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Abstract

We study entanglement and squeezing of two uncoupled impurities immersed in a Bose-
Einstein condensate. We treat them as two quantum Brownian particles interacting with
a bath composed of the Bogoliubov modes of the condensate. The Langevin-like quantum
stochastic equations derived exhibit memory effects. We study two scenarios: (i) In
the absence of an external potential, we observe sudden death of entanglement; (ii)
In the presence of an external harmonic potential, entanglement survives even at the
asymptotic time limit. Our study considers experimentally tunable parameters.
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1 Introduction

Entanglement represents a necessary resource for a number of protocols in quantum infor-
mation and for other quantum technologies, which are expected to be implemented in the
foreseeable future for various practical applications [1–5]. The entangled parties of a compos-
ite quantum system evolve, under realistic conditions, coupled to external degrees of freedom,
which may be treated as a bath. In this open quantum system, the bath acts as a source of deco-
herence, leading to the destruction of quantum coherence among the states of the entangled
subsystems [6]. Indeed, to reach a relevant technological level, one of the main obstacles is the
difficulty to ensure such a coherence despite the interaction of the system with the bath. How-
ever, the presence of the bath can produce other potentially useful phenomena. For instance,
two non-interacting particles immersed in a common bath can be entangled as a consequence
of an effective interaction induced by the bath [7,8]. A number of situations have been consid-
ered, where indeed entanglement is observed in the aforementioned setting [9–17]. Here we
investigate the bath-induced entanglement among two distinguishable impurities embedded
in a common homogeneous Bose-Einstein condensate (BEC) in 1D. Such an issue recently at-
tracted a lot of attention, e.g, the study of impurities in double-wells in a BEC [18], the study
of entanglement and the measurement of non-Markovianity between a pair of two-level local-
ized impurities in a BEC [19, 20], particle number entanglement between regions of space in
a BEC [21], or the environment-induced interaction for impurities in a lattice [22,23]. More-
over, in a number of experiments [24–26] performed last year, entanglement between regions
of a BEC was observed. In these works discrete observables were considered, while on the
contrary, in our studies we will focus on entanglement of continuous variables in BEC.

The major motivation for us to undertake this work is the contemporary progress in the
manipulation and control of ultracold atoms and ions, that paves the way to new possible ex-
periments. The behaviour of an impurity in a Bose gas has recently attracted a lot of attention,
both on the theoretical and experimental side [27–45]. The main feature of such a system
lies in the creation of excitation modes (Bogoliubov quasiparticles) associated to the motion
of the atoms of the gas, that dress the impurity, leading to the formation of a compound sys-
tem named Bose polaron. For two such impurities within a BEC, studies have focused in the
past on the possibility to form bound states (bipolarons) for sufficiently strong interactions
between the impurities and the condensate atoms [46, 47]. Furthermore, the Bose polaron
problem was recently studied within the quantum Brownian motion (QBM) model [43, 48],
which describes the dynamics of a quantum particle interacting with a bath made up of a huge
number of harmonic oscillators obeying the Bose-Einstein statistics [6,49–51]. In this analogy,
the impurity plays the role of the Brownian particle and the Bogoliubov excitations of the BEC
are the bath-oscillators. Here, by extending this view, we study the creation of entanglement
between two different impurities in a Bose gas, as a consequence of the coupling induced by
the presence of the Bogoliubov modes, which play the role of the bath.
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Note that the QBM model for the motion of the two kinds of impurities in a BEC is a
continuous-variable description i.e. it is expressed in terms of position and momentum op-
erators. Thus, entanglement measures based on the density matrices are not conveniently
calculable because the density matrix in this case is infinite-dimensional. We therefore use the
logarithmic negativity [52] as a more fitting choice in this context. This measure is expressed
in terms of the covariance matrix, namely a matrix, whose elements are all of the position and
momentum related correlation functions.

To compute these correlation functions, we solve the Heisenberg equations of the system,
which can be reduced to a quantum stochastic Langevin equation for each particle. This set
of two coupled equations are non-local in time, namely the dynamics of both impurities in a
BEC carry certain amount of memory. In this context, such a feature is often related to the
super-Ohmic character of the spectral density, constituting the main quantity that embodies
the properties of the bath. The presence of memory effects (non-Markovianity) can also be
shown to lead to the appearance of entanglement [53–57]. The role of the memory effects
in the works above is to preserve entanglement in the long-time regime [58] and in the high
temperature regime [13]. Nevertheless, in these works the spectral density was assumed to
be Ohmic, such that the non-Markovianity is purely attributed to the influence of one particle
on the other. Indeed, the disturbances caused by particles to one another is mediated through
the common bath, which take a finite time to propagate through the medium, making the evo-
lution of each particle history-dependent. This results on a decay of entanglement in several
stages [13,17] or to a limiting distance for bath induced two-mode entanglement [54]. In [59],
the scenario of an additional source of non-Markovianity, emerging from a non-Ohmic spectral
density was considered. The non-ohmic spectral density resulted in more robust entanglement
among the two impurities.

In this work we study entanglement as a function of the physical quantities of the system,
such as temperature, impurity-gas coupling, gas interatomic interaction and density. These
parameters may be tuned in experiments allowing to control the amount of entanglement
between the impurities. We distinguish the situation in which the impurity is trapped in a
harmonic potential and that where it is free of any trap. In the trapped case, we also study
squeezing which is a resource for quantum sensing.

The manuscript is organized as follows. In Sec. 2 we present the Hamiltonian of the sys-
tem, showing that it can be reduced to that of two quantum Brownian particles interacting
with a common bath of Bogoliubov modes. We also write the quantum Langevin equations,
find the expression for the spectral density showing that it presents a super-ohmic form, and
solve the equations in order to evaluate the position and momentum variances. Finally, we
review and discuss the logarithmic negativity as an entanglement quantifier and a criterion
which we use to detect two-mode squeezing. In Sec. 3.1 we study the out-of-equilibrium dy-
namics of untrapped impurities, while in Sec. 3.2 we study entanglement and squeezing of the
two impurities as a function of the system parameters for the trapped case. In Sec. 4 we offer
the conclusions and outlook. We discuss details on the derivations of the spectral density and
susceptibility in appendices A and B. In App. C, we comment on the difficulty of finding an an-
alytic solution for the trapped case even when the centers for the particles potentials coincide.
Finally, in App. D we study, for the trapped case, the effective equilibrium Hamiltonian of the
system reached at long-times.
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2 The model system

2.1 Hamiltonian

We consider two kinds of distinguishable impurities of mass m1 and m2, immersed in a bath
of interacting bosons of mass mB enclosed in a box of volume V . This system is described by
the Hamiltonian

H = H(1)I +H(2)I +HB +HBB +H(1)IB +H(2)IB , (1)

with

H( j)I =
p2

j

2m j
+ T j

�

x j ,d j

�

, (2a)

HB =

∫

ddxΨ† (x)

�

p2
B

2mB
+ U (x)

�

Ψ (x) =
∑

k

εka†
kak, (2b)

HBB = gB

∫

ddxΨ† (x)Ψ† (x)Ψ (x)Ψ (x) =
1

2V

∑

q,k′,k

CB (q) a
†
k′−qa†

k+qak′ak, (2c)

H( j)IB =
1
V

∑

q,k

C ( j)IB (k)ρ
( j)
I (q) a

†
k−qak, (2d)

with a† and a being the bath creation and annihilation operators respectively, x j and p j the
position and momentum operators of particle j = 1,2, where they satisfy the commutation re-
lations [a†, a] = 1 and [x j ,pk] = iħhδ jk. Here, we consider the bosons to be in a homogeneous
medium, i.e. U (x) = const, and the external potential experienced by the impurities is

T j

�

x j ,d j

�

=
3
∑

i=1

m jΩ2
j (x j + d j)2

2
, (3)

that is a 3D parabolic potential centered at d j = (d j,x , d j,y , d j,z) and with frequency
Ω j = (Ω j,x ,Ω j,y ,Ω j,z). We will consider both the trapped Ω j,i > 0 and untrapped cases Ω j,i = 0

where i = x , y, z. The densities of the impurities in the momentum domain ρ( j)I (q) are

ρ
( j)
I (q) =

∫ ∞

−∞
e−iqxδ

�

x−
�

x j + d j

��

ddx. (4)

The Fourier transforms of the interactions among the j th impurity and the bath and among
bath particles themselves are, respectively

C ( j)IB (k) = FIB

�

g( j)IB δ
�

x− x′
�

�

, (5a)

CB (q) = FB

�

gBδ
�

x− x′
��

. (5b)

The coupling constants in Eq. (5) are

g( j)IB = 2πħh2 a( j)IB

m( j)R

, (6a)

gB = 4πħh2 aB

mB
, (6b)

where m( j)R =
mBm j

(mB+m j)
, is the reduced mass, and a( j)IB and aB are the scattering lengths between

the impurities and the bath particles and between the bath particles themselves, respectively.
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By performing a Bogoliubov transformation,

ak = ukbk −wkb†
−k , a†

k = ukb−k −wkb†
k, (7)

with

u2
k =

1
2

�

εk + n0CB

Ek
+ 1

�

,

and

w2
k =

1
2

�

εk + n0CB

Ek
− 1

�

,

the terms related purely with the bath particles transform to the following non-interacting
term

HB +HBB =
∑

k6=0

Ekb†
kbk, (8)

where we neglected some constant terms, such that the diagonal form of the Hamiltonian is
only valid up to quadratic order in the bath operators. In the above expression,

Ek = ħhc |k|
q

1+ 1
2 (ξk)2 ≡ ħhωk is the Bogoliubov spectrum, where

ξ=
ħh

p

2gBmBn0

(9)

is the coherence length for the BEC and

c =
√

√ gBn0

mB
(10)

is the speed of sound in the BEC. Finally, n0 is the density of the bath particles in the ground
state, which turns out to be constant as a result of the homogeneity of the BEC. For a macro-
scopically occupied condensate, i.e. Nk 6=0� N0 where Nk is the occupation number of the kth

state, we obtain the following expression for the interaction part of the Hamiltonian

H( j)IB = n0C ( j)IB +
s

n0

V

∑

k6=0

ρ
( j)
I (k)C

( j)
IB

�

ak + a†
−k

�

, (11)

which after the Bogoliubov transformation, becomes

H( j)IB =
∑

k6=0

V ( j)k eik·(x j+d j)
�

bk + b†
−k

�

. (12)

Here, the couplings are

V ( j)k = g( j)IB

s

n0

V

�

(ξk)2

(ξk)2 + 2

�
1
4

. (13)

After this procedure the Hamiltonian is transformed into

H = H(1)I +H(2)I +
∑

k6=0

Ekb†
kbk +

∑

k6=0

�

V (1)k eik·(x1+d1) + V (2)k eik·(x2+d2)
�

�

bk + b†
−k

�

. (14)

The above Hamiltonian with a non-linear interacting part is in general difficult to treat, and
requires the usage of influence functional techniques [8]. To simplify the situation we will
resort to the so called long-wave or dipole approximation. This is expressed by the assumption

k · x1� 1, k · x2� 1, (15)
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such that we can approximate the exponentials by a linear function. The validity of the linear
approximation was studied in [43]. For the untrapped impurities, it turned into a condition of
a maximum time as a function of T for which the linear approximation holds. For the trapped
case, the condition was over the trapping frequency as a function of T . The results we present
here fulfil these conditions. With this, the Hamiltonian reads

HLin =H(1)I +H(2)I +
∑

k6=0

Ekb†
kbk +

∑

k 6=0

eVk [I+ ik fk (x1,x2,d1,d2)]
�

bk + b†
−k

�

,

with I the identity and where

eVk (d1,d2) := V (1)k eik·d1 + V (2)k eik·d2 , (16)

and

fk (x1,x2,d1,d2) :=
V (1)k x1eik·d1 + V (2)k x2eik·d2

V (1)k eik·d1 + V (2)k eik·d2

. (17)

Performing the transformation bk→ bk −
eV−k(d1,d2)

Ek
I, one obtains the following Hamiltonian

HLin =
∑

j=1,2

H( j)I + i
∑

j=1,2
k6=0

ħhg( j)k

�

eik·d j bk − e−ik·d j b†
k

�

x j+
∑

k6=0

Ekb†
kbk +W (d1,d2) [x1 + x2] , (18)

with

W (d1,d2) = 2i
∑

k6=0

kV (1)k V (2)k cos (k ·R12)

ħhωk
, (19)

where R jq = |d j − dq|, and g( j)k =
kV(j)k
ħh . At this point we note that, to preserve the bare oscil-

lator potential in Eq. (8) and hence ensure a positively defined Hamiltonian, it is conventional
to introduce a counter term to the Hamiltonian. In this way the Hamiltonian at hand can be
interpreted as a minimal coupling theory with U (1) gauge symmetry [60]. This term is im-
portant because its introduction guarantees that no “runaway” solutions appear in the system,
as shown in [61]. Nevertheless, we are committed not to introduce any artificial terms in the
Hamiltonian and maintaining the fact that we are considering a Hamiltonian that describes a
physical system. We will however identify a condition under which the problem of “runaway”
solutions will not appear.

For the trapped impurities case, Hamiltonian (18) shows similarities to the Hamiltonian
that describes the interaction of three harmonic oscillators in a common heat bath [59]. How-
ever, the two Hamiltonians differ in the following three aspects: First, our Hamiltonian de-
scribes the interaction as a coupling between the position of the particle and a modified ex-
pression of the momentum of the bath particles while [59] describes a position-position in-
teraction. Second, the term W (d1,d2) [x1 + x2] is absent in the Hamiltonian in [59]; Finally,
our Hamiltonian lacks the counter term which is artificially introduced in [59] that results in
a renormalization of the potential of the harmonic oscillator.

2.2 Heisenberg equations

From here on we treat only the one dimensional case, i.e. we assume that the BEC and the
impurities are so tightly trapped in two directions as to effectively freeze the dynamics in those
directions. In practice, the one dimensional coupling constant has to be treated appropriately,
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as discussed in [62]. To study the out-of-equilibrium dynamics of the system, we first obtain
the Heisenberg equations, which read as

d x j

d t
=

i
ħh
�

H, x j

�

=
p j

m j
, (20a)

dp j

d t
=

i
ħh
�

H, p j

�

= −m jΩ
2
j x j (t)− i

∑

k 6=0

ħhg( j)k

�

bkeikd j − b†
ke−ikd j

�

, (20b)

d bk

d t
=

i
ħh
[H, bk] = −iωk bk −

2
∑

j=1

g( j)k e−ikd j x j , (20c)

d b†
k

d t
=

i
ħh
�

H, b†
k

�

= iωk b†
k −

2
∑

j=1

g( j)k eikd j x j . (20d)

Next we solve the equations of motion for the bath particles (20c) and (20d),

bk (t)= bk (0) e
−iωk t −

∫ t

0

2
∑

j=1

g( j)k e−ikd j x j (s) e
−iωk(t−s)ds, (21)

b†
k (t)= b†

k (0) e
iωk t −

∫ t

0

2
∑

j=1

g( j)k eikd j x j (s) e
iωk(t−s)ds. (22)

Replacing these in Eqs.(20a)-(20b) yields the following equations of motion for the two parti-
cles

m j ẍ j +m jΩ
2
j x j +m jW (d1, d2)−

∫ t

0

2
∑

q=1

λ jq (t − s) xq (s) ds = B j

�

t, d j

�

, (23)

where B j

�

t, d j

�

plays the role of the stochastic fluctuating forces, given by

B j

�

t, d j

�

=
∑

k 6=0

iħhg( j)k

�

ei(ωk t−kd j)b†
k (0)−e−i(ωk t−kd j)bk (0)

�

, (24)

and the memory friction kernel λ jq (t − s) reads as

λ jq (t) =
∑

k 6=0

Θ

�

t −
�

�

�

�

kR jq

ωk

�

�

�

�

�

g̃( jq)k sin
�

kR jq +ωk (t − s)
�

, (25)

with, g̃( jq)k = 2ħhg( j)k g(q)k . In the literature, λ jq (t), is also refered to as the dissipation kernel, or
also the susceptibility. The Heaviside function guarantees causality by introducing the corre-
sponding retardation due to the finite distance d j−dq between the centers of the two harmonic
oscillators. The two are related by the Kubo formula as

λ jq (t − s) = −iΘ

�

t −
�

�

�

�

kR jq

ωk

�

�

�

�

�


�

B j

�

t, d j

�

, Bq

�

s, dq

���

ρB
. (26)

Hence, we understand that the reason the Heaviside step function arises is due to the fact
that the forces commute for time-like separations. On the left hand side of Eq. (23) appears
a restoring force which is originated by the fact that the impurities are similar to two har-
monic oscillators. Furthermore, also non-local terms appear due to the interaction of the
impurities with the environment, in particular a dissipative self-force and a history-dependent
non-Markovian interaction between the two impurities. Both of these non-linear terms are a
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consequence of the coupling of the impurities to the bath. On the right hand side, the stochas-
tic fluctuating force appears with Gaussian statistics, i.e. the first moment, which is assumed to
be



B j

�

t, d j

��

= 0 for j = 1,2, and the second moment of the probability distribution related
to the state of the stochastic driving force B j

�

t, d j

�

is enough to describe the state of the bath.
There is another equivalent way of writing the equations of motion for the particles, in

terms of the damping kernel Γ jq (t − s), related to the susceptibility as
1

m j
λ jq (t − s) := − ∂

∂ t Γ jq (t − s), which will enable us to identify a condition on the range of
parameters for which our system is valid. Making use of the Leibniz integral rule, one can
show that

−
1

m j

∫ t

0

λ jq (t − s) xq (s) ds = −Γ jq (0) xq (t) +
∂

∂ t

∫ t

0

Γ jq (t − s) xq (s) ds. (27)

With this, one can rewrite the equations of motion for each particle position in terms of the
damping kernel

ẍ j +Ω
2
j x j −

2
∑

q=1

Γ jq (0) xq (t) +
1

m j
W (d1, d2) +

∂

∂ t





∫ t

0

2
∑

q=1

Γ jq (t − s) xq (s) ds



=
1

m j
B j

�

t, d j

�

.

(28)

One can identify that Γ jq (0) xq (t) in equations of motion (28) play the role of renormalization
terms of the harmonic potential. Most importantly, these terms will not be present in case one
includes a counter term in the initial Hamiltonian, Eq. (18). Under the assumption of weak
coupling, one expects that these terms will not affect the long-time behaviour of the system,
as explained in [49]. At the end of this section we obtain the necessary condition that ensures
the positivity of the Hamiltonian.

It is useful to write Eqs. (23) as a single vectorial equation,

Ẍ (t) +Ω2X (t)−M−1

∫ t

0

λ (t − s)X (s) ds = M−1
�

BT (t, d1, d2)−W (d1, d2) I
�

I, (29)

where

X (t)=

�

x1 (t)
x2 (t)

�

, M=

�

m1 0
0 m2

�

, Ω2=

�

Ω2
1 0

0 Ω2
2

�

, (30)

W (d1, d2) =

�

W1 (d1, d2)
W2 (d1, d2)

�

, (31)

λ (t − s) =

�

λ11 (t − s) λ12 (t − s)
λ21 (t − s) λ22 (t − s)

�

, (32)

B (t, d1, d2) =

�

B1 (t, d1)
B2 (t, d2)

�

. (33)

Equivalently, the vectorial equation that corresponds to Eqs. (28) (i.e. in terms of the damping
kernel), is

Ẍ (t) + Ω̃2X (t) +
∂

∂ t

∫ t

0

Γ (t − s)X (s) ds = M−1
�

BT (t, d1, d2)−W (d1, d2)
�

I, (34)

where

Γ (t − s) =

�

Γ11 (t − s) Γ12 (t − s)
Γ21 (t − s) Γ22 (t − s)

�

, (35)
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Ω̃
2 =

�

Ω2
1 − Γ11 (0) −Γ12 (0)
−Γ21 (0) Ω2

2 − Γ22 (0)

�

. (36)

We then introduce the transformation matrix Q = O X such that Eq. (34) transforms into

Q̈ (t) + Ω̃D
2Q (t) +

∂

∂ t

∫ t

0

Ξ (t − s)Q (s) ds = M−1
�

DT (t, d1, d2)−OW (d1, d2)
�

I, (37)

where Ξ (t − s) = O Γ (t − s)OT , DT (t, d1, d2) = O BT (t, d1, d2) and

Ω̃D = O Ω̃2OT =

�

Ω̃1
D 0

0 Ω̃2
D

�

, (38)

i.e. it is diagonal. In the following sections we solve Eqs. (29) and (34) for the cases under
study, by considering the Laplace or Fourier transforms as is presented in section 2.4.

We now identify from Equation (29) the condition under which even though the Hamil-
tonian lacks an ad hoc introduced renormalization term, this does not affect the long-time
dynamics of the particles. This condition is that both Ω̃1

D , Ω̃2
D > 0, because this way the

Hamiltonian remains positive–definite and diverging solutions are avoided. In particular, it
is required that

1
2

�

Γ11 (0) + Γ22 (0)−Ω2
1 −Ω

2
2 +
�

4Γ12 (0) Γ21 (0) +
�

Γ11 (0)− Γ22 (0)−Ω2
1 +Ω

2
2

�2 �1/2
�

<0. (39)

This imposes a restriction on the coupling constants range. Note that if we decouple the second
particle i.e. if g(2)k = 0 for all k, then we obtain the same condition as for the one particle,
Ω2

1 > Γ11 (0) [43].

2.3 Spectral density

Let us write the dissipation kernel in Eq. (25) as

λ jq (t − s) =

∫ ∞

0

�

Jantisym.
jq (ω) cos (ω (t − s)) + J sym.

jq (ω) sin (ω (t − s))
�

dω, (40)

where we identify the spectral densities as

Jantisym.
jq (ω, t − s) =

∑

k 6=0

Θ

�

t − s−
�

�

�

�

kR jq

ωk

�

�

�

�

�

g̃( jq)k δ (ω−ωk) sin
�

kR jq

�

, (41)

and

J sym.
jq (ω, t − s) =

∑

k 6=0

Θ

�

t − s−
�

�

�

�

kR jq

ωk

�

�

�

�

�

g̃( jq)k δ (ω−ωk) cos
�

kR jq

�

. (42)

We note that g( j)k g(q)k is an even function of k, which implies that Jantisym.
jq (ω) = 0. Then, in

App. A we show that in the continuum limit of the spectrum, Eq. (40) takes the following
integral form for a system with 1D environment

λ jq (t − s) =

∫ ∞

0

Θ

�

t − s−
�

�

�

�

kωR jq

ω

�

�

�

�

�

J jq (ω) sin (ω (t − s)) dω, (43)
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with
J jq (ω) = eτ jqω

3 cos
�

kωR jq

�

χ1D (ω) , (44)

where
eτ jq = 2m̃τη jηq, (45)

with

η j =
g( j)IB

gB
, (46)

and

τ=
1

2πm̃

�

mB

n0 g1/3
B

�3/2

, (47)

represents the relaxation time, with m̃ = m1m2
m1+m2

. For the single impurity case, R12 = 0 and
η2 = 0, we obtain a cubic dependence of the spectral density on ω, in accordance with the
results obtained in [43]. It is worth noting here that the validity of the Fröhlich type Hamil-
tonian we have here imposes a restriction on η j [38,63], namely

η j ¶ π
√

√ 2n0

gBmB
. (48)

Therefore, we restrict ourselves within this limit, which for typical values of the related pa-
rameters, such as for example gB = 2.36 × 10−37J · m and n0 = 7 (µm)−1 which are values
that were experimentally considered in [34], becomes η(cr) ≈ 7. This condition is satisfied for
all the values of η j , gB and n0 considered here. Finally, kω in Eq. (44) is the inverse of the
Bogoliubov spectrum

kω =
1
ξ

√

√

√

√

√

√

√

1+ 2
�

ξω

c

�2

− 1,

and the susceptibility is

χ1D (ω) = 2
p

2
�

Λ

ω

�3

hÇ

1+ ω2

Λ2 − 1
i

3
2

Ç

1+ ω2

Λ2

, (49)

where c is the speed of sound, ξ the coherence length, and

Λ=
gBn0

ħh
. (50)

One identifies two opposite limits for χ1D (ω), i.e. ω� Λ and ω� Λ. Hence Λ appears nat-
urally as the characteristic cutoff frequency to distinguish between low and high frequencies.
Note that the spectral density exhibits a super-ohmic behaviour given by the third power of the
bath frequency in the continuous limit. Same behaviour was found in [64–66] for analogous
problems, and it is attributed to the linear part of the Bogoliubov spectrum. With such a spec-
tral density, it can be shown that certain quantities, e.g. the momentum dispersion would be
divergent, unless the high frequencies are somehow removed from the spectrum. This can be
achieved by introducing an ultraviolet cutoff given by Λ such that only the part of the spectrum
where ω < Λ remains. Upon doing so, χ1D (ω)→ 1, and the Bogoliubov spectrum takes the
linear form ω= c |k| such that the spectral density becomes

J jq (ω) = eτ jqω
3 cos

�ω

c
R jq

�

. (51)
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We consider two different possible analytical forms of the cut-off, the sharp one

J jq (ω) = eτ jqω
3 cos

�ω

c
R jq

�

Θ (ω−Λ) , (52)

provided by an Heaviside function, and the exponential cutoff

J jq (ω) = eτ jqω
3 cos

�ω

c
R jq

�

e−
ω
Λ . (53)

In [43], it is shown that the physics of the system in the long-time limit, i.e. associated to
frequency regime ω � Λ, does not depend on the existence, nor the form, of the cutoff. In
this paper we will use both types of cutoffs depending on the problem at hand, namely we will
use the exponential cutoff whenever we study the problem for distances between the traps of
each kind of impurity different than 0 and the sharp cutoff otherwise. Finally, note that in
comparison to the equations of motion obtained in [59], in our case the couplings of the two
particles can be different, adding an extra parameter.

2.4 Solution of Heisenberg equations and covariance matrix

To evaluate the covariances one needs to solve the above equations of motion. In particular, we
solve Eq. (34) by first obtaining the solution for the homogeneous equation, and then adding
to that the particular solution [43,49],

X (t) = G1 (t)X (0) + G2 (t) Ẋ (0) +

∫ t

0

dsG2 (t − s)
��

BT (s, d1, d2)−W (d1, d2)
�

I
�

, (54)

where

Lz

�

G1 (t)
�

=
zI+Lz

�

Γ (t)
�

z2I+ IΩ̃2 + zLz

�

Γ (t)
� , (55)

and

Lz

�

G2 (t)
�

=
1

z2I+ IΩ̃2 + zLz

�

Γ (t)
� , (56)

with Lz [·] denoting the Laplace transform. Notice that the second function is often referred
to as the susceptibility, in analogy with the harmonic oscillator. It basically carries the same
information as ∂

∂ t Γ (t − s), which is what we refer to as susceptibility in this paper. We now
need to evaluate the covariance matrix

C (0) =

�

CXX (0) CXP (0)
CPX (0) CPP (0)

�

, (57)

with P (t) = (p1 (t) , p2 (t))
T the momentum vector and

CAB

�

t − t ′
�

=
1
2




A(t)BT
�

t ′
�

+ B
�

t ′
�

AT (t)
�

. (58)

Hence, the 4×4 matrix (57) is constructed from the vector Y (t) = (x1 (t) , x2 (t) , p1 (t) , p2 (t))
as the product 1

2〈{Y
T (t)·Y (t) , (Y T (t)·Y (t))T }〉ρB

. Furthermore, if we assume the initial state
of the system to be of the Feynman-Vernon type, i.e. ρ (0) = ρ12 (0)⊗ρB, then quantities like



X (0)BT (t, d1, d2)
�

will vanish. We note that the appearance of the extra term W (d1, d2) in
the dynamics, absent in [59], indeed does not affect the evaluation of the covariance matrix
since we are only interested in averages with respect to the state of the bath. In addition,
the bath is assumed to be large enough such that the effects of the impurity dynamics on the
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state of the bath are assumed to be negligible. Proceeding in a similar manner as in [43]
for a thermal equilibrium bath at temperature T we conclude that the equal time correlation
function of position reads as

Cx j xq
(0) = ħh

∫ ∞

0

dω coth
�

ħhω
2kBT

�

K jq (ω) , (59)

where

K jq (ω)=
2
∑

k,s=1

�

L−iω

�

G2 (t)
��

jk
Jks (ω)

�

Liω

�

G2 (t)
��

sq
. (60)

Similarly, one can obtain the position-momentum and momentum-momentum blocks of the
covariance matrix,

Cx j pq
(0) = ħh

∫ ∞

0

dω
�

imqω
�

coth
�

ħhω
2kBT

�

K jq (ω) , (61)

and

Cp j pq
(0) = ħh

∫ ∞

0

dωm jmqω
2 coth

�

ħhω
2kBT

�

K jq (ω) . (62)

Notice that for g2
k = 0 ∀k , i.e. by removing the second particle from the system, one repro-

duces the expressions provided in [43] for the single particle case, by considering the Laplace
transform of the damping kernel Lz

�

Γ (t)
�

. Importantly, in the presence of the second parti-
cle, the expressions for (59), (61) and (62) can still be obtained with the method described
in [43], but only when d j − dq = 0, i.e. when the centers of the particle potentials are in the
same position. Indeed, for d j − dq = 0, the Laplace transform of the damping kernel can be
computed as

Lz

�

Γ jq (t)
�

= zeτ jq

�

Λ− z arctan
�

Λ

z

��

. (63)

However, if d j − dq 6= 0, Lz

�

Γ (t)
�

cannot be obtained as the integral does not converge. In
such case, we use the method presented in [59], where the Fourier transform of the suscep-
tibility is evaluated instead, through the usage of the Hilbert transform to solve Eq. (29). In
the following, we find that we circumvent the aforementioned problem by using the Fourier
method. By doing so, we are avoiding the integral on the imaginary axis, since the following
relation is known between the Fourier and Laplace transforms

f̃±(ω) = l imε→0[ f̂ (ε+ iω)± f̂ (ε− iω)] , (64)

for even (+) and odd (-) functions respectively, for the functions J(ω), i.e. the spectral density,
and λ(ω), i.e. the susceptibility, where the definition of the Fourier transform is [67]

f̃ (ω) =

∫ +∞

−∞
d te−iωt f (t)[θ (t) + θ (−t)]. (65)

The correlation functions take the following form

Cxjxq
(0) =

ħh
2π

∫ ∞

−∞
dω coth

�

ħhω
2kBT

�

Q jq (ω) , (66)

where

Q jq (ω) =
2
∑

k,s=1

�

α (ω)
�

js
· Im

�

λ (ω)
�

sk
·
�

α (−ω)
�

kq
, (67)
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and Im[.] is the imaginary part. Here,

α (ω) =
1

−ω2I+Ω2I+ 1
M Fω

�

λ (t)
� . (68)

From [59] we have
Im[λ (ω)] = −ħh (Θ (ω)−Θ (−ω)) J (ω) , (69)

where λ (ω) is the Fourier transform of the susceptibility λ (t). We remind that the bath is
assumed to be at thermal equilibrium. Equation (66) was proven in [68]. The other autocor-
relation functions can be obtained in a similar way once we relate the momentum to the time
derivative of the position as

Cx j pq
(0) =

ħh
2π

∫ ∞

−∞
dω

�

imqω
�

coth
�

ħhω
2kBT

�

Q jq (ω) , (70)

and

Cp j pq
(0) =

ħh
2π

∫ ∞

−∞
dωm jmqω

2 coth
�

ħhω
2kBT

�

Q jq (ω) . (71)

To proceed further, one needs to evaluate Fω
�

λ (t)
�

that appears in Eq. (68). We already
know the imaginary part of the susceptibility from Eq. (69). The real part of the susceptibility
can be obtained by making use of the Kramers-Kronig relations, which mathematically means
that one has to take the Hilbert transform H of the imaginary part of the susceptibility

Re
�

λ jq

�

ω′
��

=H
�

Im[λ jq (ω)
�

]
�

ω′
�

=
1
π
P
∫ ∞

−∞

Im[λ jq (ω)]

ω−ω′
dω, (72)

where Re is the real part and P denotes the Cauchy principal value.
For the particular form of the spectral density in Eq. (53), the susceptibility takes the fol-

lowing form:

λ jq (ω) = −
ħheτ jq

π

�

ω3Re [g (ω)− g (−ω)] +πω3Im
�

Θ (ω) e−
ω
Λ+i ωc R jq +Θ (−ω) e

ω
Λ−i ωc R jq

�

+ 2ω2 Λ

1+
�

Λ
R jq
c

�2 + 4

�

1
Λ3 − 3

R2
jq

Λc2

�

� 1
Λ2 +

R2
jq

c2

�3

�

− iħhΘ (ω) eτ jqω
3 cos

�ω

c
R jq

�

e−
ω
Λ , (73)

with
g (ω) = e−

ω
Λ+i ωc R jqΓ

h

0,−
ω

Λ
+ i
ω

c
R jq

i

, (74)

where Γ [α, z] =
∫ z
−∞ tα−1e−t d t denotes the incomplete gamma function.

Finally, we remark here that for the case R12 = 0, one could proceed by using the Laplace
transform as initially intended. With the work in [57] in mind, one could think that an analytic
expression could be obtained, but we explain Appendix C, that this method is not applicable
for a super-ohmic spectral density, and hence numerical integration should be applied instead,
as is the case for the method using the Fourier transform.
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2.4.1 Entanglement measure

We will address the existence and dependence of entanglement between the two impurities
on the parameters of the model, both for trapped and untrapped impurities. For continuous-
variable systems, an entanglement measure based on the density matrix is not conveniently
calculable because the density matrix in this case is infinite-dimensional. For Gaussian bipar-
tite states however, there are a number of ways to circumvent this problem [69]. In general,
a state that is not separable is considered entangled. The well known Peres-Horodecki sepa-
rability criterion [70,71], which poses a necessary condition for separability, was shown to be
easily formulated for a Gaussian quantum bipartite state through the usage of the symplectic
eigenvalues of the covariance matrix of the bipartite system. However, this criterion alone does
not allow for a quantification of the entanglement in the system, because it does not offer a
way to quantify entanglement that is a monotonic function of the aforementioned symplectic
eigenvalues [72]. For pure states a unique quantification measure exists, which is the entropy
of entanglement [73]. This is defined as the von Neumann entropy of the reduced states of the
bipartite system. For mixed states however this is not the case. In this case, there are a number
of possible measures of entanglement, such as the entanglement of formation [74], the dis-
tillable entanglement [75] and the logarithmic negativity [52]. The first two are notoriously
hard to calculate in general. For this reason we resort to the usage of logarithmic negativity as
the most convenient measure to quantify entanglement. The logarithmic negativity is defined
as

ELN (ρ12) =max [0,− ln (2ν−)] , (75)

where ρ12 is the density matrix of the two impurities and ν− is the smallest symplectic eigen-
value of the partial transpose covariance matrix C T2 (0), where the partial transpose is taken
with respect to the basis of only one of the impurities. Here, we briefly present the method to
obtain the symplectic eigenvalues of C T2 (0). To do so, it will be more convenient
to reconstruct the covariance matrix in Eq. (57) using the rearranged vector
Ŷ (t) = (x1 (t) , p1 (t) , x2 (t) , p2 (t)) such that the matrix becomes

C (0) =

�

C11 (0) C12 (0)
C21 (0) C22 (0)

�

.

Thus, the diagonal matrices C11 (0) , C22 (0) represent the covariance matrices of the first
and second particle respectively, and C21 (0) = C T

12 (0) represent the correlations between the
two particles. It can be shown that, for such Gaussian quantum bipartite systems, partial
transposition corresponds to time reversal [76]. Therefore the partial transpose of C (0) with
respect to the second particle degrees of freedom is obtained by assigning a minus sign to all
the entries of the matrix where p2 (t) appears. The symplectic spectrum then is obtained as
the standard eigenspectrum of

�

�iQC T2 (0)
�

� where Q is the symplectic form and |.| represents
taking the absolute value. The 4×4 symplectic matrix is defined as

�

Ŷj (t) , Ŷq (t)
�

= iħhQ jq, (76)

which in our case it reads as

Q =







0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0






.

The final result is a diagonal matrix C T2
diag. (0) with diagonal entries diag (ν1,ν1,ν2,ν2) from

which the smallest one is selected and introduced in Eq. (75) to obtain a quantification of
entanglement. At the Hilbert space level, this symplectic diagonalization transforms the state
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into a tensor product of independent harmonic oscillators [52], each of which is in a thermal
state, the temperature of which is a function of ν j . We recall that the Peres-Horodecki crite-

rion states that if a density matrix ρ12 of a bipartite system is separable, then ρT2
12 ≥ 0. The

logarithmic negativity quantifies how much this condition is not satisfied [69].
In [77,78] it was shown that logarithmic negativity quantifies the greatest amount of EPR

correlations which can be created in a Gaussian state by means of local operations, and in [79]
it was shown that logarithmic negativity provides an upper bound to distillable entanglement.
The form of the symplectic eigenvalues can be explicitly given for the bipartite Gaussian system
above using symplectic invariants constructed from determinants of the covariance matrix
as [53,80]

ν± =

√

√

√∆±
p

∆2 − 4det [C T2 (0)]
2

, (77)

where ∆= det [C11 (0)] + det [C22 (0)]− 2 det [C12 (0)]. In this scenario, the uncertainty rela-
tion can also be conveniently expressed in terms of the symplectic invariants constructed from
determinants of the covariance matrix. In particular, it becomes equivalent to the following
three conditions

C T2 (0)> 0, (78a)

det
�

C T2 (0)
�

≥
1
2

, (78b)

∆≤ 1+ det
�

C T2 (0)
�

. (78c)

This can also be proven to be equivalent to the condition that the lowest eigenvalue of the
symplectic matrix of C (0), is larger than 1

2 , i.e.

ν̃− ≥
1
2

. (79)

We notice here that the logarithmic negativity can take arbitrarily large values as ν− can in
principle go to 0, with the uncertainty principle still being satisfied. To attain maximal, finite
entanglement, one has to fix the values of both local and global purities of the state of the two-
impurity system [77, 78]. Note also that one can construct an estimate of entanglement, the
average logarithmic negativity, that is a function of these purities, which are easier to measure
in an experiment [77, 78]. However, in this work we focus on the study of the logarithmic
negativity itself, because for the amount of entanglement that we find in our numerical results,
average logarithmic negativity is not a good estimate, i.e. the error as defined in [77, 78] is
large.

We comment here on the experimental feasibility of our studies. From a practical point of
view, there are two kind of terms that appear in the covariance matrix that one should evaluate,
single particle expectation values, such as

¬

x2
j

¶

,
¬

p2
j

¶

, and crossterms such as 〈x1 x2〉 , 〈p1p2〉.
For the former, there are already experiments in which one is able to evaluate them [34]. The
idea is that one measures the position (or momentum) of the particle using a time-of-flight
experiment in a system with a two species ultracold gas, in which one of the species is much
more dilute - dilute enough as to consider its atoms as impurities immersed in a much bigger
BEC. The position variance is obtained from the time-of-flight experiments, by releasing the
atoms into free space initially and after allowing for the free expansion of their wavefunction
for some time, measuring their position by irradiating them with a laser. Nevertheless, this
method is not ideal for obtaining the real space information of a trapped sample, since during
the free expansion process, signals from other atoms can easily be mixed with the signal of the
atoms of interest. Furthermore, the current status of time-of-flight experiments does not allow
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for the measurement of the crossterm covariances, which as of now there are no experiments
to measure them, but we believe that one should be able in principle to do so.

In particular, a quantum gas microscope [81,82] might be an option. This technique uses
optical imaging systems to collect the fluorescence light of atoms, and has been used in the
study of atoms in optical lattices, achieving much better spatial resolution [81,82], and avoid-
ing the aforementioned problem with time-of-flight experiments. With this technique, in prin-
ciple, one should be able to measure all elements of the covariance matrix.

In the past quantum gas microscopes have been used to study spatial entanglement be-
tween itinerant particles, by means of quantum interference of many body twins, which en-
ables the direct measurement of quantum purity [83]. In addition, there is an alternative
way to study entanglement in continuous variable system, and that is by means of the aver-
age logarithmic negativity [77]. This quantity, can be related to the global and local purities
of our system, which are measurable quantities. Nevertheless this is a more brute measure,
since it is not estimated directly from the state of our system, and hence it may miss to detect
entanglement for the actual state of our system.

Even if this is the case for average logarithmic negativity, with the knowledge of the exis-
tence of this measure and the technique of quantum gas microscopes, one could still consider
this way of measuring entanglement as the worst case scenario. In general, it is known that
to measure entanglement in a system of continuous variables is a difficult task, which is a
problem that is not restricted to our case.

2.4.2 Squeezing

Once the covariance matrix is obtained, squeezing in the long time limit state of the system
can also be rigorously studied. To this end one can use a set of criteria identified in [80]. As is
noted in this work, squeezing in phase space in a system is a consequence of the appearance
of non-compact terms in the Hamiltonian, i.e. terms that do not preserve the particle number,
of the form

H ∼ a†
j a

†
q ± a jaq. (80)

This is indeed the form of the interacting part of the Hamiltonian in Eq. (18) once we write it
in terms of creation and annihilation operators of the harmonic oscillators

x j ∼
�

a†
j + a j

�

,

p j ∼
�

a†
j − a j

�

,

and observe that in the Hamiltonian, terms of the form

a†
j b†

q ± a j bq

appear. The criterion derived in [80] states that if

νmin ≤
1
2

, (81)

where νmin is the smallest normal eigenvalue of the covariance matrix (not to be mistaken
with the symplectic eigenvalue), then the state is said to be squeezed.

3 Results

Before presenting any results, we note that the following checks are made in order to guarantee
that the assumptions presented in the previous section are valid. For all the parameters for
which we present results here we check:
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1. that the constraints for the validity of the linear approximation described in [43] hold;
In particular, for the case of untrapped particles we check that the condition

χ(Un) :=
kB T
ħhc

√

√

√ħhτM−1

2
tΛ
α(η)

< 1 (82)

is fullfilled. This implies an upper bound on the time we can study the impurites. For
the case of trapped particles the condition reads as

χ(Tr) :=
kB T
ħhc

√

√

√
2M Ω CX X (0)

ħh
< 1; (83)

2. that the condition Eq. (39) for the positivity of the Hamiltonian holds;

3. that the interactions are not so strong as to make invalid the initial Hamiltonian, as
discussed in [38,63] (see also discussion in [43]); In particular the interaction strengths
η j for j ∈ 1,2 have to satisfy

η j < ηcri t := π

√

√ 2n0

mB gB
; (84)

4. that the Heisenberg uncertainty principle condition Eq. (79) holds;

5. that the high temperature limit obeys equipartition theorem, meaning that at the limit
of T →∞

¬

x2
j

¶

,
¬

p2
j

¶

∝ T
1
2 ,

for j ∈ 1, 2. We used the fact that this latter condition was violated as an indication of
problems with the numerical integrations that we performed.

3.1 Out-of-equilibrium dynamics and entanglement of the untrapped impurities

In this section, we study the case of untrapped impurities, Ω1 = Ω2 = 0. We restrict our studies
to the low temperature regime, which is given by the condition kB T � ħhΛ. In the untrapped
impurities case, the time dependent expressions for the Mean Square Displacement (MSD),
defined in Eq. (95), the average energy and the entanglement can be obtained analytically. We
emphasize that some of these quantities, such as the MSD, can be measured in the laboratory
for ultracold gases [34]. Our first aim, is to solve the equation of motion (54). To obtain
analytic expressions for G1 (t), G2 (t), we first consider the particular form of their Laplace
transforms, Eqs. (55) and (56). They now read as

Lz

�

G1 (t)
�

=
zI+Lz

�

Γ (t)
�

z2I+ zLz

�

Γ (t)
� =

1
z
I, (85a)

Lz

�

G2 (t)
�

=
1

z2I+ zLz

�

Γ (t)
� . (85b)

Equation (85a) is independent of the specific form of the damping kernel, and can be easily
inverted to get

G1 (t) = I. (86)
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Equation (85b) depends on the form of the damping kernel. Thus, to get G2 (t), one needs to
compute the Laplace transform of the damping kernel, Eq. (63). In the long time limit, i.e.
when Re[z]� Λ, the Laplace transform of the damping kernel reads

Lz

�

Γ jq (t)
�

= zeτ jqΛ+O
�

z2
�

, (87)

and hence

Lz

�

G2 (t)
�

=
1

�

I+Λeτ
�

z2
, (88)

where

eτ=

�

τ̃11 τ̃12
τ̃21 τ̃22

�

.

This can be inverted as

G2 (t) =
t

�

I+Λeτ
� =

�

I+Λ
�

τ̃22 −τ̃12
−τ̃21 τ̃11

��

t

(1+Λτ̃11) (1+Λτ̃22)−Λ2τ̃12τ̃21
,

which we rewrite as

G2 (t) = αt with α=

�

α11 α12
α21 α22

�

, (89)

with

α jq =

�

I jq + (−1) j+qΛτ̃ jq

�

(1+Λτ̃11) (1+Λτ̃22)−Λ2τ̃12τ̃21
. (90)

Finally, the solutions of the equations of motion for the two impurities, written in the form of
Eqs. (54), read as

x j(t)=x j (0)+
∑2

q=1α jq ẋq (0)t +
∫ t

0 (t − s)α jqBq (s)ds, (91)

where
B j (t) =

∑

k 6=0

iħhg j
k

�

eiωk t b†
k (0)− e−iωk t bk (0)

�

.

Now, we can evaluate, first, the MSD for each one of the particles. The MSD is defined as
¬

�

x j (t)− x j (0)
�2¶

. (92)

For the sake of simplicity, and to study the dynamical evolution of the MSD of the impuri-
ties purely due to their interaction with the bath, we assume that the initial states of the
impurities and the bath are uncorrelated, ρ (0) = ρI (0)⊗ρB, such that averages of the form



ẋ j (0)Bq (s)
�

, that would otherwise appear in the expression, vanish. In the results presented
in Fig. 1, we assumed that there are no initial correlations between the two impurities such
that the terms




ẋ j (0) xq (0)
�

and



ẋ j (0) ẋq (0)
�

for j 6= q also vanish. Nevertheless, the case of
finite values for these expectation values, in particular all of them being equal to 1, was also
considered without seeing a qualitative difference in the results. Furthermore, to evaluate the
MSD one needs to evaluate


�

B j (t) , Bq (s)
	�

= 2ħhν jq (t − s) , (93)

where

ν jq (t − s) = Θ (t − s)

∫ ∞

0

J jq (ω) coth
�

ħhω
2kBT

�

cos (ω (t − s)) dω,
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Figure 1: Time dependence of the entanglement between the two kinds of untrapped
impurities. Entanglement, as evaluated using Eq. (75), is observed at the long but
not infinite time limit, for the case of untrapped impurities of potassium K in a bath
of particles of Rubidium Rb, at the low temperature limit. The initial variances of
position and velocity for the two particles, as well as their covariances, are assumed
to be 0, i.e. 〈x2

j (0)〉 = 〈 ẋ
2
j (0)〉 =




ẋ j (0) xq (0)
�

=



ẋ j (0) ẋq (0)
�

= 0 for j ∈ {1,2},
however the qualitative behavior was the same for other initial conditions as well,
namely for setting all quantities equal to a finite value (in particular equal to 1).
Entanglement, decreases to zero as time passes. It is studied for a number of dif-
ferent coupling constants η2 of the second impurity. The rest of the parameters are
Ω = 2π · 500Hz, η1 = 1, gB = 3 · 10−37J ·m and n0 = 7(µm)−1. It is observed that
increasing η2 decreases both the value of the entanglement and the time at which it
reaches zero.

is the noise kernel. To prove this, we used the fact that for a bath mode at thermal equilibrium
at a temperature T




b†
k bk

�

=
1

e
ħhω
kBT − 1

.

Then the expression for the MSD of one of the particles, in the long time limit, takes the form
¬

�

x j (t)− x j (0)
�2¶

ρ(t)
= α2

j j

¬

ẋ2
j (0)

¶

t2

+
1
2

2
∑

y,k=1

α jkα j y

mkmy

∫ t

0

ds

∫ t

0

dσ (t − s)(t −σ)

�

Bk (t) , By (s)
	�

. (94)

In the regime of low temperatures, where coth
�

ħhω
2kBT

�

≈ 1, the MSD becomes

¬

�

x j (t)− x j (0)
�2¶

ρ(t)
=

 

α2
j j

¬

ẋ2
j (0)

¶

+
1
2

2
∑

y,k=1

ħhα jkα j y τ̃k yΛ
2

my mk

!

t2. (95)

Therefore, we find that the particles motion is superdiffusive. We note here that the same result
was found for the single particle case [43], where this effect was attributed to the memory
effects present in the system. In this context the result in Eq. (95) represents a witness of
memory effects on a measurable quantity.

In [84,85] the presence of memory effects is associated to backflow of energy. To examine
whether such backflow of energy appears in our system as well, we derive an expression for
the average energy of the system as a function of time. To do so, we need an expression for
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the time evolution of the momentum, which reads as

p j (t) = m j ẋ j (t)=m j

 

2
∑

q=1

α jq ẋq (0)+

∫ t

0

α jqBq (s) ds

!

. (96)

Thus, in the low temperature limit, the average energy as a function of time, reads as

E j (t)=

¬

p2
j

¶

2m j
=

2
∑

q,y=1

gq
IBn0 +α jqEq (0) +

ħh
2
α jqα j y mqτ̃q yΛ

2

−ħhα jqα j y τ̃q y
1
t2
[cos (Λt) +Λt sin (Λt)− 1] . (97)

The oscillatory behaviour of the energy suggests that, in addition to the traditional dissipation
process where the impurity loses energy, also the environment provides energy to the impurity,
i.e. we detect a backflow of energy from the environment to the impurity. We note that, in
the two particle case, the diffusion coefficient in Eq. (95) is different for each particle [see
expression for α jq, Eq. (90)]. Thus, it depends on the interactions of each kind of particle with
the BEC and the mass of each particle, together with the density and coupling constant of the
BEC [see expression for the cutoff frequency, Λ, Eq. (50)].

As explained in Sec. 2.4.1, we will use the logarithmic negativity to study entanglement
and hence the covariance matrix of the two impurities is needed. To this end, we find for the
low temperature case, coth (ħhω/2kBT )≈ 1 and in the long-time limit, Re[z]� Λ




x j xq

�

=
2
∑

k,y=1

δk y




xk(0)x y(0)
�

+δk yα jkαq y




ẋk (0) ẋ y (0)
�

t2 (98a)

+
2ħhm jmqτ̃k yα jkαq y(1+mod2(i+ j))

mkmy

�

2γ− 2+
(Λt)2

2
+2cos (Λt)−2Ci (Λt)+2 log (Λt)

�

,




x j pq

�

= (98b)
2
∑

k,y=1

δk y mqα jkαq y




ẋk (0) ẋ y (0)
�

t +
ħhm jmqτ̃k yα jkαq y

my mk t

�

(Λt)2

2
−[cos (Λt)+Λt sin (Λt)−1]

�

,




p j pq

�

=
2
∑

k,y=1

δk y m jmqα jkαq y




ẋk (0) ẋ y (0)
�

(98c)

+ 2m j g
j
IBn0δ jq +

ħhm jmqτ̃k yα jkαq y

my mk t2

�

(Λt)2

2
−[cos (Λt)+Λt sin (Λt)− 1]

�

,

where in Eq. (98a), Ci(x) = −
∫∞

x
cos(t)

t d t is the cosine integral function.
In Fig. 1 we depict the entanglement as a function of time for the low temperature sce-

nario and for different coupling constants η2. We find entanglement in the long-time limit,
which vanishes linearly. The maximum time at which entanglement reaches zero is increased
by decreasing the interactions of the second kind of impurities. For a given time, entanglement
increases with decreasing η2. Also, for a given time we found that increasing η1 while keeping
the ratio η1/η2 constant, increases entanglement. We also studied the dependence of entan-
glement on density (not shown), finding that for large enough densities, the higher the density,
the less entanglement was found and the faster it disappears. However, for low densities, in-
creasing density increases entanglement. Since it is the presence of the bath that entangles
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the particles, small density is necessary to induce entanglement. This is in accordance with
the results for the trapped impurities, presented in next section. Quantitatively, entanglement
of an order of magnitude larger was found for a density of an order of magnitude smaller than
the one presented in Fig. 1. We note that, for each curve, there is a minimum time at which
equipartition is fulfilled according to Eqs. (79). The form of ν− can be analytically obtained
from the expressions (98). We do not present it here explicitly to avoid long expressions.

Finally, the MSD for the relative motion r = x1 − x2 and center of mass R = (x1 + x2)/2
coordinates can also be obtained. We find that they equally perform superdiffusive motions.
This means that both the variance of the distance between the two particles and the center of
mass increases ballisticaly on average. For the particular case where the impurities are of the
same mass and interact with the same strength with the BEC, the relative distance variance is
constant in time. This is showing that it decouples from the bath. The center of mass position
variance instead still grows ballisticaly with time. Instead, we find that for this case still one
can find entanglement. This indicates that the vanishing of the entanglement at large times is
not explained solely but the increase of the relative distance variance.

3.2 Squeezing and Entanglement for Trapped impurities

We conjecture that one should find squeezing and entanglement between the two particles
in the regime where quantum effects play an important role. Thus, we consider the low
temperature regime for the case of harmonically trapped particles, namely the regime where
kBT � ħhΩ j with j = 1,2. The parameters that we use are such that the condition (39), that
guarantees that no runaway solutions are encountered, is satisfied. At the same time the cou-
pling constants used are relatively strong such that the non-Markovian effects are manifested.
We find that for entanglement, one has to consider coupling constants in the range that satis-
fies:
g( j)IB /Ω j ∈ [0.01,1], as below this range the bath effect is not enough to create entanglement,
while above this, the effect of the bath destroys entanglement. In the trapped case we make
use of the covariance matrix whose elements are constructed by numerical integration from
Eqs. (66), (70) and (71). In general, and unless stated otherwise, we make the assumption
that the centers of the harmonic traps are equal, d1 = d2, as entanglement is maximized in
such case.

3.3 Squeezing

In this section we study squeezing as a function of the parameters of the system and the bath.
To detect squeezing we make use of the condition (81). However, note that the value of νmin
is not a measure of the level of squeezing in the system, but a criterion that squeezing occurs.
In the numerical computations presented in Fig. 2, we take Ω1 = 600πHz, Ω2 = 450πHz,
n0 = 90(µm)−1, η1 = 0.325 and R12/aHO = 0, where distance was measured in units of a fixed
harmonic oscillator length for both impurities equal to αHO =

p

ħh/(mΩ), with m = m1 = m2
and Ω= πkHz a typical frequency of the same order of magnitude as the frequencies consid-
ered throughout all of our studies. Without loss of generality, we assumed d1 ≥ d2 such that
R12 ≥ 0. In our studies, we varied the temperature T , η2 and gB. The qualitative behaviour for
a varying n0 was found to analogous to that of gB, so the results with respect to this variable are
not shown. The parameters used are within current experimental feasibility [34]. In Fig. 2(a)
we studied squeezing as a function of temperature for a number of different η2 and, in panel
(b), squeezing as a function of the temperature for various gB. First, we find squeezing at low
temperatures, in the nK regime, that vanishes at higher temperatures. Second, we observe
that the temperature at which squeezing vanishes increases with the coupling constant η2 or
gB. Furthermore, as we will show in next section, squeezing appears in the range of temper-
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Figure 2: Temperature dependence of the squeezing between the two kinds of trapped
impurities. In (a) we study the temperature dependence of squeezing for different
values of η2 with gB = 2.36 · 10−38J · m and in (b) for different values of gB with
η2 = 0.295. In both cases we use impurities of potassium K in a bath of particles of
Rubidium Rb and we set: Ω1 = 600πHz, Ω2 = 450πHz, n0 = 90(µm)−1, η1 = 0.325
and R12/aHO = 0.

atures where entanglement appears as well, as can be seen in Fig. 3, but the range is slightly
larger than that for entanglement. The existence of a relation of squeezing and entanglement
is in agreement for example with the work in [86], where an ohmic spectral density was con-
sidered, such that analytic results could be obtained, and they find in the long-time limit that
the logarithmic negativity was given by ELN (ρ12) = 2r with r being the two-mode squeezed
state squeezing parameter.

We also studied the position and momentum variances,

δx j
=

√

√

√2m jΩ j

¬

x2
j

¶

ħh
, δp j

=

√

√

√

√

2
¬

p2
j

¶

m jΩ jħh
, (99)

observing that indeed in the large temperature limit they approach the equipartition theorem.
This means that, in this limit, the system is formally analogous to two independent harmonic
oscillators as expected. We used this as a test to verify the validity of our numerical results. In
appendix D we study the equilibrium Hamiltonian in detail. This allows us to find a prediction
for the large temperature limit of, e.g., 〈x1 x2〉 or 〈p1p2〉. We found that these correlation
functions do not vanish at large T , not implying the presence of quantum correlations but
only classical correlations in this limit. This is in agreement with the fact that one only finds
entanglement for very low T .

In addition, we calculated the uncertainty δx1
when compared to δp1

, restricting only to
the regime where Heisenberg uncertainty principle was fulfilled. This amounts to studying
squeezing for the partially traced state of the system, tracing out the other kind of impurities.
This way we were able study how the introduction of a second kind of impurities modified the
squeezing found when defined as that of only one impurity (as is done in [43]). We found
that the squeezing observed for one particle reduces as η2 increases.

3.4 Thermal entanglement induced by isotropic substrates

Here we study the appearance of thermal entanglement, i.e. assuming that the entangled re-
source, the bath, connecting the two impurities is in a canonical Gibbs ensemble density matrix
at certain T . In general the following parameters were used: Ω1 = 600πHz, Ω2 = 450πHz,
η1 = 0.325, η2 = 0.295, n0 = 90(µm)−1, T = 4.35nK , gB = 2.36·10−38J ·m and R12/aHO = 0.
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Figure 3: Coupling strength dependence of the entanglement between the two kinds
of trapped impurities. (a) Entanglement as a function of T for various couplings.
As shown, for the values of η2 considered here, increasing the interactions of the
second type of impurities, η2, enhances entanglement, at fixed T . For increasing T ,
entanglement decreases and eventually vanishes at certain Tcrit. (b) The Tcrit at which
the entanglement goes to zero increases withη2 and seems to saturate at largeη2. (c)
the entanglement at fixed T = 4.35nK increases for a range of η2 and then decreases
to zero. In this case we considered n0 = 350(µm)−1 and gB = 9.75 ·10−39J ·m. In all
of the graphs, we are considering impurities of potassium K in a bath of particles of
Rubidium Rb. The parameters used in these plots are: Ω1 = 600πHz, Ω2 = 450πHz,
η1 = 0.325, n0 = 90(µm)−1, gB = 2.36 · 10−38J ·m and R12/aHO = 0

In certain cases we consider other values of n0 and gB to study the appearance of the phe-
nomenon of the bath causing a decrease of the entanglement. Also, some general comments
about the results that will be presented below, are the following. First, it was observed that
parameter regimes existed in which the uncertainty principle, translated into the condition
Eq. (79), was not satisfied. We only present results when this condition is fulfilled. In the
results presented here, entanglement is normalized based on the instance of maximum entan-
glement found in the system, which was obtained for the following parameters: Ω1 = 600πHz,
Ω2 = 450πHz, η1 = 0.325, η2 = 0.295, n0 = 90(µm)−1, T = 0.0435nK , gB = 4.25 ·10−38J ·m
and R12/aHO = 0, and the maximum value of entanglement obtained was ELN = 1.025.

For all figures where we show the dependence of entanglement on temperature, we em-
phasize that below a certain temperature, the uncertainty principle was not satisfied. This min-
imum temperature depends on the other parameters of the system. For example, the larger
the distance considered was, the lower temperatures that one can reach under the require-
ment that the uncertainty principle holds. We also note that for low enough temperatures, we
find numerically a saturation of entanglement in all cases. Finally, the general behaviour of
entanglement with temperature is to decrease, as expected, and beyond a certain temperature
it vanishes. We term this as critical temperature, Tcrit

In Fig. 3 (a), the temperature dependence of entanglement was studied for a number of
coupling constants η2, and it was observed that increasing η2 implied an increase in entangle-
ment, as well as an increase in Tcrit. Information about this temperature is particularly impor-
tant experimentally, and for this reason we studied the dependence of Tcrit on η2 in Fig. 3 (b).
We see that the increase of Tcrit with η2 is decreasing for larger η2. The dependence of entan-
glement was studied also as a function of η2. In this case we considered n0 = 350(µm)−1 and
gB = 9.75 ·10−39J ·m which allowed us to see the diminishing effect of the bath, meaning that
entanglement reached a peak value for some η2 and was later then decreases with increasing
values of η2.

In Fig. 4 (a), we study entanglement as a function of the temperature for various distances
between the two impurities. As expected, entanglement decreases with increasing distance.
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Figure 4: Distance dependence of the entanglement between the two kinds of impuri-
ties. In (a) we study entanglement as a function of T for various distances between
the trap of each kind of impurity. As expected the entanglement is reduced as the
distance is increased. This is shown in figure (b). For each distance, at certain T the
entanglement vanishes. The dependence of this critical temperature as a function of
distance is shown in (c). In all of the graphs, we are considering impurities of potas-
sium K in a bath of particles of Rubidium Rb. The parameters used in these plots are:
Ω1 = 600πHz, Ω2 = 450πHz, η1 = 0.325, η2 = 0.295, n0 = 90(µm)−1, T = 4.35nK
and gB = 2.36 · 10−38J ·m.
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Figure 5: Dependence of the entanglement between the two kinds of impurities on
the density of the bosons in the bath. In (a) we study entanglement as a function of
T for various densities of bosons. As shown, in this range of densities, increasing
the density of bosons enhances entanglement. For each density, at certain Tcrit, the
entanglement vanishes. The dependence of Tcrit as a function of density is shown
in (b). In (c) we illustrate that the entanglement at fixed T increases for a range
of n0 and then decreases to zero, as it was the case with η2 in Fig. 1. We show this
dependence for various values of the coupling constant among the bosons. As shown,
increasing gB increases the maximum value of the entanglement reached, but also
entanglement vanishes at a smaller value of the density. In all of the graphs, we
are considering impurities of potassium K in a bath of particles of Rubidium Rb. The
parameters are: Ω1 = 600πHz,Ω2 = 450πHz, η1 = 0.325, η2 = 0.295, T = 4.35nK ,
gB = 2.36 · 10−38J ·m and R12/aHO = 0.
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Figure 6: Dependence of the entanglement between the two kinds of impurities on the
coupling constant between the bosons gB. In (a) we study entanglement as a function
of T for various gB. As can be seen for the largest considered value of gB, namely
gB = 4.2 · 10−38J ·m, the qualitative behaviour of entanglement with temperature,
changes. For each density, at certain Tcrit, the entanglement vanishes. The depen-
dence of Tcrit as a function of density is shown in (b). In (c) we illustrate that the
entanglement at fixed T increases for a range of gB and then decreases to zero, as it
was the case with η2 in Fig. 1. We show this dependence for various values of the
density of the bosons. As shown, in this range of parameters, decreasing n0 increases
the maximum value of the entanglement reached, but also entanglement vanishes at
larger values of gB. In all of the graphs, we are considering impurities of potassium
K in a bath of particles of Rubidium Rb. The parameters used in these plots are:
Ω1 = 600πHz, Ω2 = 450πHz, η1 = 0.325, η2 = 0.295, n0 = 90(µm)−1, T = 4.35nK
and R12/aHO = 0.

Furthermore, in Fig. 4 (c) the Tcrit also decreases with distance and it acquires a maximum
for distance equal to 0. In Fig. 4 (b) we see that entanglement drops to 0 beyond a certain
distance which is R12 ∼ 0.35aHO, which for the parameters that we have chosen results in
0.2µm. The distance at which entanglement drops to 0 depends on the other parameters of
the system as well, e.g. it increases with decreasing temperature, but remains at the same
order of magnitude.

In Fig. 5 (a), we show the dependence of entanglement with T for various densities. The
dependence of Tcrit on the density in Fig. 5 (b) again shows that it increases with n0 for small
densities. However, in Fig. 5 (c) we show that, while for small densities entanglement grows
with the density, for larger values of the density it starts to decrease toward zero. We plot this
figure for various values of gB, showing that the larger the bosons interactions the smaller the
value of n0 at which the entanglement starts to decrease to zero.

Similar studies with similar results were undertaken for the dependence of the system on
gB and are presented in Fig. 6. There, for gB = 4.2 ·10−38J ·m we see the qualitative behaviour
of entanglement with a varying temperature. These results, together with the fact that we do
not assume a particular form for the state of the two impurities initially, are clear indications
that the induced entanglement between the two impurities is an effect of their interaction with
the common bath.

In Fig. 7 (a) we present the results of the dependence of entanglement with T for vari-
ous ratios Ω2/Ω1. In Fig. 7 (b) we observe that Tcrit is not monotonically dependent on the
ratio of trapping frequencies. This implies that there is a regime where, even though one
keeps the temperature constant at a value where there is no entanglement, by increasing the
trapping potential, such that the second impurity is more confined, entanglement appears for
this given temperature. In Fig. 7 (c) we see that at resonance (Ω2/Ω1 = 1), entanglement
achieves its maximum. This was also observed in Ref. [57]. The reason is that, since the
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Figure 7: Trapping frequency dependence of the entanglement between the two kinds of
impurities. In (a) we study entanglement as a function of T for various ratios between
the trap frequencies of each kind of impurity. For each Ω2/Ω1, at certain Tcrit, the
entanglement vanishes. The dependence of Tcrit as function ofΩ2/Ω1 is shown in (b).
(c) illustrates that the entanglement at fixed T has a maximum value for certain value
of Ω2/Ω1. The parameters n0 = 500(µm)−1 and gB = 9.75 · 10−39J ·m were used in
this case. In all of the graphs, we are considering impurities of potassium K in a bath
of particles of Rubidium Rb. The parameters used in these plots are: Ω1 = 600πHz,
η1 = 0.325, η2 = 0.295, n0 = 90(µm)−1, T = 4.35nK , gB = 2.36 · 10−38J ·m and
R12/aHO = 0.

values of the entries of the matrix Γ (t) we use are so small, what guarantees that the equa-
tions of motion for the two harmonic oscillators cannot be decoupled into two equations of
motion for the center of mass and relative distance degrees of freedom, is the fact that the
two trapping frequencies are different. To clarify this point, and draw the parallel with the
results in [57], we note that at relatively high temperatures, in which however entanglement
can still be observed, one could assume that the system is described by the effective Hamilto-
nian Eq. (110) in Appendix D, where the effect of the bath degrees of freedom is represented
by an effective coupling between the two particles. In the limit K/Ω j → 0 with j ∈ 1,2, for
Ω1 = Ω2, the aforementioned decoupling takes place, and the state of the system goes to a
non-symmetric two-mode squeezed thermal state with infinite squeezing, i.e. the ideal EPR
(maximally entangled) state. We finally note that, as discussed in Appendix D, it is possible
to find an approximate prediction for the critical T , given by Eq. (112). We found that this
prediction is in the same order of magnitude (nK) for all numerical results presented.

4 Conclusions

In this paper, we studied the emergent entanglement between two distinguishable polarons
due to their common coupling to a BEC bath. To this end, we formulated the problem of two
different kinds of impurities immersed in a BEC as a quantum Brownian motion model. The
BEC is assumed to be confined in one dimension and homogeneous. The impurities do not in-
teract among themselves, but only with the BEC. By means of a Bogoliubov transformation we
diagonalize the part describing the BEC in the Hamiltonian. This brings the total Hamiltonian
into a form in which one can identify the BEC part as a collection of oscillators with different
frequencies, thus resembling a bath Hamiltonian. Also, we identify the impurities part of the
Hamiltonian as the system Hamiltonian, in the usual terminology from open quantum systems.
Finally, under the same physical constraints discussed in [43] for the Bose polaron problem,
we linearise the interaction Hamiltonian, which brings the Hamiltonian into a conventional
Caldeira-Leggett-like Hamiltonian, i.e., a quantum Brownian motion model.
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We henceforth solve the associated coupled quantum Langevin equations system of mo-
tion, which encode the bath as a damping and a noise kernel. The damping kernel includes a
non-diagonal term, often called hydrodynamic term in the context of Brownian particles, as it
encodes the effect of the particles on one another. We find that the spectral density character-
izing the bath is superohmic in 1D. We emphasize that in our work the properties of the bath,
and particularly the spectral density, are not arbitrarily assumed but derived from physical con-
siderations of the BEC. We solve these equations both for the case of untrapped and trapped
impurities. We do not add artificial terms to the Hamiltonian as to make it non-negative. In-
stead we find a condition on the parameters of the system, for which the energy spectrum of
the Hamiltonian is positive.

For the untrapped case we were able to solve the equations of motion analytically. Hence,
we studied the MSD and the diffusive properties of the impurities, which are found to perform
a superdiffusive motion. In addition, we studied the momentum variance of the impurities, ob-
serving an energy back-flow from the bath, attributed to its non-Markovian nature. Moreover,
we obtained the covariance matrix explicitly. From the covariance matrix, we quantified en-
tanglement between the two types of impurities using the logarithmic negativity. This is found
to decrease linearly as a function of time. What is more, the relative distance and center of
mass coordinates were considered for the case of identical impurities. The former becomes
decoupled from the bath, such that it no more performs a superdiffusive motion, hence the
variance of the distance between the impurities stays on average constant. Yet, we can de-
tect a linearly decreasing with time entanglement between the two types of impurities, so we
conjecture that the decrease of entanglement is attributed to their interaction with the bath
rather than them running away from each other. This conjecture is further enhanced from our
studies of the entanglement dependence on the rest of the parameters of the system, i.e. the
density of the bosons n0 in the BEC and their interaction strength gB. In particular, we found
that for any fixed finite time, and fixed n0 (g0), entanglement reaches a maximum value at
some optimal g0 (n0). Increasing this value beyond the optimal reduces the entanglement
until it vanishes.

For the trapped case, we obtained the covariance matrix elements numerically. We saw that
the coherence correlations (off-diagonal terms of the covariance matrix) were linearly increas-
ing with temperature, unless the parameters of the impurities were the same. Nevertheless,
entanglement decreases as a function of temperature, which means that these correlations
are not quantum. In the case of trapped impurities, entanglement was studied in detail as a
function of the rest of the parameters of the system. It was found to decrease with increasing
distance between the centers of the two trapping potentials. Furthermore, entanglement was
found to increase and then decrease as a function of both n0 and gB. Moreover, entanglement
is maximized at resonance of the frequencies of the two trapping potentials as was seen in
previous similar studies as well [57].

Beyond entanglement, for all of these parameters the dependence of the critical temper-
ature was also studied. In Appendix D a rough estimate of the critical temperature is made,
using the effective form of the Hamiltonian in the thermalized regime. The estimate is of the
same order of magnitude as the critical temperature observed in our studies. Squeezing was
also examined in this case as a function of all the parameters of the system, found to behave
qualitatively the same as entanglement. In particular, it is seen that entanglement always
appears if there is squeezing but the converse is not always true.

In summary, we have studied the emergence of entanglement of two types of impurities
embedded in the same bath, starting from a Hamiltonian justified on physical grounds. We
examined analytically the case of two untrapped impurities, and gave numerical results in the
scenario of harmonically trapped impurities. The dependence of entanglement, squeezing as
well as the critical temperature, i.e. the temperature beyond which entanglement vanishes,
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were studied as functions of the physical parameters of the system. The parameters of the
system used were within current experimental settings and we believe that our results can
be experimentally verified. These results on squeezing and entanglement in these setups are
particularly interesting as the two phenomena represent resources for quantum information
processing.
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A Spectral density

In this appendix we briefly present the derivation of the spectral density for a continuous
spectrum of Bogoliubov modes, given in Eq. (51), following the work in [43]. In particular,
the sum in Eq. (42) is turned into the integral

∑

k 6=0

→
∫

V

(2π)d
dd k,

and using the relation

δ (ω−ωk) =
1

∂kωk |k=kω

δ (k− kω) ,

we obtain

J jq (ω) =
n0 g( j)IB g(q)IB Sd

ħh (2π)d

∫

dkkd+1

√

√

√ (ξk)2

(ξk)2 + 2

cos (kR12)
∂kωk |k=kω

δ (k− kω) .

For a 1D environment S1 = 2, so that the continuous form of the spectral density (51) is
obtained.

B Susceptibility

Here we evaluate the form of the susceptibility for the spectral density, given in Eq. (53). The
imaginary part of the susceptibility is simply given by

Im
�

λ jq (ω)
�

= −ħh (Θ (ω)−Θ (−ω)) J jq (ω) ,
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while the real part is given by

Re
�

λ jq

�

ω′
��

=H
�

Im
�

λ jq (ω)
�� �

ω′
�

=
1
π

P

∫ ∞

−∞

Im
�

λ jq (ω)
�

ω−ω′
dω

= −
ħh
π

P

∫ ∞

−∞

(Θ (ω)−Θ (−ω)) J jq (ω)

ω−ω′
dω

=−
ħheτ jq

π
P

∫ ∞

−∞

(Θ (ω)−Θ (−ω))ω3 cos
�

ω
c R jq

�

e−
ω
Λ

ω−ω′
dω

=−
ħheτ jq

π
P

∫ ∞

0

ω3cos
�ω

c
R jq

�

�

1
ω−ω′

+
1

ω+ω′

�

dω,

where H represents the Hilbert transform, Θ is the heaviside step function and P is the prin-
cipal number. We first find

P

∫ ∞

0

ω3
e−

ω
Λ cos

�

ω
c R jq

�

ω−ω′
dω,

as we can evaluate it with the property of the Hilbert transform

H [ω f (ω)] =ωH [ f (ω)] + 1
π

∫ ∞

−∞
f (ω) dω.

We apply this property three times to obtain

P

∫ ∞

0

ω3
e−

ω
Λ cos

�

ω
c R jq

�

ω−ω′
dω=ω′3P

∫ ∞

0

e−
ω
Λ cos

�

ω
c R jq

�

ω−ω′
dω+ω′2

Λ

1+
�

Λ
R jq
c

�2

+ω′
1
Λ2 −

R2
jq

c2

�

1
Λ2 +

R2
jq

c2

�2 + 2

�

1
Λ3 − 3

R2
jq

Λc2

�

�

1
Λ2 +

R2
jq

c2

�3 . (100)

We can then also show that:

P

∫ ∞

0

e−
ω
Λ+i ωc R jq

ω−ω′
dω=

(

e−
ω′
Λ +i ω

′
c R jq

�

Γ
�

0,−ω
′

Λ + iω
′

c R jq

�

+ iπ
�

e−
ω′
Λ +i ω

′
c R jqΓ

�

0,−ω
′

Λ + iω
′

c R jq

� ,

where the top case corresponds toω′ ∈ (0,∞) and the bottom to the complementary interval
ω′ ∈ (−∞, 0). Here Γ [α, z] =

∫∞
z tα−1e−t d t denotes the upper incomplete gamma function.

After introducing (100) in the expression for the real part of the susceptibility above, we obtain
that

Re
�

λ jq

�

ω′
��

= −
ħheτ jq

π

�

ω′3Re
�

g
�

ω′
�

− g
�

−ω′
��

+πω′3 Im
h

Θ
�

ω′
�

e−
ω′
Λ +i ω

′
c R jq + (ω′→−ω′)

i

+ 2ω′2
Λ

1+
�

Λ
R jq
c

�2 + 4

�

1
Λ3 − 3

R2
jq

Λc2

�

�

1
Λ2 +

R2
jq

c2

�3

�

, (101)
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where (ω′→−ω′) stands for Θ
�

−ω′
�

e
ω′
Λ −i ω

′
c R jq and

g
�

ω′
�

= e−
ω′
Λ +i ω

′
c R jqΓ

�

0,−
ω′

Λ
+ i
ω′

c
R jq

�

.

With this, the susceptibility takes the form in Eq. (73).

C Study of an exact expression for the covariance matrix elements

In the particular case of R12 = 0, it can be shown that the integral in Eq. (59) takes the
following form:

∫ +∞

−∞

g6(ω)
h6(ω)h6(−ω)

dω, (102)

where h6 (ω) is a 6th order polynomial, and g6(ω) is a 7th order polynomial. An integral
of this form was also obtained in [57], for an ohmic spectral density. The criterion to use
this formula, is that the roots of h6 (ω) lie in the upper half plane. Finding the roots of this
polynomial requires finding expressions for 12 variables, 6 real and 6 imaginary. In our case
one can show that the polynomial h6 (ω) can be written as

h6 (ω) =
6
∑

j=0

A j (2πiω)6− j , (103)

with the coefficients A j being all real, which implies that the roots of h6 (ω) are symmetrically
located about the imaginary axis. This reduces the problem in finding just 6 variables, 3 real
and 3 imaginary. Furthermore, by making use of the Vieta relations, one can show that

Im[z1]
|z1|2

+
Im[z2]
|z2|2

+
Im[z3]
|z3|2

= 0. (104)

This implies that not all roots of the polynomial can lie in the upper half plane. The reason for
this can be traced back to the fact that there is no linear term in the polynomial h6 (ω), which
is an artefact of considering a super-ohmic spectral density as can be understood by comparing
to the case in [57]. The issue of not all roots being in the upper half plane, can be resolved
in the following way. The roots of h6 (ω) that are in the lower half plane, have mirrored roots
in the upper half plane in the polynomial h6 (−ω). If the expressions for the roots could be
derived, one could simply redefine polynomials h6 (ω) and h6 (−ω) to h̃6 (ω) and h̃6 (−ω)
such that all the roots of h̃6 (ω) would lie in the upper half plane and all the roots of h̃6 (−ω)
would lie in the lower half plane. However for a 6th order polynomial of the form we have,
one cannot find the roots. So this could perhaps only be applied in an algorithmic way, where
one first selects a set of parameters and then makes the redefinition of the polynomials once
the roots are found.

D Equilibrium Hamiltonian

Here we discuss the thermalization properties of the system. We will use the fact that the two
kinds of impurities are formally analogous to two oscillators. The bath dependent part of the
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Hamiltonian (18) is

Ũ
�

x1, x2,
�

b†
k, bk

	

k 6=0

�

= i
2
∑

j=1
k 6=0

ħhg( j)k

�

eikd j bk − e−ikd j b†
k

�

x j +
∑

k 6=0

Ek b†
k bk.

For the system to thermalize, there should be no memory effects induced on the oscillator
due to its coupling with the thermal bath. This means that the Hamiltonian will have to be
independent of the bath variables {b†

k, bk}k 6=0 evolution, i.e. ∀k 6= 0 the following should be
fulfilled

∂ Ũ
�

x1, x2,
�

b†
k, bk

	

k 6=0

�

∂ bk
=
∂ Ũ

�

x1, x2,
�

b†
k, bk

	

k 6=0

�

∂ b†
k

= 0.

This results in the following conditions

bk (t) =
iħh
Ek

2
∑

j=1

g( j)k e−ikd j x j (t) , (105)

b†
k (t) = −

iħh
Ek

2
∑

j=1

g( j)k eikd j x j (t) . (106)

Replacing these expressions, for the bath degrees of freedom operators, in the initial Hamilto-
nian (18), it becomes

HLin =
2
∑

j=1

�

p2
j

2m j
+

1
2

m jΩ
2
j

�

x j + d j

�2
�

+W (d1, d2) (x1 + x2)

− 2ħh2
2
∑

q, j=1
k 6=0

1
Ek

g(q)k g( j)k cos
�

d j − dq

�

x j xq.

This can be rewritten as

HLin =
2
∑

j=1

�

p2
j

2m j
+

1
2

m j

�

Ω2
j − eΩ

2
j

�

x2
j

�

− 2K x1 x2 +cW (d1, d2, x1, x2) , (107)

where eΩ2
j =

1
m j

2ħh2∑

k 6=0
1
Ek

�

g( j)k

�2
, K = 2ħh2∑

k 6=0
1
Ek

g(1)k g(2)k cos (d1 − d2) andcW (d1, d2, x1, x2)
is the function of the remaining constant terms and terms linear in x1 and x2. At thermal
equilibrium, the terms in cW (d1, d2, x1, x2) will not affect the equilibrium state. Then, one can
neglect them and consider the effective Hamiltonian

Heff =
2
∑

j=1

�

p2
j

2m j
+

1
2

m j

�

Ω2
j − eΩ

2
j

�

x2
j

�

− 2K x1 x2. (108)

This is formally analogous to two effectively coupled harmonic oscillators. To decouple them,
we transform to the normal modes of the system, Q1,Q2. This is achieved by an orthogonal
transformation of the form

�

Q1
Q2

�

=

�

cos (θ ) − sin (θ )
sin (θ ) cos (θ )

��

x1
x2

�

,
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and
�

Π1
Π2

�

=

�

cos (θ ) − sin (θ )
sin (θ ) cos (θ )

��

p1
p2

�

.

With this, the effective Hamiltonian in terms of the normal modes is

Heff =
2
∑

j=1

�

1
2

m
�

Ω2
j − eΩ

2
j

�

�

cos2 (θ )Q2
1 + sin2 (θ )Q2

2 + 2cos (θ )Q1Q2

�

�

− 2K
�

− cos (θ ) sin (θ )
�

Q2
1+Q2

2

�

+cos2(θ ) sin2 (θ )Q1Q2

�

+
Π2

1

2m
+
Π2

2

2m
. (109)

Here we made the assumption of m1 = m2 = m. To diagonalize the Hamiltonian, the condition
on the rotation that should be performed reads as

tan (2θ ) =
2K

�

Ω2
1 − eΩ

2
1

�

−
�

Ω2
2 − eΩ

2
2

� .

For this rotation the Hamiltonian is

Heff =
1
2

m
2
∑

j, j′=1
j′ 6= j

��

cos2 (θ )
�

Ω2
j − eΩ

2
j

�

+ sin2 (θ )
�

Ω2
j′ − eΩ

2
j′

�

+ K sin (2θ )
�

Q2
j

�

+
Π2

1 +Π
2
2

2m
.

(110)

Hence the system has decoupled into two harmonic oscillators with frequencies

ν2
1=cos2 (θ )

�

Ω2
1 − eΩ

2
1

�

+sin2 (θ )
�

Ω2
2−eΩ

2
2

�

+K sin (2θ ) ,

ν2
2=sin2 (θ )

�

Ω2
2 − eΩ

2
2

�

+cos2 (θ )
�

Ω2
1 − eΩ

2
1

�

−K sin (2θ ) ,

and with the following second order moments

¬

Q2
j

¶

=
ħh

2mν j

�

2



n j

�

+ 1
�

=
ħh

mν j
coth

� ν j

2T

�

,

¬

Π2
j

¶

=
ħhmν j

2

�

2



n j

�

+ 1
�

= ħhmν j coth
� ν j

2T

�

,

where the average is a statistical average over the bath variables. Also we find



Q jQq

�

=



Π jΠq

�

= 0 for j 6= q. In the high temperature limit, coth
�

ν jħh/2kBT
�

∼ 2T kB
ħhν j

and therefore
¬

Q2
j

¶

∼ 2T kB

mν2
j
,

¬

Π2
j

¶

∼ 2mT kB.

One can now express the coherences or off-diagonal correlation functions at thermal equi-
librium for the initial set of variables as

〈x1 x2〉= sin (θ ) cos (θ )
�


Q2
1

�

−



Q2
2

��

. (111)

In case that ν1 6= ν2, which happens when Ω1 6= Ω2 and/or g(1)k 6= g(2)k for some k, then the
coherence between x1 and x2 does not cancel out in the high temperature limit. Note however
that this does not imply that entanglement survives at the high temperature limit, as this
correlation is not necessarily a quantum correlation. This behaviour of 〈x1 x2〉 is consistently
verified in the numerical studies that we undertook using the original Hamiltonian. We note
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here that such behaviour, i.e. of asymptotic non–vanishing coherences at the high-temperature
limit were identified in [87] but for the case of each particle attached to its own environment
and both environments having an ohmic spectral density. The reason for the resemblance of
the two cases is that, in our case, one could argue that even though the two particles are
coupled to a common bath contrary to [87], the particles effectively see the bath at different
temperatures when ν1 6= ν2. In particular, each one sees the bath at a temperature T

ν2
j
. Hence

our system in this case also reaches a non-equilibrium stationary state.
From these considerations, an estimate of the critical temperature can also be obtained.

Notice that an important difference between the Hamiltonian in Eq. (110) and the original
linear Hamiltonian in Eq. (18) is that the former has a spectrum that is bounded from below.
In this case, and as the Hamiltonian is also self-adjoint, one can apply the results of Ref. [88],
where it is proven that the critical temperature for such a symmetric system as the one we are
considering is given by

(kBTcrit)
−1 =

1
ħhνmax

σ(r), (112)

where νmax =max[
�

ν j

	

]with j ∈ 1, 2, r = νmax/νmin where νmin =min[
�

ν j

	

] andσ(r) = ts(t)
with 1≤ t ≤ r such that s(t) = s( t

r ) with

s(x) :=
1
x

ln

�

�

�

�

1+ x
1− x

�

�

�

�

. (113)

For the general values of the parameters given in Sec. 3.2, the value of the critical temperature
obtained assuming this effective Hamiltonian, was of the order of nK in agreement with our
findings.

References

[1] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Rev.
Mod. Phys. 81, 865 (2009), doi:10.1103/RevModPhys.81.865.

[2] M. Sarovar, A. Ishizaki, G. R. Fleming and K. B. Whaley, Quantum entanglement in photo-
synthetic light-harvesting complexes, Nat. Phys. 6, 462 (2010), doi:10.1038/nphys1652.

[3] R. Jozsa and N. Linden, On the role of entanglement in quantum-computational
speed-up, Proc. Royal Soc. Lond., Ser. A: Math. Phys. Eng. Sci. 459, 2011 (2003),
doi:10.1098/rspa.2002.1097.

[4] E. M. Gauger, E. Rieper, J. J. L. Morton, S. C. Benjamin and V. Vedral, Sustained quantum
coherence and entanglement in the avian compass, Phys. Rev. Lett. 106, 040503 (2011),
doi:10.1103/PhysRevLett.106.040503.

[5] M. J. Holland and K. Burnett, Interferometric detection of optical phase shifts at the Heisen-
berg limit, Phys. Rev. Lett. 71, 1355 (1993), doi:10.1103/PhysRevLett.71.1355.

[6] M. Schlosshauer, Decoherence and the quantum to classical transition, The Frontiers Col-
lection. Springer, ISBN 9783540357759 (2007).

[7] O. S. Duarte and A. O. Caldeira, Effective coupling between two brownian particles, Phys.
Rev. Lett. 97, 250601 (2006), doi:10.1103/PhysRevLett.97.250601.

[8] O. S. Duarte and A. O. Caldeira, Effective quantum dynamics of two Brownian particles,
Phys. Rev. A 80, 032110 (2009), doi:10.1103/PhysRevA.80.032110.

33

https://scipost.org
https://scipost.org/SciPostPhys.6.1.010
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1038/nphys1652
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1103/PhysRevLett.106.040503
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1103/PhysRevLett.97.250601
http://dx.doi.org/10.1103/PhysRevA.80.032110


SciPost Phys. 6, 010 (2019)

[9] D. Braun, Creation of entanglement by interaction with a common heat bath, Phys. Rev.
Lett. 89, 277901 (2002), doi:10.1103/PhysRevLett.89.277901.

[10] M. B. Plenio and S. F. Huelga, Entangled light from white noise, Phys. Rev. Lett. 88, 197901
(2002), doi:10.1103/PhysRevLett.88.197901.

[11] F. Benatti, R. Floreanini and M. Piani, Environment induced entanglement
in markovian dissipative dynamics, Phys. Rev. Lett. 91, 070402 (2003),
doi:10.1103/PhysRevLett.91.070402.

[12] F. Benatti, R. Floreanini and U. Marzolino, Entangling two unequal atoms through a com-
mon bath, Phys. Rev. A 81, 012105 (2010), doi:10.1103/PhysRevA.81.012105.

[13] R. Doll, M. Wubs, P. Hänggi and S. Kohler, Limitation of entanglement due to spatial qubit
separation, Europhys. Lett. 76, 547 (2006), doi:10.1209/epl/i2006-10326-y.

[14] K. Shiokawa, Non-Markovian dynamics, nonlocality, and entanglement in quantum Brow-
nian motion, Phys. Rev. A 79, 012308 (2009), doi:10.1103/PhysRevA.79.012308.

[15] A. Wolf, G. De Chiara, E. Kajari, E. Lutz and G. Morigi, Entangling two distant oscilla-
tors with a quantum reservoir, Europhys. Lett. 95, 60008 (2011), doi:10.1209/0295-
5075/95/60008.

[16] E. Kajari, A. Wolf, E. Lutz and G. Morigi, Statistical mechanics of entanglement mediated by
a thermal reservoir, Phys. Rev. A 85, 042318 (2012), doi:10.1103/PhysRevA.85.042318.

[17] R. Doll, M. Wubs, P. Hänggi and S. Kohler, Incomplete pure dephasing of N-qubit entangled
W states, Phys. Rev. B 76, 045317 (2007), doi:10.1103/PhysRevB.76.045317.

[18] M. A. Cirone, G. de Chiara, G. M. Palma and A. Recati, Collective decoherence of
cold atoms coupled to a bose–einstein condensate, New J. Phys. 11, 103055 (2009),
doi:10.1088/1367-2630/11/10/103055.

[19] T. Debarba and F. F. Fanchini, Non-Markovianity quantifier of an arbitrary quantum pro-
cess, Phys. Rev. A 96, 062118 (2017), doi:10.1103/PhysRevA.96.062118.

[20] S. McEndoo, P. Haikka, G. de Chiara, M. Palma and S. Maniscalco, Entanglement control
via reservoir engineering in ultracold atomic gases, Europhys. Lett. 101, 60005 (2013),
doi:10.1209/0295-5075/101/60005.

[21] L. Heaney, J. Anders, D. Kaszlikowski and V. Vedral, Spatial entanglement from off-
diagonal long-range order in a Bose-Einstein condensate, Phys. Rev. A 76, 053605 (2007),
doi:10.1103/PhysRevA.76.053605.

[22] F. Galve and R. Zambrini, Coherent and radiative couplings through two-dimensional struc-
tured environments, Phys. Rev. A 97, 033846 (2018), doi:10.1103/PhysRevA.97.033846.

[23] S. Sarkar, S. McEndoo, D. Schneble and A. J. Daley, Interspecies entanglement with impu-
rity atoms in a bosonic lattice gas (2018), arXiv:1805.01592.

[24] M. Fadel, T. Zibold, B. Décamps and P. Treutlein, Spatial entanglement patterns and
Einstein-Podolsky-Rosen steering in Bose-Einstein condensates, Science 360, 409 (2018),
doi:10.1126/science.aao1850.

[25] P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T. Gasenzer, M. Gärttner and
M. K. Oberthaler, Spatially distributed multipartite entanglement enables EPR steering of
atomic clouds, Science 360, 413 (2018), doi:10.1126/science.aao2254.

34

https://scipost.org
https://scipost.org/SciPostPhys.6.1.010
http://dx.doi.org/10.1103/PhysRevLett.89.277901
http://dx.doi.org/10.1103/PhysRevLett.88.197901
http://dx.doi.org/10.1103/PhysRevLett.91.070402
http://dx.doi.org/10.1103/PhysRevA.81.012105
http://dx.doi.org/10.1209/epl/i2006-10326-y
http://dx.doi.org/10.1103/PhysRevA.79.012308
http://dx.doi.org/10.1209/0295-5075/95/60008
http://dx.doi.org/10.1209/0295-5075/95/60008
http://dx.doi.org/10.1103/PhysRevA.85.042318
http://dx.doi.org/10.1103/PhysRevB.76.045317
http://dx.doi.org/10.1088/1367-2630/11/10/103055
http://dx.doi.org/10.1103/PhysRevA.96.062118
http://dx.doi.org/10.1209/0295-5075/101/60005
http://dx.doi.org/10.1103/PhysRevA.76.053605
http://dx.doi.org/10.1103/PhysRevA.97.033846
https://arxiv.org/abs/1805.01592
http://dx.doi.org/10.1126/science.aao1850
http://dx.doi.org/10.1126/science.aao2254


SciPost Phys. 6, 010 (2019)

[26] K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I. Apellaniz, M. Kleinmann, G. Tóth
and C. Klempt, Entanglement between two spatially separated atomic modes, Science 360,
416 (2018), doi:10.1126/science.aao2035.

[27] L. A. Peña Ardila and S. Giorgini, Impurity in a Bose-Einstein condensate: Study of the
attractive and repulsive branch using quantum Monte Carlo methods, Phys. Rev. A 92,
033612 (2015), doi:10.1103/PhysRevA.92.033612.

[28] A. Schirotzek, C.-H. Wu, A. Sommer and M. W. Zwierlein, Observation of Fermi po-
larons in a tunable Fermi liquid of ultracold atoms, Phys. Rev. Lett. 102, 230402 (2009),
doi:10.1103/PhysRevLett.102.230402.

[29] P. Massignan, M. Zaccanti and G. M. Bruun, Polarons, dressed molecules and itiner-
ant ferromagnetism in ultracold Fermi gases, Rep. Prog. Phys. 77, 034401 (2014),
doi:10.1088/0034-4885/77/3/034401.

[30] Z. Lan and C. Lobo, A single impurity in an ideal atomic Fermi gas: current understanding
and some open problems, J. Indian I. Sci. 94, 179 (2014) [arXiv:1404.3220].

[31] J. Levinsen and M. M. Parish, Strongly interacting two-dimensional Fermi gases, in Annual
Review of Cold Atoms and Molecules, World Scientific (2015), ISBN 9789814667739,
doi:10.1142/9789814667746_0001.

[32] R. Schmidt, T. Enss, V. Pietilä and E. Demler, Fermi polarons in two dimensions, Phys. Rev.
A 85, 021602 (2012), doi:10.1103/PhysRevA.85.021602.

[33] R. Côté, V. Kharchenko and M. D. Lukin, Mesoscopic molecular ions in Bose-Einstein con-
densates, Phys. Rev. Lett. 89, 093001 (2002), doi:10.1103/PhysRevLett.89.093001.

[34] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F. Minardi, A. Kantian and T.
Giamarchi, Quantum dynamics of impurities in a one-dimensional Bose gas, Phys. Rev. A
85, 023623 (2012), doi:10.1103/PhysRevA.85.023623.

[35] A. Shashi, F. Grusdt, D. A. Abanin and E. Demler, Radio-frequency spec-
troscopy of polarons in ultracold Bose gases, Phys. Rev. A 89, 053617 (2014),
doi:10.1103/PhysRevA.89.053617.

[36] R. Søgaard Christensen, J. Levinsen and G. M. Bruun, Quasiparticle properties of a
mobile impurity in a Bose-Einstein condensate, Phys. Rev. Lett. 115, 160401 (2015),
doi:10.1103/PhysRevLett.115.160401.

[37] J. Levinsen, M. M. Parish and G. M. Bruun, Impurity in a Bose-Einstein
condensate and the Efimov effect, Phys. Rev. Lett. 115, 125302 (2015),
doi:10.1103/PhysRevLett.115.125302.

[38] F. Grusdt and E. Demler, New theoretical approaches to Bose polarons (2015),
arXiv:1510.04934.

[39] Y. E. Shchadilova, R. Schmidt, F. Grusdt and E. Demler, Quantum dy-
namics of ultracold Bose polarons, Phys. Rev. Lett. 117, 113002 (2016),
doi:10.1103/PhysRevLett.117.113002.

[40] L. A. Peña Ardila and S. Giorgini, Bose polaron problem: Effect of mass imbalance on
binding energy, Phys. Rev. A 94, 063640 (2016), doi:10.1103/PhysRevA.94.063640.

35

https://scipost.org
https://scipost.org/SciPostPhys.6.1.010
http://dx.doi.org/10.1126/science.aao2035
http://dx.doi.org/10.1103/PhysRevA.92.033612
http://dx.doi.org/10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1088/0034-4885/77/3/034401
https://arxiv.org/abs/1404.3220
http://dx.doi.org/10.1142/9789814667746_0001
http://dx.doi.org/10.1103/PhysRevA.85.021602
http://dx.doi.org/10.1103/PhysRevLett.89.093001
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.89.053617
http://dx.doi.org/10.1103/PhysRevLett.115.160401
http://dx.doi.org/10.1103/PhysRevLett.115.125302
https://arxiv.org/abs/1510.04934
http://dx.doi.org/10.1103/PhysRevLett.117.113002
http://dx.doi.org/10.1103/PhysRevA.94.063640


SciPost Phys. 6, 010 (2019)

[41] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish, J. Levinsen, R.
S. Christensen, G. M. Bruun and J. J. Arlt, Observation of attractive and repul-
sive polarons in a Bose-Einstein condensate, Phys. Rev. Lett. 117, 055302 (2016),
doi:10.1103/PhysRevLett.117.055302.

[42] T. Rentrop, A. Trautmann, F. A. Olivares, F. Jendrzejewski, A. Komnik and M. K.
Oberthaler, Observation of the phononic lamb shift with a synthetic vacuum, Phys. Rev.
X 6, 041041 (2016), doi:10.1103/PhysRevX.6.041041.

[43] A. Lampo, S. Hoe Lim, M. A. García-March and M. Lewenstein, Bose polaron as an instance
of quantum Brownian motion, Quantum 1, 30 (2017), doi:10.22331/q-2017-09-27-30.

[44] S. M. Yoshida, S. Endo, J. Levinsen and M. M. Parish, Universality of an impurity in a Bose-
Einstein condensate, Phys. Rev. X 8, 011024 (2018), doi:10.1103/PhysRevX.8.011024.

[45] N.-E. Guenther, P. Massignan, M. Lewenstein and G. M. Bruun, Bose polarons
at finite temperature and strong coupling, Phys. Rev. Lett. 120, 050405 (2018),
doi:10.1103/PhysRevLett.120.050405.

[46] A. Camacho-Guardián, L. A. Peña Ardila, T. Pohl and G. M. Bruun, Bipo-
larons in a Bose-Einstein condensate Phys. Rev. Lett. 121, 013401 (2018),
doi:10.1103/PhysRevLett.121.013401.

[47] A. S. Dehkharghani, A. G. Volosniev and N. T. Zinner, Coalescence of two impuri-
ties in a trapped one-dimensional Bose gas, Phys. Rev. Lett. 121, 080405 (2018),
doi:10.1103/PhysRevLett.121.080405.

[48] A. Lampo, C. Charalambous, M. A. García-March and M. Lewenstein, Non-Markovian
polaron dynamics in a trapped Bose-Einstein condensate, Phys. Rev. A 98, 063630 (2018),
doi:10.1103/PhysRevA.98.063630.

[49] H. Breuer and F. Petruccione, The theory of open quantum systems, Oxford University
Press, Oxford, ISBN 9780199213900 (2007).

[50] A. Caldeira and A. Leggett, Path integral approach to quantum Brownian motion, Phys.
A: Stat. Mech. its Appl. 121, 587 (1983), doi:10.1016/0378-4371(83)90013-4.

[51] I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod.
Phys. 89, 015001 (2017), doi:10.1103/RevModPhys.89.015001.

[52] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314
(2002), doi:10.1103/PhysRevA.65.032314.

[53] C. Hörhammer and H. Büttner, Environment-induced two-mode entanglement in quantum
Brownian motion, Phys. Rev. A 77, 042305 (2008), doi:10.1103/PhysRevA.77.042305.

[54] T. Zell, F. Queisser and R. Klesse, Distance dependence of entanglement gen-
eration via a bosonic heat bath, Phys. Rev. Lett. 102, 160501 (2009),
doi:10.1103/PhysRevLett.102.160501.

[55] R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris and S. Maniscalco, Nonclassical corre-
lations in non-Markovian continuous-variable systems, Phys. Rev. A 82, 012313 (2010),
doi:10.1103/PhysRevA.82.012313.

[56] C. H. Fleming, N. I. Cummings, C. Anastopoulos and B. L. Hu, Non-Markovian dynam-
ics and entanglement of two-level atoms in a common field, J. Phys. A: Math. Theor. 45,
065301 (2012), doi:10.1088/1751-8113/45/6/065301.

36

https://scipost.org
https://scipost.org/SciPostPhys.6.1.010
http://dx.doi.org/10.1103/PhysRevLett.117.055302
http://dx.doi.org/10.1103/PhysRevX.6.041041
http://dx.doi.org/10.22331/q-2017-09-27-30
http://dx.doi.org/10.1103/PhysRevX.8.011024
http://dx.doi.org/10.1103/PhysRevLett.120.050405
http://dx.doi.org/10.1103/PhysRevLett.121.013401
http://dx.doi.org/10.1103/PhysRevLett.121.080405
http://dx.doi.org/10.1103/PhysRevA.98.063630
http://dx.doi.org/10.1016/0378-4371(83)90013-4
http://dx.doi.org/10.1103/RevModPhys.89.015001
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.77.042305
http://dx.doi.org/10.1103/PhysRevLett.102.160501
http://dx.doi.org/10.1103/PhysRevA.82.012313
http://dx.doi.org/10.1088/1751-8113/45/6/065301


SciPost Phys. 6, 010 (2019)

[57] L. A. Correa, A. A. Valido and D. Alonso, Asymptotic discord and entanglement of nonres-
onant harmonic oscillators under weak and strong dissipation, Phys. Rev. A 86, 012110
(2012), doi:10.1103/PhysRevA.86.012110.

[58] I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod.
Phys. 89, 015001 (2017), doi:10.1103/RevModPhys.89.015001.

[59] A. A. Valido, D. Alonso and S. Kohler, Gaussian entanglement induced by an extended ther-
mal environment, Phys. Rev. A 88, 042303 (2013), doi:10.1103/PhysRevA.88.042303.

[60] H. Kohler and F. Sols, Minimal coupling in oscillator models of quantum dissipation, Phys.
A: Stat. Mech. its Appl. 392, 1989 (2013), doi:10.1016/j.physa.2013.01.019.

[61] S. Coleman and R. E. Norton, Runaway modes in model field theories, Phys. Rev. 125,
1422 (1962), doi:10.1103/PhysRev.125.1422.

[62] M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of
impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998), doi:10.1103/PhysRevLett.81.938.

[63] F. Grusdt, G. E. Astrakharchik and E. Demler, Bose polarons in ultracold atoms in
one dimension: beyond the Fröhlich paradigm, New J. Phys. 19, 103035 (2017),
doi:10.1088/1367-2630/aa8a2e.

[64] D. K. Efimkin, J. Hofmann and V. Galitski, Non-Markovian quantum fric-
tion of bright solitons in superfluids, Phys. Rev. Lett. 116, 225301 (2016),
doi:10.1103/PhysRevLett.116.225301.

[65] J. Bonart and L. F. Cugliandolo, From nonequilibrium quantum Brownian motion to im-
purity dynamics in one-dimensional quantum liquids, Phys. Rev. A 86, 023636 (2012),
doi:10.1103/PhysRevA.86.023636.

[66] S. Peotta, D. Rossini, M. Polini, F. Minardi and R. Fazio, Quantum breathing of an impurity
in a one-dimensional bath of interacting bosons, Phys. Rev. Lett. 110, 015302 (2013),
doi:10.1103/PhysRevLett.110.015302.

[67] C. H. Fleming, A. Roura and B. L. Hu, Exact analytical solutions to the master equation
of quantum Brownian motion for a general environment, Ann. Phys. 326, 1207 (2011),
doi:10.1016/j.aop.2010.12.003.

[68] M. Ludwig, K. Hammerer and F. Marquardt, Entanglement of mechanical oscilla-
tors coupled to a nonequilibrium environment, Phys. Rev. A 82, 012333 (2010),
doi:10.1103/PhysRevA.82.012333.

[69] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro
and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84, 621 (2012),
doi:10.1103/RevModPhys.84.621.

[70] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996),
doi:10.1103/PhysRevLett.77.1413.

[71] M. Horodecki, P. Horodecki and R. Horodecki, Separability of mixed states: necessary and
sufficient conditions, Phys. Lett. A 223, 1 (1996), doi:10.1016/S0375-9601(96)00706-2.

[72] J.-T. Hsiang and B. L. Hu, Quantum entanglement at high temperatures? Bosonic
systems in nonequilibrium steady state, J. High Energ. Phys. 11, 090 (2015),
doi:10.1007/JHEP11(2015)090.

37

https://scipost.org
https://scipost.org/SciPostPhys.6.1.010
http://dx.doi.org/10.1103/PhysRevA.86.012110
http://dx.doi.org/10.1103/RevModPhys.89.015001
http://dx.doi.org/10.1103/PhysRevA.88.042303
http://dx.doi.org/10.1016/j.physa.2013.01.019
http://dx.doi.org/10.1103/PhysRev.125.1422
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1088/1367-2630/aa8a2e
http://dx.doi.org/10.1103/PhysRevLett.116.225301
http://dx.doi.org/10.1103/PhysRevA.86.023636
http://dx.doi.org/10.1103/PhysRevLett.110.015302
http://dx.doi.org/10.1016/j.aop.2010.12.003
http://dx.doi.org/10.1103/PhysRevA.82.012333
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1007/JHEP11(2015)090


SciPost Phys. 6, 010 (2019)

[73] C. H. Bennett, H. J. Bernstein, S. Popescu and B. Schumacher, Concentrat-
ing partial entanglement by local operations, Phys. Rev. A 53, 2046 (1996),
doi:10.1103/PhysRevA.53.2046.

[74] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin and W. K. Wootters, Mixed-
state entanglement and quantum error correction, Phys. Rev. A 54, 3824 (1996),
doi:10.1103/PhysRevA.54.3824.

[75] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Rev.
Mod. Phys. 81, 865 (2009), doi:10.1103/RevModPhys.81.865.

[76] M. Horodecki, P. Horodecki and R. Horodecki, Mixed-state entanglement and distilla-
tion: Is there a “bound” entanglement in nature?, Phys. Rev. Lett. 80, 5239 (1998),
doi:10.1103/PhysRevLett.80.5239.

[77] G. Adesso, A. Serafini and F. Illuminati, Extremal entanglement and mixedness in continu-
ous variable systems, Phys. Rev. A 70, 022318 (2004), doi:10.1103/PhysRevA.70.022318.

[78] G. Adesso and F. Illuminati, Gaussian measures of entanglement versus negativi-
ties: Ordering of two-mode Gaussian states, Phys. Rev. A 72, 032334 (2005),
doi:10.1103/PhysRevA.72.032334.

[79] M. B. Plenio, Logarithmic negativity: A full entanglement monotone that is not convex,
Phys. Rev. Lett. 95, 090503 (2005), doi:10.1103/PhysRevLett.95.090503.

[80] R. Simon, Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev.
Lett. 84, 2726 (2000), doi:10.1103/PhysRevLett.84.2726.

[81] J. F. Sherson, C. Weitenberg, M. Enders, M. Cheneau, I. Bloch and S. Kuhr, Single-
atom-resolved fluorescence imaging of an atomic mott insulator, Nature 467, 68 (2010),
doi:10.1038/nature09378.

[82] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling and M. Greiner, A quantum gas microscope
for detecting single atoms in a hubbard-regime optical lattice, Nature 462, 74 (2009),
doi:10.1038/nature08482.

[83] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli and M. Greiner, Mea-
suring entnaglement entropy in a quantum many-body system, Nature 528, 77 (2015),
doi:10.1038/nature15750.

[84] G. Guarnieri, C. Uchiyama and B. Vacchini, Energy backflow and non-markovian dynamics,
Phys. Rev. A 93, 012118 (2016), doi:10.1103/PhysRevA.93.012118.

[85] P. Haikka, S. McEndoo, G. De Chiara, G. M. Palma and S. Maniscalco, Quantifying, char-
acterizing, and controlling information flow in ultracold atomic gases, Phys. Rev. A 84,
031602 (2011), doi:10.1103/PhysRevA.84.031602.

[86] J. P. Paz and A. J. Roncaglia, Dynamics of the entanglement between two os-
cillators in the same environment, Phys. Rev. Lett. 100, 220401 (2008),
doi:10.1103/PhysRevLett.100.220401.

[87] D. Boyanovsky and D. Jasnow, Coherence of mechanical oscillators mediated by coupling
to different baths, Phys. Rev. A 96, 012103 (2017), doi:10.1103/PhysRevA.96.012103.

[88] J. Anders and A. Winter, Entanglement and separability of quantum harmonic oscillator
systems at finite temperature, Quantum Inf. Comput. 8, 0245 (2008), [arXiv:0705.3026].

38

https://scipost.org
https://scipost.org/SciPostPhys.6.1.010
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevLett.80.5239
http://dx.doi.org/10.1103/PhysRevA.70.022318
http://dx.doi.org/10.1103/PhysRevA.72.032334
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1103/PhysRevA.93.012118
http://dx.doi.org/10.1103/PhysRevA.84.031602
http://dx.doi.org/10.1103/PhysRevLett.100.220401
http://dx.doi.org/10.1103/PhysRevA.96.012103
https://arxiv.org/abs/0705.3026

	Introduction
	The model system
	Hamiltonian
	Heisenberg equations
	Spectral density
	Solution of Heisenberg equations and covariance matrix
	Entanglement measure
	Squeezing


	Results
	Out-of-equilibrium dynamics and entanglement of the untrapped impurities
	Squeezing and Entanglement for Trapped impurities
	Squeezing
	Thermal entanglement induced by isotropic substrates

	Conclusions
	Spectral density
	Susceptibility
	Study of an exact expression for the covariance matrix elements
	Equilibrium Hamiltonian
	References

