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We describe the application of a communication-reduction technique for the PageRank algorithm that dynamically adapts the precision
of the data access to the numerical requirements of the algorithm as the iteration converges. Our variable-precision strategy, using a
customized precision format based on mantissa segmentation (CPMS), abandons the ieee 754 single- and double-precision number
representation formats employed in the standard implementation of PageRank, and instead handles the data in memory using a
customized floating-point format. The customized format enables fast data access in different accuracy, prevents overflow/underflow
by preserving the ieee 754 double-precision exponent, and efficiently avoids data duplication since all bits of the original ieee 754
double-precision mantissa are preserved in memory, but re-organized for efficient reduced precision access. With this approach, the
truncated values (omitting significand bits), as well as the original IEEE double-precision values can be retrieved, without duplicating
the data in different formats.

Our numerical experiments on an NVIDIA V100 GPU (Volta architecture) and a server equipped with two Intel Xeon Platinum
8168 CPUs (48 cores in total) expose that, compared with a standard ieee double-precision implementation, the CPMS-based PageRank
completes about 10% faster if high-accuracy output is needed, and about 30% faster if reduced output accuracy is acceptable.
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1 INTRODUCTION

As of 2018, the World Wide Web (or simply the “Web”) is estimated to consist of a few dozens of billions of webpages,1

with its increasing popularity fueled by search engines, that is, virtual machines created by software that inspect virtual
file folders to identify relevant documents [Brin and Page 1998; Langville and Meyer 2012]. This huge collection of web
pages continues to grow in dimension, irregularity, and number of hyperlinks. Consequently, there is an urgent need
for search engines that can provide fast yet accurate results matching the users’ queries.

PageRank is a popular algorithm for web information retrieval used by search engines. The mathematics underlying
PageRank build upon Markov chain theory, exploiting the principle that “a page is relevant if it is linked by other
relevant pages”. PageRank applies the classical iterative power method [Golub and Loan 1996] to the matrix associated
with the adjacency graph of the search space [Langville and Meyer 2012].

The main computational kernel behind PageRank is the sparse matrix-vector product (SpMV). This is a memory-

bound kernel whose performance is constrained by the memory bandwidth on virtually all current architectures. In
consequence, PageRank is a memory-bound algorithm. The SpMV kernel has received considerable attention over the
past decades due to its widespread use in many scientific and engineering applications (see Section 2). In this paper,
we address the memory-bound nature of PageRank by reducing the volume of numerical data retrieved from memory
in a high-performance implementation of SpMV. The key in our approach is to exploit the fixed-point nature of the
PageRank algorithm. Specifically, the PageRank algorithm allows to successively increase the data accuracy as the
iterations converge towards the correct answer.

We previously explored the idea of decoupling the arithmetic precision from the memory precision [Anzt et al. 2019;
Grützmacher et al. [n. d.]] and dynamically adapting the memory precision to the numeric requirements of the PageRank
algorithm in [Grüztmacher et al. 2018]. There we implemented a particular instance of a customized precision based
on mantissa segmentation (CPMS) that splits a 64-bit floating-point number into two or four equally-sized segments
of 32 or 16 bits each, respectively. To attain a cache-effective memory access on NVIDIA’s K80, P100 and V100 GPUs,
our implementation in [Grüztmacher et al. 2018] interleaves the information in banks of 128 bytes (which matches
the smallest integer multiple of the cache line size for all three GPU generations). Thus, for example, if we decide to
split each number into four segments, say s1, s2, s3 and s4, we store consecutively in memory 128 bytes of information
corresponding to segment s1 of the first 64 numbers (64 · 16 bits = 64 · 2 bytes = 128); then 128 bytes for segment s2 of
the same first 64 numbers; and when we are done with all the segments for the first 64 numbers, we continue with the
next 64 ones; see [Grüztmacher et al. 2018] for details.

In this paper, we extend our prior work in [Grüztmacher et al. 2018] by proposing a more flexible CPMS technique
which can operate with arbitrary bank sizes corresponding to any integer multiple of 64 bytes. For this purpose,
we employ C++ static polymorphism and pass the bank size as a template parameter. Furthermore, we extend the
scope of the CPMS-based PageRank to CPU architectures. This requires not only a more sophisticated kernel design
to enable efficient AVX vectorization, but also taking into account the implications of prefetching during memory
accesses. Therefore, we additionally consider a CPMS format separating the segments into distinct memory locations. In
particular, the deep cache hierarchies and the more complex compilers available for CPUs make it much harder to fully
optimize the non-standard memory access routines of CPMS on this type of architectures. Finally, the experimental
results presented in this paper differ from those in our previous work in that we do not consider the lower triangular
part of the matrix representation of symmetric (undirected) community graphs, but the full matrix.

1 http://www.worldwidewebsize.com/
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m · n · sizeof(value)

Fig. 1. The CSR and ELLPACK sparse matrix storage format along with memory requirements.

2 RELATEDWORK

The performance of PageRank is dictated by the power method which, in turn, is strongly determined by the SpMV
kernel.

The performance of a particular SpMV implementation on a specific hardware reflects the complex interactions of
different aspects: 1) the volume of matrix sparsity pattern information (in general, indexes); 2) the volume of matrix and
vector numeric data (that is, the values); 3) the irregular access to the vector values (determined by the matrix sparsity
pattern) and its interaction with the cache configuration and sizes and the code access order; and 4) the workload
imbalance in a parallelized setting. All these aspects have to be considered when optimizing an SpMV kernel for a
specific hardware architecture [Grossman et al. 2016]. Generally, matrices with an irregular distribution of their nonzero
entries are more challenging, since their parallelization usually results in significant workload imbalance and a low
cache hit rate. In some cases, an initial preprocessing step, which reorders the matrix rows/columns, can be useful to
improve load balancing and data locality [Kreutzer et al. 2014].

Among the most popular general sparse data layouts are the CSR (compressed storage row) and COO (coordinate)
formats as those are not biased towards any particular sparsity pattern. The specialized ELLPACK format [Bell and
Garland 2009] pads all rows to have the same number of nonzero elements, incurring a certain overhead. While this
padding increases the matrix numeric data volume, it yields the benefit of avoiding the storage of row-index information
needed in the CSR format, see Figure 1. From the perspective of parallelization, the ELLPACK format is especially
appealing for SIMD-parallel architectures, such as GPUs, as it removes branch divergence and ensures uniform memory
access. However, it is only attractive for balanced matrices in which the nonzero elements are evenly distributed among
the rows so that padding to a uniform nonzero count introduces a moderate overhead.

For multi-core CPUs, Intel’s MKL (Math Kernel Library) offers a multi-threaded efficient instance of CSR-SpMV as
well as a multi-threaded blocked variant, named BCSR, which views the matrix as a sparse collection of tiny dense
blocks (e.g., 2 × 2 or 4 × 4). BCSR aims to improve locality of reference when accessing the data (and, therefore, reduce
cache misses), trading off generality and efficiency for certain applications. CSB2 takes an opposite direction to BCSR,
by considering the matrix as a dense collection of sparse blocks (with each block stored in CSR format). CSB aims
to decrease the amount of indexing information and, therefore, reduces communication when accessing the matrix
sparsity data information. Additionally, CSB also aims at improving data locality, via a Morton-ordering storage of the
block entries.

2https://people.eecs.berkeley.edu/~aydin/csb/html/index.html.
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While there exists a long list of SpMV kernels available in vendor libraries such as NVIDIA’s cuSPARSE and the
community ecosystems MAGMA-sparse [Anzt et al. 2017] and Ginkgo3, optimizing the SpMV kernel for graphics
processors remains an active field of research. Conceptually, for well-balanced sparse matrices, formats such as
ELLPACK [Bell and Garland 2009] as well as some sophisticated variants [Kreutzer et al. 2014] increase the numeric
data volume by explicitly storing zero elements for SIMD-friendly data access and kernel execution. For irregular and
unbalanced matrix sparsity structures, the CSR or COO formats minimize the numeric data volume, and SpMV kernels
are tuned to offer better load balance arithmetic work and memory access across the compute resources [Flegar and
Quintana-Ortí 2017].

The optimization we pursue in this paper is orthogonal to the previously listed format optimizations as we neither
address load balancing, nor explicitly store zero values for SIMD-friendly execution. Instead, we keep the sparse storage
formats unchanged, but modify the precision format used for storing the numeric values. Specifically, employing the
customized format based on mantissa segmentation allows to retrieve the numeric values of the matrix and the vector
with reduced accuracy by accessing only part of the mantissa bits. This will change the SpMV output vector, and can
only be used with careful consideration of the numeric effects and their impact on the top-level algorithm.

In this work, we present customized precision solutions for both CPU and GPU architectures, and focus on two
sparse matrix formats that are at the extreme ends of sparse matrix properties: The SIMD-friendly ELLPACK format,
suitable for efficiently processing balanced matrices; and the CSR format, which exclusively stores the nonzero elements
and therefore is attractive for irregular sparsity patterns.

In our work, we employ the volume-reducing customized precision format only for the memory operations while
handling all arithmetic in the hardware-supported ieee 754 double-precision format. A popular approach for mixing
different precision formats to reduce the runtime of an algorithm is the concept of mixed-precision with iterative
refinement (MPIR). MPIR is a well-known technique that solves with a high level of accuracy while doing most of
the computations in reduced precision [Higham 2002]. The central idea is to repeatedly solve an error correction
system in lower than working precision, and update the high precision solution approximation until the residual norm
drops below an acceptable threshold [Carson and Higham 2017]. This strategy can even be cascaded to solve the error
equations in lower precision formats recursively [Carson and Higham 2018]. While also cascaded iterative refinement
typically employs the ieee 754 standard precision formats, transprecision pushes the idea of accuracy adaptation even
further, utilizing at each intermediate step the minimum precision necessary to produce a satisfactory final solution.
What all these approaches share is the strict coupling between arithmetic precision and memory precision. While this
strategy may be reasonable for compute-bound algorithms, the PageRank algorithm is heavily memory-bound, and the
cost of the memory operations dictates its performance [Grüztmacher et al. 2018]. This motivates us to decouple the
memory access format from the arithmetic format, while still using the hardware-supported IEEE standard precision
formats in all arithmetic operations [Anzt et al. 2019; Grützmacher et al. [n. d.]]. Some examples illustrating the modular
precision approach for algorithms in sparse linear algebra are the adaptive-precision block-Jacobi preconditioner for
Krylov subspace methods [Anzt et al. 2018] and a Jacobi iterative solver [Anzt et al. 2015; Grützmacher and Anzt 2019;
Grützmacher et al. [n. d.]].

3https://github.com/ginkgo-project/ginkgo

Manuscript submitted to ACM

https://github.com/ginkgo-project/ginkgo


209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 5

3 A BRIEF INTRODUCTION TO PAGERANK

In the setting of web search, PageRank estimates the relevance of a web page by recursively inspecting the relevance of
“neighboring” web pages as well as the number of links that point toward the page [Langville and Meyer 2012; Page
et al. 1998]. From a practical point of view, PageRank is applied to a directed graph that represents the web pages as
nodes and the hyperlinks connecting two pages as directed edges between the corresponding nodes, yielding a score
vector that captures the probability that a “random” surfer visits a particular page [Brin and Page 1998]. Furthermore,
PageRank only needs to compute the ranking score of each Web page up to a certain precision, as Web surfers are often
only interested in the first dozen of documents retrieved by the search engines and usually do not care about the precise
score values.

Consider a directed graph G = (V ,E) with n = |V | nodes/web pages, connected via a collection of edges/hyperlinks
E. LetA ∈ Rn×n be a weighted adjacency matrix associated with (V ,E), with weights/entries defined so thatAi j = 1/Oi

if the edge (i, j) ∈ E, or Ai j = 0, otherwise; here, Oi denotes the total number of hyperlinks leaving from node i . The
mathematical representation of PageRank in Algorithm 1 computes a sequence of vectors p {k } ∈ Rn , k = 0, 1, 2, . . .,
until convergence [Langville and Meyer 2012]. The damping factor δ and the stopping threshold ε determine the
convergence of the procedure and precision of the final result. Furthermore, e ∈ Rn is a vector set to ones to initialize
p {0} to a uniform distribution across all nodes; and s ∈ R corresponds to the probability of the random surfer visiting a
site which has no outgoing links; see [Langville and Meyer 2012] for further details.

Algorithm 1 PageRank(A, ε,δ )

1: p {0} := e/n

2: S :=
{
i |

∑n
j=1 |ai j | = 0

}
▷ S contains all indexes of empty rows of A

3: k := 1
4: repeat
5: s :=

∑
i ∈S p

{k−1}
i

6: p {k } := δATp {k−1} + (1 − δ )e/n + (s/n) · e

7: γ := ∥p {k } − p {k−1} ∥1
8: k := k + 1
9: until (γ < ε)

The iterative procedure that underlies the realization of PageRank in Algorithm 1 is the classical power method for
the computation of the largest eigenvalue of a matrix [Golub and Loan 1996]. When applied to the adjacency matrix
representing a collection of Web pages, the main computational kernel appearing in the PageRank algorithm is the
SpMV involving the sparse adjacency matrix A. For a matrix with nz nonzero entries (where nz is the cardinality of E),
this kernel performs 2nz floating-point operations and, at least, n + nz memory accesses. In consequence, SpMV is a
memory-bound operation on virtually all current hardware architectures.

PageRank is usually encoded using the conventional ieee single-precision or double-precision floating-point data
types natively supported by most hardware architectures. A key idea in [Grützmacher and Anzt 2019] is that “the
arithmetic realized in floating-point units (FPUs) can be decoupled from the storage format of floating-point numbers,

with the latter being a flexible factor under the direct control of the programmer”. This is particularly interesting for the
SpMV kernel as storing (and retrieving) the data values of the sparse matrix and the vector in lower precision paves

Manuscript submitted to ACM
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the road toward communication-reduction techniques which lower the pressure on the memory bandwidth. For a
memory-bound algorithm such as PageRank, reducing the data access volume can accelerate the kernel execution.

4 PAGERANKWITH ADAPTIVE PRECISION

IEEE double-precision value

32 bits 32 bits

Conversion

…

128 Bytes

IEEE double-precision value

Conversion

32 bits 32 bits

Fig. 2. CPMS-i (left): conversion between the ieee double-precision format and interleaved 2-segment CPMS; the bank size in this

interleaving CPMS is chosen as 128 bytes. CPMS-s (right): CPMS separating the segments in memory.

4.1 Segment-based storage in CPMS

The CPMS format splits a “high precision” floating-point number into several equally-sized segments [Grützmacher
and Anzt 2019] so that, if lower data access accuracy is acceptable, only a subset of the segments is retrieved from the
memory into the processor registers. The remaining bits in the significand of the fp64 value are automatically filled
with zeros.

The purpose of this approach is that by retrieving values with lower accuracy, the memory transfer volume is reduced
in comparison to fp64 access. As all bits of the high precision value are still available in memory though, the data does
not need to be duplicated in memory to enable different precision formats.

The segments can be stored completely separated in memory, such that each segment type has its own contiguous
memory space (we name this variant as“CPMS-s”) or, alternatively, the memory segments can be interleaved, so that
different segment types follow each other in memory in a predefined bank pattern (named as “CPMS-i”). These two
alternatives are illustrated in Figure 2. The dimension of the interleaved banks in CPMS-i is a platform-dependent
parameter and, in practice, it should be an integer multiple of the cache line size.

The advantage of interleaving the banks in CPMS-i is that the data can be converted in-place in-between the precision
formats (for moderate bank sizes). The left-hand side in Figure 2 illustrates this conversion for a 2-segment CPMS-based
layout. The in-place conversion between an array of high precision values and the CPMS-i format consists of a local
reordering of the bits in memory (see the arrow on the side in Figure 2). For an x-segment CPMS in block format,
reordering operates on x · bs byte blocks, where bs is the bank size. This reordering step can exploit data parallelism,
which enables efficient conversion on SIMD-type architectures.
Manuscript submitted to ACM
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In general, architectures with support for prefetching will likely fail to ignore the tail-segments when accessing
the data in reduced precision. Hence, we expect that CPMS-s (which separates the segments in memory) can achieve
higher performance on CPU architectures. Hence, the conversion between IEEE standard precisions and the CPMS-s
format cannot be realized in-place but requires additional workspace. Also, as the conversion requires information
about the offset in-between the distinct segment types, the information about the total memory requirements has to be
available before the algorithm invocation. This makes the CPMS-s less flexible and more resource-demanding compared
to CPMS-i. As memory is a scarce resource on GPU accelerators, on these architectures, we consider only CPMS-i
with a bank size of 128 bytes. This setup aims to attain high-performance on older GPU architectures that feature L1
cache lines of 128 bytes (such as NVIDIA’s K80) as well as newer GPUs with cache line sizes of 64 and 32 bytes, such as
NVIDIA’s P100 and V100 [Jia et al. 2018].

4.2 Adaptive precision

The proposed variant of PageRank with adaptive precision access leverages the norm difference γ = ∥p {k } − p {k−1} ∥1

in Algorithm 1–line 7 to check for residual stagnation. This event indicates either convergence (γ < ϵ) or the need for
higher access accuracy [Grüztmacher et al. 2018].

Concretely, if γ is close to the current data access precision, the following steps are invoked:

(1) execute a PageRank iteration reading in the current memory precision and writing in the new, extended memory
precision (on-the-fly conversion);

(2) normalize the vector in the newmemory precision, to preserve the unit-norm of the PageRank-vector ∥p {k } ∥1 = 1;
and

(3) set the new memory precision as default data access precision;

The normalization is necessary as the high precision values returned from the arithmetic operations are truncated in the
conversion to customized precision by cutting off mantissa bits (rounding towards zero). This can result in ∥p {k } ∥1 < 1.

Once the data access uses 64-bit accuracy, the values stored in CPMS are converted back to the standard ieee
floating-point values. This conversion ensures that the standard 64-bit memory access can be used (without incurring
on-the-fly format conversion overhead), and that all data is available in ieee double-precision after completion of the
PageRank algorithm.

4.3 GPU implementation of PageRank with CPMS

The GPU implementation of PageRank in [Grüztmacher et al. 2018] offloads all computationally-intensive tasks to the
GPU via CUDA kernel calls. This includes: (1) All norm functions, in particular, the selective norm calculating s in
Algorithm 1 (line 5), the calculation of the vector difference norm γ (line 7), and the vector norm used for normalization
in precision changes; (2) a vector scaling kernel, used in combination with the vector norm for normalization; (3) two
conversion kernels which handle the transformations between the ieee format and CPMS; and (4) the SpMV kernel
potentially adapting the data access precision (line 6).

For the SpMV kernel, we consider the CSR and ELLPACK sparse matrix formats. FOR SIMD-execution, the ELLPACK-
SpMV kernel assigns one thread to each row, which ensures coalesced access to the matrix values and column indexes.

The CSR-SpMV kernel also maps one thread to each row. This parallelization strategy is motivated by preliminary
experiments indicating that assigning multiple threads to a single row, and complementing the parallel computation of
partial sums with a reduction step, results in low performance for the target problems. The reason behind is that the
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test matrices contain only a few nonzero elements in most rows, which is characteristic for graph problems like social
networks (see Table 1).

The CPU is commissioned with the build-up process (reading matrices, converting to CSR or ELLPACK sparse
format), resource management, and GPU kernel invocation. Also the memory access precision is controlled by the
CPU, which includes monitoring the values of γ . This avoids branching inside the memory access routines and thread
divergence. Instead of implementing several distinct precision-specific memory access routines, we take advantage of
C++ template parameters. This way, specific kernels for all required precisions are generated by the compiler, without
the need of branching inside the kernel for each load/store operation. The data access and the conversion between
the formats is realized using the built-in reinterpret_cast function; see Listing 1. In our implementation, we use
partial specialization to allow recursive function calls. This enables us to cover all conversions with one read and one
write function. A simplified version of reading the head in a 2–segment CPMS is provided in Listing 1. The pseudocode
there reflects all central components of the actual implementation, but omits template parameters and other details to
improve readability.

1 double reinter_read_head( const int32_t *segments , in t index) {

2 double result = 0.0;

3 int32_t *parts = re in terpre t_cas t <int32_t *>(& result);

4 in t headIndex = convertToHeadIndex(index); // returns the head index of the corresponding value

5 parts [1] = segments[headIndex ];

6 return result;

7 }

Listing 1. Read function using a reinterpret_cast for reading the head in a 2-segment CPMS

4.4 CPU implementation of PageRank in CPMS

While the GPU realization of CPMS leverages the built-in reinterpret_cast function for splitting and recovering
ieee standard precision formats, the more complex CPU compilers are unable to apply the same optimization steps to
the reinterpret_cast function that succeed for ieee standard precision formats. In response, we implement a more
sophisticated strategy that enables compiler optimizations, see Listing 2.

1 double union_read_head( const int32_t *segments , in t index) {

2 union conversion { double dbl; int64_t it;};

3 const int headIndex = convertToHeadIndex(index); // Stores the index of the head of the corresponding value.

4 conversion result;

5 result.it = segments[headIndex ];

6 result.it = result.it << 32; // head must be moved to the proper position due to little endian format

7 return result.dbl;

8 }

Listing 2. Read function using a union for reading the head in a 2-segment CPMS

To ensure a fair comparison between the PageRank using ieee-based memory access and the PageRank using CPMS
memory access, the code for all kernels is identical except for the memory accesses. We realize this via C++ templates,
as shown in the example in Listing 3. There, we compute the 1-norm of a vector vec with n elements. The vector
itself is encapsulated in the class SplitPointer<TotalNumberSegments>, which decouples the storage layout from
the arithmetic format. SplitPointer<1> uses the ieee format underneath, while SplitPointer<2>, for instance, uses
a 2-segment CPMS. The template parameter SegmentsToUse specifies the precision used in the read access by adjusting
the number of segments which are retrieved from memory.
Manuscript submitted to ACM
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Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 9

This way, templating all kernels allows us to switch between fp64, CPMS-s, and CPMS-i without modifying any
computational kernel. As a side effect, templating the kernels reduces redundancy and thus improves the maintainability
of the code stack.

1 template < in t SegmentsToUse , in t TotalNumberSegments >

2 double norm1( in t n, const SplitPointer <TotalNumberSegments > vec)

3 {

4 double sum = 0.0;

5 #pragma omp parallel for reduction (+:sum) schedule( s t a t i c , chunkSize)

6 for ( in t i = 0; i < n; ++i) {

7 sum += abs(vec. template read <SegmentsToUse >(i));

8 }

9 return sum;

10 }

Listing 3. Templated 1-norm calculation, allowing for different storage formats.

The CPU-code is parallelized using OpenMP, as shown in the example Listing 3–line 5. To parallelize “for-loops” we
apply a static strategy if the workload is balanced across all iterations, or the guided strategy for workloads where
some workload imbalance may occur, e.g. the row-parallelized SpMV calculations.

To leverage the SIMD core architecture, we vectorize all compute-intensive kernels. We choose the AVX2 instruction
set to support a wide variety of architectures while gaining a significant performance boost.

5 PERFORMANCE ASSESSMENT

5.1 Hardware and software environment

The reference implementations for SpMV and PageRank employ ieee double-precision (hereafter, fp64) in all arithmetic
and memory operations. fp64 arithmetic is also used for all the floating-point operations in the CPMS SpMV and the
CPMS-based PageRank, but the memory operations (accesses) use the segmentation-oriented customized precision
formats. We consider two CPMS realizations, consisting of four 16-bit segments and two 32-bit segments, respectively.

The experimental analysis of CPMS for data-parallel accelerators are conducted on an NVIDIA V100 “Volta” GPU,
with support for CUDA compute capability 7.0 [NVIDIA Corp. 2017]. All GPU kernels are encoded and compiled in the
CUDA framework, using CUDA version 9.2.

The CPU employed in the experiments is a node from JUWELS (at Jülich supercomputing center), equipped with
two Intel(R) Xeon(R) Platinum 8168 sockets (24 cores/socket, 2.70 GHz) and 94 GiB of RAM. The experiments with
these CPU map one thread per core, using all 48 cores of the node. The compiler is GCC version 8.2.0.

5.2 Test problems and PageRank convergence

For the experimental evaluation, we select a set of test matrices, taken from the Suite Sparsematrix collection [SuiteSparse
2018], representing social networks and (to increase the experimentation database) distribution infrastructures. The
matrix identifiers, along with some key characteristics, are listed in Table 1. We note that, conversely to the results
that were reported in the initial paper [Grüztmacher et al. 2018], here we consider the problems as full matrices with
elements above and below the main diagonal by correctly handling the “symmetric” flag in the matrix header. In Figure 3,
we provide details about the row distribution of nonzeros. Even though the test problems present a highly unbalanced
nonzero distribution, we consider both the “irregular-friendly” CSR format and the “GPU-friendly” ELLPACK format.
As elaborated in Section 2, the ELLPACK format pads the rows with explicit zeros to enforce that all rows contain
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Table 1. Test matrices from the SuiteSparse Matrix Collection along with the number of rows (n)and the number of nonzero elements

(nz ).

Name (Abbreviation) n nz Empty rows
adaptive (Ada) 6,815,744 27,248,640 0
delaunay_n22 (Del) 4,194,304 25,165,738 0
europe_osm (Eur) 50,912,018 108,109,320 0
hugebubbles-00020 (Bub) 21,198,119 63,580,358 0
rgg_n_2_24_s0 (Rgg) 16,777,216 265,114,400 1
road_usa (USA) 23,947,347 57,708,624 0
Stanford (Std) 281,903 2,312,497 20,315
wb-edu (edu) 9,845,725 57,156,537 2,925,419
web-BerkStan (Brk) 685,230 7,600,595 4,744
web-Google (Ggl) 916,428 5,105,039 176,974

Table 2. Iteration count of PageRank in the different precision formats: for the CPMS, the total number of iterations accumulates

from those executed with different segment counts and stays on par with the reference implementation.

fp64 2-segment CPMS 4-segment CPMS
64bit 32bit 64bit total 16bit 32bit 48bit 64bit total

Ada 65 7 58 65 1 1 81 1 84
Del 64 15 49 64 1 21 64 2 88
Eur 118 50 68 118 1 50 65 3 119
Bub 77 12 42 77 1 1 77 3 82
Rgg 89 28 61 89 1 1 89 2 93
USA 117 51 66 117 1 50 54 2 117
Std 118 51 67 118 1 50 64 3 118
edu 114 47 67 114 1 46 65 3 115
Brk 119 50 69 119 1 49 1 68 119
Ggl 116 47 69 116 1 46 67 2 116

the same number of nonzero elements. For some matrices (concretely, edu, Brk and Ggl), this increases the memory
footprint beyond the 16 GiB that is available on our V100 GPU or even the memory of the JUWELS compute node. In
consequence, these particular problems are not considered in the experiments using the ELLPACK matrix format.

A major goal of the customized precision implementation is to preserve the convergence rate of the reference
implementation of PageRank based on IEEE fp64. A few additional iterations may be acceptable, but a significant
convergence delay may turn the customized-precision realization unattractive from the performance point of view.
In Table 2, we report the convergence details of the PageRank algorithm realized when operating with different
configurations: the default implementation using ieee fp64, a customized precision implementation using a 2-segment
splitting, and a customized implementation using a 4-segment splitting. For the customized precision PageRank, we list
the number of iterations completed in the distinct accuracy settings and the total iteration count that accumulates from
the iterations in the distinct segment configurations. All implementations generate results of the same quality reducing
the difference | |p {k } − p {k−1} | |1 by at least ten orders of magnitude while starting with p {0} ≡ 1

n .
An initial observation for the 4-segment splitting is that the use of the first 16-bit segment alone never provides the

accuracy necessary to make any progress towards the solution: for all test problems, the algorithm switches to reading
Manuscript submitted to ACM
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Fig. 3. Nonzero distribution in the test problems.

2 segments after the very first iteration. A second observation is that, except for the Brk case, all problems require only
a few iterations with 64-bit accuracy, while most iterations in the 4-segment CPMS use 32-bit accuracy (2 segments) or
48-bit accuracy (3 segments).
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Fig. 4. SpMV speedup, CPMS compared to ieee double-precision for the CSR format (left) and the ELLPACK format (right).

For the 2-segment CPMS, the number of iterations using full accuracy is slightly higher than the number of iterations
using 32-bit accuracy.

The total number of iterations accumulates from the iterations in the distinct segment configurations. For most
problems, the CPMS implementations succeed in preserving the convergence of the reference implementations. For
some problems, only one additional iteration is required. In summary, the convergence rate of the PageRank is generally
well-preserved when switching to CPMS-based memory access.

5.3 CPMS-based PageRank on GPUs

We first focus on the CPMS-based implementation of PageRank on GPUs. As previously motivated, we limit the analysis
on GPU architectures to the CPMS-i format, interleaving the segments in banks of 128 bytes.

The SpMV embedded in the power iteration is the central and most expensive building block of the PageRank
iteration. In Figure 4, we report the speedup of the CPMS SpMV using different segment configurations in the memory
access over the reference implementation, which uses ieee fp64 memory access. We consider both the CSR format (left)
and the ELLPACK format (right). In the labels for Figure 4, the first number indicates how many bits of the ieee fp64
number are retrieved from memory; the second part indicates how many segments the ieee fp64 numbers are split.
Thus, “32-bit 2-seg” means that an ieee fp64 value was split into 2 segments (with 32 bits each), and only the first
segment (32 bits) is accessed. Similarly, “64-bit 2-seg” means that the ieee fp64 value was split into 2 segments, and both
segments (64 bits) are accessed. This is equivalent to ieee fp64, and can be expected to be slower due to the overhead
induced by the operating logic and a higher cache miss rate as in the 2-segment splitting, two distinct memory areas
have to be accessed for a single value. The analysis reveals that using 32-bit accuracy in the 2-segment CPMS provides
a speedup of about 1.5× on average (the high speedup for Del comes from cache effects). The 4-segment CPMS is about
two times faster for 16-bit accuracy. Using 32-bit accuracy, the 4-segment CPMS is about 30% slower than the 32-bit
accuracy in the 2-segment splitting. Using more than 32-bit accuracy, the CPMS SpMV suffers from the overhead of
format conversion as well as the previously mentioned higher cache miss rate. Using more than 32-bit accuracy, the
CPMS SpMV is inferior to the ieee fp64 SpMV in most cases for the CSR format, while it is still slightly faster in most
cases for the ELLPACK format.

The next natural question is how these performance advantages of the CPMS SpMV improve the performance of the
PageRank algorithm. For this study, we set δ = 0.85 in Algorithm 1, which is a popular choice [Page et al. 1998], and
select a relative accuracy stopping criterion ε = 10−10. In Figure 5, we visualize the iteration runtime in the different
Manuscript submitted to ACM
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Fig. 5. Normalized PageRank execution time, broken down in time spent at each precision level and the conversion; The “precision

change” part contains both, the in-place conversion and the normalization of the iteration vector. The top bar shows the runtime in

ieee double-precision, the middle bar the runtime with 2-segment and the bottom bar the runtime with 4-segment CPMS. The upper

graph uses the CSR format for the sparse system matrix, the lower graph uses the ELLPACK format. For matrices edu, Brk, and Ggl

the memory requirements exceed the memory capacity of the V100 GPU and, therefore, they are not considered in the experiments

with this format.

format configurations for all target problems. For each case, we normalize the runtime to the total execution time of the
reference PageRank (top bar). For the 2-segment CPMS (middle bar) and 4-segment CPMS (bottom bar), we visualize the
iteration times spent in the distinct accuracy configurations. While the number of iterations in the distinct precision
environments correspond to the iteration counts listed in Table 2, the iterations using reduced accuracy memory access
are generally faster. The data for CPMS-based PageRank also includes the configuration switching in-between the
iteration phases. For some problems (e.g., Std), we notice a difference in the performance trend of the CPMS PageRank
using either CSR and ELLPACK (compare top/bottom plot in Figure 5). This is likely related to the interaction of the
matrix characteristics in different formats and the architecture cache. The ratio between the execution times spent in
different configurations, however, remains the same as it correlated to the iteration counts in Table 2.

Finally, in Figure 6, we show the runtime of the CSR-based PageRank algorithm with respect to the target relative
residual accuracy for different memory access strategies – ieee fp64, 2- and 4-segment CPMS. If a low accuracy solution
is acceptable, the PageRank instance using CPMS and mostly accessing values with reduced accuracy is faster than the
reference PageRank using fp64 memory accesses.
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Fig. 6. PageRank runtime related to the stopping criterion. The reported results are for the GPU of PageRank using the CSR format

and CPMS or ieee double-precision memory access.

For easier interpretation, we show in Figure 7 the speedup of the 2-segment realization (left-hand side plot) and the
4-segment realization (right-hand side plot) over the ieee fp64 implementation. The speedup factors for the 2-segment
CPMS (left-hand side in Figure 7) are generally larger than for the 4-segment CPMS (right-hand side in Figure 7). One
obvious reason is the higher number of precision changes, and the larger overhead in the memory access routines
reassembling ieee double-precision numbers from the 16-bit CPMS segments. Also, the memory access routines do not
Manuscript submitted to ACM



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Acceleration of PageRank with Customized Precision based on Mantissa Segmentation 15

Ada Del Eur Bub Rgg USA Std edu Brk Ggl

Matrices

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

S
to

p
p

in
g

 t
h

re
s
h

o
ld

0.98

0.97

0.98

0.98

0.99

0.99

1.42

1.43

1.11

1.04

1.03

1.02

2.22

2.22

1.57

1.26

1.16

1.11

1.38

1.39

1.27

1.17

1.13

1.10

1.15

1.16

1.07

1.03

1.02

1.01

1.43

1.43

1.28

1.15

1.11

1.08

1.64

1.64

1.44

1.28

1.20

1.16

1.22

1.22

1.16

1.11

1.08

1.07

1.26

1.24

1.17

1.11

1.08

1.07

1.35

1.28

1.19

1.13

1.09

1.08

(a) PageRank with CSR and interleaved, 2-segment CPMS
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Fig. 7. PageRank speedup on the GPU using the CSR format, CPMS compared to ieee double-precision in a heatmap.
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Fig. 8. PageRank speedup on the GPU using the ELLPACK format, CPMS compared to ieee double-precision in a heatmap.

saturate the memory bandwidth if all threads of a warp read only 16-bit segments. In contrast, the 4-segment CPMS
performs better when few iterations are sufficient to fulfill the accuracy requirements.

Figure 8 reports the results for an analogous experimental evaluation using the ELLPACK SpMV kernel, exposing
similar runtime benefits when employing the CPMS technique.

5.4 CPMS-based PageRank on CPUs

For the CPU, we consider 12 configurations that arise as combinations of: two different matrix storage formats (CSR
and ELLPACK), three interleaving variants (CPMS-i using 128-byte banks and CPMS-i using 8 KiB banks as well as
CPMS-s completely separating the segments in memory), and two segmentation strategies (2-segment splitting and
4-segment splitting).
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Fig. 9. SpMV speedup on CPU, CPMS compared to ieee double-precision for the CSR format (left) and the ELLPACK format (right).

The results in the top row are using CPMS-i interleaving banks of 128 bytes of segments, in the middle interleaving banks of 8 KiB

and the results in the bottom row are using CPMS-s storing the segments in distinct memory blocks, see Figure 2.

First, we again focus on the performance of the CPMS SpMV kernel as this is the key building block. For this kernel,
we collect all results in Figure 9. The configuration based on CPMS-i using 128-byte banks performs poorly on the
CPU, see the top row in Figure 9. For example, even when reading only half of the data (32-bit access), the throughput
(elements/s) is, at most, marginally faster than that of the standard ieee fp64 version. We believe this is due to the
Manuscript submitted to ACM
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CPU’s prefetching mechanism, which is unable to detect the interleaved pattern of the memory accesses and fails
to ignore the un-used tail segments in the low precision data access. By increasing the bank size to 8 KiB, we can
alleviate this effect and achieve higher throughput, see Figure 9c and 9d. Compared with the 128-byte banks, the larger
interleaving factor enables faster kernel execution for all test problems. In particular, the performance for CPMS-i using
8 KiB banks is competitive with the performance of the CPMS-s strategy in which all segments of the same order are
stored consecutively in memory. We can assume that the prefetching behavior for CPMS-s is identical to that of a
matrix stored in the ieee format – while accessing fewer bits in low precision accesses. As elaborated previously, the
conversion between CPMS-s and ieee fp64 cannot be realized in-place, which makes the performance-competitive
CPMS-i using 8 KiB banks an attractive solution for CPU architectures with support for prefetching.

For CPMS-i using 8 KiB banks and CPMS-s, the SpMV kernel runs faster on the CPU if reduced precision is acceptable
(see middle and bottom row in Figure 9).

Next, we investigate the performance benefits CPMS can render to the PageRank algorithm using the CSR-based
SpMV and the ELLPACK-based SpMV. We report the corresponding speedup factors over fp64 memory access in
Figures 10 and 11, respectively.

For CSR, CPMS-s consistently outperforms CPMS-i, while the 2-segment CPMS (left-hand side schemes) also
outperforms the 4-segment CPMS (right-hand side schemes) in almost all cases, compare top/bottom row in Figure 10.
Comparing to the GPU results shown in Figure 7, the CPU implementation of CPMS-i and CPMS-s can unleash even
larger speedup factors.

The performance gains for the ELLPACK SpMV are reported in Figure 11. The general trends are similar to those
observed for CSR: CPMS-s performs better than CPMS-i, and the 2-segment realization is generally superior to the
4-segment solution. However, the performance gains are smaller than those we reported for the GPU in Figure 8.

6 SUMMARY AND OUTLOOK

We have demonstrated that the application of a customized precision memory access strategy can unleash attractive
performance improvements to the memory-bound PageRank algorithm on multi-core processors and GPU architectures.
The keys to these improvements are 1) an adaptive-precision technique that tunes the precision of the data access as the
iteration converges; and 2) the selection of a few customized precision formats outside the ieee 754 standard. The use of
customized formats allows modulating the number of the significand bits of the distinct values that are retrieved from
memory, while still delivering high memory bandwidth. It also avoids overflow and underflow and efficiently removes
the need for data duplication that would occur if employing different ieee 754 standard precision formats. We used a
set of test problems from the SuiteSparse matrix collection to evaluate the performance benefits on a Intel(R) Xeon(R)
Platinum 8168 CPU (24 cores per socket) and an NVIDIA V100 GPU. On average, the PageRank variant employing
the customized precision memory access technique reduces the time-to-solution by 10% if a highly accurate output is
required, and by 30% if lower accuracy is acceptable.

As part of futurework, we plan to explore the use of CPMS-basedmemory access for othermemory-bound algorithms.
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Fig. 10. PageRank speedup on the CPU using the CSR format, CPMS compared to ieee double-precision in a heatmap.
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Fig. 11. PageRank speedup on the CPU using the ELLPACK format, CPMS compared to ieee double-precision in a heatmap.
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