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Abstract: Antiviral treatments inhibiting Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) replication may represent a strategy complementary to vaccination to fight the ongoing
Coronavirus disease 19 (COVID-19) pandemic. Molecules or extracts inhibiting the SARS-CoV-2
chymotripsin-like protease (3CLPro) could contribute to reducing or suppressing SARS-CoV-2 repli-
cation. Using a targeted approach, we identified 17 plant products that are included in current
and traditional cuisines as promising inhibitors of SARS-CoV-2 3CLPro activity. Methanolic extracts
were evaluated in vitro for inhibition of SARS-CoV-2 3CLPro activity using a quenched fluorescence
resonance energy transfer (FRET) assay. Extracts from turmeric (Curcuma longa) rhizomes, mus-
tard (Brassica nigra) seeds, and wall rocket (Diplotaxis erucoides subsp. erucoides) at 500 µg mL−1

displayed significant inhibition of the 3CLPro activity, resulting in residual protease activities of 0.0%,
9.4%, and 14.9%, respectively. Using different extract concentrations, an IC50 value of 15.74 µg mL−1

was calculated for turmeric extract. Commercial curcumin inhibited the 3CLPro activity, but did not
fully account for the inhibitory effect of turmeric rhizomes extracts, suggesting that other components
of the turmeric extract must also play a main role in inhibiting the 3CLPro activity. Sinigrin, a major
glucosinolate present in mustard seeds and wall rocket, did not have relevant 3CLPro inhibitory
activity; however, its hydrolysis product allyl isothiocyanate had an IC50 value of 41.43 µg mL−1.
The current study identifies plant extracts and molecules that can be of interest in the search for
treatments against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials.

Keywords: allyl isothiocyanate; COVID-19; curcumin; FRET assay; mustard seeds; natural com-
pounds; plant extracts; SARS-CoV-2 3CLPro; turmeric; wall rocket

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a predominantly
airborne transmitted coronavirus first identified in December 2019, which is the causal
agent of Coronavirus disease 19 (COVID-19) [1]. Rapid spread of SARS-CoV-2 has caused
a severe pandemic, resulting so far in a death toll of almost 3 million lives worldwide [2]
and a disruption of many aspects of human daily life. SARS-CoV-2 is an enveloped,
simple-stranded, positive-sense RNA virus with a length of 29.9 kb and a diameter of about
65–125 nm [3]. Since its identification, the genome of multiple strains of SARS-CoV-2 has
been sequenced [4–6] and its life cycle has been thoroughly studied [3].

Many vaccine projects have been developed and are underway to fight COVID-19 [7].
Several of the first-generation vaccines already in use in vaccination campaigns have
shown high levels of efficacy, albeit the level of protection is not complete and seems to be
strain-dependent. In this way, the recent appearance of new highly infectious SARS-CoV-2
strains might reduce the efficacy of first-generation vaccines [8]. Moreover, vaccines are
still in short supply and, in many countries, vaccination against SARS-CoV-2 is neither
compulsory nor indicated for some specific groups, such as children, or people with certain

Foods 2021, 10, 1503. https://doi.org/10.3390/foods10071503 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-8015-1559
https://orcid.org/0000-0001-8090-7312
https://orcid.org/0000-0003-1181-9065
https://orcid.org/0000-0002-8637-5852
https://doi.org/10.3390/foods10071503
https://doi.org/10.3390/foods10071503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10071503
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods10071503?type=check_update&version=1


Foods 2021, 10, 1503 2 of 12

medical conditions [9,10]. Therefore, the development of therapies complementary to
vaccination is desirable for a comprehensive fight against COVID-19.

The development of drugs for the treatment of COVID-19 patients so far has not
resulted in highly efficient or curative drug therapies. Despite the initial consideration of
some pre-existent drugs as potential antiviral against SARS-CoV-2, no proven effective
treatments have been found so far [11]. Among the proteins encoded by the SARS-CoV-2
RNA, the chymotrypsin-like protease (3CLPro), also known as main protease (MPro), is re-
quired for the proteolytic processing of the viral polyproteins during the maturation step,
thus becoming an essential tool for the successful replication of the virus [12]. In this sense,
the fundamental role of the 3CLPro in viral replication makes this enzyme an attractive
target for the development of drugs inhibiting the virus replication. A similar research
strategy was followed in the past against the phylogenetically related SARS-CoV [13],
which caused the SARS-CoV 2002–2004 outbreak, and led to the screening of a large variety
of molecules and natural products for their inhibition of the SARS-CoV 3CLPro activity [14].
In addition to single molecules, some plant extracts also inhibited the SARS-CoV 3CLPro

activity in vitro [15,16].
Some natural compounds with potential against SARS-CoV-2 have been identified

based on the work with SARS-CoV and related viruses and through in silico molecular dock-
ing studies [17–21]. The recent work of Zhou and Huang [22] reviews the current findings
regarding natural compounds that might be considered for their potential antiviral activ-
ity against SARS-CoV-2, mostly based on previous experience with other coronaviruses.
Some compounds found in edible and/or medicinal plant products were identified in
these studies as potential natural compounds targeting the SARS-CoV-2 3CLPro, includ-
ing glucosinolates, flavonoids, and other phenolic compounds. Phenolic compounds have
been extensively studied for their antioxidant capacity acting as free radical scavengers
tested in vitro and using in vivo models [23]. Thus, diets rich in fruits and vegetables
containing high levels of these compounds are associated with a reduction in the risk of
chronic inflammatory processes, thus lowering the risk of developing some degenerative
and cardiovascular diseases and several types of cancer, and increasing the overall health
status [24–26]. In addition, glucosinolates and their hydrolytic products are also bioactive
molecules related to the maintenance of a good health status. The most studied derivative,
sulforaphane, proved to induce detoxification phase II enzymes [27] and has been studied
as an anticarcinogen likely able to be effective in all stages of cancer [28], to reduce the
risk of developing type 2 diabetes [29], as well as to ameliorate several neurodegenera-
tive diseases [30]. Other glucosinolates are promising as natural compounds by exerting
antimicrobial activities [31,32].

However, the evaluation of the antiviral capacity of these groups of natural com-
pounds is more limited. Based on this consideration, the current work aimed at the
targeted testing for inhibitory capacity against the 3CLPro activity of plant extracts selected
for being rich in one or more of the aforementioned chemical families. The materials
selected constitute common food products in many cultures and are of easy access or,
alternatively, grow profusely in many regions and are included in traditional cuisines, as is
the case of wall rocket in the Mediterranean region. A cell-free cleavage assay using a
fluorogenic substrate was used, as this technique has been used successfully to measure
the protease activity of the related SARS-CoV 3CLPro [33–35]. Testing plant extracts can
be considered a first approach in the search for natural compounds with antiviral activity,
or even represent a basis for the development of prophylactic or therapeutic plant extracts
against COVID-19. In addition, given the proven safety for human consumption of the
plants from which extracts are obtained, their potential use against COVID-19 might be
immediate and easily accessible.
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2. Materials and Methods
2.1. Plant Material

A total of 17 plant foods and derived products were selected for the current study
(Figure S1). The materials were identified by the authors and acquired in a local market
at Valencia (Spain) and included citrus fruit peels (sweet orange (Citrus sinensis), lemon
(C. limon), lime (C. aurantiifolia), and grapefruit (Citrus paradisi)), seasoning and aromatic
herbs (celery leaves and celery stalks (Apium graveolens var. dulce), parsley (Petroselinum
crispum), dill (Anethum graveolens), sweet chamomile (Marticaria chamomilla), and dried
oregano (Origanum vulgare)), bulbs and rhizomes (red onion (Allium cepa) and turmeric (Cur-
cuma longa)), a succulent plant (aloe vera (Aloe barbadensis)), and cruciferous condiments
(brown mustard seeds (Brassica nigra), horseradish (Armoracia rusticana), and commer-
cial wasabi powder (Tokyo-Ya, S.A., Japan)). The ingredients of wasabi powder were
horseradish, mustard, vitamin C, acidulant E334, wasabi aroma, and colorants E102 and
E133. Dried oregano and sweet chamomile were acquired from Naturcid S.L. (Monforte
del Cid, Spain), and mustard seeds were acquired from Diplan S.A. (Fuenlabrada, Spain).
In addition, edible baby-leaves of wall rocket or wild rucola (Diplotaxis erucoides subsp.
erucoides) were included in the study owing to their accumulation of sinigrin, which derives
in allyl isothiocyanate [36,37]. Wall rocket is an herbaceous plant broadly distributed
and included in the traditional Mediterranean cuisine and, for the current study, it was
grown in the field as described in Guijarro-Real et al. [36]. The selection of these plant
materials (Table 1) was done according to their phytochemical composition as reported in
the literature, based on the recent review work by Zhou and Huang [22].

Approximately, 100 g to 200 g of material was obtained for each sample. For citrus
fruits, the peels (including the flavedo and albedo) were manually separated from the flesh
and used because of the higher concentrations of flavonoids in the former [38]. Celery was
separated into leaves and stalks and processed separately. Turmeric and horseradish were
peeled, and peels were discarded. Aloe vera leaves were separated into the outer skin
and the inner parenchyma, and the former was discarded. Except for dried oregano,
all materials were freeze-dried. Dried materials were ground into powder with a coffee
grinder and stored at −80 ◦C.

Table 1. Selected phytochemical compounds reported as potential natural inhibitors of SARS-CoV-2
3CLPro activity and naturally present in the plant materials used in the current study.

Compound Chemical Family Plant Material References

Hesperetin Flavonoids

Grapefruit
Lemon
Lime

Orange

[39–42]
[43,44]
[45,46]
[39,40]

Luteolin Flavonoids Celery
Oregano

[47–49]
[50,51]

Quercetin Flavonoids Dill
Red onion

[52]
[48,49]

Apigenin Flavonoids

Celery
Chamomile

Oregano
Parsley

[47,48]
[53,54]
[50,51]
[47,52]

Curcumin Curcuminoids Turmeric [55,56]

Sinigrin Glucosinolates

Mustard
Horseradish

Wasabi condiment 1

Wall rocket

[57,58]
[59,60]

[37]
[36,61]

Aloe emodin Anthraquinones Aloe vera [62]
1 The wasabi was obtained as commercial wasabi powder; for ingredients, refer to Section 2.1.
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2.2. Preparation of Methanolic Extracts

Phytochemical compounds were extracted from samples with 80% aqueous methanol,
which has been proven as an appropriate solvent for the extraction of phenolic com-
pounds [63,64] and glucosinolates [65]. For each material, four samples of 100 mg were
extracted with 1 mL of 80% methanol upon sonication for 30 min, with intermediate
stirring each 5 min to facilitate the extraction process. After a centrifugation step (5 min
at 13,000 rpm), the plant material was re-extracted by adding 1 mL of 80% methanol.
The recovered extracts of four independent replicates were combined and filtered through
a 0.2 µm PTFE filter. Then, 5 mL of the combined extract for each material was dried under
nitrogen and resuspended for a stock solution in 100% dimethyl sulfoxide (DMSO) to a
final concentration of 50 mg mL−1. Extracts were kept at −80 ◦C until analysis.

2.3. FRET Assay for the Inhibition of the 3CL Protease Activity (SARS-CoV-2 3CLPro)

The extracts were evaluated as inhibitors of SARS-CoV-2 3CLPro by means of an
in vitro quenched fluorescence resonance energy transfer (FRET) assay using a fluorogenic
substrate to measure the residual activity. For the study, the MBP-tagged 3CL Protease
(SARS-CoV-2) Assay Kit (BPS Bioscience, San Diego, CA, USA) was used according to the
manufacturer’s instructions. Briefly, the plant-based extracts were conveniently diluted
in the 3CLPro assay buffer to an extract concentration of 2.5 mg mL−1. For determination
of the 3CLPro activity, 5 µL of the diluted plant extracts was pre-incubated with 150 ng
of the 3CLPro for 30 min. Subsequently, the fluorogenic substrate was added to a final
concentration of 50 µM and the reaction was incubated for 4 h in the darkness in the
presence of 1 mM 1,4-dithio-D,L-threitol (DTT). The final concentration of the plant extracts
during the reaction was 500 µg mL−1 in a reaction volume of 25 µL. The fluorescence
intensity was recorded at 470 nm after excitation at 360 nm. A positive control was included
to measure the maximum activity of the protease in the absence of potential inhibitors.
Moreover, an inhibition control was included by pre-incubating 150 ng of the 3CLPro with
5 µL of the inhibitor GC376 (250 µM) supplied by the manufacturer. The reaction was
evaluated in four replicates for each extract.

The extracts showing significant inhibition of the 3CLPro activity (<20% of residual
activity compared with the positive control) were selected for the determination of the cor-
respondent IC50. The protocol followed was the same as described above, although in this
case, seven concentrations of the plant-based extracts, 5.0–10–25–50–100–200–500 µg mL−1,
were evaluated. Additionally, commercial standards of curcumin (>94% curcuminoids
with >80% curcumin, CAS Number 458-37-7), sinigrin (CAS Number 3952-98-5), and allyl
isothiocyanate (CAS Number 57-06-7) (Sigma-Aldrich, Saint Louis, MO, USA) were also
resuspended in DMSO and tested as 3CLPro activity inhibitors at different concentrations.
As for the first screening, the inhibitory capacity of the plant extracts and the commercial
standards was tested using four replicates for each concentration considered.

2.4. Data Analysis

The fluorescence intensity measured indicated the residual activity of the protease after
the co-incubation with extracts. The residual activities were provided in percentage against
the maximum activity obtained in the absence of potential inhibitory compounds or extracts
(100%). For each material and concentration tested, the average value and corresponding
standard error were calculated (n = 4) using the statistics software Statgraphics Centurion
XVII (Statpoint Technologies, Warrenton, VA, USA), and the significance of differences
among materials was tested by one-way factorial analysis of variance. Mean separation
was performed with a Student–Newman–Keuls test at a signification level of p < 0.05.
The dose–response curves and the relative IC50 for extracts and standards showing sig-
nificant inhibition were obtained using the GraphPad Prism 9.0.1 software (GraphPad
Software, San Diego, CA, USA).
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3. Results

3.1. Screening of Plant-Based Extracts for Inhibition of SARS-CoV-2 3CLPro Activity

The inhibition of SARS-CoV-2 3CLPro activity by the 17 extracts was tested at a final
concentration of 500 µg mL−1. The extracts of lime peel and chamomile produced signal
interferences and were discarded from the analysis. It was noted, however, that the co-
incubation of the 3CLPro with the chamomile extracts produced a reduction of the protease
activity even if a signal interference was observed (Figure S2).

The results of the inhibitory activity of SARS-CoV-2 3CLPro of the remaining 15 extracts
tested at a concentration of 500 µg mL−1 are displayed in Figure 1. Seven of the materials
showed low inhibitory capacity and led to average residual protease activities over 70%.
This group included extracts of grapefruit, lemon, and orange fruit peels (72.4–82.8% of
mean residual activities); red onion (80.9%); celery stalk (79.9%); horseradish (75.0%);
and dill (73.1%). Five other materials displayed intermediate inhibitory capacity (35–55%),
including extracts of celery leaves (38.0%), parsley (42.8%), and oregano (46.3%) herbs;
aloe vera leaves (54.8%); and the wasabi powder (35.8%). Finally, three extracts were found
to show high inhibitory capacity and included mustard seeds (9.4%), wall rocket (14.9%),
and turmeric, the latter showing a complete inhibitory capacity (0.0% of 3CLPro residual
activity) at the concentration of 500 µg mL−1.
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Figure 1. Mean values and standard errors (SEs) for the residual activity of SARS-CoV-2 3CLPro in the
presence of the fifteen plant-based extracts at a concentration of 500 µg mL−1 and the inhibitor control
GC376 at a concentration of 50 µM (n = 4). Extracts included were obtained from citrus fruit peels (blue),
seasoning and aromatic herbs (green), bulbs and rhizomes (purple; includes turmeric), a succulent plant
(red), and cruciferous herbs and condiments (yellow). Both the turmeric extract and the inhibitor GC376
produced a complete inhibition of the 3CLPro. Different letters indicate significant differences in the
3CLPro residual activity according to a Student–Newman–Keuls test at p < 0.05.

3.2. Determination of the IC50 Values of Extracts with High SARS-CoV-2 3CLPro

Activity Inhibition

According to the initial screening at 500 µg mL−1, the mustard seeds, wall rocket
leaves, and turmeric powder extracts were selected owing to their high SARS-CoV-2 3CLPro

activity inhibitory potential. For these materials, the dose-dependent inhibitory curves
were obtained and the corresponding IC50 values were calculated by testing the plant
extracts at eight final concentrations ranging between 5.0 and 500 µg mL−1.

The dose-dependent inhibition curve for the turmeric powder was obtained by testing
the residual activity of the SARS-CoV-2 3CLPro after the co-incubation with the plant
extracts at the final concentrations of 5.0–10–25–50–100–200–500 µg mL−1. The logarithmic
dose–response curve was fitted to a sigmoidal curve with an r2 value of 0.976 and an IC50
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for turmeric of 15.74 µg mL−1 was determined. The highest concentrations tested, i.e.,
from 100 µg mL−1 (log [turmeric] = 2.0) to 500 µg mL−1 (log [turmeric] = 2.7), resulted in a
very high inhibition of the SARS-CoV-2 3CLPro activity (Figure 2). In order to test whether
the curcumin present in the turmeric material accounted for such inhibition, an additional
analysis using commercial curcumin (>94% curcuminoids, >80% curcumin) was conducted
at concentrations of 2.5–75 µg mL−1 (log [curcumin] = 0.4–1.9). Higher concentrations
of the compound could not be tested because of its insolubility in the reaction buffer.
As expected, the co-incubation of 3CLPro with curcumin also showed a positive effect
on the protease inhibition. Thus, concentrations over 30 µg mL−1 (log [curcumin] = 1.5)
produced a residual protease activity below 50%, which decreased to 28.1% when the
compound was tested at 75 µg mL−1 (log [curcumin] = 1.9) (Figure 2).
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The extracts of mustard seeds showed strong inhibitory capacity at the highest doses
tested. Thus, the co-incubation with 200 µg mL−1 (log (mustard) = 2.3) and 500 µg mL−1

(log (mustard) = 2.7) of the extract reduced the activity of SARS-CoV-2 3CLPro to 42.1%
and 9.4%, respectively (Figure 3). By contrast, the co-incubation with 100 µg mL−1 (log
(mustard) = 2.0) of mustard seeds extract only inhibited such activity by 19.9% (residual
activity = 80.1%). The IC50 for the mustard seeds extract was 128.1 µg mL−1 (r2 value 0.865)
(Figure 3). In the case of wall rocket extracts, the co-incubation produced residual activities
of the 3CLPro ranging between 94.3% and 15.8% for 5.0 µg mL−1 (log (wall rocket) = 0.7)
and 500 µg mL−1 (log (wall rocket) = 2.7) of extract, respectively. The co-incubation with
200 µg mL−1 of extract produced an inhibitory response of 56.8% compared with the
absence of extract. For this material, the IC50 estimated from the dose–response curve was
257.4 µg mL−1 (r2 value 0.937) (Figure 3).

Given that both mustard and wall rocket were selected for containing glucosinolates,
particularly sinigrin, both sinigrin and its hydrolytic derivative were evaluated for their
SARS-CoV-2 3CLPro inhibition activity. Allyl isothiocyanate is naturally released in plants
from its precursor owing to the activity of the endogenous plant myrosinases [66]. The co-
incubation of the 3CLPro with the purified sinigrin did not result in a significant reduction
of the protease activity even at the highest concentration tested, 500 µg mL−1. By contrast,
the co-incubation with allyl isothiocyanate at 500 µg mL−1 (log (allyl isothiocyanate) = 2.7)
resulted in a complete inhibition of the 3CLPro activity. Therefore, the dose–response curve
was obtained for allyl isothiocyanate. The response fitted to a sigmoidal curve (r2 value
0.943) with an estimated IC50 of 41.43 µg mL−1 allyl isothiocyanate standard (Figure 3).
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4. Discussion

The recent COVID-19 disease pandemic caused by the SARS-CoV-2 coronavirus
has resulted in a global health crisis. Although other coronaviruses were responsible
for previous outbreaks in the last two decades [67], the fast spread of SARS-CoV-2 has
demonstrated the threat to human health of new coronaviruses. One year after the disease
was declared as a pandemic [68], COVID-19 is still causing thousands of daily deaths and
no effective treatments apart from preventive vaccination are reported for fighting the
infection process. Obtaining effective treatments against SARS-CoV-2 is urgently needed
because, in combination with vaccines, they may become a first line therapy not only for
current SARS-CoV-2 strains, but also for new ones.

The 3CLPro is considered as one of the most promising targets for the development
of antiviral drugs against coronaviruses [69]. The three-dimensional structure of SARS-
CoV-2 3CLPro was unraveled by Zhang et al. [12]. The enzyme has an identity percentage
of 96% with SARS-CoV 3CLPro, thus it has been inferred that both proteases have very
similar specificities [70,71]. These works suggest that molecules and extracts that displayed
inhibitory activity against SARS-CoV 3CLPro might be also of interest to inhibit the activity
of SARS-CoV-2 3CLPro. In this context, our work used a targeted approach based on
previous information on inhibitors SARS-CoV 3CLPro [22]. For the current study, plant-
based extracts potentially promising for the inhibition of SARS-CoV-2 3CLPro activity were
tested. Previous studies with plant-based extracts have been conducted in the past to test
their inhibitory capacity against SARS-CoV 3CLPro, with promising results [15,16,72].

The first screening with plant extracts at 500 µg mL−1 revealed that the extracts of the
three citrus fruits peels produced a low reduction of the protease activity. Flavonoids present
in citrus fruits have been suggested as potential antivirals against coronaviruses and in
therapeutics fighting the inflammation process that can derive in more severe symptoms of
the viral disease [73,74]. Recent works based on computational molecular docking pointed
to the flavanone hesperidin, which is the glycosylated form of hesperetin and the main
form in which this flavonoid is found in citrus fruits, as one natural compound displaying
high capacity for binding to the SARS-CoV-2 3CLPro [71,75]. However, our results showed
that citrus fruit peels, which contain high concentrations of hesperidin [44], had a low
in vitro inhibitory activity against SARS-CoV-2 3CLPro.

Interestingly, extracts of turmeric powder, mustard seeds, and wall rocket leaves
produced the highest reduction in SARS-CoV-2 3CLPro activity. Turmeric rhizomes are
rich in the flavonoid curcumin and its derivatives, natural compounds that have been also
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considered in molecular docking studies for their potential inhibitory capacity against
SARS-CoV-2 3CLPro [75–77]. According to these studies, curcumin and its derivatives can
be considered as natural compounds with potential as 3CLPro inhibitors, although the
same works showed that other flavonoids might have higher potential inhibitory activity
according to the docking results. In concordance, our FRET assay revealed a high inhibitory
capacity of the turmeric rhizomes extracts against the 3CLPro activity. The turmeric ex-
tracts were, in fact, the most effective among all the plant-based extracts evaluated in the
inhibitory activity. In this respect, other plant-based extracts were evaluated in the past
against SARS-CoV 3CLPro activity and showed lower inhibitory capacity. Ryu et al. [72]
found that ethanolic extracts of Torreya nucifera tested at 100 µg mL−1 resulted in 62% of
activity inhibition against SARS-CoV 3CLPro, while in our case, the same concentration of
turmeric extract resulted in a reduction of 86% for SARS-CoV-2 3CLPro activity. In another
study, an IC50 was determined for SARS-CoV 3CLPro activity that ranged between 25 and
70 µg mL−1 for black and Puer tea extracts [15], while for the turmeric extracts, we found
an IC50 of 1.6- to 4.5-fold lower than these against SARS-CoV-2 3CLPro.

The concentration of curcumin in turmeric powder is generally around 3% or lower [78],
while the concentration of other curcuminoids is even lower [79]. However, commercial cur-
cumin (>80% curcumin) even at concentrations of 75 µg mL−1, which is several-fold the
expected concentration of curcumin in the turmeric extract at 500 µg mL−1, did not cause a
complete inhibition of SARS-CoV-2 3CLPro activity. This result suggests that other com-
ponents of turmeric or their synergetic interaction may have a major contribution to the
inhibition of SARS-CoV-2 3CLPro activity. In this sense, turmeric rhizomes also contain
the curcuminoid demethoxycurcumin [56], which has also been described as a poten-
tial inhibitor against SARS-CoV-2 3CLPro, even showing greater affinity than curcumin
for SARS-CoV-2 3CLPro in the docking analysis of Khaerunnisa et al. [77]. Furthermore,
turmeric powder also contains sesquiterpenoids [79] and quercetin derivatives [80], the lat-
ter also being considered as a potential inhibitor of SARS-CoV-2 3CLPro [77,81]. Thus,
the inhibitor capacity of turmeric extracts might be the result of a synergistic activity of
several compounds. Overall, our results indicate that extracts of turmeric are a strong
candidate for being tested for inhibiting the in vivo replication of SARS-CoV-2. More-
over, considering these results, further studies should be addressed to characterize the
methanolic extracts of turmeric powder and to individually test the compounds present.

On the other hand, two cruciferous extracts (from mustard seeds and wall rocket) that
are rich in sinigrin [36,57,58,61] were found to exert a strong inhibition of SARS-CoV-2
3CLPro activity. Sinigrin is the precursor glucosinolate of allyl isothiocyanate, a reactive
molecule displaying antimicrobial [82,83] and anticarcinogenic properties [84–86]. By con-
trast, references to the potential of either sinigrin or allyl isothiocyanate as antivirals are
more limited [16]. These latter authors found that sinigrin had good potential as an inhibitor
against SARS-CoV 3CLPro. In our case, we found that sinigrin has a low effect as in vitro
inhibitor of SARS-CoV-2 3CLPro, while its derivative allyl isothiocyanate is a powerful
inhibitor of SARS-CoV-2 3CLPro activity. In this way, isothiocyanate metabolites might be
responsible, at least in part, for the antiviral properties of these cruciferous plants extracts,
which is probably related to their chemical structure, i.e., organosulfur molecules acting
as H2S donors [87]. In fact, Blanchard et al. [14] previously reported a good response of
sulfur-containing compounds against SARS-CoV 3CLPro activity owing to their capacity of
forming covalent adducts between their electrophilic group and a nucleophile side chain of
the protease. Therefore, our results suggest that the sinigrin derivative allyl isothiocyanate
is a good candidate molecule for being tested in vivo for inhibiting SARS-CoV-2 3CLPro

activity. However, the high cytotoxicity of allyl isothiocyanate may preclude its practical
use [83], which would depend on the concentration required. In this sense, further analysis
of the methanolic extracts for mustard and wall rocket would increase the knowledge re-
garding the concentration at which these compounds are found, and the possible presence
of other metabolites also exerting potential inhibitory activities.
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This work is a first targeted approach for the evaluation of plant extracts and contain-
ing natural compounds for the development of prophylaxis, adjuvant therapies, and drug
treatments aimed at inhibiting the activity of SARS-CoV-2 3CLPro. Extracts of turmeric
have been identified as a candidate plant extract for reducing SARS-CoV-2 3CLPro activity,
which could eventually affect the viral replication. In addition, other plant extracts, such as
those of cruciferous plants containing sinigrin, which, after consumption, is degraded to
allyl isothiocyanate, might be considered as well for their inhibition of SARS-CoV-2 3CLPro

activity. The current study provides information that can help in the search for treatments
against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials. Thus,
further studies following the results of this work should be addressed: (1) to chemically
characterize the plant extracts with high potential inhibitory activity and to re-evaluate
this capacity after the fractionation of the extracts, thus allowing the identification of the
biomolecules responsible of such activity and possible synergistic effects; and (2) to eval-
uate this potential inhibition in cell-based studies where the virus, host cell, and plant
extract interact, also determining the toxicity limit prior to conducting other pre-clinical
and clinical trials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10071503/s1, Figure S1: Materials used for the analysis, from left to right and top
to bottom: orange peel, lemon peel, lime peel, grapefruit peel, celery leaves, celery stalk, parsley
leaves, dill leaves, dried oregano leaves, red onion bulb, turmeric rhizomes, aloe leaf, chamomile,
mustard seeds, horseradish root, wasabi powder, and wall rocket leaves; Figure S2: Signal recorded at
wavelengths between 400 and 550 nm for the residual activity of the 3CLPro without inhibition (Con-
trol), after co-incubation with chamomile extracts at concentrations of 200 µg mL−1 or 500 µg mL−1,
after co-incubation with the inhibitor GC376 at 50 µM (GC376), and the signal of the raw chamomile
extract at a concentration of 500 µg mL−1 without incubation with 3CLPro (Raw).
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