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CAN, GPS and IMU Asynchronous Sensor Fusion
for Heavy-Duty Vehicles

Vicent Girbés-Juan1, Leopoldo Armesto, Daniel Hernández-Ferrándiz, Juan F. Dols and Antonio Sala

Abstract—In heavy-duty vehicles multiple signals are available
to estimate the vehicle’s kinematics, such as inertial, GPS and
CAN linear and angular speed readings. These signals have
different noise variance, bandwidth and sampling rate. In this
paper we present a non-linear sensor fusion algorithm allowing
asynchronous sampling and non-causal smoothing, and we apply
it to study the accuracy improvements when incorporating
CAN measurements to standard GPS+IMU kinematic estimation,
as well as the robustness against missing data. Our results
show that these asynchronous CAN+GPS+IMU sensor fusion is
advantageous in low-speed manoeuvres and GPS-denial environ-
ments. Accuracy and robustness to missing data is of course
improved with non-causal filtering. The proposed algorithm is
based on Extended Kalman Filter and Smoother with exponential
discretization of continuous-time stochastic differential equations,
in order to process measurements at arbitrary time instants.

Sensor fusion; Asynchronous sampled-data; Extended
Kalman filter; RTS smoother; Multi-rate; Dynamic systems;
Heavy-duty vehicles; CAN bus; SAE J1939

I. INTRODUCTION

This paper deals with data sensor fusion techniques of
systems with data coming from industrial communications,
such as Controller Area Network (CAN) bus, combined with
measurements from several sensors such as GPS and IMU, as
shown in Figure 1. The goal is to provide an accurate state
estimate combining traditional fusion of IMU and GPS data
with CAN data. Indeed, we can take into account vehicle’s
non-holonomicity considering that sources of information will
come from wheels speeds to improve position drift-reset effect
typically obtained with GPS-IMU sensor fusion estimation at
low speeds [1].

Many works have benefited from vehicle’s internal net-
work, either in cars or heavy-duty vehicles. For instance,
an integrated self-diagnosis system was proposed in [2]. A
similar approach was done for monitoring and diagnostic of
automobile smart and integrated control systems [3], [4]. The
authors of [5] participated in the DARPA Grand Challenge
and to control the vehicle had to access J1939 bus to measure
internal vehicle variables. In [6] a modular controller for the
IVECO ISG hybrid electric vehicle (HEV) was developed
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based on the SAE J1939 CAN bus, whilst some authors
implemented the SAE 1939 protocol to access the information
of the distributed control system of electric city buses [7], [8].

Controller Area Network (CAN) in heavy-duty vehicles use
J1939 protocol, as defined by the Society of Automotive Engi-
neers (SAE) [9], which is used in vehicle networks for trucks
and buses, agriculture and forestry machinery (ISO 11783),
truck-trailer connections, Diesel power-train applications, mil-
itary vehicles (MiLCAN), fleet management systems, recre-
ational vehicles, marine navigation systems (NMEA2000), etc.

A well-known method to fuse data measurements from
different sensors is the Kalman filter (KF). In tracking and ego-
motion estimation applications [10], [11], [12], this method
updates the estimation of a state, usually containing position
and orientation of an object, based on sensor measurements.
Typically used variables in the state of these filters in vehicles
are position, linear and angular velocities and accelerations
[13], but there are situations where biases of sensors are also
estimated to get a better overall estimation [14], [15], [16].

In tracking systems, fusion of IMU (Inertial Measurement
Unit) and GPS (Global Positioning System) is a conven-
tional solution for general purposes and more particularly
for the estimation of land vehicles [17], [18], [19] or UAVs
(unmanned areal vehicles) [20]. IMUs, typically provide the
ability to estimate fast accelerations or angular rates, which
are suitable to track movements with fast dynamics. Fusion
of GPS provides long-term stability, which in the end is
used to compensate offsets of IMUs measurements. In these
applications, fusion techniques with multiple sample rates or
even irregular (non-periodic) sampling instants becomes a
relevant tool. The integration of the continuous-time variance
equation gives rise to the sampled-data Kalman filter and
Extended versions [11], [12], [21], [19] for causal applications,
or the (Kalman/RTS) smoother [22], [23] for non-causal
ones; incorporating model’s Jacobians would give rise to the
extended versions for nonlinear cases. The advantage of non-
causal smoothing techniques is that they can be used for
data analysis, i.e. for vehicle modelling and identification;
of course, in real-time applications for tracking and control,
causal filters would be needed.

The main contribution of the paper is the use of a non-
conventional sampling data fusion using an asynchronous
smoother to fuse data gathered from different sources, which
provides signal reconstruction at any arbitrary instant as
the underlying algorithm is continuous-time. Our results, on
an urban bus vehicle, show that the proposed experimental
data gathering and asynchronous smoothing algorithm allow
better performance at low-speeds than synchronous filtering
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Fig. 1. Schematic representation of sensors and embedded devices used on the vehicle and their connections. The internal data of the sensors of the vehicle
is accessed via CAN Network (SAE J1939 Protocol) using a contactless reader and processed by a micro-controller that sends it to an embedded PC. The
external wireless sensors transmit data to the main computer for data logging.

approaches in terms of accuracy and robustness even when
data samples are missing. We also provide insights on the
convenience for fusing data from CAN data such as wheel’s
velocity and IMU and GPS data for a robust estimation even
with significant losses of GPS data. This has been shown
most relevant when using on-line (causal) estimation methods
such as EKF. In a our previous work [24], the basic data-
acquisition setup was presented, as well as the results using
a regular-sampling causal KF for subsequent identification of
some dynamic parameters.

The paper is organised as follows. Section II introduces
some preliminaries about sampled-data systems and sensor
fusion The problem statement is explained in Section III. The
proposed algorithm for multi-rate asynchronous data fusion
is explained in Section IV, whereas the setup used for the
experimentation is defined in Section V. Section VI shows
the main results obtained from the driving tests carried out to
evaluate the proposed algorithm. Finally, the paper ends with
a discussion and a summary of the main contributions of the
paper in Section VII.

II. PRELIMINARIES

A. Sampled-data systems and Sensor fusion and Smoothing

One of the most common techniques for state estimation
of non-linear discrete-time dynamic systems is the Extended
Kalman filter (EKF) [25], [18] or recently Unscented Kalman
filter (UKF) [26], [27]. Kalman filter gives a robust, optimal,
recursive state estimation to fuse redundant information from
different sensors. This can be improved when using non-causal
smoothing techniques such as Extended Rauch-Tung-Striebel
(ERTS) smoother [22], [23], which uses an EKF and backward
smoothing to produce quasi-optimal state trajectory estimation
in optimal control settings.

Many real systems sensors provide data at different sam-
pling periods due to the nature of their sensing technology
or due to limitations of data transmission channels [28], [19],
[29]. There are situations in which we can assume that there is
a periodicity between all sampling rates and, as a consequence,

we can work with periodic sampled-data systems. However,
there are other situations in which measurements are asyn-
chronous and, thus, state estimation needs to be performed
based on available measurements [30]. The possibly irregular
separation between sampling instants will be denoted as δt.

Let ẋ = f(x, εw) be a non-linear stochastic dynamic system
and let y = h(x) + εv be the output equation, being x ∈ Rnx
the system state and y ∈ Rny the measurement vector; εw is
a Gaussian process continuous-time noise with power spectral
density Qc (constant) and εv ∼ N(0, R) is a measurement
noise at sampling instants (sensor dynamics is assumed much
faster than that of the measured signals). The non-linear
functions f(x, εw) : Rnx → Rnx and h(x) : Rnx → Rny , de-
scribe the system dynamic and output measurement non-linear
equations. The linearized equations for a given linearization
point are

ẋ ≈ Acx+Bcεw (1)
y ≈ Hx+ εv (2)

where Ac, Bc and H are the Jacobians for the state x, process
noise w and output measurement y, respectively, which can be
computed as:

Ac :=
∂f(x, εw)

∂x
(3)

Bc :=
∂f(x, εw)

∂εw
(4)

H :=
∂h(x)

∂x
(5)

From the above continuous-time linear stochastic process,
we can obtain a time-varying discretization as follows. For a
given state xt, noise εw and inter-sample time δt, the approx-
imate discretized state equation (for the state expectation) can
be computed as in [31]:

xt+δt = Ψ1, with Ψ =
[

Ψ1

Ψ2

]
= e

[
Ac I
0 0

]
δt ·
[ xt
f(xt,εw)−Acxt

]
(6)

and the discretization of the evolution of the state covariance



can be done with [32]

A := eAcδt (7)
Q := AtΦ12 (8)

with Φ =
[

Φ11 Φ12

0 Φ22

]
= e

[
−Ac BcQcBTc

0 ATc

]
δt

and δt the sampling
period.

Also, it seems relevant to use a proper discretization of
nonlinear stochastic processes using Van Loan method [32]
to reduce discretization errors typically introduced by Eu-
ler discretization if the sampling period is relatively large
compared to signal dynamics. This might be particularly
relevant when using Gaussian filters such as EKF and ERTS
to keep linearization errors low and to avoid more accurate,
but computationally demanding, approaches such as Runge-
Kutta. In this way, if non-linearities are smooth so keeping
Gaussian assumptions is reasonable, a suitable combination of
the above equation (6) propagating the mean, and expressions
(8) propagating the variance, can be used to build a causal
extended Kalman filter or, for off-line data, an extended
Rauch-Tung-Striebel smoother (ERTS), and Model-Predictive
Approaches [33], [34], [23], [35] setup for irregularly-sampled
systems, later discussed in Algorithm 1. This assumption
essentially holds if the update time instants are reasonably
close enough compared to the system dynamics.

III. PROBLEM STATEMENT

Based on the previous preliminaries, this paper will provide
an integrated solution for sensor fusion that combines causal
(EKF filtering) and non-causal (ERTS smoothing) for nonlin-
ear sampled data systems with irregular sampling period.

Indeed, due to technological limitations of some sensors,
but mostly due to CAN bus priority-based messaging policy,
data is not generally available at fixed single sampling period.
Thus, it is more realistic to assume that data might be
read asynchronously and, in most cases, it is not produced
at the desired frequency for a good system identification,
control design or system identification. Therefore, we need
to considering as part of the filtering/smoothing process of
signals the irregular sampling nature of many signals.

In addition to this, we would like to study the advantages
of combining CAN, GPS and IMU data in urban scenarios
with buses with a non-invasive logging system as the one
proposed in Figure 1. Having access to such information in
low-speed movements might be crucial to accurately estimate
the actual motion of a bus. We intend to analyse performance
on incorrect state initialisation and robustness under GPS data
missing issues as a consequence of poor signal reception or
GPS-denied areas (such as tunnels); consequences of GPS
errors coming from multi-path signal trajectories typically
obtained in urban scenarios. Combining GPS with IMU and
speed data obtain from CAN will be useful to determine which
information is more relevant and accurate for a candidate
application.

IV. ASYNCRHONOUS EXTENDED RAUCH-TUNG STRIEBEL
SMOOTHER

Let us introduce an asynchronous Extended Rauch-Tung-
Striebel smoother (AERTS) algorithm for sampled data sys-
tems, which combines a continuous-discrete linearized Ex-
tended Kalman Filter (EKF) and a discrete linearized Extended
Rauch-Tung-Striebel smoother (ERTS).

In the first stage, the AERTS algorithm performs a contin-
uous in time prediction and a discrete measurement update,
based on a linearized EKF. Due to technological limitations
of CAN-based measurements, data is assumed to be measured
asynchronously, which implies that the linearized EKF needs
to integrate state predictions over the time until a new mea-
surement data is available. When this occurs state updates
are carried out only with available measurements at that time
instant. In the following this is referred as Asynchronous EKF.

In a second stage of the algorithm, the estimated state
coming from the Asynchronous EKF is smoothed to provide
better estimations, given that ERTS is a non-causal filter
that runs backward in time to provide estimations with data
information from future time instants.

The AERTS algorithm is described, in pseudo-code, as
Algorithm 1 on next page. In order to execute the referred
algorithm, we need:

• A dataset with the following information: D :=
{(yt1, s1, t1), (yt2, s2, t2), ·}, being yti the sensor mea-
surement value, si the sensor number and ti the times-
tamp when the measurement was acquired. Simultaneous
measurements will be represented by two different triplets
with coincident time, with no loss of generality.

• Model non-linearities f and h plus process and measure-
ment noise parameters Qc and R.

• An initial a priori state estimate X := {xini, Pini, t1}
with the initial mean, variance and timestamp. Under no
initial information Pini is usually chosen a large diagonal
matrix; in such a case, when Pini →∞ the value of xini
is irrelevant, usually chosen to be zero.

In the algorithm, contrarily to Qc, matrix R is not discre-
tised from a continuous-time stochastic differential equation
as we will assume that the dynamics of the sensor is very
fast, so the correlation time of the additive sensor noise will
be negligible, smaller than any of the inter-sample intervals in
the dataset D.

As measurements are not always available, in the following,
hst will denote the expected value of the measurement given
by sensor s; likewise, given any matrix M , Ms will denote
the s-th row, and Mss will refer to the s-th diagonal element.
Thus, the measurement noise covariance of sensor s will be
denoted as Rss.

The detail of the algorithm steps are as follows. First, lines
3 to 14 implement the Asynchronous extended Kalman filter.
In particular, lines 5-8 perform the asynchronous prediction
step, where we compute mean using equations (3)-(6) and
forward state covariance prediction using (7). It is worth
mentioning that state covariance update is implemented using
lines 10-12, which requires a proper selection of the available
measurements.



Algorithm 1 AERTS
1: function Z=AERTS(D,X )

Inputs: D: a set of samples {(yt1 , s1, t1), (yt2 , s2, t2) . . . }
and X : initial estimate with {xini, Pini, t1}.

[Initialisation]
2: x̂t ← xini, Pt ← Pini, t̄← t0, T ← {}

[Asynchronous EKF (forward in time)]
3: for each triplet {yt, s, t} in D do

[Sampling time]
4: δt← t− t̄ and t̄← t

[State and covariance prediction]
5: Ac ← ∂f(x,εw)

∂x

∣∣∣
x=x̂t
εw=0

, Bc ← ∂f(x,εw)
∂εw

∣∣∣
x=x̂t
εw=0

6: x̂t ← Ψ1, with Ψ =
[

Ψ1

Ψ2

]
= e

[
Ac I
0 0

]
δt ·[

x̂t
f(x̂t,0)−Acx̂t

]
7: At ← Φ22, Qt ← ΦT22Φ12, with Φ :=

[
Φ11 Φ12

0 Φ22

]
=

e

[
−ATc BcQcB

T
c

0 Ac

]
δt

8: Pt ← AtPtA
T
t +Qt

[State and covariance update]
9: Hs

t ←
∂hs(x)
∂x

∣∣∣
x=x̂t

10: Kt ← Pt(H
s
t )T (Hs

t Pt(H
s
t )T +Rss)−1

11: x̂t ← x̂t +Kt(yt − hst )
12: Pt ← (I −KtHt)Pt
13: Prepend {At, Qt, x̂t, Pt, t} to T
14: end for

[RTS Smoother (backward in time)]
15: ẑt ← x̂t, Z ← {zt}
16: for each tuple {At, Qt, x̂t, Pt, t} in T do
17: Lt ← PtA

T
t (AtPtA

T
t +Qt)

−1

18: ẑt ← x̂t + Lt(ẑt − f(x̂t, 0))
19: Prepend zt to Z
20: end for
21: end function

As a result of the prediction and update steps, we store esti-
mated state mean and covariance, as well as state linearization
Jacobian and system noise covariance, required by the ERTS
smoother (implemented on lines 16-20).

It is important to remark that the proposed algorithm is
designed for data coming asynchronously, but it allows to
estimate the state for any arbitrary time instant. This can
be carried out by running Algorithm 1 combining real mea-
surements time instants and arbitrary time instants, without
executing lines 15-20 if there is no real measurement at that
time. This has the advantage of reduced linearization errors
due to smaller sampling times at a higher computational
cost. For instance, we can provide state estimates at regularly
spaced time instants at any desired sampling frequency, while
real asynchronous measurements will be interleaved within
such regular samplings. Even if the proposed algorithm uses
samples at given timestamps, it can provide estimations at any
higher sampling rate, allowing us reconstruct the smoothed
signal/state at any arbitrary time instant, regardless of its
coincidence (or lack thereof) with any measurement.

A. AERTS vehicle data
In this section, we explain data used in AERTS in the

context of heavy-duty vehicles, as well as vehicle’s kinematic
and measurement models. In particular, the vehicle’s geo-
graphic coordinates have been measured from a GPS, whilst
its orientation, angular velocity and linear acceleration have
been sensed using an IMU. In addition, wheels’ velocities and
linear acceleration are obtained from CAN bus and a second
IMU has been attached to the steering wheel to measure its
angular position. Note that IMUs can be affected by bias
due to calibration errors and other external effects, such as
magnetic field perturbations, so an offset and its derivative has
to be included in the estimation, because there is also a drift
produced by the integration of gyroscope and accelerometer’s
biases.

It is interesting to remark that, in our application, the IMU is
the sensor with the fastest sampling rate at a regular frequency
of 100 Hz. However, GPS provides new data at approximately
1 Hz, whilst CAN data are measured at irregular time instants
as new messages come depending on the ECUs manufacturer
publishing frequencies and message priorities, according to the
SAE J1939 standard.

In the SAE J1939 protocol each message has its own range
of transmission rates, but the priority of each group may
change and affect that rate. Depending on the level of priority
transmission rates vary from 10 ms, for high-priority nodes, to
1 second, for low-priority nodes. Messages with higher priority
will gain bus access within shortest time even when the bus
load is high due to the number of lower priority messages.
The J1939 message format consists mainly in two different
fields, the identification (ID) field and the data field. The ID
field controls the message priority and includes the Parameter
Group Number (PGN) field, which identifies the message type.
In particular, the messages used are those related to wheels’
velocity and linear acceleration, obtained from PGNs 61443,
65215 and 61449 (see [9] for details). The angular position of
the steering wheel could have been obtained from a specific
J1939 message (PGN 61449), but it was not implemented by
the ECU manufacturer.

B. AERTS vehicle model
However, it was estimated from measurements of front

wheels velocity published in the CAN network, assuming an
Ackermann steering geometry [36].

The Ackermann mechanical configuration implies that the
vehicle’s front wheels turn at different speeds in order to trace
out circles of different radii. In such a configuration, there
is an equivalent tricycle configuration with only one front
wheel, whose orientation φw, known as the Ackermann angle,
is the average angle of the front wheels and can be computed
indirectly from their velocity using the following formula

φw = 0.5 arcsin
4L(vR − vL)

W (vR + vL)
(9)

where L is the distance between front and rear axes; W is the
separation between left and right wheels; and the speeds of
right and left wheels are defined by vR and vL, respectively.
The reader is referred to [36] for details.



To compute the steering wheel orientation ρst, the ratio
between the steering wheel angle and the Ackermann angle
(front wheels average orientation) must be applied so that
ρst = fsφ

w, where fs = 17 is the steer factor for the bus used
in the experimentation, which is obtained from manufacturer
specifications.

Finally, vehicle’s angular velocity can also be obtained
from CAN messages, using the linear velocity v and wheel’s
orientation φw computed from equation (9):

ωCAN =
v tanφw

L
(10)

In the sequel, super-index GPS corresponds to data coming
from GPS sensor, super-index IMU refers to IMU sensor, and
super-index CAN is related to all available measurements
from the contactless CAN J1939 reader (see Figure 1 for
details). As an example, vCAN will denote linear velocity
coming from CAN bus, whereas {pGPSx , pGPSy } will refer to
Cartesian position read from the GPS coordinates.

In order to estimate vehicle kinematics in a
planar surface, the state vector is defined as
x = [px py θ ω v a oIMU

ω oIMU
a oCANω ]T , which includes

vehicle’s position px and py; heading or orientation θ;
angular velocity ω; linear velocity v and linear acceleration a,
angular velocity IMU offset oIMU

ω , linear acceleration IMU
offset oIMU

a and angular velocity CAN offset oCANω . Offsets
have been considered to compensate systematic and non-
systematic errors such as IMU misalignment measurements
and wheel’s speed measurements from CAN data (such as
incorrect tyre pressure, wheels misalignment, etc.). The output
vector includes data from GPS, IMU and CAN as follows:
y=[pGPSx pGPSy θIMU ωIMU aIMU ωCAN vCAN aCAN ]T .
On the other hand, process noise vector is assumed to be εw=
[εpx εpy εω εa ε

IMU
ωo εIMU

ao εCANωo ]T ; measurement noise vector
is εv=[εGPSpx εGPSpy εIMU

θ εIMU
ω εIMU

a εCANω εCANv εCANa ]T ;
and system dynamics and output measurement equation are
described as:

ẋ = f(x, εw) := Ac(x)x+Bcεw (11)
y = h(x, εv) := Hx+ εv (12)

where Ac, Bc and H are the Jacobians for the state x, process
noise w and output measurement y, respectively, computed as
in Equations (3), (4) and (5)

Ac =


0 0 0 0 cos(θt) 0 0 0 0
0 0 0 0 sin(θt) 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , Bc =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



H =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0


V. EXPERIMENTATION SETUP

A. Materials

The urban bus shown in Figure 1 was used for the experi-
mentation. It is a MAN 14250 HOCL-NL with the following

kinematic specifications: distance between axes L=5875 mm
and wheels track width W = 2550 mm. Figure 1 also shows
sensors and other electronic devices used for the data acqui-
sition system.

To track the position of the bus and other kinematic vari-
ables, such as orientation, angular velocity and linear ac-
celeration, an Xsens MTi-G-710 GNSS inertial measurement
unit with GPS was mounted on vehicle’s centre of rotation.
The IMU incorporates the following components: 3 axes
magnetometer (full range ±8 Gauss, RMS noise 0.5 mG), 3
axes gyroscope (full range ±450o/s, bias error 0.2o/s), 3 axes
accelerometer (full range ±200 m/s2, bias error 0.05 m/s2)
and barometer (full range 30− 110 kPa, RMS noise 3.6 Pa).
The dynamic accuracy of the orientation is 0.3o (pitch/roll)
and 0.8o (yaw). Regarding the GPS, the horizontal accuracy
is 1 m (Cartesian coordinates x/y) and the vertical accuracy is
2 m (z coordinate).

A contactless CAN connector was used to safely read data
from vehicle CAN bus (see Figure 1). Using this device,
data reading is non-invasive as it occurs without electrical
connection and without damaging CAN wires. It works in
“listen” mode only, i.e. it does not change original J1939
messages and does not send any signals to CAN bus.

In order to collect all SAE J1939 messages in vehicle’s
CAN network and send them to the data logger through a
serial protocol, a micro-controller Arduino Mega 2560 with a
CAN-BUS shield was used as a sniffer (see Figure 1). Finally,
a Raspberry PI 3 Model B with an embedded Linux was used
as the main computer for data logging.

B. Driving tests

Two driving tests have been carried out in order to collect
data, whose short description is included next:

• Slalom: Several cones were placed in a straight line,
separated 80 m distance. The test started with the bus
completely stopped. The driver sped up until the vehicle
was at the specified linear velocity of 40 km/h (≈ 11
m/s). While keeping a constant speed, the cones were
alternatively avoided in a slalom movement. Finally, the
driver braked until the bus was completely stopped.

• Urban driving: This driving test was conducted in an ur-
ban scenario, where different manoeuvres were combined
(straight driving, corners, roundabouts, etc.) and the bus
driver faced everyday situations. The overall duration of
data recording was around 400 s.

VI. RESULTS

To estimate vehicle’s kinematics, considering the mea-
surement uncertainties, covariance matrices are initialised as
follows in all driving tests:

Qc = diag({0.25, 0.25, 0.01, 0.0025, 10−10, 10−10, 10−10}),
R = diag({0.25, 0.25, 0.01, 0.04, 0.0025, 0.25, 0.0001, 1}).

1) Slalom driving: Some linear and angular kinematic
variables from the slalom driving test have been reconstructed
at high-rate using the proposed AERTS smoother (Figure 2).
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(e) Linear acceleration
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Fig. 2. (a-e): Estimation at high-rate of vehicle’s linear and angular kinematic variables from the slalom driving test; (f): Detail of the last 30 seconds of
vehicle’s linear velocity after braking to analyse the effect of making the data fusion without including information from CAN bus (dashed red line) and using
the CAN messages of velocity and acceleration (blue line).

The data fusion algorithm combines signals coming asyn-
chronously at different sampling rates from IMU (orientation,
angular velocity, linear acceleration), GPS (position) and CAN
messages (linear velocity, linear acceleration and wheels ve-
locity).

a) Linear kinematics: As observed in Figure 2(a), the
position estimation does not have any bias, as expected,
because GPS measures do not have it either. AERTS allows
to have position estimates at 100 Hz sampling rate even if the
original GPS rate is 1Hz.



Figures 2(d) and 2(e) show linear velocity and acceleration,
respectively. It is well known that odometry based on encoders
or tachographs is not reliable, as its accuracy depends on
many factors, such as wheels radius (which depends on tires
pressure, as they can be more or less inflated), wheels slippage
(which vary in different surfaces), among other things. But,
although wheels velocity and linear acceleration coming from
the CAN network might have an offset at certain speed (due
to wheels misalignment, different wheels pressure, or discrep-
ancies between measures of tachometers or encoders), when
the vehicle is stopped that offset is zero. So, estimation errors
of vehicle’s linear velocity can be reduced by using CAN bus
data, even when it comes very sparse and asynchronously.

In fact, the only actual measurement of linear velocity
comes from vehicle’s internal odometry, since the other two
possible sources would be integration of linear acceleration
coming from IMU (green crosses) and derivation of travelled
distance computed from GPS position (cyan dots). However,
the former can have a high bias after a while, whilst the
latter is very noisy due to inaccurate and jumpy readings from
satellites.

b) Braking: As shown in Figure 2(f), when the vehi-
cle brakes the proposed algorithm estimates that it is not
completely stopped when it actually is, if CAN data is not
used (dashed red line). It takes about 27 s for the proposed
algorithm to estimate that the vehicle is not moving. However,
the AERTS estimation using CAN data (blue line) is much
more accurate, as it returns zero velocity thanks to the wheels’
velocity reading from CAN bus messages. So, among other
advantages, using the information from CAN bus can be very
useful to identify properly when the vehicle is not moving at
all and, therefore, it can help in a dynamic identification and
process modelling, very useful for crash analysis [37], driving
assistance [38] and self-driving vehicles [39], [40].

In fact, GPS was outputting non-constant positions originat-
ing a velocity offset, as can be seen in Figure 2(f). The same
happens to the IMU, that returns certain value of acceleration
producing non-zero linear velocity.

c) Angular kinematics: In Figures 2(b) and 2(c), it can be
observed that the orientation measured by the IMU in slalom
driving test is pretty accurate, but in other situations it could
be biased due to, for instance, magnetic disturbances. In fact,
if we take a look at Figure 2(c), the angular velocity from the
IMU has a constant bias. Furthermore, the CAN measurement
also has a negative offset, which is even bigger in magnitude.
Nevertheless, thanks to the data fusion of these measures
together with GPS position, the estimation is improved and
the biases compensated.

d) Instrument offset identification: Based on the results
obtained from the experimentation, we identified the average
bias of the data coming from the CAN network (angular
velocity offset oCANω = −0.007 rad/s) and signals from
the IMU sensor (gyroscope offset oIMU

ω = 0.003 rad/s and
accelerometer offset oIMU

a = −0.015 m/s2). Even though
these biases might seem low values, they are integrated to
obtain orientation and linear velocity signals, so the error is
accumulated and, in a few seconds, the drift can be very high
unless such offsets are compensated with sensor fusion.

2) Urban driving: Once the AERTS data fusion algorithm
is validated, it has been applied in a long driving test in
an urban scenario to show that it is working properly (see
Figure 3). The position on map is depicted in Figure 3(a),
whilst Figure 3(b) represents some kinematic variables (linear
velocity, linear acceleration and angular velocity) for this
experiment. It can be observed that the AERTS algorithm is
able to estimate correctly linear and angular velocities, being
the acceleration noise reduced considerably and all sensor
biases compensated.

The urban driving test has been also used to analyse the
robustness and the accuracy of the proposed sensor fusion
setting. Two different studies have been performed: effect of
incorrect state space initialisation and robustness (it can be
seen as a kidnapped robot problem [41] after a long-term
of data-missing in GPS-denied environments). Some aspects
considered for such studies are described below.

a) Initial performance of AEKF vs. AERTS: Let us
evaluate the performance in the first instants of the experi-
ment with large initial variance (imprecise initial information).
Without any a priori knowledge the first velocity estimations
of the Asynchronous EKF without CAN are unreliable, as
they are roughly a numerical differentiation during the first
handful of samples; on the other hand CAN measurements
provide an accurate AEKF estimation due to the direct speed
measurements, as shown in Figure 4(a). The knowledge of
future samples mitigates this initialization problem in the
AERTS case, as observed in Figure 4(b).

b) Study of robustness under missing data: In the second
study, to quantify the estimation robustness against GPS data
missing, we analyze the error in the estimation of Cartesian
position ep with randomly missing certain percentage of GPS
data (10%, 30%, 50% and 70%). EKF and AERTS data fusion
algorithms are compared, in both cases with and without in-
vehicle CAN bus information. The estimation at very high
frequency (1 kHz) using the AERTS algorithm with all the
available information (GPS, IMU and CAN data) is used as
ground truth, i.e., later error figures will be computed as the
difference wit the estimation with 100% available data.

Figure 5 shows the box-and-whisker plot of the position
estimation error ep with random GPS data missing. The red
and green boxes correspond to estimations using EKF, whilst
the magenta and blue whiskers diagrams represent estimations
with AERTS sensor fusion algorithm. Cases where CAN data
are not used are represented by red and magenta diagrams,
whereas the green and blue boxes use the same amount of
GPS data, but include CAN measurements.

The results clearly show that using CAN yields a much
more robust estimate under missing GPS data conditions. In
fact, both algorithms improve the estimation around 10% (or
even more, for the case of AERTS with 10% of GPS data
missing) just by plugging information from CAN bus into the
algorithm. Figure 5 also illustrates the clear advantage of the
non-causal smoothing in missing-data situations.
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Fig. 3. Driving test in urban scenario: (a) trace of vehicles’ position estimated with AERTS algorithm (blue line) with start point (green triangle) and stop
point (red square); (b) vehicle’s kinematic variables: linear velocity (top), linear acceleration (middle), and angular velocity (bottom).

VII. CONCLUSION

This paper has presented an asynchronous smoothing al-
gorithm combining data from IMU, GPS and CAN data bus
at arbitrary sampling rates. Based on the experimental results
on an urban bus, it can be concluded that, as CAN messages
provide accurate measurements of the linear velocity of the
bus, fusion of the three sources is shown to be beneficial
to estimate the velocity at low-speeds, in GPS-denial envi-
ronments and to improve initial performance. In general, the
proposal allows fusing the information from the odometry
system attached to the wheels with the standard inertial plus

GPS navigation sources to improve accuracy. The underlying
continuous-time theory allows signal reconstruction at an ar-
bitrary time point, implementing adaptive discretization using
exponential matrices for mean and variance equations. The
algorithm has been tested in a public urban bus to estimate
vehicle kinematics, but it is of course valid in many other
scenarios, where asynchronous data is required to be fused.
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València, Spain. His fields of interest are collaborative robotics, human-robot
interaction, haptics, advanced driving assistance systems, machine learning,
path planning and obstacle avoidance for AGVs and UAVs.

Leopoldo Armesto received the B.Sc. degree in
Electronic Engineering, the M.Sc. degree in Control
Systems Engineering, and the Ph.D. in Automation
and Industrial Computer Science from the Univer-
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Since 1993, he has been teaching in UPV where
he currently is full Professor. He has supervised 11
Ph.D. theses and 30 final M.Sc. projects. His current
research interests are optimal, fault-tolerant, robust
and LPV control. He has published one book, co-
edited another two ones, more than 75 journal papers
and more than 130 congress papers (Google h-index:
28). Antonio Sala has served as Associate Editor
of IEEE Trans. on Fuzzy Systems, Fuzzy Sets and

Systems, and Rev. Iberoamericana de Automática e Informática Industrial.
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