

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/183010

Gruetzmacher, T.; Cojean, T.; Flegar, G.; Anzt, H.; Quintana-Orti, ES. (2020). Acceleration
of PageRank with customized precision based on mantissa segmentation. ACM
Transactions on Parallel Computing. 7(1):1-19. https://doi.org/10.1145/3380934

https://doi.org/10.1145/3380934

Association for Computing Machinery

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Acceleration of PageRank with Customized Precision based on Mantissa
Segmentation

THOMAS GRÜTZMACHER, Karlsruhe Institute of Technology, Germany

TERRY COJEAN, Karlsruhe Institute of Technology, Germany

GORAN FLEGAR, Universitat Jaume I, Spain

HARTWIG ANZT, Karlsruhe Institute of Technology, Germany and University of Tennessee, USA

ENRIQUE S. QUINTANA-ORTÍ, Universitat Politècnica de València, Spain

We describe the application of a communication-reduction technique for the PageRank algorithm that dynamically adapts the precision
of the data access to the numerical requirements of the algorithm as the iteration converges. Our variable-precision strategy, using a
customized precision format based on mantissa segmentation (CPMS), abandons the ieee 754 single- and double-precision number
representation formats employed in the standard implementation of PageRank, and instead handles the data in memory using a
customized floating-point format. The customized format enables fast data access in different accuracy, prevents overflow/underflow
by preserving the ieee 754 double-precision exponent, and efficiently avoids data duplication since all bits of the original ieee 754
double-precision mantissa are preserved in memory, but re-organized for efficient reduced precision access. With this approach, the
truncated values (omitting significand bits), as well as the original IEEE double-precision values can be retrieved, without duplicating
the data in different formats.

Our numerical experiments on an NVIDIA V100 GPU (Volta architecture) and a server equipped with two Intel Xeon Platinum
8168 CPUs (48 cores in total) expose that, compared with a standard ieee double-precision implementation, the CPMS-based PageRank
completes about 10% faster if high-accuracy output is needed, and about 30% faster if reduced output accuracy is acceptable.

CCS Concepts: • Mathematics of computing → Computations on matrices; • Computing methodologies → Massively
parallel algorithms;

Additional KeyWords and Phrases: PageRank, large-scale irregular graphs, adaptive-precision, high-performance, multi-core processors,

GPUs

ACM Reference format:
Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí. 2018. Acceleration of PageRank with
Customized Precision based on Mantissa Segmentation. ACM Trans. Parallel Comput. 0, 0, Article 0 (2018), 20 pages.
https://doi.org/0000001.0000001

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/0000001.0000001

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

1 INTRODUCTION

As of 2018, the World Wide Web (or simply the “Web”) is estimated to consist of a few dozens of billions of webpages,1

with its increasing popularity fueled by search engines, that is, virtual machines created by software that inspect virtual
file folders to identify relevant documents [Brin and Page 1998; Langville and Meyer 2012]. This huge collection of web
pages continues to grow in dimension, irregularity, and number of hyperlinks. Consequently, there is an urgent need
for search engines that can provide fast yet accurate results matching the users’ queries.

PageRank is a popular algorithm for web information retrieval used by search engines. The mathematics underlying
PageRank build upon Markov chain theory, exploiting the principle that “a page is relevant if it is linked by other
relevant pages”. PageRank applies the classical iterative power method [Golub and Loan 1996] to the matrix associated
with the adjacency graph of the search space [Langville and Meyer 2012].

The main computational kernel behind PageRank is the sparse matrix-vector product (SpMV). This is a memory-

bound kernel whose performance is constrained by the memory bandwidth on virtually all current architectures. In
consequence, PageRank is a memory-bound algorithm. The SpMV kernel has received considerable attention over the
past decades due to its widespread use in many scientific and engineering applications (see Section 2). In this paper,
we address the memory-bound nature of PageRank by reducing the volume of numerical data retrieved from memory
in a high-performance implementation of SpMV. The key in our approach is to exploit the fixed-point nature of the
PageRank algorithm. Specifically, the PageRank algorithm allows to successively increase the data accuracy as the
iterations converge towards the correct answer.

We previously explored the idea of decoupling the arithmetic precision from the memory precision [Anzt et al. 2019;
Grützmacher et al. [n. d.]] and dynamically adapting the memory precision to the numeric requirements of the PageRank
algorithm in [Grüztmacher et al. 2018]. There we implemented a particular instance of a customized precision based
on mantissa segmentation (CPMS) that splits a 64-bit floating-point number into two or four equally-sized segments
of 32 or 16 bits each, respectively. To attain a cache-effective memory access on NVIDIA’s K80, P100 and V100 GPUs,
our implementation in [Grüztmacher et al. 2018] interleaves the information in banks of 128 bytes (which matches
the smallest integer multiple of the cache line size for all three GPU generations). Thus, for example, if we decide to
split each number into four segments, say s1, s2, s3 and s4, we store consecutively in memory 128 bytes of information
corresponding to segment s1 of the first 64 numbers (64 · 16 bits = 64 · 2 bytes = 128); then 128 bytes for segment s2 of
the same first 64 numbers; and when we are done with all the segments for the first 64 numbers, we continue with the
next 64 ones; see [Grüztmacher et al. 2018] for details.

In this paper, we extend our prior work in [Grüztmacher et al. 2018] by proposing a more flexible CPMS technique
which can operate with arbitrary bank sizes corresponding to any integer multiple of 64 bytes. For this purpose,
we employ C++ static polymorphism and pass the bank size as a template parameter. Furthermore, we extend the
scope of the CPMS-based PageRank to CPU architectures. This requires not only a more sophisticated kernel design
to enable efficient AVX vectorization, but also taking into account the implications of prefetching during memory
accesses. Therefore, we additionally consider a CPMS format separating the segments into distinct memory locations. In
particular, the deep cache hierarchies and the more complex compilers available for CPUs make it much harder to fully
optimize the non-standard memory access routines of CPMS on this type of architectures. Finally, the experimental
results presented in this paper differ from those in our previous work in that we do not consider the lower triangular
part of the matrix representation of symmetric (undirected) community graphs, but the full matrix.

1 http://www.worldwidewebsize.com/

Manuscript submitted to ACM

http://www.worldwidewebsize.com/

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 3

0 1 1 1 3 0 2 3

4 9 3 3 1 0 6 5

ELL	format

colidx

values

(max row nz ·m) · sizeof(index)
(max row nz ·m) · sizeof(value)

0 2 3 5 7

0 3 1 1 2 1 3

4 1 9 3 6 3 5

CSR	format

rowptr
colidx

values

nnz · sizeof(value)

(m+ 1) · sizeof(index)
nnz · sizeof(index)

4 0 0 1
0 9 0 0
0 3 6 0
0 3 0 5

Dense	format

m · n · sizeof(value)

Fig. 1. The CSR and ELLPACK sparse matrix storage format along with memory requirements.

2 RELATEDWORK

The performance of PageRank is dictated by the power method which, in turn, is strongly determined by the SpMV
kernel.

The performance of a particular SpMV implementation on a specific hardware reflects the complex interactions of
different aspects: 1) the volume of matrix sparsity pattern information (in general, indexes); 2) the volume of matrix and
vector numeric data (that is, the values); 3) the irregular access to the vector values (determined by the matrix sparsity
pattern) and its interaction with the cache configuration and sizes and the code access order; and 4) the workload
imbalance in a parallelized setting. All these aspects have to be considered when optimizing an SpMV kernel for a
specific hardware architecture [Grossman et al. 2016]. Generally, matrices with an irregular distribution of their nonzero
entries are more challenging, since their parallelization usually results in significant workload imbalance and a low
cache hit rate. In some cases, an initial preprocessing step, which reorders the matrix rows/columns, can be useful to
improve load balancing and data locality [Kreutzer et al. 2014].

Among the most popular general sparse data layouts are the CSR (compressed storage row) and COO (coordinate)
formats as those are not biased towards any particular sparsity pattern. The specialized ELLPACK format [Bell and
Garland 2009] pads all rows to have the same number of nonzero elements, incurring a certain overhead. While this
padding increases the matrix numeric data volume, it yields the benefit of avoiding the storage of row-index information
needed in the CSR format, see Figure 1. From the perspective of parallelization, the ELLPACK format is especially
appealing for SIMD-parallel architectures, such as GPUs, as it removes branch divergence and ensures uniform memory
access. However, it is only attractive for balanced matrices in which the nonzero elements are evenly distributed among
the rows so that padding to a uniform nonzero count introduces a moderate overhead.

For multi-core CPUs, Intel’s MKL (Math Kernel Library) offers a multi-threaded efficient instance of CSR-SpMV as
well as a multi-threaded blocked variant, named BCSR, which views the matrix as a sparse collection of tiny dense
blocks (e.g., 2 × 2 or 4 × 4). BCSR aims to improve locality of reference when accessing the data (and, therefore, reduce
cache misses), trading off generality and efficiency for certain applications. CSB2 takes an opposite direction to BCSR,
by considering the matrix as a dense collection of sparse blocks (with each block stored in CSR format). CSB aims
to decrease the amount of indexing information and, therefore, reduces communication when accessing the matrix
sparsity data information. Additionally, CSB also aims at improving data locality, via a Morton-ordering storage of the
block entries.

2https://people.eecs.berkeley.edu/~aydin/csb/html/index.html.

Manuscript submitted to ACM

https://people.eecs.berkeley.edu/~aydin/csb/html/index.html

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

While there exists a long list of SpMV kernels available in vendor libraries such as NVIDIA’s cuSPARSE and the
community ecosystems MAGMA-sparse [Anzt et al. 2017] and Ginkgo3, optimizing the SpMV kernel for graphics
processors remains an active field of research. Conceptually, for well-balanced sparse matrices, formats such as
ELLPACK [Bell and Garland 2009] as well as some sophisticated variants [Kreutzer et al. 2014] increase the numeric
data volume by explicitly storing zero elements for SIMD-friendly data access and kernel execution. For irregular and
unbalanced matrix sparsity structures, the CSR or COO formats minimize the numeric data volume, and SpMV kernels
are tuned to offer better load balance arithmetic work and memory access across the compute resources [Flegar and
Quintana-Ortí 2017].

The optimization we pursue in this paper is orthogonal to the previously listed format optimizations as we neither
address load balancing, nor explicitly store zero values for SIMD-friendly execution. Instead, we keep the sparse storage
formats unchanged, but modify the precision format used for storing the numeric values. Specifically, employing the
customized format based on mantissa segmentation allows to retrieve the numeric values of the matrix and the vector
with reduced accuracy by accessing only part of the mantissa bits. This will change the SpMV output vector, and can
only be used with careful consideration of the numeric effects and their impact on the top-level algorithm.

In this work, we present customized precision solutions for both CPU and GPU architectures, and focus on two
sparse matrix formats that are at the extreme ends of sparse matrix properties: The SIMD-friendly ELLPACK format,
suitable for efficiently processing balanced matrices; and the CSR format, which exclusively stores the nonzero elements
and therefore is attractive for irregular sparsity patterns.

In our work, we employ the volume-reducing customized precision format only for the memory operations while
handling all arithmetic in the hardware-supported ieee 754 double-precision format. A popular approach for mixing
different precision formats to reduce the runtime of an algorithm is the concept of mixed-precision with iterative
refinement (MPIR). MPIR is a well-known technique that solves with a high level of accuracy while doing most of
the computations in reduced precision [Higham 2002]. The central idea is to repeatedly solve an error correction
system in lower than working precision, and update the high precision solution approximation until the residual norm
drops below an acceptable threshold [Carson and Higham 2017]. This strategy can even be cascaded to solve the error
equations in lower precision formats recursively [Carson and Higham 2018]. While also cascaded iterative refinement
typically employs the ieee 754 standard precision formats, transprecision pushes the idea of accuracy adaptation even
further, utilizing at each intermediate step the minimum precision necessary to produce a satisfactory final solution.
What all these approaches share is the strict coupling between arithmetic precision and memory precision. While this
strategy may be reasonable for compute-bound algorithms, the PageRank algorithm is heavily memory-bound, and the
cost of the memory operations dictates its performance [Grüztmacher et al. 2018]. This motivates us to decouple the
memory access format from the arithmetic format, while still using the hardware-supported IEEE standard precision
formats in all arithmetic operations [Anzt et al. 2019; Grützmacher et al. [n. d.]]. Some examples illustrating the modular
precision approach for algorithms in sparse linear algebra are the adaptive-precision block-Jacobi preconditioner for
Krylov subspace methods [Anzt et al. 2018] and a Jacobi iterative solver [Anzt et al. 2015; Grützmacher and Anzt 2019;
Grützmacher et al. [n. d.]].

3https://github.com/ginkgo-project/ginkgo

Manuscript submitted to ACM

https://github.com/ginkgo-project/ginkgo

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 5

3 A BRIEF INTRODUCTION TO PAGERANK

In the setting of web search, PageRank estimates the relevance of a web page by recursively inspecting the relevance of
“neighboring” web pages as well as the number of links that point toward the page [Langville and Meyer 2012; Page
et al. 1998]. From a practical point of view, PageRank is applied to a directed graph that represents the web pages as
nodes and the hyperlinks connecting two pages as directed edges between the corresponding nodes, yielding a score
vector that captures the probability that a “random” surfer visits a particular page [Brin and Page 1998]. Furthermore,
PageRank only needs to compute the ranking score of each Web page up to a certain precision, as Web surfers are often
only interested in the first dozen of documents retrieved by the search engines and usually do not care about the precise
score values.

Consider a directed graph G = (V ,E) with n = |V | nodes/web pages, connected via a collection of edges/hyperlinks
E. LetA ∈ Rn×n be a weighted adjacency matrix associated with (V ,E), with weights/entries defined so thatAi j = 1/Oi

if the edge (i, j) ∈ E, or Ai j = 0, otherwise; here, Oi denotes the total number of hyperlinks leaving from node i . The
mathematical representation of PageRank in Algorithm 1 computes a sequence of vectors p {k } ∈ Rn , k = 0, 1, 2, . . .,
until convergence [Langville and Meyer 2012]. The damping factor δ and the stopping threshold ε determine the
convergence of the procedure and precision of the final result. Furthermore, e ∈ Rn is a vector set to ones to initialize
p {0} to a uniform distribution across all nodes; and s ∈ R corresponds to the probability of the random surfer visiting a
site which has no outgoing links; see [Langville and Meyer 2012] for further details.

Algorithm 1 PageRank(A, ε,δ)

1: p {0} := e/n

2: S :=
{
i |

∑n
j=1 |ai j | = 0

}
▷ S contains all indexes of empty rows of A

3: k := 1
4: repeat
5: s :=

∑
i ∈S p

{k−1}
i

6: p {k } := δATp {k−1} + (1 − δ)e/n + (s/n) · e

7: γ := ∥p {k } − p {k−1} ∥1
8: k := k + 1
9: until (γ < ε)

The iterative procedure that underlies the realization of PageRank in Algorithm 1 is the classical power method for
the computation of the largest eigenvalue of a matrix [Golub and Loan 1996]. When applied to the adjacency matrix
representing a collection of Web pages, the main computational kernel appearing in the PageRank algorithm is the
SpMV involving the sparse adjacency matrix A. For a matrix with nz nonzero entries (where nz is the cardinality of E),
this kernel performs 2nz floating-point operations and, at least, n + nz memory accesses. In consequence, SpMV is a
memory-bound operation on virtually all current hardware architectures.

PageRank is usually encoded using the conventional ieee single-precision or double-precision floating-point data
types natively supported by most hardware architectures. A key idea in [Grützmacher and Anzt 2019] is that “the
arithmetic realized in floating-point units (FPUs) can be decoupled from the storage format of floating-point numbers,

with the latter being a flexible factor under the direct control of the programmer”. This is particularly interesting for the
SpMV kernel as storing (and retrieving) the data values of the sparse matrix and the vector in lower precision paves

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

the road toward communication-reduction techniques which lower the pressure on the memory bandwidth. For a
memory-bound algorithm such as PageRank, reducing the data access volume can accelerate the kernel execution.

4 PAGERANKWITH ADAPTIVE PRECISION

IEEE double-precision value

32 bits 32 bits

Conversion

…

128 Bytes

IEEE double-precision value

Conversion

32 bits 32 bits

Fig. 2. CPMS-i (left): conversion between the ieee double-precision format and interleaved 2-segment CPMS; the bank size in this

interleaving CPMS is chosen as 128 bytes. CPMS-s (right): CPMS separating the segments in memory.

4.1 Segment-based storage in CPMS

The CPMS format splits a “high precision” floating-point number into several equally-sized segments [Grützmacher
and Anzt 2019] so that, if lower data access accuracy is acceptable, only a subset of the segments is retrieved from the
memory into the processor registers. The remaining bits in the significand of the fp64 value are automatically filled
with zeros.

The purpose of this approach is that by retrieving values with lower accuracy, the memory transfer volume is reduced
in comparison to fp64 access. As all bits of the high precision value are still available in memory though, the data does
not need to be duplicated in memory to enable different precision formats.

The segments can be stored completely separated in memory, such that each segment type has its own contiguous
memory space (we name this variant as“CPMS-s”) or, alternatively, the memory segments can be interleaved, so that
different segment types follow each other in memory in a predefined bank pattern (named as “CPMS-i”). These two
alternatives are illustrated in Figure 2. The dimension of the interleaved banks in CPMS-i is a platform-dependent
parameter and, in practice, it should be an integer multiple of the cache line size.

The advantage of interleaving the banks in CPMS-i is that the data can be converted in-place in-between the precision
formats (for moderate bank sizes). The left-hand side in Figure 2 illustrates this conversion for a 2-segment CPMS-based
layout. The in-place conversion between an array of high precision values and the CPMS-i format consists of a local
reordering of the bits in memory (see the arrow on the side in Figure 2). For an x-segment CPMS in block format,
reordering operates on x · bs byte blocks, where bs is the bank size. This reordering step can exploit data parallelism,
which enables efficient conversion on SIMD-type architectures.
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 7

In general, architectures with support for prefetching will likely fail to ignore the tail-segments when accessing
the data in reduced precision. Hence, we expect that CPMS-s (which separates the segments in memory) can achieve
higher performance on CPU architectures. Hence, the conversion between IEEE standard precisions and the CPMS-s
format cannot be realized in-place but requires additional workspace. Also, as the conversion requires information
about the offset in-between the distinct segment types, the information about the total memory requirements has to be
available before the algorithm invocation. This makes the CPMS-s less flexible and more resource-demanding compared
to CPMS-i. As memory is a scarce resource on GPU accelerators, on these architectures, we consider only CPMS-i
with a bank size of 128 bytes. This setup aims to attain high-performance on older GPU architectures that feature L1
cache lines of 128 bytes (such as NVIDIA’s K80) as well as newer GPUs with cache line sizes of 64 and 32 bytes, such as
NVIDIA’s P100 and V100 [Jia et al. 2018].

4.2 Adaptive precision

The proposed variant of PageRank with adaptive precision access leverages the norm difference γ = ∥p {k } − p {k−1} ∥1

in Algorithm 1–line 7 to check for residual stagnation. This event indicates either convergence (γ < ϵ) or the need for
higher access accuracy [Grüztmacher et al. 2018].

Concretely, if γ is close to the current data access precision, the following steps are invoked:

(1) execute a PageRank iteration reading in the current memory precision and writing in the new, extended memory
precision (on-the-fly conversion);

(2) normalize the vector in the newmemory precision, to preserve the unit-norm of the PageRank-vector ∥p {k } ∥1 = 1;
and

(3) set the new memory precision as default data access precision;

The normalization is necessary as the high precision values returned from the arithmetic operations are truncated in the
conversion to customized precision by cutting off mantissa bits (rounding towards zero). This can result in ∥p {k } ∥1 < 1.

Once the data access uses 64-bit accuracy, the values stored in CPMS are converted back to the standard ieee
floating-point values. This conversion ensures that the standard 64-bit memory access can be used (without incurring
on-the-fly format conversion overhead), and that all data is available in ieee double-precision after completion of the
PageRank algorithm.

4.3 GPU implementation of PageRank with CPMS

The GPU implementation of PageRank in [Grüztmacher et al. 2018] offloads all computationally-intensive tasks to the
GPU via CUDA kernel calls. This includes: (1) All norm functions, in particular, the selective norm calculating s in
Algorithm 1 (line 5), the calculation of the vector difference norm γ (line 7), and the vector norm used for normalization
in precision changes; (2) a vector scaling kernel, used in combination with the vector norm for normalization; (3) two
conversion kernels which handle the transformations between the ieee format and CPMS; and (4) the SpMV kernel
potentially adapting the data access precision (line 6).

For the SpMV kernel, we consider the CSR and ELLPACK sparse matrix formats. FOR SIMD-execution, the ELLPACK-
SpMV kernel assigns one thread to each row, which ensures coalesced access to the matrix values and column indexes.

The CSR-SpMV kernel also maps one thread to each row. This parallelization strategy is motivated by preliminary
experiments indicating that assigning multiple threads to a single row, and complementing the parallel computation of
partial sums with a reduction step, results in low performance for the target problems. The reason behind is that the

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

test matrices contain only a few nonzero elements in most rows, which is characteristic for graph problems like social
networks (see Table 1).

The CPU is commissioned with the build-up process (reading matrices, converting to CSR or ELLPACK sparse
format), resource management, and GPU kernel invocation. Also the memory access precision is controlled by the
CPU, which includes monitoring the values of γ . This avoids branching inside the memory access routines and thread
divergence. Instead of implementing several distinct precision-specific memory access routines, we take advantage of
C++ template parameters. This way, specific kernels for all required precisions are generated by the compiler, without
the need of branching inside the kernel for each load/store operation. The data access and the conversion between
the formats is realized using the built-in reinterpret_cast function; see Listing 1. In our implementation, we use
partial specialization to allow recursive function calls. This enables us to cover all conversions with one read and one
write function. A simplified version of reading the head in a 2–segment CPMS is provided in Listing 1. The pseudocode
there reflects all central components of the actual implementation, but omits template parameters and other details to
improve readability.

1 double reinter_read_head(const int32_t *segments , in t index) {

2 double result = 0.0;

3 int32_t *parts = re in terpre t_cas t <int32_t *>(& result);

4 in t headIndex = convertToHeadIndex(index); // returns the head index of the corresponding value

5 parts [1] = segments[headIndex];

6 return result;

7 }

Listing 1. Read function using a reinterpret_cast for reading the head in a 2-segment CPMS

4.4 CPU implementation of PageRank in CPMS

While the GPU realization of CPMS leverages the built-in reinterpret_cast function for splitting and recovering
ieee standard precision formats, the more complex CPU compilers are unable to apply the same optimization steps to
the reinterpret_cast function that succeed for ieee standard precision formats. In response, we implement a more
sophisticated strategy that enables compiler optimizations, see Listing 2.

1 double union_read_head(const int32_t *segments , in t index) {

2 union conversion { double dbl; int64_t it;};

3 const int headIndex = convertToHeadIndex(index); // Stores the index of the head of the corresponding value.

4 conversion result;

5 result.it = segments[headIndex];

6 result.it = result.it << 32; // head must be moved to the proper position due to little endian format

7 return result.dbl;

8 }

Listing 2. Read function using a union for reading the head in a 2-segment CPMS

To ensure a fair comparison between the PageRank using ieee-based memory access and the PageRank using CPMS
memory access, the code for all kernels is identical except for the memory accesses. We realize this via C++ templates,
as shown in the example in Listing 3. There, we compute the 1-norm of a vector vec with n elements. The vector
itself is encapsulated in the class SplitPointer<TotalNumberSegments>, which decouples the storage layout from
the arithmetic format. SplitPointer<1> uses the ieee format underneath, while SplitPointer<2>, for instance, uses
a 2-segment CPMS. The template parameter SegmentsToUse specifies the precision used in the read access by adjusting
the number of segments which are retrieved from memory.
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 9

This way, templating all kernels allows us to switch between fp64, CPMS-s, and CPMS-i without modifying any
computational kernel. As a side effect, templating the kernels reduces redundancy and thus improves the maintainability
of the code stack.

1 template < in t SegmentsToUse , in t TotalNumberSegments >

2 double norm1(in t n, const SplitPointer <TotalNumberSegments > vec)

3 {

4 double sum = 0.0;

5 #pragma omp parallel for reduction (+:sum) schedule(s t a t i c , chunkSize)

6 for (in t i = 0; i < n; ++i) {

7 sum += abs(vec. template read <SegmentsToUse >(i));

8 }

9 return sum;

10 }

Listing 3. Templated 1-norm calculation, allowing for different storage formats.

The CPU-code is parallelized using OpenMP, as shown in the example Listing 3–line 5. To parallelize “for-loops” we
apply a static strategy if the workload is balanced across all iterations, or the guided strategy for workloads where
some workload imbalance may occur, e.g. the row-parallelized SpMV calculations.

To leverage the SIMD core architecture, we vectorize all compute-intensive kernels. We choose the AVX2 instruction
set to support a wide variety of architectures while gaining a significant performance boost.

5 PERFORMANCE ASSESSMENT

5.1 Hardware and software environment

The reference implementations for SpMV and PageRank employ ieee double-precision (hereafter, fp64) in all arithmetic
and memory operations. fp64 arithmetic is also used for all the floating-point operations in the CPMS SpMV and the
CPMS-based PageRank, but the memory operations (accesses) use the segmentation-oriented customized precision
formats. We consider two CPMS realizations, consisting of four 16-bit segments and two 32-bit segments, respectively.

The experimental analysis of CPMS for data-parallel accelerators are conducted on an NVIDIA V100 “Volta” GPU,
with support for CUDA compute capability 7.0 [NVIDIA Corp. 2017]. All GPU kernels are encoded and compiled in the
CUDA framework, using CUDA version 9.2.

The CPU employed in the experiments is a node from JUWELS (at Jülich supercomputing center), equipped with
two Intel(R) Xeon(R) Platinum 8168 sockets (24 cores/socket, 2.70 GHz) and 94 GiB of RAM. The experiments with
these CPU map one thread per core, using all 48 cores of the node. The compiler is GCC version 8.2.0.

5.2 Test problems and PageRank convergence

For the experimental evaluation, we select a set of test matrices, taken from the Suite Sparsematrix collection [SuiteSparse
2018], representing social networks and (to increase the experimentation database) distribution infrastructures. The
matrix identifiers, along with some key characteristics, are listed in Table 1. We note that, conversely to the results
that were reported in the initial paper [Grüztmacher et al. 2018], here we consider the problems as full matrices with
elements above and below the main diagonal by correctly handling the “symmetric” flag in the matrix header. In Figure 3,
we provide details about the row distribution of nonzeros. Even though the test problems present a highly unbalanced
nonzero distribution, we consider both the “irregular-friendly” CSR format and the “GPU-friendly” ELLPACK format.
As elaborated in Section 2, the ELLPACK format pads the rows with explicit zeros to enforce that all rows contain

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

Table 1. Test matrices from the SuiteSparse Matrix Collection along with the number of rows (n)and the number of nonzero elements

(nz).

Name (Abbreviation) n nz Empty rows
adaptive (Ada) 6,815,744 27,248,640 0
delaunay_n22 (Del) 4,194,304 25,165,738 0
europe_osm (Eur) 50,912,018 108,109,320 0
hugebubbles-00020 (Bub) 21,198,119 63,580,358 0
rgg_n_2_24_s0 (Rgg) 16,777,216 265,114,400 1
road_usa (USA) 23,947,347 57,708,624 0
Stanford (Std) 281,903 2,312,497 20,315
wb-edu (edu) 9,845,725 57,156,537 2,925,419
web-BerkStan (Brk) 685,230 7,600,595 4,744
web-Google (Ggl) 916,428 5,105,039 176,974

Table 2. Iteration count of PageRank in the different precision formats: for the CPMS, the total number of iterations accumulates

from those executed with different segment counts and stays on par with the reference implementation.

fp64 2-segment CPMS 4-segment CPMS
64bit 32bit 64bit total 16bit 32bit 48bit 64bit total

Ada 65 7 58 65 1 1 81 1 84
Del 64 15 49 64 1 21 64 2 88
Eur 118 50 68 118 1 50 65 3 119
Bub 77 12 42 77 1 1 77 3 82
Rgg 89 28 61 89 1 1 89 2 93
USA 117 51 66 117 1 50 54 2 117
Std 118 51 67 118 1 50 64 3 118
edu 114 47 67 114 1 46 65 3 115
Brk 119 50 69 119 1 49 1 68 119
Ggl 116 47 69 116 1 46 67 2 116

the same number of nonzero elements. For some matrices (concretely, edu, Brk and Ggl), this increases the memory
footprint beyond the 16 GiB that is available on our V100 GPU or even the memory of the JUWELS compute node. In
consequence, these particular problems are not considered in the experiments using the ELLPACK matrix format.

A major goal of the customized precision implementation is to preserve the convergence rate of the reference
implementation of PageRank based on IEEE fp64. A few additional iterations may be acceptable, but a significant
convergence delay may turn the customized-precision realization unattractive from the performance point of view.
In Table 2, we report the convergence details of the PageRank algorithm realized when operating with different
configurations: the default implementation using ieee fp64, a customized precision implementation using a 2-segment
splitting, and a customized implementation using a 4-segment splitting. For the customized precision PageRank, we list
the number of iterations completed in the distinct accuracy settings and the total iteration count that accumulates from
the iterations in the distinct segment configurations. All implementations generate results of the same quality reducing
the difference | |p {k } − p {k−1} | |1 by at least ten orders of magnitude while starting with p {0} ≡ 1

n .
An initial observation for the 4-segment splitting is that the use of the first 16-bit segment alone never provides the

accuracy necessary to make any progress towards the solution: for all test problems, the algorithm switches to reading
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 11

Ada Del

2 3 4

Non-zeros per row

10
0

10
5

C
o

u
n

t
o

f
ro

w
s

 3.9979 4 4

count

mean

median

max

5 10 15 20

Non-zeros per row

10
0

10
5

C
o

u
n

t
o

f
ro

w
s

 6 6 23

count

mean

median

max

Eur Bub

1 2 3 4 5 6 7 8 9 10 11 12 13

Non-zeros per row

10
0

10
5

C
o

u
n

t
o

f
ro

w
s

 2.1235 2 13

count

mean

median

max

2 3

Non-zeros per row

10
4

10
6

10
8

C
o

u
n

t
o

f
ro

w
s

 2.9993 3 3

count

mean

median

max

Rgg USA

0 10 20 30 40

Non-zeros per row

10
0

10
5

C
o

u
n

t
o

f
ro

w
s

 15.802 16 40

count

mean

median

max

1 2 3 4 5 6 7 8 9

Non-zeros per row

10
0

10
5

C
o

u
n

t
o

f
ro

w
s

 2.4098 2 9

count

mean

median

max

Std edu

0 1 2 3 4

Non-zeros per row 10
4

10
0

10
2

10
4

10
6

C
o

u
n

t
o

f
ro

w
s

 8.2032 2 38606

count

mean

median

max

0 1000 2000 3000 4000

Non-zeros per row

10
0

10
5

C
o

u
n

t
o

f
ro

w
s

 5.8052 2 3841

count

mean

median

max

Brk Ggl

0 50 100 150 200 250

Non-zeros per row

10
0

10
5

C
o

u
n

t
o

f
ro

w
s

 11.092 6 249

count

mean

median

max

0 100 200 300 400

Non-zeros per row

10
0

10
2

10
4

10
6

C
o

u
n

t
o

f
ro

w
s

 5.5706 3 456

count

mean

median

max

Fig. 3. Nonzero distribution in the test problems.

2 segments after the very first iteration. A second observation is that, except for the Brk case, all problems require only
a few iterations with 64-bit accuracy, while most iterations in the 4-segment CPMS use 32-bit accuracy (2 segments) or
48-bit accuracy (3 segments).

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

Ada Del Eur Bub Rgg USA Std edu Brk Ggl
0

0.5

1

1.5

2

2.5

3

S
p

M
V

 s
p

e
e

d
u

p

IEEE Double

32-bit 2-seg

64-bit 2-seg

16-bit 4-seg

32-bit 4-seg

48-bit 4-seg

64-bit 4-seg

Ada Del Eur Bub Rgg USA Std
0

0.5

1

1.5

2

2.5

3

S
p

M
V

 s
p

e
e

d
u

p

Fig. 4. SpMV speedup, CPMS compared to ieee double-precision for the CSR format (left) and the ELLPACK format (right).

For the 2-segment CPMS, the number of iterations using full accuracy is slightly higher than the number of iterations
using 32-bit accuracy.

The total number of iterations accumulates from the iterations in the distinct segment configurations. For most
problems, the CPMS implementations succeed in preserving the convergence of the reference implementations. For
some problems, only one additional iteration is required. In summary, the convergence rate of the PageRank is generally
well-preserved when switching to CPMS-based memory access.

5.3 CPMS-based PageRank on GPUs

We first focus on the CPMS-based implementation of PageRank on GPUs. As previously motivated, we limit the analysis
on GPU architectures to the CPMS-i format, interleaving the segments in banks of 128 bytes.

The SpMV embedded in the power iteration is the central and most expensive building block of the PageRank
iteration. In Figure 4, we report the speedup of the CPMS SpMV using different segment configurations in the memory
access over the reference implementation, which uses ieee fp64 memory access. We consider both the CSR format (left)
and the ELLPACK format (right). In the labels for Figure 4, the first number indicates how many bits of the ieee fp64
number are retrieved from memory; the second part indicates how many segments the ieee fp64 numbers are split.
Thus, “32-bit 2-seg” means that an ieee fp64 value was split into 2 segments (with 32 bits each), and only the first
segment (32 bits) is accessed. Similarly, “64-bit 2-seg” means that the ieee fp64 value was split into 2 segments, and both
segments (64 bits) are accessed. This is equivalent to ieee fp64, and can be expected to be slower due to the overhead
induced by the operating logic and a higher cache miss rate as in the 2-segment splitting, two distinct memory areas
have to be accessed for a single value. The analysis reveals that using 32-bit accuracy in the 2-segment CPMS provides
a speedup of about 1.5× on average (the high speedup for Del comes from cache effects). The 4-segment CPMS is about
two times faster for 16-bit accuracy. Using 32-bit accuracy, the 4-segment CPMS is about 30% slower than the 32-bit
accuracy in the 2-segment splitting. Using more than 32-bit accuracy, the CPMS SpMV suffers from the overhead of
format conversion as well as the previously mentioned higher cache miss rate. Using more than 32-bit accuracy, the
CPMS SpMV is inferior to the ieee fp64 SpMV in most cases for the CSR format, while it is still slightly faster in most
cases for the ELLPACK format.

The next natural question is how these performance advantages of the CPMS SpMV improve the performance of the
PageRank algorithm. For this study, we set δ = 0.85 in Algorithm 1, which is a popular choice [Page et al. 1998], and
select a relative accuracy stopping criterion ε = 10−10. In Figure 5, we visualize the iteration runtime in the different
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Normalized PageRank execution time

Ada

Del

Eur

Bub

Rgg

USA

Std

edu

Brk

Ggl

16 bit access

precision change

32 bit access

precision change

48 bit access

precision change

64 bit access

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Normalized PageRank execution time

Ada

Del

Eur

Bub

Rgg

USA

Std

16 bit access

precision change

32 bit access

precision change

48 bit access

precision change

64 bit access

Fig. 5. Normalized PageRank execution time, broken down in time spent at each precision level and the conversion; The “precision

change” part contains both, the in-place conversion and the normalization of the iteration vector. The top bar shows the runtime in

ieee double-precision, the middle bar the runtime with 2-segment and the bottom bar the runtime with 4-segment CPMS. The upper

graph uses the CSR format for the sparse system matrix, the lower graph uses the ELLPACK format. For matrices edu, Brk, and Ggl

the memory requirements exceed the memory capacity of the V100 GPU and, therefore, they are not considered in the experiments

with this format.

format configurations for all target problems. For each case, we normalize the runtime to the total execution time of the
reference PageRank (top bar). For the 2-segment CPMS (middle bar) and 4-segment CPMS (bottom bar), we visualize the
iteration times spent in the distinct accuracy configurations. While the number of iterations in the distinct precision
environments correspond to the iteration counts listed in Table 2, the iterations using reduced accuracy memory access
are generally faster. The data for CPMS-based PageRank also includes the configuration switching in-between the
iteration phases. For some problems (e.g., Std), we notice a difference in the performance trend of the CPMS PageRank
using either CSR and ELLPACK (compare top/bottom plot in Figure 5). This is likely related to the interaction of the
matrix characteristics in different formats and the architecture cache. The ratio between the execution times spent in
different configurations, however, remains the same as it correlated to the iteration counts in Table 2.

Finally, in Figure 6, we show the runtime of the CSR-based PageRank algorithm with respect to the target relative
residual accuracy for different memory access strategies – ieee fp64, 2- and 4-segment CPMS. If a low accuracy solution
is acceptable, the PageRank instance using CPMS and mostly accessing values with reduced accuracy is faster than the
reference PageRank using fp64 memory accesses.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

20

40

60

80

100

120

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'Ada'

IEEE Double

2-segment CPMS

4-segment CPMS

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

200

400

600

800

1000

1200

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'Brk'

IEEE Double

2-segment CPMS

4-segment CPMS

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

200

400

600

800

1000

1200

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'Bub'

IEEE Double

2-segment CPMS

4-segment CPMS

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

20

40

60

80

100

120

140

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'Del'

IEEE Double

2-segment CPMS

4-segment CPMS

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

100

200

300

400

500

600

700

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'edu'

IEEE Double

2-segment CPMS

4-segment CPMS

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

100

200

300

400

500

600

700

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'Eur'

IEEE Double

2-segment CPMS

4-segment CPMS

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

50

100

150

200

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'Ggl'

IEEE Double

2-segment CPMS

4-segment CPMS

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

500

1000

1500

2000

2500

3000

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'Rgg'

IEEE Double

2-segment CPMS

4-segment CPMS

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

5

10

15

20

25

30

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'Std'

IEEE Double

2-segment CPMS

4-segment CPMS

1e-2 1e-4 1e-6 1e-8 1e-10 1e-12

Relative stopping criteria

0

100

200

300

400

ru
n
ti
m

e
 [
m

s
]

Runtime for matrix 'USA'

IEEE Double

2-segment CPMS

4-segment CPMS

Fig. 6. PageRank runtime related to the stopping criterion. The reported results are for the GPU of PageRank using the CSR format

and CPMS or ieee double-precision memory access.

For easier interpretation, we show in Figure 7 the speedup of the 2-segment realization (left-hand side plot) and the
4-segment realization (right-hand side plot) over the ieee fp64 implementation. The speedup factors for the 2-segment
CPMS (left-hand side in Figure 7) are generally larger than for the 4-segment CPMS (right-hand side in Figure 7). One
obvious reason is the higher number of precision changes, and the larger overhead in the memory access routines
reassembling ieee double-precision numbers from the 16-bit CPMS segments. Also, the memory access routines do not
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 15

Ada Del Eur Bub Rgg USA Std edu Brk Ggl

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.98

0.97

0.98

0.98

0.99

0.99

1.42

1.43

1.11

1.04

1.03

1.02

2.22

2.22

1.57

1.26

1.16

1.11

1.38

1.39

1.27

1.17

1.13

1.10

1.15

1.16

1.07

1.03

1.02

1.01

1.43

1.43

1.28

1.15

1.11

1.08

1.64

1.64

1.44

1.28

1.20

1.16

1.22

1.22

1.16

1.11

1.08

1.07

1.26

1.24

1.17

1.11

1.08

1.07

1.35

1.28

1.19

1.13

1.09

1.08

(a) PageRank with CSR and interleaved, 2-segment CPMS

Ada Del Eur Bub Rgg USA Std edu Brk Ggl

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.56

0.68

0.74

0.78

0.95

0.94

0.92

0.99

1.00

0.54

0.68

0.43

0.43

0.43

0.51

0.75

0.70

0.69

0.68

0.73

0.96

0.98

0.91

0.87

0.90

0.96

0.87

0.82

0.78

0.82

1.99

1.12

2.69

1.76

1.06

1.29

1.23

1.14

1.05

1.93 1.66

1.62

1.49

1.36

1.29

1.22

1.07 1.22

1.18

1.11

1.05

1.01

1.01

1.05

1.04

1.03

1.02

1.01

1.01

1.07

(b) PageRank with CSR and interleaved, 4-segment CPMS

Fig. 7. PageRank speedup on the GPU using the CSR format, CPMS compared to ieee double-precision in a heatmap.

Ada Del Eur Bub Rgg USA Std

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

1.46

1.46

1.12

1.05

1.03

1.02

1.51

1.51

1.23

1.12

1.07

1.05

1.47

1.48

1.32

1.21

1.15

1.12

1.13

1.14

1.06

1.03

1.02

1.01

1.48

1.48

1.27

1.15

1.10

1.08

1.59

1.60

1.40

1.26

1.19

1.15

1.53

1.53

1.36

1.23

1.17

1.13

(a) PageRank with ELLPACK and interleaved, 2-segment

CPMS

Ada Del Eur Bub Rgg USA Std

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.59

0.72

0.78

0.81

0.91

0.87

0.87

0.87

0.57

0.71

0.45

0.45

0.45

0.53

2.10

1.15

1.84

1.32

1.50

1.40

1.32

1.23

1.17

1.13

1.77

1.15

1.11

1.09

1.07

1.04

1.70

1.65

1.54

1.43

1.35

1.27

1.30

1.24

1.15

1.07

1.02

1.02

(b) PageRank with ELLPACK and interleaved, 4-segment

CPMS

Fig. 8. PageRank speedup on the GPU using the ELLPACK format, CPMS compared to ieee double-precision in a heatmap.

saturate the memory bandwidth if all threads of a warp read only 16-bit segments. In contrast, the 4-segment CPMS
performs better when few iterations are sufficient to fulfill the accuracy requirements.

Figure 8 reports the results for an analogous experimental evaluation using the ELLPACK SpMV kernel, exposing
similar runtime benefits when employing the CPMS technique.

5.4 CPMS-based PageRank on CPUs

For the CPU, we consider 12 configurations that arise as combinations of: two different matrix storage formats (CSR
and ELLPACK), three interleaving variants (CPMS-i using 128-byte banks and CPMS-i using 8 KiB banks as well as
CPMS-s completely separating the segments in memory), and two segmentation strategies (2-segment splitting and
4-segment splitting).

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

Ada Del Eur Bub Rgg USA Std edu Brk Ggl
0

0.5

1

1.5

2

2.5

3

S
p

M
V

 s
p

e
e

d
u

p

IEEE Double

32-bit 2-seg

64-bit 2-seg

16-bit 4-seg

32-bit 4-seg

48-bit 4-seg

64-bit 4-seg

(a) CPU: SpMV with CSR and interleaved banks of 128 bytes

Ada Del Eur Bub Rgg USA Std
0

0.5

1

1.5

2

2.5

3

S
p

M
V

 s
p

e
e

d
u

p

(b) CPU: SpMV with ELLPACK and interleaved

banks of 128 bytes

Ada Del Eur Bub Rgg USA Std edu Brk Ggl
0

0.5

1

1.5

2

2.5

3

S
p

M
V

 s
p

e
e

d
u

p

IEEE Double

32-bit 2-seg

64-bit 2-seg

16-bit 4-seg

32-bit 4-seg

48-bit 4-seg

64-bit 4-seg

(c) CPU: SpMV with CSR and interleaved banks of 8 KiB

Ada Del Eur Bub Rgg USA Std
0

0.5

1

1.5

2

2.5

3

S
p

M
V

 s
p

e
e

d
u

p

(d) CPU: SpMV with ELLPACK and interleaved

banks of 8 KiB

Ada Del Eur Bub Rgg USA Std edu Brk Ggl
0

0.5

1

1.5

2

2.5

3

S
p

M
V

 s
p

e
e

d
u

p

IEEE Double

32-bit 2-seg

64-bit 2-seg

16-bit 4-seg

32-bit 4-seg

48-bit 4-seg

64-bit 4-seg

(e) CPU: SpMV with CSR and complete splitting (CPMS-s)

Ada Del Eur Bub Rgg USA Std
0

0.5

1

1.5

2

2.5

3

S
p

M
V

 s
p

e
e

d
u

p

(f) CPU: SpMV with ELLPACK and complete split-

ting (CPMS-s)

Fig. 9. SpMV speedup on CPU, CPMS compared to ieee double-precision for the CSR format (left) and the ELLPACK format (right).

The results in the top row are using CPMS-i interleaving banks of 128 bytes of segments, in the middle interleaving banks of 8 KiB

and the results in the bottom row are using CPMS-s storing the segments in distinct memory blocks, see Figure 2.

First, we again focus on the performance of the CPMS SpMV kernel as this is the key building block. For this kernel,
we collect all results in Figure 9. The configuration based on CPMS-i using 128-byte banks performs poorly on the
CPU, see the top row in Figure 9. For example, even when reading only half of the data (32-bit access), the throughput
(elements/s) is, at most, marginally faster than that of the standard ieee fp64 version. We believe this is due to the
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 17

CPU’s prefetching mechanism, which is unable to detect the interleaved pattern of the memory accesses and fails
to ignore the un-used tail segments in the low precision data access. By increasing the bank size to 8 KiB, we can
alleviate this effect and achieve higher throughput, see Figure 9c and 9d. Compared with the 128-byte banks, the larger
interleaving factor enables faster kernel execution for all test problems. In particular, the performance for CPMS-i using
8 KiB banks is competitive with the performance of the CPMS-s strategy in which all segments of the same order are
stored consecutively in memory. We can assume that the prefetching behavior for CPMS-s is identical to that of a
matrix stored in the ieee format – while accessing fewer bits in low precision accesses. As elaborated previously, the
conversion between CPMS-s and ieee fp64 cannot be realized in-place, which makes the performance-competitive
CPMS-i using 8 KiB banks an attractive solution for CPU architectures with support for prefetching.

For CPMS-i using 8 KiB banks and CPMS-s, the SpMV kernel runs faster on the CPU if reduced precision is acceptable
(see middle and bottom row in Figure 9).

Next, we investigate the performance benefits CPMS can render to the PageRank algorithm using the CSR-based
SpMV and the ELLPACK-based SpMV. We report the corresponding speedup factors over fp64 memory access in
Figures 10 and 11, respectively.

For CSR, CPMS-s consistently outperforms CPMS-i, while the 2-segment CPMS (left-hand side schemes) also
outperforms the 4-segment CPMS (right-hand side schemes) in almost all cases, compare top/bottom row in Figure 10.
Comparing to the GPU results shown in Figure 7, the CPU implementation of CPMS-i and CPMS-s can unleash even
larger speedup factors.

The performance gains for the ELLPACK SpMV are reported in Figure 11. The general trends are similar to those
observed for CSR: CPMS-s performs better than CPMS-i, and the 2-segment realization is generally superior to the
4-segment solution. However, the performance gains are smaller than those we reported for the GPU in Figure 8.

6 SUMMARY AND OUTLOOK

We have demonstrated that the application of a customized precision memory access strategy can unleash attractive
performance improvements to the memory-bound PageRank algorithm on multi-core processors and GPU architectures.
The keys to these improvements are 1) an adaptive-precision technique that tunes the precision of the data access as the
iteration converges; and 2) the selection of a few customized precision formats outside the ieee 754 standard. The use of
customized formats allows modulating the number of the significand bits of the distinct values that are retrieved from
memory, while still delivering high memory bandwidth. It also avoids overflow and underflow and efficiently removes
the need for data duplication that would occur if employing different ieee 754 standard precision formats. We used a
set of test problems from the SuiteSparse matrix collection to evaluate the performance benefits on a Intel(R) Xeon(R)
Platinum 8168 CPU (24 cores per socket) and an NVIDIA V100 GPU. On average, the PageRank variant employing
the customized precision memory access technique reduces the time-to-solution by 10% if a highly accurate output is
required, and by 30% if lower accuracy is acceptable.

As part of futurework, we plan to explore the use of CPMS-basedmemory access for othermemory-bound algorithms.

ACKNOWLEDGMENT

H. Anzt was supported by the “Impuls und Vernetzungsfond” of the Helmholtz Association under grant VH-NG-1241.
G. Flegar and E. S. Quintana-Ortí were supported by project TIN2017-82972-R of the MINECO and FEDER. This work
was also supported by the EU H2020 project 732631 “OPRECOMP. Open Transprecision Computing”, and the U.S.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

Ada Del Eur Bub Rgg USA Std edu Brk Ggl

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.92

0.91

0.93

0.97

0.98

0.98

1.24

1.28

1.09

1.03

1.02

1.02

1.22

1.22

1.10

1.05

1.03

1.02

1.11

1.11

1.07

1.05

1.04

1.03

1.47

1.49

1.29

1.16

1.11

1.09

1.39

1.39

1.27

1.18

1.13

1.11

1.11

1.12

1.06

1.04

1.02

1.01

1.48

1.47

1.32

1.20

1.15

1.12

1.47

1.49

1.30

1.19

1.14

1.11

1.30

1.29

1.17

1.11

1.09

1.07

(a) PageRank speedup using CSR 2-segment CPMS-i with 8

KiB bank size

Ada Del Eur Bub Rgg USA Std edu Brk Ggl

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.52

0.64

0.69

0.74

0.92

0.61

0.58

0.59

0.65

0.96

0.91

0.86

0.84

0.86

0.44

0.64

0.53

0.53

0.54

0.61

0.97

0.89

0.85

0.88

0.98

0.90

0.86

0.89

1.70

1.05

1.35 1.02 1.76

1.20

1.16

1.16

1.13

1.09

1.49

1.42

1.33

1.23

1.18

1.14

1.02

1.01

1.59

1.49

1.39

1.29

1.22

1.17

1.13

1.08

1.02

1.02

1.01

1.01

1.22

1.10

(b) PageRank speedup using CSR 4-segment CPMS-i with 8

KiB bank sizeCPMS-i

Ada Del Eur Bub Rgg USA Std edu Brk Ggl

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

1.44

1.48

1.18

1.07

1.04

1.03

1.33

1.34

1.19

1.10

1.07

1.05

1.19

1.19

1.14

1.09

1.07

1.06

1.20

1.21

1.11

1.05

1.03

1.03

1.49

1.50

1.31

1.18

1.12

1.09

1.43

1.42

1.29

1.19

1.14

1.10

1.24

1.24

1.15

1.11

1.08

1.06

1.48

1.47

1.32

1.19

1.14

1.10

1.62

1.64

1.44

1.27

1.20

1.16

1.47

1.46

1.27

1.17

1.13

1.11

(c) PageRank speedup using CSR 2-segment CPMS-s

Ada Del Eur Bub Rgg USA Std edu Brk Ggl

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.54

0.65

0.70

0.75

0.69

0.64

0.64

0.70

0.99

0.94

0.88

0.85

0.87

0.61

0.82

0.58

0.59

0.59

0.66

0.96

0.92

0.95

0.99

0.90

0.86

0.88

2.03

1.09

1.52

1.06

1.06 1.65

1.17

1.13

1.13

1.12

1.08

1.44

1.38

1.28

1.19

1.13

1.10

1.15

1.14

1.07

1.51

1.42

1.32

1.24

1.18

1.15

1.41

1.39

1.28

1.18

1.14

1.12

1.23

1.13

(d) PageRank speedup using CSR 4-segment CPMS-s

Fig. 10. PageRank speedup on the CPU using the CSR format, CPMS compared to ieee double-precision in a heatmap.

Department of Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics
program under Awards Number DE-SC0016513 and DE-SC-0010042.

REFERENCES
Hartwig Anzt, Jack Dongarra, Goran Flegar, Nicholas J. Higham, and Enrique S. Quintana-Ortí. 2018. Adaptive precision in block-Jacobi preconditioning

for iterative sparse linear system solvers. Concurrency and Computation: Practice and Experience (2018). https://doi.org/10.1002/cpe.4460
Hartwig Anzt, Jack Dongarra, and Enrique S. Quintana-Ortí. 2015. Adaptive precision solvers for sparse linear systems. In Proceedings of the 3rd International

Workshop on Energy Efficient Supercomputing (E2SC ’15). ACM, New York, NY, USA, Article 2, 10 pages. https://doi.org/10.1145/2834800.2834802
Hartwig Anzt, Goran Flegar, Thomas Grützmacher, and Enrique S Quintana-Ortí. 2019. Toward a modular precision ecosystem for high-performance com-

puting. The International Journal of High Performance Computing Applications (May 2019), 109434201984654. https://doi.org/10.1177/1094342019846547
Hartwig Anzt, Mark Gates, Jack Dongarra, Moritz Kreutzer, Gerhard Wellein, and Martin Köhler. 2017. Preconditioned Krylov solvers on GPUs. Parallel

Comput. 68 (oct 2017), 32–44. https://doi.org/10.1016/J.PARCO.2017.05.006
Nathan Bell and Michael Garland. 2009. Implementing Sparse Matrix-vector Multiplication on Throughput-oriented Processors. In Proceedings of

the Conference on High Performance Computing Networking, Storage and Analysis (SC ’09). ACM, New York, NY, USA, Article 18, 11 pages. https:
//doi.org/10.1145/1654059.1654078

Manuscript submitted to ACM

https://doi.org/10.1002/cpe.4460
https://doi.org/10.1145/2834800.2834802
https://doi.org/10.1177/1094342019846547
https://doi.org/10.1016/J.PARCO.2017.05.006
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1145/1654059.1654078

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 19

Ada Del Eur Bub Rgg USA Std

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.99

0.99

0.97

0.98

0.98

0.98

1.32

1.33

1.10

1.04

1.02

1.01

1.21

1.20

1.09

1.06

1.05

1.04

1.20

1.21

1.07

1.03

1.02

1.01

1.32

1.32

1.18

1.10

1.07

1.06

1.38

1.39

1.27

1.18

1.14

1.11

1.11

1.12

1.07

1.04

1.03

1.03

(a) PageRank speedup using ELLPACK 2-segment CPMS-i

with 8 KiB bank sizeCPMS-i

Ada Del Eur Bub Rgg USA Std

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.93

0.45

0.54

0.59

0.66

0.64

0.40

0.25

0.23

0.23

0.29

0.53

0.49

0.48

0.46

0.45

0.50

0.40

0.52

0.42

0.42

0.43

0.50

0.70

0.42

0.40

0.39

0.39

0.45

0.83

0.78

0.71

0.66

0.63

0.67

0.48

0.48

0.47

0.45

0.44

0.50

1.47

(b) PageRank speedup using ELLPACK 4-segment CPMS-i

with 8 KiB bank sizeCPMS-i

Ada Del Eur Bub Rgg USA Std

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

1.46

1.51

1.17

1.06

1.03

1.02

1.21

1.23

1.14

1.07

1.04

1.03

1.15

1.14

1.12

1.08

1.06

1.05

1.35

1.37

1.16

1.07

1.04

1.03

1.39

1.37

1.26

1.15

1.11

1.09

1.50

1.50

1.36

1.24

1.18

1.14

1.28

1.29

1.21

1.14

1.10

1.08

(c) PageRank speedup using ELLPACK 2-segment CPMS-s

Ada Del Eur Bub Rgg USA Std

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.97

0.49

0.59

0.64

0.71

0.81

0.48

0.31

0.29

0.29

0.35

0.63

0.58

0.56

0.52

0.51

0.56

0.57

0.76

0.52

0.52

0.52

0.60

0.73

0.43

0.42

0.41

0.41

0.47

0.74

0.69

0.64

0.60

0.57

0.63

0.53

0.53

0.51

0.50

0.49

0.54

1.75

(d) PageRank speedup using ELLPACK 2-segment CPMS-s

Fig. 11. PageRank speedup on the CPU using the ELLPACK format, CPMS compared to ieee double-precision in a heatmap.

Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual web search engine. In Seventh International World-Wide Web Conference
(WWW 1998). http://ilpubs.stanford.edu:8090/361/

Erin Carson and Nicholas J. Higham. 2017. A New Analysis of Iterative Refinement and its Application to Accurate Solution of Ill-Conditioned Sparse
Linear Systems. SIAM J. Scientific Computing 39, 6 (2017), A2834–A2856. https://doi.org/10.1137/17M1122918

Erin Carson and Nicholas J. Higham. 2018. Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM J. Scientific
Computing 40, 2 (2018), A817–A847. https://doi.org/10.1137/17M1140819

Goran Flegar and Enrique S. Quintana-Ortí. 2017. Balanced CSR sparse matrix-vector product on graphics processors. In Euro-Par 2017: Parallel Processing,
Francisco F. Rivera, Tomas F. Pena, and José C. Cabaleiro (Eds.). Springer International Publishing, Cham, 697–709.

Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations (3rd ed.). The Johns Hopkins University Press, Baltimore.
Max Grossman, Christopher Thiele, Mauricio Araya-Polo, Florian Frank, Faruk O. Alpak, and Vivek Sarkar. 2016. A survey of sparse matrix-vector

multiplication performance on large matrices. CoRR abs/1608.00636 (2016). arXiv:1608.00636 http://arxiv.org/abs/1608.00636
Thomas Grützmacher and Hartwig Anzt. 2019. A modular precision format for decoupling arithmetic format and storage format. In Euro-Par 2018:

Parallel Processing Workshops. Springer International Publishing, 434–443. https://doi.org/10.1007/978-3-030-10549-5_34
Thomas Grützmacher, Terry Cojean, Goran Flegar, Fritz Göbel, and Hartwig Anzt. [n. d.]. A customized precision format based on mantissa segmentation

for accelerating sparse linear algebra. Concurrency and Computation: Practice and Experience 0, 0 ([n. d.]), e5418. https://doi.org/10.1002/cpe.5418
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5418 e5418 cpe.5418.

Thomas Grüztmacher, Hartwig Anzt, Florian Scheidegger, and Enrique S. Quintana-Ortí. 2018. High-performance GPU implementation of PageRank
with reduced precision based on mantissa segmentation. In Proc. 8th Workshop on Irregular Applications: Architectures and Algorithms (IA3’18). 61–68.

Manuscript submitted to ACM

http://ilpubs.stanford.edu:8090/361/
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
http://arxiv.org/abs/1608.00636
http://arxiv.org/abs/1608.00636
https://doi.org/10.1007/978-3-030-10549-5_34
https://doi.org/10.1002/cpe.5418
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5418

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Thomas Grützmacher, Terry Cojean, Goran Flegar, Hartwig Anzt, and Enrique S. Quintana-Ortí

https://doi.org/10.1109/IA3.2018.00015
Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2 ed.). SIAM.
Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. 2018. Dissecting the NVIDIA Volta GPU Architecture via microbenchmarking.

Technical Report. arXiv:1804.06826 http://arxiv.org/abs/1804.06826
Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R. Bishop. 2014. A unified sparse matrix data format for efficient general

sparse matrix-vector multiplication on modern processors with wide SIMD Units. SIAM J. Scientific Computing 36, 5 (2014), C401–C423. https:
//doi.org/10.1137/130930352 arXiv:http://dx.doi.org/10.1137/130930352

Amy N. Langville and Carl D. Meyer. 2012. Google’s PageRank and beyond: The science of search engine rankings. Princeton University Press, Princeton, NJ,
USA.

NVIDIA Corp. 2017. Whitepaper: NVIDIA Tesla V100 GPU Architecture. (2017).
Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The PageRank citation ranking: Bringing order to the web. In Proceedings of the

7th International World Wide Web Conference. Brisbane, Australia, 161–172. citeseer.nj.nec.com/page98pagerank.html
SuiteSparse. 2018. SuiteSparse Matrix Collection. https://sparse.tamu.edu. (2018). Accessed in April 2018.

Manuscript submitted to ACM

https://doi.org/10.1109/IA3.2018.00015
http://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
https://doi.org/10.1137/130930352
https://doi.org/10.1137/130930352
http://arxiv.org/abs/http://dx.doi.org/10.1137/130930352
citeseer.nj.nec.com/page98pagerank.html
https://sparse.tamu.edu

