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Supersymmetry in the time domain and its
applications in optics
Carlos García-Meca 1,2*, Andrés Macho Ortiz 1,2* & Roberto Llorente Sáez 1

Supersymmetry is a conjectured symmetry between bosons and fermions aiming at solving

fundamental questions in string and quantum field theory. Its subsequent application to

quantum mechanics led to a ground-breaking analysis and design machinery, later fruitfully

extrapolated to photonics. In all cases, the algebraic transformations of quantum-mechanical

supersymmetry were conceived in the space realm. Here, we demonstrate that Maxwell’s

equations, as well as the acoustic and elastic wave equations, also possess an underlying

supersymmetry in the time domain. We explore the consequences of this property in the field

of optics, obtaining a simple analytic relation between the scattering coefficients of numerous

time-varying systems, and uncovering a wide class of reflectionless, three dimensional, all-

dielectric, isotropic, omnidirectional, polarisation-independent, non-complex media. Temporal

supersymmetry is also shown to arise in dispersive media supporting temporal bound states,

which allows engineering their momentum spectra and dispersive properties. These unpre-

cedented features may enable the creation of novel reconfigurable devices, including invisible

materials, frequency shifters, isolators, and pulse-shape transformers.
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Supersymmetry (SUSY) was conceived as a fundamental
symmetry of string and quantum field theory that could
allow the unification of all physical interactions of the

universe1–5. Subsequently, the field of supersymmetric quantum
mechanics (SUSYQM) was created with the aim of solving
essential questions about SUSY via a non-relativistic model6.
Basically, the simplest version of SUSYQM considers two dif-
ferent one-dimensional (1D) systems governed by the eigenvalue
equations:

Ĥ1;2ψ
1;2ð Þ xð Þ ¼ Ω 1;2ð Þψ 1;2ð Þ xð Þ; ð1Þ

where Ĥ1;2 ¼ �αd2=dx2 þ V1;2ðxÞ are the Hamiltonians (with
α > 0), V1,2 the potentials, and Ω(1,2) the eigenvalues. The central
idea is to define an auxiliary function W (known as the super-
potential) and two SUSY operators Â

± ¼ � ffiffiffi
α

p
d=dx þWðxÞ such

that Ĥ1 ¼ Â
þ
Â
�
. The second Hamiltonian is then constructed by

inverting the operator order, i.e., Ĥ2 ¼ Â
�
Â
þ
. The potential of

SUSYQM resides in the fact that Ĥ1 and Ĥ2 have the same scat-
tering properties and eigenvalue spectrum. As a consequence,
although SUSY has not been experimentally observed in nature7,
SUSYQM has become a revolutionary mathematical tool in itself,
enabling the explanation of intriguing aspects of quantum
mechanics (such as the existence of non-trivial reflectionless
potentials and of very different systems with the same energy
spectrum), uncovering new analytically-solvable potentials, and
offering a simple and systematic way to construct infinite families of
isospectral quantum-mechanical systems6.

Interestingly, Eq. (1) also governs the dynamics of other phy-
sical phenomena. This is case of electromagnetic waves in certain
kinds of media, which enables a direct extrapolation of the SUS-
YQM formalism to optics8,9. As a result, the basic ideas of this
theory have recently led to pioneering photonic structures9–14.

Being a 1D theory, one could ask whether a temporal super-
symmetry might exist for time-varying potentials. Nevertheless,
to our knowledge, the SUSYQM formalism has never been
applied in the time domain, whether in QM, optics, or any other
field (SUSY quantum field theory is a multidimensional spacetime
theory, but the formalism is considerably different and more
complex than that of SUSYQM). This is probably due to the fact
that the vast majority of 1D SUSY work has been developed
within the realm of QM, and the time derivative in Schrödinger’s
equation is of first order, preventing a similar decomposition to
that of Eq. (1) in the time domain (time-dependent potentials
have been considered in SUSYQM, but also using SUSY operators
based on first-order spatial derivatives15,16, making it impossible
to exploit the potential of the standard spatial SUSY (S-SUSY)
factorisation in the time domain). On the other hand, only a few
works deal with optical SUSY, all focused on S-SUSY. Remark-
ably, however, the fact that the temporal derivative in the elec-
tromagnetic, acoustic, and elastic wave equations is of second
order may enable a temporal version of SUSYQM, which has
been overlooked so far. This would extend the foundations and
unique properties of SUSYQM to the time domain, adding an
unprecedented degree of understanding and control over
time-varying systems in various fields of physics, and opening the
door to a myriad of new applications. Actually, time-varying
optical systems are becoming crucial in a broad range of sce-
narios, including optical modulation17, isolation and non-
reciprocity18,19, all-optical signal processing20,21, quantum
information22, and reconfigurable photonics23,24. Likewise, tem-
poral modulations enable new possibilities for the manipulation
of sound and mechanical oscillations25–27.

Here, it is shown that Maxwell’s equations indeed possess an
underlying time-domain supersymmetry (T-SUSY) for any non-
dispersive optical system characterised by a refractive index of the

form:

n r; tð Þ ¼ nS rð ÞnT tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εS rð ÞμS rð Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εT tð ÞμT tð Þ

q
; ð2Þ

where εrðr; tÞ ¼ εSðrÞεTðtÞ is the medium relative permittivity and
μr r; tð Þ ¼ μS rð ÞμT tð Þ its relative permeability, with similar results
for acoustic and elastic waves (T-SUSY can also be found in dis-
persive systems, as discussed below, and in anisotropic and nonlocal
media, as discussed in Supplementary Note 1). In the following, the
T-SUSY formalism is developed for the field of optics, analysing
both the continuous and discrete-spectrum cases, and illustrating its
potential through different applications (sketched in Fig. 1). Finally,
the extension of T-SUSY to transmission line theory, acoustics and
elasticity is discussed, assessing the experimental opportunities
offered by current technological platforms.
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Fig. 1 Potential T-SUSY applications. a Omnidirectional, isotropic,
polarisation-independent, all-dielectric (all-magnetic), 3D time-varying
material that is invisible in a given (reconfigurable) spectral region, allowing
the generation of frequency-selective transparent temporal windows.
b Perfect phase shifter: a short region in a waveguide (lighter grey) with a fast
T-SUSY time-varying index inducing a dynamically-reconfigurable frequency-
independent reflectionless phase shift Φ over an optical pulse. c Optical
isolator: another T-SUSY time-varying index shifts the frequency of a right-
propagating pulse (blue to yellow here), which can traverse the optical filters
OF1 and OF2. Any left-propagating pulse is reflected at OF1 or OF2, protecting
a left-side source from external reflections. d Reconfigurable pulse-shape
transformer: an input pulse propagating along waveguide WG1 is spatially
coupled to a T-SUSY temporal photonic lantern (TPL, a moving index
perturbation) running along waveguide WG2. The pulse excites another TPL
mode with a different desired shape, coupled back to WG1.
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Results
Continuous spectrum. Consider a linear, isotropic, heterogeneous,
time-varying non-dispersive medium with n2T tð Þ ¼ εT tð Þ. Apply-
ing separation of variables in the electric flux density D r; tð Þ ¼
ϕ rð Þψ tð Þ of Maxwell’s equations, we find that ψ(t) exactly obeys the
Helmholtz’s equation:

d2

dt2
þ ω2N2 tð Þ

� �
ψ tð Þ ¼ 0; ð3Þ

where N2 tð Þ :¼ n2�=n
2
T tð Þ, n� :¼ nT t ! �1ð Þ, and ω is the

angular frequency of the field at t ! �1. For a polychromatic
wave, the total field is given by the superposition of the solutions to
Eq. (3) for each spectral component (value of ω). Equation (3) is
also obtained for n2T tð Þ ¼ μT tð Þ and even for general materials with
n2T tð Þ ¼ εT tð ÞμT tð Þ (in which case, εT tð Þ and/or μT tð Þ must vary
slowly in time), see Supplementary Note 1. Equation (3) exactly
matches Eq. (1) taking α= 1, relabelling x → t, and identifying
Ω� V tð Þ � ω2N2 tð Þ. Using the eigenvalue Ω as a degree of free-
dom, this will allow us to apply 1D SUSY in the time domain, with
two fundamental noteworthy features: (1) T-SUSY is exact for both
all-dielectric and all-magnetic indices nT; (2) T-SUSY is completely
uncoupled from space. Hence, it is valid for all polarisations, all
propagation directions and any 3D spatial medium dependence
n2S rð Þ ¼ εS rð ÞμS rð Þ. This means that we can generate T-SUSY
partners of devices such as waveguides or structures with any
desired 3D scattering response while keeping the spatial properties
of interest (e.g., ability of guiding or reflecting/refracting the fields in
a specific way for each direction and polarisation; see Supplemen-
tary Note 1 for an example involving an ideal polariser, which
shows that the spatial response associated with a time-invariant
refractive index is preserved by its T-SUSY partner for all polar-
isations simultaneously). Contrarily, 1D SUSYQM is, by definition,
only valid for 1D spatial variations, and only for a specific polar-
isation in the optical case9–11. Furthermore, T-SUSY can be used to
study temporal scattering in systems with continuous spectra, as
well as time-varying systems supporting discrete-spectrum bound
states. In both cases, its application is not as straightforward as that
of S-SUSY.

First, unlike in S-SUSY, to develop T-SUSY for wave scattering,
the concept of negative frequencies is essential. This comes from
the differences between spatial and temporal scattering, exempli-
fied in Fig. 2 with a simple model having one spatial dimension.
As is well known, when a plane wave traverses a localised spatial
variation in a time-invariant medium, there appear reflected and
transmitted waves of the same frequency (photon energy), with
the wave number (photon momentum) of the incident (k−),
reflected (kR) and transmitted (k+) waves fulfilling the Snell’s
relations: kR=−k− and k−/n−= k+/n+, resulting from spatial
symmetry breaking (Fig. 2a, Supplementary Movie 1). Less
known is the fact that, when a wave propagates through a
homogeneous medium, reflections also appear under a localised
time variation (Fig. 2c, Supplementary Movie 2). In this case,
since only time symmetry is broken, momentum is conserved and
photon energy changes, with the frequency of the incident (ω−=
ω), reflected (ωR) and transmitted (ω+) waves obeying the
relations28 ωR=−ω+ and n+ω+= n−ω−. That is, light can
exchange energy with the medium. Notably, the frequencies of
the reflected and transmitted waves have opposite signs. Although
the physical meaning of negative-frequency waves is striking and
controversial29,30, mathematically, the Hermiticity of the fields in
k–ω space allows reinterpreting a negative-frequency wave as a
counter-propagating positive-frequency one, leading to the
standard use of only-positive frequencies. However, the introduc-
tion of negative frequencies in this work is not a mere convention.
It is a mathematical tool that enables the analysis of temporal

scattering and, more importantly, a necessary ingredient to relate
the reflection and transmission coefficients of T-SUSY index
profiles, which otherwise cannot be decoupled (Supplementary
Note 2). Concretely, for a given system with a temporal index nT1,
T-SUSY provides a systematic way of generating a superpartner,
whose index is (see Supplementary Note 2):

nT2 tð Þ ¼ n2;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21;�
n2T1 tð Þ � 2

ω2 W 0 tð Þ
r ; ð4Þ

where n1,2,± := nT1,2(t → ±∞) is assumed to be constant. As seen,
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Fig. 2 Reflectionless all-dielectric (all-magnetic) T-SUSY time-varying
optical media. a Example of spatial reflection for an optical beam going
through a time-invariant spatial step-index medium (see Supplementary
Movie 1). b Normalised refractive index profiles nT(t)/n− of homogeneous
media characterised by a temporal step-index nTSTEP(t) (always reflective),
a constant index nT1(t) (non-reflective), and its T-SUSY partner nT2(t) (non-
reflective), with Ω ¼ 2ω2

0. c, d Pulse propagation evolution at ω=ω0

through the media with index profiles nTSTEP(t) in (c) and nT2(t) in (d)
(numerically calculated for the case n−= 2). Here, λ= λ0/n− and λ0=
2πc0/ω0. In contrast to (c), the result in (d) demonstrates the reflectionless
nature of nT2. See Supplementary Movies 2 and 3. e Scattering coefficients
T2= |T2 ¼ T2j jeiΦT2 and R2 ¼ R2j jeiΦR2 of nT2 as a function of ω/ω0 and
Ω=ω2

0.
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the prescription for nT2(t) depends on ω. Since it would be
challenging to realise such a frequency-dependent index in
practice, we consider a more realistic and typical scenario in
which the medium has the same temporal variation for all
relevant frequencies of the electromagnetic field. This variation is
taken to be the one that makes nT1(t) and nT2(t) supersymmetric
at a frequency ω0, which will be a free design parameter (it can be,
e.g., the central frequency of the spectral band of interest, or any
other reference frequency providing the desired response). That
is, we suppress the frequency dependence by fixing ω to ω0 in Eq.
(4). Consequently, the two systems will be guaranteed to be exact
T-SUSY partners at ω0, while they may exhibit different
properties at other frequencies. The same situation is found in
S-SUSY9,12. Nevertheless, it can be shown that the T-SUSY
connection generally holds almost exactly in a broad frequency
band, which is a typical feature of supersymmetric optical
systems10,12. This can be verified by calculating the solution to the
wave equation associated with nT2 at ω ≠ ω0 (Supplementary
Note 1), from which the medium spectral response can be
obtained (an example is given below for a reflectionless system,
see Fig. 2). It is worth mentioning that any system with a given
relative index variation nT(T0tN)/n−, with tN := t/T0 and T0 :=
2π/ω0, will have the same normalised solution ψ(T0tN), and
therefore the same scattering properties. Thus, for the sake of
generality, the normalised variables tN and nT/n− are used
whenever possible.

Note that Eq. (3) admits asymptotic solutions for nT1;2 in the
form of the following incident, reflected and transmitted plane

waves: ψ 1;2ð Þ
I t ! �1ð Þ ¼ eiω0t , ψ 1;2ð Þ

R t ! 1ð Þ ¼ R1;2e
�iNþω0t and

ψ 1;2ð Þ
T t ! 1ð Þ ¼ T1;2e

iNþω0t , where Nþ :¼ n1;�=n1;þ ¼ n2;�=n2;þ.
The combined use of negative frequencies and T-SUSY then
relates the reflection and transmission coefficients of both media
as (Supplementary Note 2):

R1 ¼
Wþ þ iNþω0

W� � iω0
R2;T1 ¼

Wþ � iNþω0

W� � iω0
T2; ð5Þ

where W± :=W(t → ±∞) and W is obtained by solving the first-
order Riccati equation V1;2 tð Þ ¼ W2 tð Þ �W 0 tð Þ, with
V1;2 tð Þ ¼ Ω� ω2

0N
2
1;2 tð Þ. Two important consequences can be

inferred from Eq. (5): (1) it enables us to directly obtain the
reflection and transmission coefficients of numerous intricate
time-varying optical systems (in general, of any T-SUSY partner
of a known-response system), circumventing the resolution of
Maxwell’s equations; (2) |R1|= |R2| and |T1|= |T2 | (as a direct
consequence of the fact that nT1 and nT2 share the same
eigenvalue Ω). As a result, T-SUSY will enable us to
straightforwardly construct families of time-varying media
having the same scattering intensity as another one (with the
desired spatial variation and polarisation response), implemen-
table over the same (n2,−= n1,−) or a different (n2,− ≠ n1,−)
index background, bringing about a variety of applications.

As an example, consider the simplest case: a constant refractive
index n1(r, t)= n1,−. Its T-SUSY partner is n2 r; tð Þ ¼ nT2 tð Þ ¼
n2;�½1þ 2ðΩ=ω2

0 � 1Þsech2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω� ω2

0

p
tÞ��1=2 (Fig. 2b, Supple-

mentary Movie 3). The free parameters n2,− and Ω allow
tailoring the asymptotic value of nT2, as well as its maximal index
variation Δn and temporal width Δt (defined as the required time
interval to obtain Δn), see Supplementary Note 3. Since nT1 is
constant, R1= 0. Therefore, nT2 will also be reflectionless as
demonstrated in Fig. 2d for a quasi-monochromatic pulse. From
our previous discussion, nT2 represents a new class of all-
dielectric (all-magnetic), omnidirectional, isotropic, polarisation-
independent, and invisible 3D media with real positive (>1)
permittivity (permeability). No known spatially-varying material

possesses all these features simultaneously, including transforma-
tion media31, complex-parameter materials32, and S-SUSY
media10. The only previously reported time-varying reflectionless
media required to concurrently induce temporal modulations in
the permittivity and permeability33. Our T-SUSY proposal is
totally different, since it is valid for all-dielectric n22 r; tð Þ ¼
εSðrÞεTðtÞ and all-magnetic materials n22 r; tð Þ ¼ μSðrÞμT tð Þ, see
Supplementary Note 1. The former are particularly important, as
implementing temporal permittivity modulations is extremely
easier than implementing permeability ones.

As discussed above, another general feature of T-SUSY is that it
is only exact for the design frequency ω= ω0. Therefore, n2 will
be invisible (R2= 0, |T2|= 1) for all directions and polarisations
at ω0, while a reflected wave will appear at other frequencies. The
response of n2 at ω ≠ ω0 will be characterised by the value of R2
and T2 as a function of frequency, which can be rigorously
obtained by solving numerically Supplementary Equation 8. The
result for the present example is depicted in Fig. 2e, which not
only confirms the expected reflectionlessness of n2 at ω= ω0, but
also demonstrates that this property is almost preserved in a wide
spectral band. For example, for Ω ¼ 2ω2

0 (which corresponds to a
rapidly-varying index with Δt/T0= 0.6), the system has a
reflectance |R2|2 < 10−3 in a fractional bandwidth F= Δω/ω0=
30%. Moreover, the spectral span for which n2 is almost invisible
(R2 ≈ 0, |T2| ≈ 1) can also be tailored through Ω, enabling us to
generate custom-made transparent temporal windows within n2
only for desired spectral bands (Figs. 1a and 2). Concretely, F
decreases as Ω increases. For instance, |R2|2 < 10−3 in a fractional
bandwidth F > 55% for Ω ¼ 1:5ω2

0, while |R2|2 < 10−3 in a
bandwidth F= 8% for Ω ¼ 6ω2

0. Remarkably, out of the invisible
band, light is (partially) retroreflected along the input path, in
contrast to spatial retroreflectors, in which the reflected path is
parallel to, but different from, the input one34.

Moreover, n2 exhibits a singular feature: the phases of the
reflection and transmission coefficients (R2 ¼ R2j jeiΦR2 , T2 ¼
T2j jeiΦT2 ) have a frequency-independent spectral response,
adjustable via Ω (see Fig. 2e and Supplementary Fig. 3). As a
result, n2 implements a perfect dynamically-reconfigurable phase
shifter with the property of being reflectionless, polarisation- and
frequency-independent, and of having a short response time
(Δt < 5π/ω0) in the generation of any phase shift ∈[0, π] (allowing
a significant reduction of the device length), blazing a trail for
designing ideal ultra-compact optical modulators (Fig. 1b,
Supplementary Note 3). In contrast, optical-path-based phase
shifters usually demand slowly-varying index modulations (and
therefore devices with a higher length) to have a negligible
reflection, and are intrinsically frequency-dependent35,36. Contra-
riwise, the proposed T-SUSY device may induce the same phase
shift over different spectral channels, which could be of great
utility in, e.g., frequency combs and wavelength-division multi-
plexing technology. Likewise, pulse shaping operations can also
be implemented by taking advantage of the nonlinear spectral
response of ΦT2 (see Supplementary Note 3). Additional T-SUSY
media emerge from a constant index (being therefore reflection-
less), such as the hyperbolic Rosen-Morse II (HRMII) potential
(Fig. 3a, and Supplementary Fig. 8), which provides a free design
control over Δn for a fixed response time (Δt ~ 20π/ω0), allowing
a technology-oriented tuning of the index excursion.

It is worth mentioning that the origin of reflectionless time-
varying systems may be explained in terms of the absence of
Stokes phenomenon (here related to the asymptotic behaviour of
the solution to Eq. (3) in the limit ω ! 1)37, which also explains
the origin of transitionless quantum systems38. The latter can be
obtained through the so-called transitionless tracking algorithm,
which, given a non-adiabatic Hamiltonian Ĥ0 tð Þ, generates a
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second Hamiltonian Ĥ tð Þ (or a family of them) that drives the
instantaneous eigenstates of Ĥ0 tð Þ exactly without transitions
between them. Nevertheless, note that transitionlessness and
reflectionlessness are not equivalent in general. To see this,
consider the case in which Ĥ0 does not depend on time, and is
hence transitionless (in fact, Ĥ ¼ Ĥ0 from equations 2.7 and 2.9
of ref. 38). If Ĥ0 is not reflectionless, Ĥ will not be reflectionless
either, showing that transitionlessness does not necessarily imply
reflectionlessness. Although it might be possible to obtain time-
varying reflectionless systems with some version of this kind of
method, we have not found any example in the literature (also
note that the transitionless quantum driving algorithm38 does not
apply to the temporal Helmholtz’s equation). In any case, the
transitionless method and T-SUSY are different formalisms. For
instance, if the original Hamiltonian is the one associated with a
constant potential, the transitionless algorithm just returns the
same system, while T-SUSY can generate infinite non-trivial
reflectionless systems from a constant potential.

Actually, the results we have presented so far can be extended
via different T-SUSY variants. Firstly, isospectral T-SUSY defor-
mations provide a route to obtain m-parameter index families
~nT t; η1; ¼ ; ηm
� �

with exactly the same scattering properties in
module and phase as another medium nT (Supplementary Note 2).
As an example, Fig. 3a shows a reflectionless two-parameter
family of the HRMII index. Secondly, for some nT1 profiles,
shape invariance (SI) allows us to construct T-SUSY index
chains nTk t; a1ð Þf gmk¼1 satisfying the relations nTm t; a1ð Þ /
nT1 t; amð Þ, Rm a1ð Þ ¼ R1 amð Þ, Tm a1ð Þ ¼ T1 amð Þ and am ¼
f am�1ð Þ ¼ f � fð Þ am�2ð Þ ¼ f � f � ¼ � fð Þ a1ð Þ, with f a real
function. Therefore, we can straightforwardly analyse or design

the temporal scattering properties of a large number of time-
varying media. To illustrate the benefits of SI, consider the
following variation of the HRMII index (α is a real parameter):

nT1 t; a1ð Þ ¼ n1;� a1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2B

ω2
0
þ a1 a1þαð Þ

ω2
0

sech2 αtð Þ � 2B
ω2
0
tanh αtð Þ

q ; ð6Þ

which is also reflectionless in a wide spectral band (Fig. 3c and
Supplementary Fig. 11). Since n1,− ≠ n1,+, the system performs
a frequency down-conversion with ω+= (n1,−/n1,+)ω−, where
n1,−/n1,+ can be engineered via the design parameters ω0 and B. A
device exhibiting all these properties has many potential applica-
tions. Unfortunately, the exotic shape (reaching values below n1,−)
and large maximal excursion of nT1(t; a1) hampers its experimental
implementation. T-SUSY can overcome this drawback by using SI.
Specifically, Eq. (6) satisfies the SI condition with am= a1− (m−
1)α, allowing us to generate different index profiles with the same
reflectionless band as nT1(t; a1) (see Fig. 3b, c and Supplementary
Movie 4). Taking m= 6, we find an index nT6(t; a1)= [n6,−(a1)/n1,
−(a6)]nT1(t; a6) with a considerably smoother time variation and a
significantly lower Δn. As illustrated in Fig. 1c, nT6(t; a1) can be
used to build a polarisation-independent optical isolator with an
ideally unlimited bandwidth (unlike previous time- and spacetime-
modulated isolators and frequency converters18,39,40, which, in
addition, usually involve complicated non-omnidirectional imple-
mentations), difficult to achieve by other means (Supplementary
Note 3 includes more details on this device and additional SI
examples). Reflectionless frequency converters can also be designed
via transformation optics, but their implementation requires
extremely complex spacetime-varying bianisotropic materials41.

Discrete spectrum. Let us now discuss the discrete-spectrum case.
This scenario naturally arises in optical S-SUSY. Specifically, when
applying 1D SUSYQM to a spatial dimension normal to the pro-
pagation direction, the propagation constant enters the wave
equation as an effective energy, which is quantised by the eigen-
value problem9,10. However, since time is unidimensional, there is
no possible quantity playing the role of an energy in T-SUSY,
leading to free-particle systems. Outstandingly, a discrete-spectrum
version of T-SUSY can be developed for time-varying dispersive
media. To this end, we require the concept of temporal waveguide
(TWG): two adjacent temporal index boundaries (allowed to move
at a speed vB) defining a position-dependent temporal index
window, which can confine optical pulses by temporal total
internal reflection42–44. TWGs can be created by inducing a per-
turbation Δneff(t− z/vB) of the effective index neff of a given mode
in a spatial waveguide. In a co-moving reference frame, the com-
plex envelope of the electric field associated with a TWG can be

written as43,44 A z; τð Þ ¼Pn ψn τð Þei Δβ1=β2ð ÞτeiKnz . It is then shown
that a TWG supports temporal bound states ψn (n= 0, 1, 2,…)
fulfilling the discrete-spectrum eigenvalue equation:

� d2

dτ2
þ 2

βB τð Þ
β2

� �
ψn τð Þ ¼ 2

Kn

β2
þ Δβ21

β22

 !
ψn τð Þ; ð7Þ

where τ := t− z/vB, β1 and β2 are the inverse group velocity and
group-velocity dispersion constant of the perturbed spatial mode,
Δβ1= β1− 1/vB, βB(τ)= k0Δneff(τ), k0=ω0/c0, and ω0 is the
optical carrier angular frequency. We can apply T-SUSY to Eq. (7),
as it matches Eq. (1) for α= 1, x→ τ, V(τ)≡ 2βB(τ)/β2 and
Ωn � 2Kn=β2 þ Δβ21=β

2
2, expanding the TWG landscape and its

potential applications.
As an example, consider an analytically-solvable TWG with a

step temporal perturbation βB1. Its unbroken T-SUSY partner is

βB2 τð Þ ¼ βB1 τð Þ � β2ðlnψ 1ð Þ
0 τð ÞÞ00, where ψ 1ð Þ

0 is the ground state
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Fig. 3 T-SUSY reflectionless isospectral media and frequency converter.
a Two members of the 2-parameter isospectral family ~nT t; η1; η2
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HRMII index nTðtÞ. Numerical calculations show that, in all the analysed cases
with n� ¼ 2, R η1; η2

� � ¼ 0 and T η1; η2
� � ¼ ei0:23 (Supplementary Note 3).

b Normalised supersymmetric refractive index profile nT1 t; a1ð Þ=n1;� a1ð Þ of
Eq. (6) with a1 ¼ 40, B ¼ a21 =10, α= 10, ω0 ¼ 38 rad·s−1. The sixth order
normalised index of its corresponding SI chain nT6 t; a1ð Þ=n6;� a1ð Þ is also
depicted. Both media induce a reflectionless frequency down-conversion in
any incident optical signal (see Supplementary Movie 4). c, d Module (c)
and phase (d) of the scattering coefficients of nT1 t; a1ð Þ and nT6 t; a1ð Þ as a
function of frequency (calculated for n1;� a1ð Þ ¼ n6;� a1ð Þ ¼ 2). The phase of
R1 and R6 cannot be estimated due to the non-reflecting behaviour of
nT1 t; a1ð Þ and nT6 t; a1ð Þ in an extremely large optical bandwidth. No reflected
wave is observed in the numerical simulation when propagating wide-band
optical pulses through these time-varying media.
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(fundamental mode) of βB1 (Fig. 4a, Supplementary Note 4). From
T-SUSY theory, both TWGs have the same energy spectrum.

Moreover, Â
�ðÂþÞ maps each state ψ 1ð Þ

n (ψ 2ð Þ
n ) of βB1 (βB2) into a

state of βB2 (βB1) having the same eigenvalue Ωn, with the exception

of the ground state ψ 1ð Þ
0 , which is annihilated by Â

�ðÂ�
ψ 1ð Þ
0 ¼ 0Þ

and thus has no equal-energy counterpart in βB2. Particularly,

ψ 2ð Þ
n / Â

�
ψ 1ð Þ
nþ1, where Â

�
:¼ d=dτ � ðlnψ 1ð Þ

0 τð ÞÞ0. In T-SUSY,

energy is related to phase constant, implying that ψ 1ð Þ
0 is not phase-

matched with any ψ 2ð Þ
n and that ψ 1ð Þ

nþ1 and ψ 2ð Þ
n are perfectly phase-

matched. This occurs in an extremely large optical bandwidth
Δν � 0:5 (ν / 1=β2 is the normalised frequency), provided that
both TWGs are built on a dispersion-flattened spatial waveguide
dβ2=dω � 0
� �

, see Fig. 4b. Furthermore, Fig. 4b reveals that βB2 is
less dispersive than βB1, i.e., T-SUSY enables us to engineer the
dispersion properties of TWGs.

To further unfold the potential of discrete-spectrum T-SUSY,
we propose the concept of temporal photonic lantern (TPL):
close-packed serial T-SUSY TWGs moving at the same speed and
supporting linear combinations of degenerate temporal bound
sates (supermodes)45. To verify the TPL concept, we have
developed the first version of coupled-mode theory (CMT) for
serial TWGs (Supplementary Note 4). Figure 4c shows an
example of a TPL supermode. Remarkably, TWGs can carry
soliton-like (shape-invariant) optical pulses in a time-varying
dispersive medium, with the advantage of enabling arbitrary pulse
amplitude, phase and duration, as well as a tuneable propagation
speed43,44. TPLs extend this ability to a serial combination of
modes (each with arbitrary length, amplitude and node number),
yielding solitonic supermodes with almost any desired shape.

Achieving the required perfect phase-matching between modes of
different order in serial TWGs without T-SUSY typically
demands neighbouring TWGs of different width, whilst T-
SUSY permits an independent control over this parameter and
generally presents a much larger normalised phase-matching
bandwidth12,14, inherently implying a higher tolerance to
fluctuations in TB and Δneff. More advanced functionalities
emerge by noting that if only one of the TWGs of the TPL is
excited, a periodic energy transfer between adjacent TWGs occurs
(Fig. 4d, Supplementary Movie 5, Supplementary Note 4). Using
two coupled spatial waveguides (WG1, WG2), this effect enables
the construction of a pulse-shape transformer with unprece-
dented versatility and reconfigurable capability (Fig. 1d). Parti-
cularly, the final shape of each pulse propagating along WG1 can
be dynamically chosen among a large gamut by launching the
appropriate TPL over WG2. The proposed T-SUSY TPLs could
also find application in optical wavelet transforms, coherent laser
control of physicochemical and QM processes, spectrally-selective
nonlinear microscopy, and mathematical computing46–49. T-
SUSY TWG theory can be extended via temporal analogues of SI,
broken SUSY and isospectral constructions6,14.

Discussion
Overall, these results generalise the foundations of SUSYQM to
the time domain, unveiling the temporal supersymmetric nat-
ure of Maxwell’s equations (which, unlike optical S-SUSY, is a
genuine symmetry with no previous direct analogue) and,
consequently, leading to the emergence of an entire field of
research within physics, as well as to a new photonic design
toolbox. Compared with S-SUSY, T-SUSY relaxes the need for
controlling the polarisation state of light and the medium
spatial index variation, which usually involves complex fabri-
cation steps9,10. In addition, as outlined above and as shown in
detail in Supplementary Notes 7 and 8, both sound and elastic
waves satisfy a temporal Helmholtz equation formally equal to
Eq. (3). Hence, T-SUSY can be directly transferred to these
fields of physics.

A possible T-SUSY technological difficulty might arise if high
temporal index excursions and/or index variations with a very
low temporal width are desired (e.g. to achieve a large phase shift
in an ultra-compact optical device). Since the response and
achievable functionalities of the system depend solely on
nT(T0tN)/n−, the limits of a given technology will be determined
by the maximum (minimum) allowed values of Δn/n− (Δt/T0).
Table 1 summarises the main features of the most suitable
existing platforms for the implementation of T-SUSY index
modulations.

At optical frequencies, strongly-nonlinear epsilon-near-zero
(ENZ) media such as indium tin oxide (ITO) and aluminium-
doped zinc oxide (AZO) provide large values of Δn/n− (7.2 and
4.5, respectively, widely exceeding the figures here considered),
but are limited by their high Δt/T0 values (36 and 33, respectively)
and typical linear losses50–52. Silicon carbide (SiC) is an inter-
esting alternative material that possesses an ENZ band at a
wavelength λENZ ≈ 10.33 μm, with a low estimated response
time52–54 Δt/T0 ≈ 5 and a maximum51,54,55 Δn/n− ≈ 1. Hence,
modulations such as those depicted in Fig. 3 could be potentially
realised with this kind of material. Note that nonlinear ENZ
media with smaller values of Δt/T0 in combination with low
linear losses might emerge with the development of new
materials52.

Phase change materials (PCMs) also support large values of
Δn/n− at high frequencies. As an example, germanium antimony
telluride (GST) alloys provide variations of Δn ≈ 3 (Δn/n− ≈ 0.9)
with very low losses at λ= 10 μm and a controllable degree of
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Fig. 4 Supersymmetric TWGs and TPLs. a Temporal index perturbations
Δneff1 and Δneff2 of a step-index TWG (2TB= 660 ps, |Δβ1|= 10−3 ps·m−1,
β2= 0.06 ps2·m−1) and its T-SUSY partner. b Normalised dispersion
diagram b–ν of the temporal bound states ψ 1ð Þ

n and ψ 2ð Þ
n of both TWGs,

where b is the normalised phase constant, defined for each n-th order mode
as bn :¼ 1� Kn=Δβ� Δβ21 =ð2Δββ2Þ, and ν is the normalised frequency, with
ν2 :¼ 2T2

BΔβ=β2 (here, ν= 6). ψ 2ð Þ
n exhibits a lower slope (is less

dispersive) than ψn+1
(1). The grey area is the phase-matching bandwidth,

the interval Δν where Δb≤ 0.2 between SUSY bound states. c Index
perturbation of a TPL (blue) constructed from two T-SUSY TWGs with a
time separation TB/4 (2TB= 660 ps), and its temporal supermode (red),
generated from the perfect phase-matching between the states ψ 2ð Þ

0 and
ψ 1ð Þ
1 . d Pulse-shape transformation resulting from the energy transfer

between ψ 2ð Þ
0 and ψ 1ð Þ

1 in the TPL (Supplementary Movie 5).
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crystallisation enabling a gradual index variation56,57. Currently,
the high typical response time of PCMs (Δt ≥ 400 ps, Δt/T0 ≈
12,000)58 would be the main drawback of this technology for the
implementation of T-SUSY modulations. Nevertheless, the fem-
tosecond phase transitions achieved in some experiments via
non-thermal mechanisms59 may lead to faster PCM technology at
optical frequencies in the future.

In low-frequency electromagnetism, time-varying transmission
lines (TVTLs) based on a dynamically-tuneable distributed
capacitance constitute an ideal experimental platform to test and
exploit all the proposed T-SUSY concepts, as their effective
dielectric properties can be largely tuned in space and time. In
particular, the capacitance of commercial varactor diodes can be
modified by a factor of 12 (corresponding to Δn/n− ≈ 2.5)60,
while their response time can be as low as Δt/T0 ≈ 0.1 (see Sup-
plementary Note 6)61,62.

In acoustics, a temporal index modulation can be induced
through variations of the medium mass density (Supplementary
Note 7). There exist a number of strategies to achieve strong
changes of this parameter, including the use of magnetoacoustic
crystals63, acoustic metamaterials64, or acoustic systems with
moving parts25. Notably, there exist more sophisticated
electronically-controlled active materials whose local acoustic
parameters can be changed almost arbitrarily in real time65.

Moreover, T-SUSY systems can be implemented in elastic
beams with a time-varying stiffness DT, which allow temporal
modulation amplitudes as high as ΔDT/D−= 1.4 (corresponding
to Δn/n− ≈ 0.4) and normalised response times as low as Δt/T0=
0.3 (see Supplementary Note 8)27,66.

Finally, note that extremely low index perturbations suffice to
create T-SUSY TWGs, technologically feasible in standard optical
fibres and waveguides via travelling-wave electro-optic phase
modulators or the cross-phase modulation effect30,43,44.

Methods
Numerical calculations. The temporal scattering problem (Figs. 2 and 3) has been
simulated by solving numerically Supplementary Equation 8 with the commercial
software COMSOL Multiphysics. In order to guarantee a low computational time,
we have taken ω0= 38 rad·s−1 and c0= 1 m·s−1. Nevertheless, the results of Figs. 2
and 3 are valid for any value of ω0 and c0 (see Supplementary Note 3 for more
details). On the other hand, the discrete spectrum of the TWGs and the TPL
(Fig. 4) has been analysed with the commercial software MATLAB and CST
Microwave Studio by using the analogy between the modes of a TWG and those of
a dielectric slab waveguide reported in ref. 43. Finally, the pulse-shape transfor-
mation depicted in Fig. 4d has been calculated in MATLAB by solving the CMT
reported in Supplementary Note 4 for serial TWGs. See Supplementary Note 5 for
more details about the methods employed in Fig. 4.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The codes generated during the current study are available from the corresponding
authors upon reasonable request.
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