Pechini method. Metal precursors, Sr(NO3)2, 99%, Sigma Aldrich (St. Louis, MO,
USA); Fe(NO3)3·9H2O (98%, Sigma Aldrich); H24Mo7N6O24·4H2O (98%, Sigma Aldrich);
and Ni(NO3)2·6H2O (98%, Sigma Aldrich) were dissolved in deionized water and mixed
with citric acid, CA (99%, Sigma Aldrich-Merck) at 60 ◦C under constant stirring during
3 h, using a metal precursor:CA molar ratio of 1:1.5 Afterward, ethylene glycol, EG, (99%,
Sigma Aldrich-Merck) was added to the mixture and the temperature was increased to
80 ◦C for 2 h, with a CA:EG ratio of 2/3 wt%. After most of the solution was evaporated,
it was transferred to a drying oven and heated at 220 ◦C overnight, a process in which
gelification and calcination of the gel took place. Then, the dry powders were ground
into fine powders with an agate mortar and calcined at 1100 ◦C for 10 h to obtain the
double-perovskite phase. Nanoparticle exsolution was carried out in a horizontal tubular
furnace at 900 ◦C for 2 h under a 5% H2/Ar flow, unless otherwise specified in the text.

4.2. Physicochemical Characterization

X-ray diffractometry (XRD) was performed utilizing a PANalytical CubiX fast diffrac-
tometer(Almelo, The Netherlands)using CuKα1,2 radiation and a X′Celerator detector in
Bragg–Brentano geometry. XRD patterns were recorded in the 2θ range 20◦ to 70◦ and
analyzed using the software X′Pert Highscore Plus (Almelo, The Netherlands). In-situ
XRD tests were carried out in an Anton Paar XRK-900 reaction chamber attached to the
diffractometer. Raman spectroscopy was performed with a Renishaw Raman spectrometer
(New Mills, UK). Analyses were conducted at room temperature with a 514 nm laser
equipped with an Olympus microscope and a CCD detector.

The morphology of the synthesized oxides was analyzed via scanning electron mi-
croscopy (SEM) with a GeminiSEM 500 from Zeiss (Oberkochen, Germany) and trans-
mission electron microscopy (TEM) with a JEM 2100F (JEOL Ltd., Tokyo, Japan) 200 kV
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field emission microscope equipped with a Gatan OneView camera. Energy dispersive
X-ray spectroscopy elemental point scan analyses were conducted on a EDS X-Max 80 de
Oxford Instruments (High Wycombe, UK), with a 127 eV resolution. Nanoparticle size and
distribution were obtained through image analyses using ImageJ software (Version 1.53j,
NIH, USA) [42].

4.3. Dry Reforming of Methane Reaction Tests

Dry reforming of methane was carried out in a fixed-bed reactor setup. The reactor
consisted of a quartz tube of a 1

2 inch inner diameter placed inside a tubular vertical
electrical furnace. The oxide samples (0.25 g) were placed over a quartz frit located at
half of the quartz tube (total length 41 cm). Temperature was controlled with a K-type
thermocouple in contact with the oxide bed and covered by a quartz shield. For the reaction
tests, the materials were pressed into pellets, crushed, and sieved in 200–400 µm sieves. In a
typical experiment, the temperature was raised to 850 ◦C under an Ar (Praxair) atmosphere
(100 mL min−1). Then, CH4 and CO2 were injected with a total flow of 100 mL min−1, with
a volume fraction CH4:CO2:Ar ratio of 5:5:90 and a hourly space velocity of 24 L g−1 h−1.
The gas bottles were of 10% CH4 balanced in Ar and 15% CO2 balanced in Ar. Gas
outlet was analyzed by using a Micro-GC CP-4900 (Varian, Santa Clara, CA, USA) gas
chromatograph equipped with Molsieve5A and PoraPlot-Q glass capillary modules. CH4
(XCH4) and CO2 (XCO2) conversion and CO (SCO) and H2 (SH2) selectivity were determined
according to the following equations:

XCH4 =
nCH4, in − nCH4, out

nCH4, in

·100 (3)

XCO2 =
nCO2, in − nCO2, out

nCO2, in

·100 (4)

SCO =
nCO(

nCO2, in − nCO2, out

)
+

(
nCH4, in − nCH4, out

) ·100 (5)

SH2 =
nH2

2·
(

nCH4, in − nCH4, out

) ·100 (6)

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11060741/s1, Figure S1: Rietveld refinement exemplified for Sr2Fe0.5Ni0.5MoO6-δ material
as synthesized (calcination at 1100 ◦C in air). Due to Ni doping on B-site there is a shift from the
observed data to the reference taken for the double perovskite, Sr2FeMoO6, Figure: S2. CO (SCO) and
H2 selectivity (SH2) for the four materials, measured at 10 h on stream. (T = 850 ◦C).
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