
energies

Article

Tracking Turbulent Coherent Structures by Means of
Neural Networks

Jose J. Aguilar-Fuertes † , Francisco Noguero-Rodríguez †, José C. Jaen Ruiz † and Luis M. García-RAffi
and Sergio Hoyas *

����������
�������

Citation: Aguilar-Fuertes, J.J.;

Noguero-Rodríguez, F.; Jaen Ruiz,

J.C.; García-RAffi, L.M.; Hoyas, S.

Tracking Turbulent Coherent

Structures by Means of Neural

Networks. Energies 2021, 14, 984.

https://doi.org/10.3390/en14040984

Academic Editor: Dimitris Drikakis

Received: 18 January 2021

Accepted: 9 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain;
joagfue@etsid.upv.es (J.J.A.-F.); franorod@etsid.upv.es (F.N.-R.); jojaerui@etsid.upv.es (J.C.J.R.);
lmgarcia@mat.upv.es (L.M.G.-R.)
* Correspondence: serhocal@mot.upv.es
† These authors contributed equally to this work.

Abstract: The behaviours of individual flow structures have become a relevant matter of study
in turbulent flows as the computational power to allow their study feasible has become available.
Especially, high instantaneous Reynolds Stress events have been found to dominate the behaviour of
the logarithmic layer. In this work, we present a viability study where two machine learning solutions
are proposed to reduce the computational cost of tracking such structures in large domains. The first
one is a Multi-Layer Perceptron. The second one uses Long Short-Term Memory (LSTM). Both of the
methods are developed with the objective of taking the the structures’ geometrical features as inputs
from which to predict the structures’ geometrical features in future time steps. Some of the tested
Multi-Layer Perceptron architectures proved to perform better and achieve higher accuracy than the
LSTM architectures tested, providing lower errors on the predictions and achieving higher accuracy
in relating the structures in the consecutive time steps.

Keywords: turbulence; turbulent structures; DNS; machine learning; neural networks

1. Introduction

In this paper, the terms “turbulent structures”, “Qs” and “sweeps, and ejections” are
used interchangeably.

Turbulence is probably the open problem in physics with most applications in daily
life. Wall-bounded turbulence is present in many aspects of our life, and it is responsible
for up to 5% of the CO2 dumped by humanity every year [1]. To completely understand
turbulence is perhaps a too-ambitious problem, which we still are years apart, so we should
focus on improving models such that they can simulate, in a reliable and fast way, the
behaviour of flows. Because we want to understand these flows first, no modelling can be
used, so we have to used the Direct Numerical Simulation (DNS) technique. This technique
does not use any other modelling than the Navier–Stokes equations. Moreover, DNS
are restricted to simplified geometries. The most successful of these idealized flows are
Poiseuille turbulent channels, where the fluid is confined between two parallel plates and
the flow is driven by pressure. However, the computational cost is extremely high. For
doing this, supercomputers are and will be the right technological tool. Since the 90’s of the
last century, their power have increased in an exponential way, and the DNS have grown
accordingly. Because the seminal work of Kim, Moin, and Moser [2], the main control
parameter, the friction Reynolds number Reτ has increased continuously [2–8].

In order to understand and model turbulence, in the last 100 years, the main mecha-
nism has been the Reynolds decomposition, as well as to improve scaling laws. However,
in the last years, we have seen a drift to structures. Since the seminal work of Chong [9] and
others, we have been able to identify the basic coherent structures of turbulent flows. How-
ever, the interaction of these structures is a highly nonlineal problem. Their behaviour or
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even the precedence (cause-effect) [10] of some of these structures is still an open problem.
The idea of this work is to create a code able to identify and follow the different structures
of the flow as the flow is simulated. This avoids the necessity of storing large databases.

Traditionally, the structure-following problem has been focused on hairpins: groups of
U-shaped dissipative structures that are formed near the wall and go towards the outer
region. Head and Bandyopadhyay [11] identified groups of structures at 45 degrees from
the wall, producing a model that Adrian et al. [12] and Del álamo et al. [13] evolved
towards the vortex clusters model, identifying hairpin clusters whose lifetime was longer
than their characteristic one. With the developments in computational power that have
come in the last decade, the Reynolds number of large DNS simulations has risen, and the
existence of these hairpins in large Reynolds number flows has been questioned by authors,
such as Jiménez et al. [14].

Instead of looking for hairpins, the idea is to use the momentum transfer model
of sweeps and ejections, high instantaneous Reynolds Stress events in the flow where the
momentum transfer is large. Lozano-Durán et al. [15] found that these events are repre-
sentative for the momentum transfer in the logarithmic layer, and tracked them through
their lifetime to find that some of them become large attached to the wall and extend
across the logarithmic layer, and they are responsible for most of the total momentum
transfer [10]. Figure 1 contains a representation of a sweep-ejection pair extracted from a
DNS simulation.

Figure 1. Representation of a sweep-ejection pair from a single DNS time step.

However, a big problem appears. Typically, one can expect millions of structures,
like these ones per step. Because the time step is around 30s in the largest simulations of
turbulence, the code has to be able to identify the vortexes and relate them with the ones of
the previous step in this brief time. Machine Learning (ML) has been the strategy followed
here. This technique has entered most scientific areas for a vast set of data processing
tasks. Under this term, ML, we can find a broad range of algorithms and modelling tools,
which includes the Artificial Neural Networks (ANNs). It was proved in the decade of
80’s in the last century that ANNs are universal approximators [16,17]. ANNs can be
used for fitting, classification, clustering, or time series among other classical problems
in Applied Mathematics. They are able to recognise patterns in data and, in some sense,
allow us to “mathematize the phenomenology”. Despite their bad reputation as “black
boxes”, ANNs are a good mathematical solution for the approximation of functions when
no explicit expression can be obtained by other techniques. The use of neural networks
for turbulence research is developing rapidly in recent years. The need of DNS methods
to produce complete information in the whole domain for solving each step grants an
abundance of available training data; and, the problems associated with fluids, such as
the difficulty to measure precisely experimental data or the high computational cost of
simulations, are challenges that are similar to the ones solved with neural networks in
other fields. The work of Srinivasan et al. in predicting boundary layer behaviour by
means of convolutional and recurrent neural networks [18], the work of Park and Choi in
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reconstructing data for flow control by means of convolutional neural networks [19], the
work of Ling et al. in using ANNs to estimate the Reynolds Stress anisotropy tensor to
augment the results provided by Reynolds Average Navier Stokes (RANS) models [20], and
other ANN approaches to modelling the closure problem (modelling the time-averaged
value of the Reynolds Stress tensor) [21,22] are good examples of this.

ANNs have also been used to obtain successful results in other fields of fluid dynamics
where DNS data are not available, while using the experimental results as training [23–25].
Solutions to the closure problem that use ANN to predict the Reynolds Stress Tensor in fluid
fields have also been proposed using experimental data as training, such as Singh et al.,
while using ANN augment the Spallart–Almaras turbulence model [26]. Brunton et al. [27]
and Duraisamy et al. [28] have made detailed reviews of the state of the art of Machine
Learning in Turbulence.

In this article, we perform a viability study for a novel method to identify and track
these structures with the aid of neural networks. The goal is to understand the particular life
of every structure and identify the most energetic structures of the flow in an efficient way.

Section 2 describes the computational materials and methods used for this work,
where Section 2.1 describes the DNS numerical model that has been used to obtain the fluid
fields, Section 2.2 describes the process used for fluid structure and Sections 2.3 and 2.4
detail the neural network solutions to the problem. Section 3 presents the results of our
analysis. Section 4 shows the conclusions.

2. Materials and Methods
2.1. DNS Numerical Model

In this work, we are going to simulate a Poiseuille (pressure-driven flow) plane channel
flow. Figure 2 contains a schematic description of the channel used for the DNS simulation
and the reference system used. The streamwise, wall-normal, and spanwise coordinates
are respectively denoted by x, y, and z, and the corresponding velocity components are U,
V, and W, or using index notation, Ui, for i = 1, 2, 3. Statistically averaged quantities are
denoted by an overbar, whereas fluctuating quantities are denoted by lowercase letters,
i.e., U = U + u = U1 + u1. The governing equations of the system are the incompressible
Navier–Stokes equations,

∂jUj = 0, (1)

∂tUi + Uj∂jUi = −∂iP +
1

Reø
∂jjUi. (2)

The LISO code has been used to solve system (1) and (2). These code has been
validated in many occasions, and it has been used to run some of the largest problems in
turbulence. These equations have been solved using the LISO code, which has successfully
been employed in order to run some of the largest simulations of turbulence [3,29,30]. The
code is an evolution of the classic one of [2], but using five-point compact finite differences
in y direction, with fourth-order consistency and extended spectral-like resolution [31].
A Runge–Kutta scheme, third-order semi-implicit, specially developed for this kind of
flows [32] has been used for the temporal discretization. The wall-normal grid spacing
is adjusted in order to keep the resolution approximately constant in terms of the local
isotropic Kolmogorov scale η = (ν3/ε)1/4 at ∆y = 1.5η, i.e. In this formula, ε is the
dissipation rate. In wall units, ∆y+ varies from 0.3 at the wall, up to ∆y+ ' 12 at the
centerline. Table 1 provides details of the simulation.
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Figure 2. Schematic representation of the turbulent channel used in the simulations, including a
description of the reference frame.

Table 1. Parameters of the flow, the solver, and the domain of the Direct Numerical Simulation (DNS)
simulation, in which this work has been developed.

Flow Parameters

Reynolds number Re 11,480
Wall Reynolds number Reτ 500

Frition velocity uτ 0.0487

Solver Parameters

CFL 0.9
Time step ∆t 0.0295

Geometrical Parameters

Number of points in the x direction 1536
Number of points in the y direction 251
Number of points in the z direction 1152

Domain length in x 8πh
Domain length in z 3πh
Channel height in y 2h

In this simulation, high Reynolds Stress events are recognised by means of quadrant
analysis, with the approach that was proposed by Wallace et al. [33]. This approach consists
of studying turbulent regions with high instantaneous Reynolds Stress in the different
quadrants, depending on the signs of u and v. The structures with higher instantaneous u
and v are present in Q2 (ejections, u < 0, v > 0) and Q4 (sweeps, u > 0, v < 0).

According to Lozano-Durán and Jimenez [10], these structures are not only responsible
for the momentum transfer inside the logarithmic layer, but they are also the primitive
structures that originate the hairpin vortex clusters, having a key role in the drag generation
in turbulent flows.

2.2. Tracking Sweeps and Ejections in Turbulent Flows

Sweeps and ejections are coherent regions of the flow, where the instantaneous point-
wise Reynolds Stress is bigger than a threshold, established on the basis of percolation.
Percolation theory is the study of the connected components on random graphs, and it was
first applied to turbulent structure identification by Moisy and Jimenez [34]. If the limit is
too permissive, a sponge-like structure forms, spanning all of the domain, but, if it is too
restrictive, only very small structures will form. Between those, there is a value of the limit
where the ratio between the volume of the largest structure and the total volume of all the
detected structures raises sharply. This is the point selected for the value of the criteria.
This limit was set to a factor of the standard deviation of the considered parameter (the
instantaneous Reynolds Stress) to mitigate the dependence of the probability of selection
to the distance to the wall, as del álamo et al. did for vorticity [13] and Lozano-Durán et al.
for Reynolds Stress [15].
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Once the limit for the desired value has been properly established, all of the points
in the flown can be evaluated against the designed criteria, obtaining a subset of the total
points of the domain where the relevant magnitude (in this case, instantaneous Reynolds
stress) is significant.

Subsequently, the coherent structures can be aggregated from the obtained points into
a set of three-dimensional structures in a single time step, classifying them into sweeps
and ejections. Figure 3 presents the schematic 2D representation of this step. This figure
shows a section of a slice of the domain, where (a) marks, in black, all points fulfilling the
criteria and (b) contains all of the structures aggregated, each one filled in a different colour.
An efficient method to perform this step has been described in [35]. Finally, in order to
reduce the huge number of structures, those with a volume of less of 30 wall units have
been removed.

(a) (b)

Figure 3. (a) Section of a slice of the fluid domain with all points fulfilling the criteria highlighted in
black. (b) Coherent structures aggregated from the slice in (a), each filled in a different colour.

FInally, the temporal evolution of the sweeps and ejections must be reconstructed from
the information available. This process does not have a deterministic solution, as there
is no known analytic law defining the motion of sweeps and ejections. Several traditional
programming (as opposed to machine learning) solutions have been used for this problem,
such as the one used by Lozano-Durán and Jimenez, which computes the intersection of
the structures in two consecutive time [10], and the one that was proposed by Muelder and
Ma, which projects each structure onto the following time step and uses the projection an
initial guess to aggregate the structures in that following time step [36]. Figure 4 shows
the sweeps and ejections found in a section of the domain in two consecutive saved DNS
time steps, with each indpendent structure colored differently. The objective of this step is
to correlate them between the two time steps, so that the lifetime of the structures can be
reconstructed later.

(a) (b)

Figure 4. (a) Representation of some sweeps and ejections in a single time step of the DNS simulations.
The (b) Sweeps and ejections in the same region following time step.
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Once the full process is performed, the lifetime of the structures can be reconstructed
for further study. Figure 5 shows several steps of the life of an ejection, extracted from the
DNS simulation described in Section 2.1.

Figure 5. Representation of the shape and distance to the wall of an ejection through several steps of
its lifetime.

2.3. Prediction of Geometrical Features of Sweeps and Ejections by Means of Multi Layer
Perceptrons (MLP)

The tracking problem that was described in the previous section, understood as the
correlation of structures from a time-step to the next, presents itself as a good opportu-
nity for a neural network solution, as the classical programming solution is expensive
computationally: it requires point-by-point access to a very large dataset in both memory
contiguous and non-contiguous directions. To perform a simplification, the lack of any
analytical description for the behaviour of sweeps and ejections can encourage the use of
neural networks, as they have been proven to be universal approximators [17].

The problem must be formulated in terms of a series of inputs to provide to the
network and a series of outputs that are expected as output. In this case, the geometrical
features of the structures have been selected as both input and output. That way, no
extra information regarding the flow needs to be passed to the routines that construct the
structures, thus maximising the computational efficiency through the whole process. This
geometrical features are:

• Centre of mass position (three components).
• Bounding box position, as given by the corners with minimum and maximum values

for the three coordinates (six components).
• Volume (one component).

The objective of the neural network is to obtain the values of this set of features on the
next time step to the one used as input, so that the structure that is closest to the prediction
of all of the ones present in the next time step can be selected to be the continuation of
the initial structure. Figure 6 shows the proposed implementation of the use of ANN in
the process of tracking Qs in a DNS simulation: the objective of the ANN is to provide an
estimation of the geometrical features of the set of Qs for the next evaluated time step. The
predictions made can then be compared with the obtained geometrical features of the Qs
in the next time step in order to extract the correspondence between the structures in both
of the time steps.

Additionally notice that the idea of the presented algorithm is not to foresee the full
characteristics of the Qs at ti+n from time ti, something that is extremely difficult if even
possible, but to identify the structures obtained in step ti+n with the ones of ti.

Multi-Layer Perceptrons (MLP) are one of the most simple artificial neural networks.
They consist on a series of nodes or neurons organised in fully connected layers. One node
in an intermediate layer is connected to the nodes of the previous layer and produce a
result by applying a function (activation function) to the values that are obtained from
those nodes. The activation function is applied to the sum of each incoming connection
multiplied by a weight and an overall bias, being the weights and biases of the full networks
the parameters that must be adjusted by a training process (trainable parameters). For the
present work, the rectified linear unit activation function was used for the neurons’ internal
activation function. Figure 7 contains a schematic representation of a neuron.
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(n steps)

Structure
Identification

Minimum
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Prediction (
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)
ti+2n,predUt+2n
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Figure 6. Flowchart of the proposed implementation of the use of Artificial Neural Networks (ANN)
in the process of tracking Qs in a DNS simulation. Uti represents the velocity field in step ti, and Gti

the set of features of the Qs of time step ti. The ANN takes the features of the Qs and predicts the
their values in the next timestep, so that they can be compared to the features of the Qs in the next
time step.

f (∑wixi +b)

x0

x1

...

xn

y

Figure 7. Schematic representation of a neuron, the building block of multi-layer perceptrons. It takes
a vector as input and generates a scalar output by applying the function to the dot product of the
input and the weights plus the bias.

The training process is an optimisation for the trainable parameters in the networks, in
which a loss function that is representative of the difference between the outputs produced
by the network and the expected outputs from a known series of cases is minimised. The
hyperparameters, such as the learning rate, contol this training process, which must be
adjusted to ensure that the training process is successful.

The dataset used for the training, validation, and testing all of the networks in this
work has been constructed from 994 non-consecutive time steps of the DNS simulation
described in Section 2.1, the separation between each of them being 4.5 CFL, in which the
sweeps and ejections have been tracked using sweeps and ejections classical computing
techniques. A series of sequences have been obtained, each one representing the full
lifetime of a sweep or an ejection, and from each sequence a series spanning n time steps a set
of n− 1 data points, with each consisting of a pair input-output representing the evolution
of the sweep or ejection from one time step to the next. This dataset has been split into three
groups:

• 70% of all the available data has been used for training.
• 20% for validation, evaluating the value of the loss function and checking consistency

with the values that were obtained in the training dataset.
• 10% for testing, examining the actual accuracy of the predictions.

Table 2 contains the number of sequences and data points for each of the groups.
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Table 2. The number of data points (evolution of a structure from one time step to the next one) and
number of sequences (total structure lifetime) in the dataset and in each one of the three sets it has
been divided into.

Number of Data Points Number of Sequences

Training 13,713,321 880,362
Validation 3,894,344 251,532

Testing 1,962,774 125,766
Total 19,570,439 1,257,660

For this work, a number of different network topologies have been trained and their
performance evaluated in the validation dataset. All of the evaluated network topologies
present an input and output layer both with with 10 neurons to accommodate for the data
shape to match the geometrical features that were selected for this. Between the input an
output layers, a series of n hidden layers with ui neurons i = 1, . . . , n are present. Figure 8
contains a representation of the multi-layer perceptron used.

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

Centre of mass

Bounding box

Volume

...
...

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

Centre of mass

Bounding box

Volume

Input layer:
Features at t = ti

First layer with
u1 neurons

n-th layer with un
neurons (if n > 1)

Output
layer

Outputs:
Features at t = ti+1

Other
hidden
layers

Figure 8. Schematic representation of the multi-layer perceptron network topology used, containing
n hidden layers with ui neurons each.

MLPs can have their architectures described by a simple matrix equation, with input
vector x and output vector y. For a three-layer MLP (two hidden layers and the output
layer), its matrix representation is as follows:

y = f 3
(

W3,2 f 2
(

W2,1 f 1(W1,inx + b1) + b2

)
+ b3

)

where f j is the activation function for layer j, Wj,k is the weights matrix from layer k to
layer j and bj is the bias vector for layer j.

As a metric for the network performance, the table presents the mean squared error
of the predictions that were made by the network against the results that are present in
the validation dataset. Table 3 lists the examined MLP architectures and the mean squared
error that they produced in the validation dataset once converged.
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Table 3. The list of evaluated network topologies, described by the number of hidden layers n and
the neurons in each layer ui, and the mean squared errors (MSE) produced by their predictions in the
validation dataset. The IDs contain the number of hidden layers and the number of neurons of the
first hidden layer, or two firsts hidden layers for the case where the first is equal.

ID n ui Trainable Parameters MSE

MLP_1_8 1 {8} 178 0.0742
MLP_1_10 1 {10} 220 6.7 × 10−4

MLP_2_10 2 {10, 10} 330 6.6 × 10−4

MLP_3_10_8 3 {10, 8, 8} 370 0.0675
MLP_3_10_10 3 {10, 10, 10} 440 6.5 × 10−4

In order to ensure that no overfitting is happening, the networks were trained for the
same number of epochs than they took to reach a stable value of the loss function (MSE).
During this training epochs, the validation Mean Squared Error was monitored for any
upward trend. None of the studied networks presented any overfitting, which was made
possible by the very high data to trainable parameters ratio.

Further sensitivity analysis to initial conditions was performed because of the sim-
ilarity of the values of the Mean Squared Error for networks MLP_1_10, MLP_2_10 and
MLP_3_10_10. Figure 9 contains the result of training these three architectures from 20
different random starting points. Not only the minimum error values are similar for
these three MLPs, but their response to different initial conditions of the parameters do
not present enough differences to establish that any of the three analysed architectures
performs better.

Figure 9. Limits and confidence intervals of the results of the MSE in the validation dataset after
training MLP_1_10, MLP_2_10 and MLP_3_10_10 network architectures from 20 different random
initial states.

2.4. Prediction of Geometrical Features of Sweeps and Ejections by Means of Recurrent
Neural Networks

A Recurrent Neural Network is a neural network architecture that presents context-
awareness by means of considering its previous state for the computation of their output.
That feature allows for it to be specially fitted to predict time-series data, as opposed to the
Multi-Layer Perceptron input to output mode of operation. However, RNNs are difficult to
train as they present the problem of vanishing gradients: the gradients in the later layers
restricts the learning rates upstream in the network, which can prevent the network from
learning any further. Long-Short Term Memory (LSTM) networks, developed by Hochreiter
and Schmidhuber [37], use a gating mechanism to control the dynamics of the recurrent
connections to avoid the vanishing gradients problems. This gating mechanism was later
improved by Gers et al. [38], which included the forget gate in the LSTM units. For this
problem, due to the non-markovian nature of turbulence, LSTMs can be hypothesised to
present an advantage with respects to MLPs, as the successful capture of the long-term
dynamics of the structure can represent an advantadge in predicting their position.
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LSTM units consist on a cell and three gates: input, output, and forget. The cell
contains the information on the LSTM and the gates regulate its information flow. The
input gates take the information from the input vector and previous state of the whole
LSTM layer to modify the cell state, the output gate regulates the flow of information
downstream, and the forget gate regulates the information that stays in the LSTM cell [37].

The output value y(t) of an LSTM unit with a forget gate is calculated, as follows,
from the value of the nin inputs xj(t) and previous state of the other nu units in the layer
yj(t− 1):

y f (t) = f f

(
nin

∑
j=0

w f jxj(t) +
nu

∑
j=0

v f jyj(t− 1) + b f

)

yin(t) = fin

(
nin

∑
j=0

win jxj(t) +
nu

∑
j=0

vin jyj(t− 1) + bin

)

you(t) = fo

(
nin

∑
j=0

wou jxj(t) +
nu

∑
j=0

vou jyj(t− 1) + bou

)

c(t) = y f (t) · c(t− 1) + yin(t) · g
(

nin

∑
j=0

wc jxj(t) +
nu

∑
j=0

vc jyi(t− 1) + bc

)

y(t) = you(t) · h(c(t))

where y f (t) is the value of the forget gate, yin(t) the value of the input gate, you(t) the value
of the output gate and c(t) is the internal state of the LSTM unit, w are the weight vectors
with dimension nin of the inputs for each gate, v are the weight vectors of dimension nu of
the other units in the layer for each gate, b are the biases for each gate and f f , fin and fou,
are the activation functions for each gate, g is the input squashing function, and h is the
output squashing function, which, according to Gers et al., may not be needed [39]. Note
that the LSTM layers feed the outputs of all their units in the previous step as inputs to all
other units in the layer and, therefore, the number of trainable parameters per layer grows
with the second power of the number of LSTM units per layer.

Several different LSTM configurations of n layers with ui units per layer have been
tested. The LSTM layers have been placed between an input of dimension 10 and an output
layer consisting of 10 convolutional neurons, so that the output is compatible with the
dataset dimensions. Table 4 lists the tested LSTM configurations and the mean squared
error that they produced in the validation dataset once converged.

Table 4. List of evaluated Long Short-Term Memory (LSTM) network topologies, described by the
number of hidden layers n abd the number of LSTM units per layer ui, and the mean squared errors
(MSE) produced in the validation dataset.

ID n ui Trainable Parameters MSE

LSTM_1_5 1 {5} 380 0.0120
LSTM_1_10 1 {10} 950 0.0073
LSTM_2_8 2 {8, 8} 1242 0.0049
LSTM_2_25 2 {25, 25} 8960 0.0042
LSTM_1_50 1 {50} 12,710 0.0030
LSTM_2_50 1 {50, 50} 32,910 0.0016

For the LSTM networks, overfitting was evaluated in the same way as in the previous
case: monitoring the Mean Squared Error in the validation dataset for a number of epochs
once the loss function (MSE) in the training dataset had stabilised. In this case, all of the
evaluated networks presented some degree of overfitting and, therefore, a dropout rate of
20% was introduced for LSTM units, meaning that the internal status of the LSTM during
training is reset, on average, in one of every five training data points. After the introduction
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of the dropout, the networks were trained again to obtain the values that are presented in
Table 4, and no overfitting was observed.

3. Results and Discussion

Once the networks have converged and it is assured that no overfitting is occurring, the
next step consisted of relating the training metric (mean squared error) to the functionality
that the networks are intended to serve. To do that, an environment that is similar to the
operational one was set up for testing. Each prediction done by the networks is compared
against all of the structures present in the next time step, for every step of every sequence:

1. Obtain the prediction of the geometrical features of the structure in the next time step
using the network.

2. Obtain the norm of the difference between the prediction and feature vectors of all
the structures present in the next time step.

3. The minimum value of that norm corresponds to the most similar structure present in
the following time step. If they belong to the same sweep or ejection, the prediction is
correct. Otherwise, it is not.

This process was applied to a subset of 2000 sequences from the testing dataset in
order to evaluate the overall performance of the different networks. Figure 10 shows the
success rate of the predictions of the different networks, as compared to their MSE.

Figure 10. The success rate of the predictions of the different networks in a subset of 2000 sequences
from the training data, and their Mean Squared Errors in the validation dataset.

One network of each group was further tested while using the same method in the
full testing dataset in order to obtain further insight into the results that were produced by
the networks. For the Multi-Layer Perceptrons, the MLP_1_10 was used and this network
obtained an overall success rate of 98.74% for all of the predictions done in the testing
dataset. For the LSTM networks, the LSTM_2_50 was chosen, obtaining an overall sucess
rate of 67.59%. Figure 11 contains the distributions of MLP_1_10’s results of the predictions
with respect to Figure 11a the value of norm of the difference between the features vectors
of the prediction and the selected structure, Figure 11b structure volume, and Figure 11c
distance to the wall y+ of the structure’ centre of mass. Figure 12 contains the same
information for LSTM_2_50’s predictions.
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Figure 11. � Successful predictions, � Failed Predictions, - Total predictions, - Success rate. (a) Histogram of the MLP_1_10
prediction results (up) and success rate (down) with respect to the norm of the difference between the predicted structure
features vector and the one of the selected structure of the target time step; (b) Histogram of the MLP_1_10 prediction
results (up) and success rate (down) with respect to the original structure volume; and, (c) Histogram of the MLP_1_10
prediction results (up) and success rate (down) with respect to the original structure y+.

Figure 12. � Successful predictions, � Failed Predictions, - Total predictions, - Success rate. (a) Histogram of the LSTM_2_50
prediction results (up) and success rate (down) with respect to the norm of the difference between the predicted structure
features vector and the one of the selected structure of the target time step; (b) Histogram of the LSTM_2_50 prediction
results (up) and success rate (down) with respect to the original structure volume; and, (c) Histogram of the LSTM_2_50
prediction results (up) and success rate (down) with respect to the original structure y+.

Regarding the predictions that were made by MLP_1_10, the predictions are better for
structures with lower volume, but there is no clear trend for the accuracy of the prediction
as a function of the distance to the wall. As expected, the precision of the method is higher
for a lower norm of the difference. Appendix A presents the coefficients of the tested
network.

Overall, none of the LSTM architectures tested could achieve the error of the best
MLP architecture or its precision. LSTM_2_50 presents an overall lower sucess rate in
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the predictions, and it does not overcome the problems that MLP_1_10 presented with
structures with higher volume.

The present work, due to its relatively low Reynolds number and size of the dataset,
can be understood as a viability study for the incorporation of machine learning techniques
in fluid structure tracking problems. For the practical introduction of the described methods
in large Reynolds number channels (up to Reτ = 10, 000, with meshes consisting of 8× 1010

points [40]), it must provide a clear execution time advantage maintaining the precision of
existing methods.

Thus, only summarising some of the tested multi-layer perceptrons has achieved said
requirements in terms of precision. In terms of computational load, multi-layer perceptrons
also present the advantage of not needing the history of the structure to generate the
prediction, potentially saving the computational cost of reconstructing the full lifetimes of
all the present structures of each analysed step.

4. Conclusions

In this work, we have compared the performance of several MLP and LSTM artificial
neural networks in predicting the future geometrical features of the sweeps and ejections of
a turbulent channel flow at a relatively low friction Reynolds number, Reτ = 500. Several
multi-layer perceptron and recurrent (LSTM) neural network architectures were trained in
order to predict the geometrical features of both structures in step n + 1 while using the
knowledge gained in step n. Different benchmarks show that the tested MLPs proved to
generate better prediction than the LSTM networks. However, that does not mean that
no LSTM could produce accurate results. Probably more data and computational time for
training and experimentation with the network topology are needed.

However, the solutions obtained with some of the tested MLP architectures were
satisfactory, obtaining accurate predictions with a relatively simple architecture, meaning
fast computations. Having proven the viability of this approach, the functionality of the
network could be extended by adding some extra functionality to cover the cases in which
the presented neural networks would not be enough: structure creation, structures crashing
to form larger structure, structures splitting into smaller children structures, and structures
dissipating and dying. These introductions would equate this method to the method that
was used by Lozano-Durán et al. [10], which comes at a computational cost of checking the
fluid domain and comparing for overlap in consecutive steps. The development of a faster
method is a necessity because we intend to perform analyses of the sweeps and ejections at
larger Reynolds numbers and/or bigger boxes for different flow.

Finally, the next step in the algorithm is to train it to follow the small vortexes with
shorter life, and to reduce its memory needs in order to be able to simulate medium to high
Reynolds numbers.
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Appendix A. Weights and Biases of MLP_1_10

MLP_1_10 can be described as:

y = f 2
(

W2,1 f 1(W1,inx + b1) + b2

)

where f 1 and f 2 are the Rectifier Linear Unit (ReLU) function f (x) = max(0, x), x is the
input features vectors scaled to the range (0, 1) and the weights matrices and biases vectors
are as follows:

W1,in =




0.087 0.464 −0.3267 −0.382 −0.297 −0.4144 0.3759 −0.1478 0.0779 0.7566
−0.3331 0.5551 −0.0999 0.040 0.1863 −0.1527 −0.0288 −0.5145 0.2281 0.5791
0.2727 0.5499 −0.2724 −0.046 0.3479 0.4961 0.0985 0.1795 −0.20 0.6958
−0.4474 1.3518 −0.2158 −0.7999 −0.3272 −0.0314 0.4993 −0.058 0.0426 2.4128
0.0639 0.3354 −0.1911 −0.5413 0.0534 0.2987 0.4752 −0.450 0.0129 0.5035
−0.6186 0.7482 −0.4178 0.1282 −0.1273 −0.052 0.0792 0.3593 −0.1677 1.323
0.0954 0.3995 0.3595 −0.0298 −0.1099 −0.4687 −0.0464 −0.1437 0.4926 −0.0097
0.8319 0.6879 0.434 −0.010 −0.400 0.3825 0.093 −0.6586 −0.5243 1.5173
0.2551 0.3096 −0.1399 −0.0767 −0.0331 0.0694 0.0823 0.1991 −0.2991 −0.688
−0.090 −1.214 0.483 −0.1765 0.4517 0.3123 −0.30 0.5473 −0.1681 −2.6362




b1 =




−0.15
2.3253
−0.123
−0.0824
−0.3078
−0.1198
−0.0977
−0.3545
0.3017
2.810




W2,1 =




−0.0866 −0.2685 0.1129 −0.1943 −0.1595 −0.1618 −0.2171 0.5794 0.332 −0.5484
−0.069 0.4846 0.458 −0.1014 −0.0178 0.3396 0.5524 −0.025 0.850 −0.2666
−0.0454 0.3871 0.0071 0.4928 0.0343 0.0547 −0.0597 −0.199 −0.4736 0.5216
−0.4837 0.3527 0.0352 −0.3991 −0.4975 0.3114 0.3077 0.3324 −0.2448 0.200
0.2585 −0.3268 0.1014 0.2576 −0.199 0.4191 −0.1864 −0.2213 −0.3148 −0.3841
−0.047 −0.1589 0.4758 0.1386 0.0273 −0.172 −0.2346 0.0021 0.096 −0.4138
0.890 −0.660 −0.1267 0.5318 0.9424 −0.571 −0.5886 −0.5742 0.3416 −0.1718
−0.0395 0.1622 −0.5074 −0.1542 0.1226 0.0335 −0.0663 0.235 −0.2267 −0.1586
0.1572 0.50 −0.690 0.0959 0.1725 0.3926 0.520 −0.7251 −0.511 −0.5142
0.0151 −0.0359 −0.190 0.0692 −0.037 0.0179 −0.1066 0.2818 −0.6237 0.1262




b2 =




0.026
−1.362
−0.4485
0.2879
0.0668
−0.9171
−1.2962
−0.758
0.0528
−0.1841



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