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a b s t r a c t

This paper investigates the robust stabilization of discrete-time systems with time-varying input delays
and model uncertainties by predictor-based anti-disturbance output-feedback control strategies. Here,
a novel predictor-feedback control combined with an extended state observer is proposed. The objec-
tive is to counteract the negative effects of input delays while actively rejecting disturbance signals
typically encountered in engineering practice, such as steps or harmonics. Differently from previous
approaches, unknown but bounded time-varying delays are taken into consideration. Moreover, the
complexity of the algorithm for control synthesis is notably reduced. Finally, an illustrative example
from the literature is provided to show that better robust performance can be achieved with the
proposed method.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Time delays may degrade the control system or even jeopar-
ize the stability if they are not taken into account in control
ynthesis (Fridman, 2014; Sipahi, Niculescu, Abdallah, Michiels,
Gu, 2011). The research of advanced control strategies with the
bjective to counteract the negative effect of time delays in the
ontrol loop has therefore received much attention in the last
ecades. Most of these methods are extensions of the classical
mith Predictor (Smith, 1959) and the Finite Spectrum Assign-
ent (FSA) (Manitius & Olbrot, 1979). The Smith predictor takes
dvantage of prior knowledge of the plant model to remove the
elayed components of the closed-loop dynamics using Internal
odel Control approach, while predictor-feedback or FSA control

ncorporates in the control scheme a future prediction of the
ystem state by the Artstein’s reduction method (Artstein, 1982).
hese control strategies, known as delay compensation methods,
llow designing the controller parameters using an equivalent
elay-free model.
To overcome the difficulties in the implementation due to

he infinite-dimensional nature of the FSA (Mondié & Michiels,
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2003; Zhong, 2004), some adaptations were further developed.
For instance, a truncated predictor feedback control was provided
in Wei and Lin (2016), Yoon and Lin (2013), Zhou, Lin, and Duan
(2012) and Zhou (2014) by ignoring the infinite-dimensional term
in the control scheme. Other finite-dimensional delay compensa-
tion strategy was proposed in Besancon, Georges, and Benayache
(2007) by modifying the classical Luenberger observer with the
objective to obtain a future prediction of the state variable for
systems with small input delays. This idea was extended in Najafi,
Hosseinnia, Sheikholeslam, and Karimadini (2013) to cope with
larger delays by using the cascade observer structure initiated
in Germani, Manes, and Pepe (2002) by means of sequential
sub-predictors (SSP), and further extended, among other works,
to linear time-varying systems (Mazenc & Malisoff, 2017) and
systems with input, state and output delays (Cacace & Germani,
2017).

Disturbance rejection has also been a major concern for con-
trol system design and performance optimization in many in-
dustrial applications (Liu & Gao, 2011). The reliability of the
future prediction of the system state strongly depends on the
accuracy of the system model. Therefore, predictor-feedback may
lose effectiveness under model uncertainties and external distur-
bances (Karafyllis & Krstic, 2013a, 2013b; Li, Zhou, & Lin, 2014).
A complete steady-state rejection for constant load disturbances
of unknown amplitude and better attenuation for time-varying
disturbances in the presence of delays were achieved by introduc-
ing disturbance information in the prediction scheme (Léchappé,
Moulay, Plestan, Glumineau, & Chriette, 2015; Santos & Franklin,

2018) and by means a disturbance observer in Furtat, Fridman,

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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nd Fradkov (2017) and Sanz, García, and Albertos (2016) un-
er the assumption of fully measurable plant state. Further ex-
ensions to output feedback were addressed via extended state
bserver in Sanz, Garcia, Fridman, and Albertos (2018).
For discrete-time systems, a disturbance rejection design was

roposed by means of a extended state observer in Hao, Liu,
nd Zhou (2017), but no model uncertainties were considered.
he presence of time-varying model mismatches for linear per-
urbed systems with input delays was considered in Liu, Hao,
i, Chen, and Wang (2017) by classical discrete-time predictor
nd in Hao, Liu, and Zhou (2019) by combining discrete-time
SP with ESO, where the control synthesis was addressed via
MI and Cone-Complementarity Linearization (CCL) approaches.
evertheless, the proposed method (Hao et al., 2019) is restricted
o time-constant delays.

In this work, a novel output predictor-feedback anti-
isturbance control synthesis method is proposed for discrete-
ime systems. To this end, an iterative algorithm based on LMIs
nd CCL has been provided with the following improvements
ith respect to Hao et al. (2019): (i) The complexity of the control
ynthesis algorithm is independent of the size of delays, (ii) the
roposed method can deal with time-varying delays and mis-
atched disturbances, and (iii) given any time-constant delay, a

easible solution for some controller and observer gains designed
y standard procedures is guaranteed for the first CCL iteration.
The rest of the paper is organized as follows. The problem

ormulation and preliminaries are given in Section 2. The pro-
osed strategy is presented in Section 3. The robust stability
nalysis and the controller design are tackled in Sections 4 and
respectively. Simulation results are provided in Section 6 and,

inally, concluding remarks are drawn in Section 7.

. Problem statement and preliminaries

Consider the following discrete-time uncertain system with
nknown but bounded time-varying input delay h1 ≤ dk ≤ h2
escribed by

k+1 =
(
A +∆A,k

)
xk +

(
B +∆B,k

)
uk−dk (1)

+
(
F +∆F ,k

)
fk, yk = Cxk

0 = θ, uκ = φu(κ), κ = −h2, . . . ,−1.

here xk ∈ Rn is the system state, uk ∈ Rm is the control input,
k ∈ Rl represents an unmeasurable disturbance signal, yk ∈ Rp

s the controlled output, h1, h2 > 0 are known delay bounds, and
, B, F , C are time-constant matrices of appropriate dimensions.
he function φu(.) : N → Rm and θ ∈ Rn represents the initial
onditions for the control input uk and system state xk.
Time-varying model uncertainties are described as norm-

ounded form as (Han & Gu, 2001):(
∆A,k,∆B,k,∆F ,k

)
= λE∆k (HA,HB,HF ) (2)

here λ ≥ 0 is a scalar that determines the size of uncertain-
ies, ∆k ∈ Rl1×l2 is an unknown time-varying matrix satisfying
T
k∆k ≤ I,∀k ≥ 0, and E,HA,HB,HF are time-constant matrices.
The objective is to design an output predictor-feedback control

k such that: (i) the closed-loop system (1) is robustly expo-
entially stable and (ii), the effect of the disturbance input fk is
inimized in the controlled output yk to the greatest extent with
complete steady state rejection for some type of disturbances.
he disturbance fk can be modelled by the following exogenous
ystem (Hao et al., 2019):

k+1 = Λξk + Mδk, (3)

k = Nξk
2

here the initial condition ξ0 is assumed to be unknown, and
atrices Λ ∈ Rr×r , M ∈ Rr×rδ , N ∈ Rl×r determine the specific

ype of disturbance to be steady-state rejected in the controlled
utput yk. Denoting ρsr (.) the spectral radius of a given matrix, we
ssume that ρsr (Λ) ≤ 1, which implies that ξk is bounded ∀k ≥ 0.
he input δk ∈ Rrδ represents an unknown and unmeasurable
xternal disturbance signal, assumed to be energy-bounded and
elong to l2[0,+∞).

ssumption 1. The pair (A, B) is stabilizable and the pair (A, C)

s detectable, where A =

[
A FN
0 Λ

]
and C =

[
C 0l×r

]
.

emma 1 (Seuret, Gouaisbaut, & Fridman, 2015). Given a symmetric
ositive definite matrix Z and a time-constant delay h > 0, any
equence of discrete-time variables denoted by uk, k = 0, 1, 2, . . .,
he following inequality holds:

h
k−1∑

i=k−h

ρT
i Zρi ≤ −

[
νT1,k νT2,k

] [
Z 0
0 3αhZ

][
ν1,k
ν2,k

]
here ρi = ui+1 − ui, ν1,k = uk − uk−h, ν2,k = uk + uk−h −

2
h+1

∑h
i=0 uk−i and αh =

{ h−1
h+1 if h > 1
1 if h = 1

.

Lemma 2. Given any arbitrary discrete-time signal uk ∈ Rm and
time-varying delay dk satisfying h1 ≤ dk ≤ h2, define

ωk =
2
τ

(
uk−dk −

1
2

(
uk−h1 + uk−h2

))
, (4)

where τ = h2 − h1. Then, the time-varying operator Dh,k : u → ω :

Rm
→ Rm renders ωk =

1
τ

∑k−h1−1
i=k−h2

φd(i)ρi, where ρi = ui+1 − ui
and

φd(i) =

{
1 if i < k − dk − 1,
−1 otherwise,

Moreover, Dh,k satisfies ∥WDh,kW−1
∥∞ ≤ 1 for any invertible

matrix W ∈ Rm, where ∥.∥∞ represents the largest L2 induced norm
of a general operator.

Proof. The proof can be obtained by a straightforward adaptation
of a similar result given in Li and Gao (2011, Lemma 2).

3. Proposed observer–predictor control scheme

This section is divided in two subsections: the first presents
the proposed predictor-feedback control with an extended state
observer, and the second obtains the equivalent closed-loop
state-space model given in (14) based on a modified Artstein’s
state transformation to deal with time-varying delays.

3.1. Proposed control scheme

Consider the following predictor-feedback control scheme in-
tegrated by two components: the first one with K corresponds to
the predictor-feedback delay compensation control, and the sec-
ond one with Kd allows the steady-state rejection of the identified
disturbance components:

uk = K
(
Ah2 x̂k + AτΦ1,k +Φ2,k

)
+ Kdξ̂k (5)

where τ = h2 − h1, and

Φ1,k ≡
1
2

h1−1∑
Ah1−i−1B

(
uk−h1+i + uk−h2+i

)
, (6)
i=0
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2,k ≡
1
2

τ−1∑
i=0

Aτ−i−1Buk−τ+i

being K ∈ Rm×n and Kd ∈ Rm×r controller gains whose design
s later discussed. x̂k ∈ Rn, ξ̂k ∈ Rr in (5) are respectively the
bserver state and disturbance estimation defined below in (7)
btained from the available output system yk by the following
SO:⎧⎪⎪⎨⎪⎪⎩
x̂k+1 = Ax̂k +

1
2Buk−h1 +

1
2Buk−h2 + FN ξ̂k

+L
(
yk − Cx̂k

)
ξ̂k+1 = Λξ̂k + Lξ

(
yk − Cx̂k

)
,

(7)

where Λ and N are defined in (3). The observer gains L ∈ Rn×l,
Lξ ∈ Rr×l must be designed to guarantee that limk→∞ xk − x̂k = 0
and limk→∞ ξk − ξ̂k = 0.

3.2. Equivalent closed-loop representation

First, applying (2), (3) and the definition of ωk in (4), let us
reformulate system (1) as:

xk+1 = Axk +
1
2
Buk−h1 +

1
2
Buk−h2 +

τ

2
Bωk+

λEw∆,k + FNξk (8)

where ωk is defined in (4), and w∆,k := ∆ky∆,k with

∆,k = HAxk +
1
2

2∑
g=1

HBuk−hg +
τ

2
HBωk + HFNξk (9)

Let us propose the following new state transformation based on
the Artstein’s reduction method adapted for time-varying delays,
where two delayed components for the lower and upper delay
bounds h1, h2 are considered:

x(a)k = Ah2xk + AτΦ1,k +Φ2,k (10)

with Φ1,k, Φ2,k defined in (6). The one-step ahead of x(a)k defined
in (10) renders x(a)k+1 = Ah2xk+1+AτΦ1,k+1+Φ2,k+1. Replacing xk+1
from (8) into the latter expression yields:

x(a)k+1 = Ax(a)k + Aτ
(
Φ1,k+1 − AΦ1,k

)
+

(
Φ2,k+1 − AΦ2,k

)
+

1
2
Ah2Buk−h1 +

1
2
Ah2Buk−h2 +

τ

2
Ah2Bωk (11)

+ λAh2Ew∆,k + Ah2FNξk

Taking into account that Φ1,k+1 − AΦ1,k =
1
2B

(
uk + uk−τ

)
−

1
2A

h1B
(
uk−h1 + uk−h2

)
, Φ2,k+1 − AΦ2,k =

1
2Buk −

1
2A

τBuk−τ and
he state transformation (10), we obtain from (11) an equivalent
nterconnected model for system (1) as:
(a)
k+1 = Ax(a)k + Bτuk +

τ

2
Ah2Bωk (12)

+ λAh2Ew∆,k + Ah2FNξk

where Bτ =
1
2

(
Aτ + I

)
B.

Let ek = xk − x̂k and ξ̃k = ξk − ξ̂k be the observer errors. Then,
(5) with (10) leads to uk = Kx(a)k − KAh2ek + Kd

(
ξk − ξ̃k

)
, and the

closed-loop system (12) can be written as:

x(a)k+1 = (A + BK )x(a)k − BτKAh2ek − BτKdξ̃k (13)

+
τ

2
Ah2Bωk + λAh2Ew∆,k +

(
BτKd + Ah2FN

)
ξk

Given that ξk in (3) is bounded, the last term with ξk in (13)
has been neglected in the subsequent stability analysis. Hence,
3

the closed-loop system model with x̄k =

[(
x(a)k

)T
, eTk , ξ̃ Tk

]T

is

obtained from (3), (5), (7), (8) and (13) as:

x̄k+1 =
(
Ā + B̄τ K̄

)
x̄k +

τ

2
B̄ωk + λĒw∆,k + M̄δk (14)

where

Ā =

[A 0 0
0 A − LC FN
0 −LξC Λ

]
, K̄ =

[
K −KAh2 −Kd

]
,

¯
τ =

[Bτ
0
0

]
, B̄ =

⎡⎣Ah2B
B
0

⎤⎦ , Ē =

⎡⎣Ah2E
E
0

⎤⎦ , M̄ =

[ 0
0
M

]
eing w∆,k, ωk interconnected inputs w∆,k = ∆ky∆,k and ωk =

h,kρk with ρk = uk+1 − uk and the time-varying operator Dh,k
efined in Lemma 2.

orollary 1. In the absence of time-varying uncertainties, i.e., τ =

, λ = 0, the closed-loop system (14) is exponentially stable with
decay rate β regardless of Kd if there exists K and L =

[
LT LTξ

]T
uch that A + BK and A − LC satisfy β = max (ρsr (A + BK ),
ρsr (A − LC)), where A, C are defined in Assumption 1.

roof. Let τ = 0 and λ = 0, Then, system (14) renders
elay free. i.e., x̄k+1 =

(
Ā + B̄τ K̄

)
x̄k + M̄δk. The rest of the proof

an easily be inferred noting that Bτ = B (τ = 0) and the

riangular form of
(
Ā + B̄τ K̄

)
=

[
A + BK Ξ

0 A − LC

]
, with Ξ =

−BKAh2
−BKd

]
. ■

Under Assumption 1 and in the absence of uncertainties,
orollary 1 shows that the controller gains K and Kd can be
esigned for any time-constant delay in two steps: (i) find K
nd L such that the eigenvalues of (A + BK ) and (A − LC)
re placed for a desired closed-loop dynamics, and (ii) find Kd
ith the objective of achieving a steady-state rejection of the

dentified disturbance component fk in the controlled output yk
y solving the resulting equality constraints depending of the
ype of disturbance. For step signal: solve Kd s.t Gyd(0) = 0,
here Gyd(z) is the z-transfer function of the nominal closed-loop
ystem from the disturbance input fk to the controlled output yk.
or harmonic disturbance components of frequency wf , solve Kd
.t |Gyd(eiwf )| = 0, |Gyd(e−iwf )| = 0.
To cope with time-varying model uncertainties and delay

ismatches, next section addresses the exponential stability anal-
sis and control synthesis via LKF approach and LMI/CCL frame-
ork:

. Robust stability analysis

This section presents a sufficient condition for robust expo-
ential stability with guaranteed decay rate β and H∞ distur-
ance rejection γ from the unknown disturbance δk ∈ l2[0,+∞)
o the controlled output yk for the closed-loop system (14).

heorem 1. Given delay bounds 0 < h1 ≤ h2, if there exist sym-
etric matrices P ∈ Rn̄ > 0, S1, S2 ∈ Rn > 0, Q1,Q2, Z1, Z2,W ∈
m > 0 with n̄ = 2n + r + 3m, a matrix T ∈ R(5n+r+3m)×n and a
calar ε > 0 such that the LMI given below is true, the closed-loop
ystem (14) is robustly exponentially stable with decay rate β , H∞

isturbance attenuation γ and guaranteed level of robustness λ:

+ TΠ + TΠ T < 0 (15)
5 ( 5)



A. González and P. García Automatica 129 (2021) 109627

w

Ξ

Ξ

Ξ

n

Ξ

Ξ

Ξ

Ξ

Ξ

Ξ

A

A

B

B

E

Π

C

t
r
k

C
f

here

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ξ1 Ξ2 Ā∗TP Ξ T
5 Z̄ Ξ T

5 W εH̄T
A C̄T

(∗) Ξ3 Ξ T
4 P 0 0 εΞ T

6 0
(∗) (∗) −P 0 0 0 0
(∗) (∗) (∗) −Z̄ 0 0 0
(∗) (∗) (∗) (∗) −W 0 0
(∗) (∗) (∗) (∗) (∗) −εIl2 0
(∗) (∗) (∗) (∗) (∗) 0 −Il

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

(16)

1 = −β2Π T
1 PΠ1 +Π T

2 (Q1 + Q2)Π2 +Π3 +Π4,

2 =

⎡⎢⎢⎢⎣
0n̄1×n̄3∑2

g=1 β
2(hg−1)

(
Zg − 3α(hg−1)Zg

)
Vg

6Z1V1
6Z2V2
03n×n̄3

⎤⎥⎥⎥⎦ ,

¯1 = 2n + r, n̄2 = 3m + 3n, n̄3 = 3m + l1 + l,

3 = Ξ31 +Ξ32,

31 = diag
(

−β2(h1−1)Q1, −β2(h2−1)Q2, (17)

− W , −εIl1 , −γ 2Il
)
,

32 = diag
(
−Z̄1, −Z̄2, 0m+l1+l

)
,

4 =
[
B̄1 B̄2 B̄3 Ē M̄

]
,

5 = K̄ −Π2,

6 =
[ 1
2v1HB

1
2v2HB

τ
2HB 0l2×l1 0

]
,

¯∗ = Ā + B̄K̄, K̄ =
[
K̄ 0m×n̄2

]
,

¯ =

⎡⎢⎣Ā 0 0 0 0n̄1×3n
0 0m 0 0 0n×3n
0 (1 − v1)Im h1Im 0 0m×3n
0 (1 − v2)Im 0 h2Im 0m×3n

⎤⎥⎦ ,
¯ =

[
B̄T
τ Im 0m×2m

]T
,

B̄1 =
[
0m×(n̄1+m) −v1Im 0m

]T
,

B̄2 =
[
0m×(n̄1+m) 0m −v2Im

]T
,

¯3 =
[
τ
2 B̄

T 0m×n̄2

]T
,

¯ =
[
λĒT 0l1×n̄2

]T
, M̄ =

[
M̄T 0l×n̄2

]T
,

Π1 =

⎡⎢⎣In̄1 0 0 0 0n̄1×3n
0 Im 0 0 0m×3n
0 −Im h1Im 0 0m×3n
0 −Im 0 h2Im 0m×3n

⎤⎥⎦ ,
Π2 =

[
0m×n̄1 Im 0m 0m 0m×3n

]
,

Π3 =

⎡⎢⎢⎢⎣
0n̄1 0 0 0 0
(∗) −Z̄1 − Z̄2 6Z1 6Z2 0
(∗) (∗) −12Z1 0 0
(∗) (∗) (∗) −12Z2 0
(∗) (∗) (∗) (∗) 03n

⎤⎥⎥⎥⎦ ,

4 =

⎡⎢⎢⎢⎢⎢⎣
0n̄1 0 0 0 0 0
(∗) π41 0 π42 π43 0
(∗) (∗) 02m 0 0 0
(∗) (∗) (∗) −S1 0 0
(∗) (∗) (∗) (∗) −S2 0

⎤⎥⎥⎥⎥⎥⎦ ,

(∗) (∗) (∗) (∗) (∗) 0n

4

π41 = S̄ −
1
4

2∑
g=1

(
BT SgB

)
,

π42 = v3BT S1, π43 =
1
2
BT S2,

S̄ =
1
4
(h2 − 1)

h2−1∑
j=1

β−2jφT
1,j+1S1φ1,j+1

+
τ̃

4

τ−1∑
j=1

β−2jφT
2,j+1S2φ2,j+1, τ̃ =

{
τ − 1 if τ > 0
0 if τ = 0,

Π5 =
[
Π̃5 0

]
, Π̃5 =

[
−In 0n×(n+r+3m) Aτ In Ah2

]
,

T =
[
T T 0

]T
,

H̄A =
[
0l2×n̄1 Hb 0l2×(2m+2n) HA

]
,

Hb =
1
2
(1 − v1)HB +

1
2
(1 − v2)HB,

¯ =
[
0p×(n̄1+3m+2n) C

]
,

V1 =
[
Im 0m 0m×(m+l1+l)

]
,

V2 =
[
0m Im 0m×(m+l1+l)

]
,

Z̄g = β2(hg−1) (3α(hg−1)Zg + Zg
)
,

Zg = β2(hg−1) (α(hg−1)Zg
)
, g = 1, 2,

Z̄ =

2∑
g=1

hg−2∑
j=0

β2j(hg − 1)Zg ,

φ1,j =

⎧⎪⎪⎨⎪⎪⎩
1
2A

j−1B if j ≤ τ
1
2

(
Aj−1

+ Aj−τ−1
)
B if j > τ and j ≤ h2 − τ

1
2A

j−τ−1B if j > h2 − τ

0 otherwise,

φ2,j =
1
2
Aj−1B,

vg =

{
1 if hg > 1, g = 1, 2
0 otherwise,

v3 =

{
1 if τ = 0
1
2 otherwise

Proof. See the Appendix

Remark 1. The novel term V4,k has been defined in the LKF (A.1)
to deal with all delayed terms coming from Φ1,k and Φ2,k respec-
ively with single decision variables (S1 and S2 respectively). As a
esult, the size of LMI (15) and the number of decision variables
eep independent of the size of delays.

orollary 2. A feasible solution for LMI (15) is always guaranteed
or sufficiently small values of λ, τ and γ−1 for any decay rate
β ≥ max (ρsr (A + BK ), ρsr (A − LC)).

Proof. The existence of a feasible solution for LMI (15) can be
deduced by choosing λ = 0, τ = 0 and γ−1

= 0. After remov-
ing their respective rows and columns from (15), the condition
ĀTXĀ − β2X < 0 for some X > 0 is obtained, which is true for
any β ≥ max (ρsr (A + BK ), ρsr (A − LC)). ■

5. Robust control synthesis

This section provides a CCL-based algorithm based on
Theorem 1 for control and observer design in the presence of
time-varying delays and model mismatches.
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Let us denote P̃ = P−1, ˜̄Z = Z̄−1, W̃ = W−1 and ε̃ = ε−1.
ence, pre- and post multiplying (15) by diag

(
I, P̃, ˜̄Z, W̃ , ε̃Il2 , Il

)
,

we obtain the matrix inequality Ξ̃ + TΠ5 + (TΠ5)
T < 0, where

Ξ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ1 Ξ2 Ā∗T Ξ T
5 Ξ T

5 H̄T
A C̄T

(∗) Ξ̃3 Ξ̃ T
4 0 0 Ξ̃ T

6 0
(∗) (∗) −P̃ 0 0 0 0
(∗) (∗) (∗) −

˜̄Z 0 0 0
(∗) (∗) (∗) (∗) −W̃ 0 0
(∗) (∗) (∗) (∗) (∗) −ε̃Il2 0
(∗) (∗) (∗) (∗) (∗) 0 −Il

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

and

Ξ̃3 = Ξ̃31 +Ξ32, (19)

Ξ̃31 = diag
(
−β2h1Q1,−β

2h2Q2, −W̃ , −Il1 , −γ 2Il
)
,

Ξ̃4 =
[
B̄1 B̄2 τ B̄3W̃ ε̃λĒ M̄

]
,

Ξ̃6 =
[
1
2HB

1
2HB

τ
2HBW̃ 0l2×l1 0

]
ow, let us introduce the LMI conditions to relax the equality
onstraints PP̃ = I and Z̄ ˜̄Z = I for the CCL algorithm:[
P In̄
In̄ P̃

]
≥ 0,

[
Z̄ Im
Im ˜̄Z

]
≥ 0, (20)

together with the objective function to minimize:

min(trace
(
PP̃ + P̃P + Z̄ ˜̄Z +

˜̄ZZ̄
)

5.1. CCL algorithm description

The detailed CCL-algorithm is described as follows:

• Step (i): Given K and L satisfying the conditions given in
Corollary 2, find a feasible solution for LMIs (15) choosing
small values for λ, τ and γ̃ = γ−1. Then, set λ(0) = λ,
τ (0) = τ , γ̃ (0)

= γ̃ , P (0)
= P , Z̄ (0)

= Z̄ . Set q := 1.
• Step (ii): Set P (q)

:= P (q−1), P̃ (q)
:=

(
P (q−1)

)−1, Z̄ (q)
:= Z̄ (q−1),

˜̄Z (q)
:=

(
Z̄ (q−1)

)−1
and go to Step (iii).

• Step (iii): Solve the LMI’s (18) and (20) subject to

min(trace
(
PP̃ (q)

+ P̃P (q)
+ Z̄ ˜̄Z (q)

+
˜̄ZZ̄ (q))

setting λ = λ(q−1)
+Iλ, τ = τ (q−1)

+Iτ , γ̃ = γ̃ (q−1)
+Iγ̃ , being

Iλ, Iτ , Iγ̃ an incremental value for each iteration. Matrices
P,Q1,Q2, Z1, Z2, S1, S2, W̃ , K and L are defined in this step
as LMI decision variables.

• Step (iv): If a feasible solution is found, set λ(q) = λ, τ (q) = τ ,
γ̃ (q)

= γ̃ and go to step (v). Otherwise, set Iλ = Iλ/nλ,
Iτ = Iτ/nτ , Iγ̃ = Iγ̃ /nγ̃ for some step reduction factors
nλ, nτ , nγ̃ > 1 and go to Step (iii).

• Step (v): If the maximum number of iterations is still not
reached, and τ (q) < h2 − h1 or λ(q) < λ̄ or γ̃ (q) < γ̄−1 with
λ̄, γ̄ prescribed levels of robustness and H∞ disturbance
rejection, set q := q + 1, P (q)

:= P (q−1), P̃ (q)
:=

(
P (q−1)

)−1,
Z̄ (q)

:= Z̄ (q−1), ˜̄Z (q)
:=

(
Z̄ (q−1)

)−1
and go to Step (iii).

Otherwise, stop and exit.

Remark 2. It is worthwhile mentioning that a feasible solution
for the first iteration in the CCL iterative loop is always guar-
anteed regardless of the delay values h1, h2 by solving LMI (15)
choosing a sufficiently small value for λ, τ , γ−1 and controller
and observer gains K and L satisfying the conditions given in
Corollary 2 for a given decay rate β . Hence, differently from Hao
et al. (2019), the controller and observer gains can be designed by
standard techniques (i.e, pole placement) in the particular case of
time-constant delays and the absence of model uncertainties.
5

Remark 3. The size of LMI conditions (18) and (20) for CCL is
4n̄+ 3n+ 5m+ l1 + l2 + 2l and the number of decision variables
(NoV) is n̄(n̄ + 1) + n(n + 1) + 3m(m + 1) + m(n + r) + p(n +

r) + (5n + 3m + r)n + 1 with n̄ = 2n + r + 3m, which are both
independent on delay. Hence, differently from Hao et al. (2019),
the CPU time for the proposed algorithm is not influenced by
the size of delays. The LKF definition (A.1) including uk−1 in the
augmented states has been crucial to avoid the presence of cross-
product terms between K̄ and other decision variables in matrix
inequalities (18) without being necessary to resort to applying
multiple Schur Complements.

6. Simulation results

First example provides comparative results with Hao et al.
(2019) in order to illustrate the achieved improvements in the
sense of robustness and closed-loop performance. Second exam-
ple gives simulation results with a mismatched case (She, Fang,
Ohyama, Hashimoto, & Wu, 2008).

6.1. Example 1 (matched case)

Consider the open-loop unstable plant model studied in Hao
et al. (2019) with sampling period Ts = 0.1. The discrete-time

model is obtained as (1) with matrices A =

[
0.9505 0.1149

−1.0339 1.2952

]
,

B = F =

[
0.0055
0.1149

]
, and C =

[
1 0

]
. In this example, Case

3 in Hao et al. (2019) will be proposed for comparison since
time-varying model uncertainties and sinusoidal-like disturbance
signals are considered. For a fair comparison, the same simulation
conditions will be taken into account: (i) time-varying uncer-
tainties (2) with E = [0 0.03]T , HA = [0.1 0.2], HB = 0.05,
∆k = sin(k), (ii) disturbance composed of a step and a sinusoidal
signal of frequency wc = 0.5 but unknown amplitude and phase,
and (iii) an additional perturbation in the exogenous system δk =

sin(k)/(1 + k). Disturbances are therefore described as Hao et al.

(2019) by (3) with Λ =

[0.9988 0.05 0
−0.05 0.9988 0

0 0 1

]
, M =

[1
0
1

]
and N =

[
1 0 1

]
. In this case, a stabilizing controller is

obtained after 6 CCL iterations for a time-constant delay dk ≡

6 with guaranteed exponential decay rate performance β =

0.98. The designed controller and observer parameters are K =

[8.5926 − 3.947], Kd = [−2.3830 − 0.5639 − 2.4540],
L = [0.95955 2.6947]T and Lξ = [0.48501 0.7032 0.55686]T .
where the CCL parameters have been chosen as Iλ = 0.2,
Iτ = 0, Iγ̃ = 0, nλ = nτ = nγ̃ = 0.5, and the initial K
nd L for the first iteration have been designed by pole place-
ent with controller poles in {0.92, 0.93} and observer poles in

0.87, 0.88, 0.89, 0.90, 0.91}. Simulation results are given in
ig. 1, where it can be appreciated a slight improvement in terms
f closed-loop dynamic performance.
With the proposed method, longer delays are allowed up

o a time-constant delay dk ≡ 16 with a guaranteed level of
obustness λ = 0.1 and exponential decay rate β = 0.9896
(simulation results are given in Fig. 2). The designed controller
and observer gains after 3 CCL iterations for (5) and (7) are
K = [8.3633 − 3.8756], Kd = [14.5315 1.28002 14.2773],

= [0.76209 2.0754]T and Lξ = [0.4183 0.70198 0.50556]T ,
where the same initial values for K and L have been set, and
the CCL parameters were chosen as Iλ = 0.05, Iτ = 0, Iγ̃ =

0, nλ = nτ = nγ̃ = 0.5. It is noteworthy that, in view of
Table 1 in Hao et al. (2019), the computational time becomes
prohibitive for dk = 16. In contrast, the proposed method (as
discussed in Remark 3) allows finding a stabilizing controller with
the same computational effort (around 130s) due to the fact that
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Fig. 1. Control results for dk ≡ 6 (comparative analysis).

Fig. 2. Control results for dk ≡ 16.

he number of decision variables and size of LMIs are the same in
oth cases: 165 and 57 respectively.
Now, consider a time-varying delay 5 ≤ dk ≤ 6. Ap-

lying the proposed algorithm, a stabilizing controller (5)–(7)
s designed with the controller and observer parameters K =

6.1852 − 3.7406], Kd = [−2.6429 − 0.50889 − 2.7002],
= [0.92691 2.8183]T and Lξ = [0.13407 0.23022 0.1789]T .
imulation results are given in Fig. 3 for dk = h1+τ |cos(k)|, where

it can also be appreciated that the disturbance signal is effectively
steady-state rejected. The CCL algorithm was first executed to
achieve λ = 0, τ = 1 with Iλ = 0, Iτ = 0.1, Iγ̃ = 0,
λ = nτ = nγ̃ = 0.5 and initial K ,L with the same pole location
s in the previous cases. A second CCL execution was performed
o achieve λ = 1, τ = 1 starting from the obtained K ,L of the
irst execution and CCL parameters Iλ = 0.05, Iτ = 0, Iγ̃ = 0,
λ = nτ = nγ̃ = 0.5. Moreover, an exponential decay rate
= 0.9989 is ensured for any time-varying delay pattern.

.2. Example 2 (mismatched case)

Consider the speed control of a rotational control system
orrowed from She et al. (2008) consisting of two DC motors.
fter discretizing with ZOH and sampling period Ts = 10 ms,
ystem (1) is obtained with state-space matrices

=

[
−0.101 0.975 −117.919
0.275 0.787 44.753

]
,

0.004 −0.006 −0.246 a

6

Fig. 3. Control results for 5 ≤ dk ≤ 6.

Fig. 4. Control results for 8 ≤ dk ≤ 12 (Case mismatched).

B =
[
0.147 0.030 0.001

]T , F =
[
−6.756 2.225 0.037

]T
and C =

[
1 0 0

]
. The disturbance signal is assumed to be

a constant load (Λ = 1, M = 1, N = 0 in (3)), and time-
varying delays h1 ≤ dk ≤ h2 are assumed with h1 = 8 and
h2 = 12. Applying the proposed CCL algorithm with Iλ = 0,
Iτ = 0.1, Iγ̃ = 0, nλ = nτ = nγ̃ = 0.5, and the initial K
and L for the first iteration designed by pole placement with
controller poles in {0.91, 0.92, 0.93} and observer poles in
{0.87, 0.88, 0.89, 0.90}, the controller and observer gains given
elow with exponential decay rate β = 0.9828 are obtained
fter 12 iterations as K = [−4.5829 4.5175 611.7487], L =

−0.5465 0.1589 0.0052]T and Lξ = 9.3477 · 10−4 and Kd =

1.3402. Simulation results are depicted in Fig. 4, where the
utput system is shown to be stable with a complete steady-state
isturbance rejection.

. Conclusions and perspectives

This paper has presented an output-feedback anti-disturbance
redictor-feedback control with an extended state observer,
hich differently from previous approaches, time-varying delays
an be considered. Moreover, a CCL-based algorithm has been
rovided where the complexity (number of decision variables and
ize of LMIs) is independent of the time-delay magnitude. Finally,
omparative simulation results have been provided to show the
chieved improvements of the proposed method in the sense of
etter robust performance against time-varying delays and model
ncertainties. Future extension of this work could be aimed at
ncluding other performance criteria in control synthesis, such as
nput saturation or regional pole constraints.
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ppendix. Proof of Theorem 1

Let η̄k = [x̄Tk uT
k−1 µT

1,k µT
2,k ΦT

1,k ΦT
2,k xk]T , η̄∗

k =

x̄Tk uT
k−1 µ∗T

1,k µ∗T
2,k

]T , where µg,k =
1
hg

∑hg
i=1 uk−i with g =

, 2, and µ∗

g,k =
∑hg

i=2 uk−i. Noting that Φk+1(hg ) − AΦk(hg ) =
1
2A

−hg Buk −
1
2Buk−hg and µ∗

g,k+1 = hgµg,k − uk−hg , we can write
η̄∗

k+1 = Āη̄k + B̄1uk−h1 + B̄2uk−h2 + B̄τωk + Ēw∆,k + M̄δk, or
similarly in compact form as η̄∗

k+1 = Āη̄k + Ξ4ω̄k, where ω̄k =[
uT
k−h1

uT
k−h2

ωT
k wT

∆,k δTk
]T
. Now, consider the LKF: Vk

= V1,k + V2,k + V3,k + V4,k, where

V1,k = η̄∗T
k P η̄∗

k , (A.1)

V2,k =

2∑
g=1

hg∑
i=2

β2(i−2)uT
k−iQguk−i,

V3,k =

2∑
g=1

(hg − 1)

⎛⎝ hg∑
i=2

i∑
j=2

β2(i−2)ρT
k−jZgρk−j

⎞⎠ ,

V4,k = (h2 − 1)

⎛⎝ h2∑
i=2

i∑
j=2

β2(j−i−1)uT
k−jφ

T
1,iS1φ1,iuk−j

⎞⎠
+ τ̃

⎛⎝ τ∑
i=2

i∑
j=2

β2(j−i−1)uT
k−jφ

T
2,iS2φ2,iuk−j

⎞⎠
where ρk = uk+1 − uk and φ1,i, φ2,i are defined in Theorem 1.
The system is stable with decay rate β if there exists Vk > 0
such that Vk+1 − β2Vk < 0. Then, defining the forward difference
∆βVl,k = Vl,k+1 − β2Vl,k, l = 1, 2, 3, 4, taking into account that
µ∗

g,k = hgµg,k − uk−1, g = 1, 2 (and therefore η̄∗

k = Π1η̄k) and
noting that uk−1 = Π2η̄k, we have that:

∆βV1,k = η̄Tk Ā
TPĀη̄k (A.2)

+ 2η̄Tk Ā
TPΞ4ω̄k + ω̄T

kΞ
T
4 PΞ4ω̄k − β2η̄TkΠ

T
1 PΠ1η̄k,

∆βV2,k = uT
k−1(Q1 + Q2)uk−1 −

2∑
g=1

β2(hg−1)uT
k−hgQguk−hg

= η̄TkΠ
T
2 (Q1 + Q2)Π2η̄k − ω̄T

kV
T Q̄Vω̄k, VT

=
[
VT
1 VT

2

]
,

Q̄ = diag
(
β2(h1−1)Q1, β

2(h2−1)Q2
)
,

∆βV3,k = ρT
k−1Z̄ρk−1 −

2∑
g=1

hg∑
j=2

(hg − 1)β2(hg−1)ρT
k−jZgρk−j

= η̄TkΞ
T
5 Z̄Ξ5η̄k −

2∑
g=1

(hg − 1)
h1∑
j=2

ρT
k−jZgρk−j,

∆βV4,k = (h2 − 1)
h2∑
j=2

β−2(j−1)uT
k−1φ

T
1,jS1φ1,juk−1

− (h2 − 1)
h1∑
j=2

uT
k−jφ

T
1,jS1φ1,juk−j

+ τ̃

τ∑
j=2

β−2(j−1)uT
k−1φ

T
2,jS2φ2,juk−1

− τ̃

τ∑
j=2

uT
k−jφ

T
2,jS2φ2,juk−j
7

Applying Lemma 1, from the rightmost part of ∆βV3,k and taking
into account that

∑hg
j=2 ρk−j = uk−1 − uk−hg , g = 1, 2, we obtain:

−

2∑
g=1

⎛⎝(hg − 1)
h1∑
j=2

ρT
k−jZgρk−j

⎞⎠
≤

[
η̄k
ω̄k

]T [
Π3 Ξ2
(∗) Ξ32

][
η̄k
ω̄k

]
(A.3)

where Π3, Ξ2, and Ξ32 are defined in (16). Also, by Jensen’s
inequality (Briat, 2011), from the rightmost part of ∆βV4,k and
taking into account the definition of Φk(.) in (6), we have that:

− (h2 − 1)

⎛⎝ h2∑
j=2

(
φ1,juk−j

)T S1 (
φ1,juk−j

)⎞⎠ (A.4)

≤ −

⎛⎝ h2∑
j=2

φ1,juk−j

⎞⎠T

S1

⎛⎝ h2∑
j=2

φ1,juk−j

⎞⎠ (A.5)

= −
(
Φ1,k − v3B

)T S1(Φ1,k − v3B
)
,

− τ̃

⎛⎝ τ∑
j=2

(
φ2,juk−j

)T S2 (
φ2,juk−j

)⎞⎠
≤ −

⎛⎝ τ∑
j=2

φ2,juk−j

⎞⎠T

S2

⎛⎝ τ∑
j=2

φ2,juk−j

⎞⎠
= −

(
Φ2,k −

1
2
B
)T S2(Φ2,k −

1
2
B
)

Taking into account (A.4), we have that ∆βV4,k ≤ η̄TkΠ4η̄k, where
Π4 are defined in Theorem 1. Applying Schur complement, we
have that (15) is equivalent to Ω + TΠ̃5 +

(
TΠ̃5

)T
< 0, where

Ω =

[
Ξ1 Ξ2
(∗) Ξ3

]
+

[
ĀT

Ξ T
4

]
P

[
Ā Ξ4

]
+

[
Ξ T

5
Ξ T

6

]
Z̄

[
Ξ5 Ξ6

]
[
Ξ T

5
Ξ T

6

]
W

[
Ξ5 Ξ6

]
+

[
HT

A
Ξ T

6

] [
HA Ξ6

]
+

[
CT

0

] [
C 0

]
(A.6)

Taking into account from (10) that Π̃5η̄k = 0 with Π̃5 defined
in (16), the augmented vector η̄k above defined, and applying
Finlser’s theorem, we have that η̄Tk

(
Ω + TΠ̃5 +

(
TΠ̃5

)T )
η̄k <

0 is equivalent to ∆βVk =
∑4

i=1∆βVi,k. From (A.2) and the
nequalities (A.3), (A.4), it can be deduced that ∆βVk + Jk ≤

¯ T
kΩψ̄k < 0 with ψ̄k =

[
η̄Tk , ω̄

T
k

]T and η̄k, ω̄k above defined,
here:

k = ρT
k−1Wρk−1 − ωT

kWωk + εyT∆,ky∆,k − εwT
∆,kw∆,k

+ yTkyk − γ 2δTk δk (A.7)

and ρk−1 = uk − uk−1 =
(
K̄ −Π2

)
η̄k = Ξ5η̄k, y∆,k =

HAxk = H̄Aη̄k + Ξ6ω̄k, yk = Cxk = C̄η̄k. Hence, the fulfilment
of (15) implies that ∆βVk < 0, which is a sufficient condition
for exponential stability with decay rate β . Also, the fulfilment
of (15) under zero initial conditions implies that the l2 induced
norm from δk to yk is not greater than γ , while the condition
∥WDh,kW−1

∥∞ ≤ 1 (Lemma 2) and wT
∆,kw∆,k ≤ yT∆,ky∆,k are

satisfied ∀k ≥ 0. Hence, the robust exponential stability with H∞

disturbance rejection level γ of the closed-loop system formed
by (1) and the proposed control scheme can be ensured if the
inequality (15) is true. ■
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