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Abstract: Embedded systems used in critical systems, such as aeronautics, have undergone con-
tinuous evolution in recent years. In this evolution, many of the functionalities offered by these
systems have been adapted through the introduction of network services that achieve high levels
of interconnectivity. The high availability of access to communications networks has enabled the
development of new applications that introduce control functions with higher levels of intelligence
and adaptation. In these applications, it is necessary to manage different components of an appli-
cation according to their levels of criticality. The concept of “Industry 4.0” has recently emerged
to describe high levels of automation and flexibility in production. The digitization and extensive
use of information technologies has become the key to industrial systems. Due to their growing
importance and social impact, industrial systems have become part of the systems that are considered
critical. This evolution of industrial systems forces the appearance of new technical requirements for
software architectures that enable the consolidation of multiple applications in common hardware
platforms—including those of different criticality levels. These enabling technologies, together with
use of reference models and standardization facilitate the effective transition to this approach. This
article analyses the structure of Industry 4.0 systems providing a comprehensive review of existing
techniques. The levels and mechanisms of interaction between components are analyzed while
considering the impact that the handling of multiple levels of criticality has on the architecture
itself—and on the functionalities of the support middleware. Finally, this paper outcomes some of
the challenges from a technological and research point of view that the authors identify as crucial for
the successful development of these technologies.

Keywords: embedded control systems; hypervisors; distributed systems; mixed-criticality systems;
industry 4.0

1. Introduction

Industry 4.0 expresses a hypothetical fourth stage of the technical-economic evolution
of humanity, counting from the First Industrial Revolution. This fourth stage would have
started recently, and its development would be projected towards the third decade of the
21st century. Artificial intelligence is pointed out as a central element of this transformation,
closely related to the growing accumulation of large amounts of data (“big data”), the use of
algorithms to process them, and the massive interconnection of digital systems and devices.
From a practical point of view, the evolution towards these new industrial systems is
characterized by a large-scale interaction between machines (M2M) and the massive use of
data with the aim of achieving flexible production systems, customer-oriented convertible
factories, optimization in the use of resources, and circular economy ecosystems.

In this scenario, it is necessary to structure the digitization of means of production so
that the management and communication of large amounts of information can coexist with
critical automation systems dominated by real-time and security restrictions.

The market for real-time embedded systems has expanded quickly in recent years
and is expected to grow for the foreseeable future. This evolution of the technology of
embedded systems in terms of computing capacity, connectivity, and performance has
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been very significant and has enabled the use of more complex control applications that
can require more complex design and implementation techniques. Today, all hardware
platforms of embedded systems are multicore, and this enables the use of new technologies
(e.g., artificial intelligence) [1].

Control activities have traditionally been designed with various tasks that perform
the control functions, visualization, and interaction with other devices. All these activities
have different levels of criticality due to temporary restrictions or the implication of
possible failures and their consequences. The mixed-criticality systems approach seeks
to organize in a coherent way the different activities according to their criticality level.
Moreover, multi-core computing platforms ideally enable co-hosting applications with
different requirements (e.g., high data processing demand and stringent time criticality).
Executing non-safety and safety critical applications on a common powerful multi-core
processor is of paramount importance in the embedded system market for achieving mixed-
criticality systems. This approach enables scheduling a higher number of tasks on a single
processor so that the hardware utilization is maximized, while cost, size, weight, and
power requirements are reduced. In [2], a survey was presented on mixed criticality in
control systems.

In the industrial sector, digital transformation is maintaining and increasing competi-
tiveness. The integration of technologies based on the industrial internet of things (IIOT)
and technologies of Industry 4.0 will enable the digital transformation of the latter [3,4]. In-
telligent factories, energy systems, and other critical infrastructures are adopting real-time
monitoring and analysis capabilities to assess operational efficiency and can incorporate
predictive analysis and maintenance to minimize idle time due to system failures. One
of the crucial elements in digital transformation is the ability to monitor network control
systems in real time. IT solutions attempt to achieve greater efficiency by consolidating
common hardware platforms and remote operating capabilities. Recent market trends are
forcing industrial manufacturers to look at other software solutions in order to incorporate
more non-real-time functionality around crucial real-time tasks in order to accomplish
goals, such as cloud connectivity for uploading machine data for server-based predictive
maintenance algorithms. Virtualization seems to be a promising path forward, but with
the multiple types of virtualization solutions out there, deciding which one to use requires
in-depth discussion and thought [5].

Other sectors such as aerospace and defense have used some of these technologies
successfully in the design of control systems for avionics components. The integrated
modular avionics (IMA) architectures are an evolution of distributed systems to federated
systems, and enable integrating multiple applications with different criticality levels in the
same hardware platform. The adoption of IMA has resulted in a significant reduction in the
cabling, weight, and energy consumption of computer equipment in aircraft, satellites, and
drones. The European Space Agency (ESA) has promoted the adaptation of IMA to cover
space market needs. The IMA-SP (IMA for Space) project [6] has defined a partitioned
architecture with additional services to ARINC-653 standard to deal with new future
software developments.

Temporal and space partitioning (TSP) preserve the fault containment properties
and “separation of concerns” in development. The functional benefits are related to: The
allocation of different criticality/security classes that coexist within the same computer;
management of the growth of software functionality; higher degrees of integration as better
performing processors becomes available; and easier design for re-use [7].

Objectives and Organization

The main objective of this article is to propose the technology of mixed criticality,
hypervisors, and execution isolation, as a key piece in the deployment of industrial digital-
ization systems, known as Industry 4.0 or industrial internet of things. The difference in
requirements between the different levels and components in which the reference architec-
tures are organized leads to an organization based on distributed systems with dedicated
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hardware elements. The evolution of these systems finds similarities with that experienced
by the aeronautical sector (ARINC-653) [8] which, through the use of mixed criticality
systems, has managed to optimize the use of hardware resources while maintaining com-
pliance with requirements, certification and very high levels of flexibility.

This paper differs from a traditional review paper in that it aims to bring together
the different technologies commented in the previous paragraph. In this sense, we differ
from [9] in that we analyze the technologies used to implement mixed-criticality systems
that can be useful to implement Industry 4.0 systems.

After this introductory section, the second section establishes the general structure of
the system architecture and identifies the levels of interaction, the specific requirements
of each level, as well as the technologies associated with each. The third section describes
the proposed execution platform and the advantages of isolating the execution. The next
section analyses the characteristics of the support middleware and its location in the
architecture. To conclude, a set of technological and research challenges are elaborated.
Finally, the conclusions of the paper are summarized.

2. Digitalization and Industry 4.0

The transition to Industry 4.0 will depend on the successful adaptation of a set of
technologies that enable interconnecting different levels of control and management in an
industrial environment.

Figure 1 shows an overview of the system with the various levels and components.
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Figure 1. General view of a system for industry digitalization.

The lower level is composed of a set of cyber-physical systems (CPS) each within a
private cloud that gathers and combines information from physical systems and provides
access to control devices. The CPSs are interconnected through a horizontal communication
between private clouds.

The technologies with a strong impact at this level are related to: The control of devices;
mechanisms for access and action on devices forming the internet of things; systems based
on models to organize and structure information configuring the reference models for
industry 4.0; and execution systems that exploit the capacities of the hardware (multicore
systems) and organize applications on a common platform in which real time activities
interact with physical devices.
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The upper level is structured on the cloud and publishes a set of services that aim
to provide certain levels of information to the outside and connect this information with
services and processes for the management, planning, and visualization of components
and devices at other levels.

2.1. Cyber-Physical System Level

The cyber-physical system is one of the key enablers for the realization of Industry 4.0.
It refers to an embedded system with real-time functionalities, control, access to devices,
communications, high computing capacity, and user interaction. The CPS level groups the
components and services for the real time operation of the physical devices that compose
the industrial entity (section). The system, guided by an execution platform based on a
multicore system, allows the definition of different execution environments that cover the
needs for real time, security, confidentiality, and certifiability of the applications that make
up the system in which applications with different levels of criticality can coexist. Figure 2
shows a more detailed vision of the CPS level.
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Figure 2. Cyber-physical system level.

At this level, the different CPSs interact with each other through efficient, safe, and
predictable horizontal communication. At the same time, these CPSs communicate with
the higher level through a vertical communication that enables the development of the
strategic and business vision of the company.

The main requirements that are needed at this level can be summarized in the follow-
ing points.

• Real time capabilities: The embedded system performs control functions by reading
sensors and acting on the process with the need to fulfil the time constraints associated
with each of the processes or sub-processes that comprise the industrial environment.
Real-time activities require real-time operating systems in order to have a predictable
behavior and determine system schedulability.

• Support application with different levels of criticality: The evolution from distributed
systems to federated systems (in which several applications are executed on the same
hardware platform) enables various applications to be executed in isolation with
differing time restrictions and levels of certifiability. The ability to handle applications
with different levels of criticality on the same platform enables the new multicore
hardware platforms to be exploited to the maximum.

• Security and safety: There is an increasing need to securely manage applications.
A secure initialization of the platform and verification of integrity is a prerequisite.
Secure communications and detection and resistance to cyberattacks are required
in operation.
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• Application reuse: Applications or components developed in previous projects should
be reusable on new embedded computing platforms provided by multi-core
processor architectures.

• Communication: At the cyber-physical level, the machines are connected to other
machines, material flow management systems, and inspection systems to form a unit
that works in a coordinated and highly reconfigurable manner.

The following enabling technologies can be considered basic to the development and
operation of this level: Platform virtualization (fault management, temporal, and spatial
isolation), industrial internet of things, robotics, cyber-security, fog and edge computing,
simulation, and middleware.

As stated in the requirements, many CPS are also mixed-criticality [10]. For example,
smart buildings [11] or eHealth IoT systems [12] are works that develop implementations
of CPS with mixed criticality systems (MCS) requirements.

2.2. Information Aggregation Level

The machines, robots, and manufacturing resources integrated in Industry 4.0 applica-
tions generate an immense volume of communication—both horizontally and vertically.

Vertical integration of automated production is necessary to enable constant process
monitoring and integration of additional IoT services. Services such as data analysis, pre-
dictive maintenance, or simple access to digital user guides and helpdesks, are customized
for the specific machine and integrated directly into the system. Access is granted to all
who need it, in a personalized way and, if necessary, through cloud applications. Any
external supplier who needs to be integrated into the overall system can obtain specific
interfaces for this purpose.

It is important to emphasize that each of the original control tasks of the individual
I4.0 components is an essential part of the solution and an important communication task
and source of information.

Data and control flows take place in and between the cyber-physical and information
integration functional domains. The controls, coordination, and orchestration exercised
from each of the functional domains have different granularities and are executed in differ-
ent time cycles. As it starts in the functional domains, the interactions become coarser, their
cycle becomes longer, and the scope of the impact is likely to become larger. Consequently,
as information advances in the functional domains, the scope of the information becomes
broader and richer, and so new information can be obtained, and new intelligence can
emerge in broader contexts. Each functional domain is characterized by the definition of a
connectivity model and a computational deployment pattern.

The starting point is the control domain, which is where control tasks are performed,
the lowest level information is generated, and time and reliability constraints are more
restrictive. The pattern of computational deployment at this level is closely linked to the hor-
izontal connectivity model, and both, working in a coordinated manner, are in charge of the
interaction with the physical world composed of machinery and manufacturing resources.

For a satisfactory integration between the cyber-physical level and the information
integration level, we propose the development of gateways between levels that make
compatible the different quality of service requirements and offer solutions for informa-
tion management according to the chosen computational deployment pattern—including
private cloud and public cloud systems (Figure 1). It is essential to develop information
conversion and integration models that, through automatic processing technology, prepare
the information according to the context in which it will be used.

Enabling technologies at upper levels include: Big data and analytics, cloud comput-
ing, augmented reality, cyber-security monitoring, and deep learning.

3. CPS Platform

Over the last decade, advances in processor technologies have had a strong impact on
the architecture of processors with a special emphasis on the processors used in embedded
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systems. These advances have included the generalization of multicore architectures and
support for virtualization at the hardware level.

Virtualization has enabled cloud computing platforms to host applications in the cloud
efficiently and on a large scale. Hardware virtualization support in embedded systems
has allowed the improvement of hypervisor performance for critical systems offering
several isolated execution environments (called partitions with their own operating system
and application) on the same hardware platform. Figure 3 shows the architecture of an
embedded I4.0 system with hypervisor and partitions.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 17 
 

 

For a satisfactory integration between the cyber-physical level and the information 

integration level, we propose the development of gateways between levels that make com-

patible the different quality of service requirements and offer solutions for information 

management according to the chosen computational deployment pattern—including pri-

vate cloud and public cloud systems (Figure 1). It is essential to develop information con-

version and integration models that, through automatic processing technology, prepare 

the information according to the context in which it will be used. 

Enabling technologies at upper levels include: Big data and analytics, cloud compu-

ting, augmented reality, cyber-security monitoring, and deep learning. 

3. CPS Platform 

Over the last decade, advances in processor technologies have had a strong impact 

on the architecture of processors with a special emphasis on the processors used in em-

bedded systems. These advances have included the generalization of multicore architec-

tures and support for virtualization at the hardware level. 

Virtualization has enabled cloud computing platforms to host applications in the 

cloud efficiently and on a large scale. Hardware virtualization support in embedded sys-

tems has allowed the improvement of hypervisor performance for critical systems offer-

ing several isolated execution environments (called partitions with their own operating 

system and application) on the same hardware platform. Figure 3 shows the architecture 

of an embedded I4.0 system with hypervisor and partitions. 

 

Figure 3. Overview of an embedded I4.0 component in a mixed-criticality context. 

Virtualization techniques are the basis for building partitioned software architectures 

[13]. The virtualization layer is the software layer that virtualizes computing resources. It 

can be defined and used to manage application or system resources. The hypervisor (also 

known as a virtual machine monitor (VMM)) implements the virtualization layer of the 

software and enables several independent operating systems to run their applications on 

a single hardware platform. 

The purpose of the hypervisor is to efficiently virtualize available resources. One of 

its required features is that it must introduce a low overhead; therefore, the performance 

of the applications running on the virtualized system must be similar to that of the same 

applications running on the native system. In the environment of critical systems, the hy-

pervisor is the layer on top of the hardware that has to offer the necessary characteristics 

for the execution of real-time systems with a high level of integrity and safety. 

To run several isolated execution environments, the hypervisor must cover: 

 Fault isolation: A fault in one application must not spread to other applications. Any 

failure must be resolved by the application itself or by the hypervisor. 

Figure 3. Overview of an embedded I4.0 component in a mixed-criticality context.

Virtualization techniques are the basis for building partitioned software architec-
tures [13]. The virtualization layer is the software layer that virtualizes computing resources.
It can be defined and used to manage application or system resources. The hypervisor (also
known as a virtual machine monitor (VMM)) implements the virtualization layer of the
software and enables several independent operating systems to run their applications on a
single hardware platform.

The purpose of the hypervisor is to efficiently virtualize available resources. One of
its required features is that it must introduce a low overhead; therefore, the performance
of the applications running on the virtualized system must be similar to that of the same
applications running on the native system. In the environment of critical systems, the
hypervisor is the layer on top of the hardware that has to offer the necessary characteristics
for the execution of real-time systems with a high level of integrity and safety.

To run several isolated execution environments, the hypervisor must cover:

• Fault isolation: A fault in one application must not spread to other applications. Any
failure must be resolved by the application itself or by the hypervisor.

• Spatial isolation: Applications must run in independent physical memory address
spaces. The hypervisor must ensure that the applications cannot access any memory
area that has not been specifically assigned to them.

• Temporary isolation: The real-time behavior of an application must be correct inde-
pendently of the execution of other applications. The allocation of system resources to
one application is not influenced by others and can be analyzed independently.

The availability of a platform on which completely independent and isolated partitions
such as the one provided by a hypervisor can be executed is the basis for the design and
development of mixed criticality systems. Each partition containing an application with its
operating system may have a different level of criticality. Criticality level means the level
of exigency or safety required by the application that is performing control functions over
the processes.

There have been some hypervisors that have been used to implements MCSs since
they provide the correct level of isolation to applications of different criticality. The MULTI-
PARTES and DREAMS architectures [14,15] is one of the approaches for the development
of MCS under realistic assumptions.
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In [16], RTA-HV is used to provide virtualization support for a multicore hardware
platform for the automotive industry. In [17], VOSYS monitor is used as virtualization
technology, a multi-core software layer, which allows the co-execution of a safety-critical
real-time operating system (RTOS) and a noncritical general purpose operating system
(GPOS) on the same hardware ARMv8-A platform. Last release (v2.5.0) is ASIL-C-ISO
26,262 certified [18]. A hypervisor for a mixed criticality on-board satellite software system
is discussed by Salazar et al. in [19].

Partitioning is implemented for Components Of The Shelf (COTS) Network On Chip
(NoC)-based MultiProcessor System On Chip (MPSoC) for the mixed criticality systems,
in the safety critical field in [13]. The proposed technique was developed as a software
module to be interred in a certified RTOS for avionics systems.

4. Scheduling in MCS

The first and most popular model for mixed-criticality systems in the real-time com-
munity was proposed by Vestal [20]. In his proposal, task criticality level is high (HI) or
low (LO). This model assumes that HI tasks have two different computations times: If an
overload occurs, a mode change is forced in which LO tasks are dropped, and HI tasks
execute with their lowest computation time.

Since Vestal seminal paper, a lot of works addressed real-time scheduling of MCS. The
first of them assuming mono processor and independent tasks [21,22]. In multiprocessor
systems, the first work to include MCS was [23]. The implementation assumes five levels
of criticality and uses static allocation for the higher criticality level and apply different
isolation techniques for each level. Regarding task allocation in partitioned multiprocessor
systems, traditional bin packing algorithms are also used with MCS. In [24], it was proved
that First-Fit with decreasing criticality is the allocation algorithm that obtains best results
in homogeneous processors. Regarding schedulability analysis.

A novel approach was proposed in [25] in which a run-time Worst Case Execution
Time (WCET) controller monitor the interference caused by LO tasks. It can decide to
suspend LO tasks if the interference jeopardizes the execution of HI tasks. They evaluate
the proposal on a COTS. A similar approach was proposed in [26] for partitioned systems
based on hypervisors.

Vestal’s model has been the subject of much controversy [27], mainly because it is not
clear why a certification authority would accept two values for the computation time of a
task and two different processes for measuring them. For these reason, Vestal model is not
being used in industrial applications since industry practice and safety standards provide
a different perspective in MCS. This has been discussed in some papers [28–30].

In [31], a mixed-criticality model was proposed in which criticality level is associated
to partitions. These can have the following levels of criticality:

• HI: Partitions have to be executed to completion in any condition and temporal
constraints of their tasks have to be fulfilled.

• LO: Partitions can be executed in some conditions, depending on the impact caused
in the system for not being executed. No temporal constraints are identified but it is
expected a bandwidth for them.

# If, in some cases, they can be dropped, we call them disposable LO partitions (DLO).
# If they have to be executed in any case, they are called required LO partitions (RLO).

However, even if these partitions cannot be dropped, their bandwidth can be reduced
if needed

DLO and RLO partitions can be dropped or their bandwidth can be reduced, for
example, for energy saving purposes.

As they are totally isolated, partitions can be independently certified at the appro-
priate criticality level according to the application’s requirements. In the same line, if an
application is modified, the recertification process will only affect the application itself and
not the rest of the partitions. This is called incremental certification. Figure 4 shows and
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example on how incremental certification works. For the sake of simplicity, we assume a
mono-core processor.
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In Figure 4a we can see a partitioned system with five partitions (P1, . . . , P5). P1 to P3
are partitions with the highest level of criticality (HI), while P4 and P5 are LO criticality
partitions. In the case of P4, it can be dropped if needed and, as far as P5 is concerned, its
bandwidth can be reduced.

Regarding the temporal requirements, Figure 4b shows the CPU allocation of parti-
tions. This allocation has to be statically allocated (off-line) in order to assure the temporal
isolation that is mandatory for certification purposes.

Let us suppose there is a change in P2 requirements so that more CPU time is needed
for this partition. Be P2′ the old P2 partition with the new requirements. A change in
requirements means rebuilding the CPU allocation, resulting in a new schedule for all
partitions. However, due to temporal isolation property, P2′ can be allocated in P2 slots
without having to change the allocation of the other partitions. Figure 5 shows two possible
scenarios for this situation. In Figure 5a, P2′ temporal requirements can be allocated in P2
slots without any modifications. However, let us suppose that these slots are not enough
to allocate P2′. Then, we can use criticality of partitions, specifically, we can drop P5 or
reduce P4 bandwidth. Figure 5b shows the resulting allocation of the new system where
P2′ uses slots from the old P2 and the freed slots due to P4 bandwidth reduction.
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In any case, it avoids having to re-certify the entire system. For this reason, incremental
certification has less economic and development costs while avoiding errors due to changes
in requirements.

An example of a hypervisor for MCS on multicore platforms is XtratuM. XtratuM [32,33]
is an open-source hypervisor that offers the features required for the development of
partitioned systems for critical high integrity applications. XtratuM has been successfully
used in several satellites and is the basis of several satellite constellations. In addition,
XtratuM has been used in several research projects in which application demonstrators
have been developed in automotive environments, railways, and wind generation systems
(Trujillo et al., 2013). when dealing with multicore systems, the isolation, mainly temporal,
can be impacted by shared resources in the system (bus access, memory, etc.). In [2], it was
pointed out some of the problems emerged. An alternative is to introduce in the hypervisor
control schemes that can control the partition execution. In [34], control schemes inside the
hypervisor have been proposed to control the execution of tasks in multicore systems in
which shared resources introduce unpredictability in the fulfilment of temporal constraints.

In addition to ensuring the isolation of critical systems, it is also necessary to manage
redundancy. Traditionally, distributed control systems have managed redundancy by repli-
cating the hardware platform, as shown in Figure 6a. In this example, a triple redundancy
of critical systems is considered necessary. This redundancy requires the deployment of
11 hardware platforms. The power of the current execution platforms enables the use of
virtualization as presented in Figure 6b so that only three hardware platforms are required.
This configuration offers multiple advantages: Lower cost; less deployment effort; reduc-
tion of cabling; and, in general, greater simplicity since part of the complexity managed by
hardware is managed by software.
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5. The Role of the Middleware

Achieving the objectives of Industry 4.0 requires the implementation of large-scale
distributed systems. Reconfiguration through digital machine-to-machine interaction
involves the implementation of distributed control systems following the line marked by
the IEC61499 standard [35]. The information that different distributed control elements
exchange for normal operation must be elevated to levels of supervision and analysis to
implement the necessary coordination with higher levels of decision and optimization.
Various information interactions can be seen in in Figure 1, where information of several
and different devices are managed in different levels.

To achieve true interoperability and reconfiguration between elements produced
by different manufacturers, it is essential to establish reference models that define the
architecture of a digitized industrial system. The association “Industrie 4.0”, in Europe [36]
proposed the Reference Architecture Model for Industry 4.0 (RAMI) model that provides
architectural guides at all levels of an industrial system. The RAMI model is organized
in three axes [37] where the main axis, “the factory”, represents the classical hierarchical
levels of the physical organization of the production system as set out in ISA-95 and, more
specifically, the models for integration as defined in IEC 62264. The second axis, “layering”,
indicates the context in which information is produced or used. This axis represents
the logical organization of the industrial system from the product through the means of
production to the business processes. The third axis, “the product”, indicates the life cycle
of the product and highlights the importance of managing production as well as design,
development, and possible recycling, and the residual value or environmental impact of a
product at the end of its useful life.

From the point of view of software organization, the RAMI reference model (Figure 7)
proposes an architecture based on services whose interfaces, information models, and meta-
models are driven by standards (IEC 61369, IEC 62,264 IEC CDD) [38,39] that enable their
precise interpretation. The basic element of the architecture is the “asset”, which represents
an object that has value for the company, and its software representation, the “management
shell” that organizes the properties and functions of the asset from different points of view.
The combination of the asset with its management shell forms the “component” in the
context of Industry 4.0. See Figure 8.
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Figure 8. RAMI component.

An I4.0 component offers different interfaces and properties depending on the point
of view from which its functionality is managed. For example, a booster pump can be
observed from a mechanical point of view (such as size, weight, position of the inlet and
outlet terminals, and position and resistance of the anchors), hydrodynamic (including
pressure/flow curve, viscosity range, and tolerance to particles or corrosives), or electrical
(such as type of motor, power, supply voltage, and protection index). Each of the per-
spectives that a component must implement must have an associated descriptive model.
These models, in an ideal situation, must have the capacity and be sufficiently complete so
that, through their automatic processing, the interfaces for M2M interaction and automatic
reconfiguration can be generated. Additionally, a component can be formed by other
components and establish a hierarchical relationship between them—as well as with the
relationships between components at the same level that are configured to form part of
a higher component. In this hierarchical relationship, it is necessary to implement the
specification of models through the aggregation of sub-models and connections between
standardized properties of components.

This summary view of the RAMI reference model gives an idea of the extraordinary
complexity of the task of approaching the complete implementation of a middleware sys-
tem that serves as a platform for the development of I4.0 applications. There are currently
experimental prototypes in the field of research [40] and industrial products [41] that, fol-
lowing the ecosystem defined by the manufacturer, enable the development of applications
with a many of the properties demanded by current industry (such as modularity, flexibility,
digital twin, and data analysis).

In this way of approaching the ideal I4.0 platform, the development of middleware
technology is key in the set of enabling technologies. Specifically, a middleware technology
should provide infrastructure for the management of the exchange of information between
the different components and the control of the execution of the agents or active elements of
information processing. This is always within a framework of standardization that enables
interoperability, the exhaustive exploitation of model-driven engineering, and considering
cybersecurity as a central aspect.

Horizontal interaction enables communication between strongly coupled close control
elements and is characterized by a high criticality and the relevance of real time constraints
both in communications and in the execution of tasks in the building blocks of distributed
control. Vertical interaction consists of the exchange of information between different areas
or levels of abstraction in the processing of information.

The middleware for the management of information exchange must ensure the ubiq-
uity of the information and ensure the horizontal and vertical interaction of the components
as presented in Figure 9. Middleware must be integrated with the isolation mechanisms
provided by partitioned systems that manage the execution of components in a mixed-
criticality environment. In other words, middleware must manage the trade-off of having
to ensure isolation between components while also ensuring interaction between them
through information exchange.
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The service-based interaction proposed by the RAMI reference model is suitable for
vertical interactions between components located at high levels of the architecture and close
to the public cloud [42]. The current RAMI implementations [43] use some form of REp-
resentational State Transfer (REST) web services as infrastructure. This technology is not
suitable for critical horizontal interactions, with time constraints typical of distributed con-
trol systems and whose communication model consists of the propagation and processing
of events. As a consequence, the communications middleware must support both syn-
chronous client/server Service-Oriented Architecture (SOA) models, interactions between
distributed objects under real time restrictions such as RT-CORBA, and asynchronous
models focused on publication/subscription data, such as DDS [44]. In any case, regardless
of the interaction model used, the information must be characterized in semantic terms
to support automatic reconfiguration by establishing connections between component
properties. In Figure 9 we can see a component showed in Figure 2, the “semantic gate-
way”, whose purpose is the monitoring of horizontal communications and their vertical
propagation. These gateways work by configuring information retainers, aggregators, and
converters, offering new information synchronously through services, or by publishing
asynchronously according to the quality of service specifications required at higher levels.

In short, the capabilities of the communications middleware have a strong impact on
the characteristics that a given industrial digitization implementation can achieve. The
most important functionalities that the communications middleware must provide are:

• Standardization through reference models (RAMI) and open protocols and compati-
bility mechanisms with legacy systems such as IEC16499.

• Support of mixed communication paradigms: SOA and DCPS.
• Processing, conversion, and transmission of information directed by semantic models.
• Support for reliable and isolated execution of components.
• Monitoring, recording, and encryption of information exchanged between secure

execution environments. Isolation control.
• Distribution of the execution of components directed by criticality models.

6. Challenges

Both technological fields (MCS and I4.0) involve a significant number of areas of
interest, each of which offers a set of specific challenges from both a technological and a
research point of view.

In this paper we have focused on the most significant techniques that bring together
both themes. Table 1 summarizes all the references of this paper organized by topics.
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We have structured these topics in: Embedded systems or platforms, cyber-physical
systems, I4.0, mixed criticality systems, and execution environment (operating systems
and hypervisors).

Table 1. References organized by topics.

Topic Embedded
Systems/PLATFORMS CPS I4.0 MCS Run-Time

Environment

Embedded sys-
tems/Platforms 1, 11, 12, 35 38, 39, 40, 42, 43

2, 11, 12, 13, 14, 16,
18, 19, 25, 27, 28, 29,

30, 34, 44

6, 7, 8, 13,14, 15, 16,
17, 18, 19, 34

CPS 9 11, 12 10
I4.0 36, 37, 3, 4, 41, 43 5

MCS 20, 21, 22, 23, 24 8, 13, 14, 17, 23, 26,
31, 32, 33

Run-time
environment

As we can see in the table, we find many references to each topic individually but very
few, if any, that bring together two or more topics. It is significant that we have not found
any references that combine I4.0 with MCS.

Next, we analyze the challenges that, in our opinion, are more relevant for the integra-
tion of both fields of technology. These challenges are addressed under three main lines:
Execution platforms, application integration, and model engineering.

6.1. Execution Platforms

In complex systems with multiple applications containing critical components, it is
necessary to isolate the different applications in order to strongly restrict the interaction
between them. This isolation allows failures that may occur in a system component or
application to be isolated and not to propagate to other components or applications. On
the basis of a strong isolation, it is possible to establish the foundation for the execution of
applications with different levels of criticality on the same execution platform. The need to
take full advantage of the functionalities offered by virtualization techniques (hypervisors)
for the development of complex applications in an Industry 4.0 environment is a major
challenge for the industry.

The massive use of multi-core computing platforms adds complexity to the system
but the advantages it offers exceed the disadvantages. The increase in computing capacity
combined with the use of a hypervisor layer allows migration of applications developed for
single-core to partitions on top of the hypervisor with its own operating system. Models
that allow the migration of these applications to multicore partitioned systems together
with the analysis and configuration tools of the new environments in which the partitions
have different levels of criticality are crucial for the development of this type of systems.

In addition to the use of the multicore system, it is essential to extract the maximum
performance from the hardware. In this sense, it is crucial to conduct an optimal scheduling
of the applications running on the multicore system. Scheduling techniques in a multicore
system with the specifications of the partitions with their internal real time tasks requires a
review of the techniques and tools of analysis of this type of system.

6.2. Application Integration

As previously mentioned, mixed criticality systems involve different applications (or
partitions in the terminology of partitioned systems) with different levels of requirements
from the point of view of safety, reliability and security. The hypervisor layer should
allow to identify the criticality of the different partitions and to handle it appropriately. In
Industry 4.0, common services to applications (such as middleware) coexist and, therefore,
they must be integrated in the criticality model. The need to independently certify applica-
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tions and those common services requires the development of specific techniques for the
specification, verification, and validation of all components independently.

While the use of integration of applications with different levels of criticality is a
recognized topic, there is limited analysis of the use of devices and their integration. In
avionics a significant number of functions depend on sensors, actuators, and external infor-
mation. In the processes of the Industry 4.0 this need to integrate sensors and actuators and
information from other devices (robots, machine tools, etc.) of the industry is fundamental.
This information is typically acquired through processors using different mechanisms from
the traditional ones (memory subsystems, etc.) or as specialized interfaces. The integration
of these interfaces associated with applications with levels of criticality and in a multicore
environment require a deep analysis and restructuring.

6.3. Model Engineering

The development of applications in a complex environment requires modeling tools
based on a reference architecture. The complete vision of the set of applications with
different level of criticality, the deployment on a set of hardware platforms with diverse
execution environments (partitioned with hypervisor, traditional, small cyber-physical
systems) cannot be approached without a model-driven engineering (MDE) process in the
set of tools for analysis and deployment in the factory.

The design of the system architecture and the corresponding assumptions and deci-
sions have a great impact on aspects such as the use of time-restricted design that controls
access to shared resources to ensure freedom of interference of mixed critical applica-
tions (as required by security standards) through temporal and spatial segregation, or
the management of failure scenarios considered at design time (i.e., reconfiguration and
degradation in case of hardware failure).

In order to achieve a more efficient development (e.g., to shorten the time to market
and reduce the cost of certification), the use of possibly unspecified models that are collab-
oratively edited by engineers from different system domains working simultaneously on
artefacts from different design phases (e.g., requirements specification and design models)
would be interesting. This approach involves continuously checking the design constraints
in order to draw parallels with the development process and to load the feedback on the
design in the early stages.

Future MDE processes for MCS should allow for the use of non-specified artefacts
as a preliminary basis for subsequent stages of the development process. For example,
this would allow work to begin on system design until the requirements model has been
completed. As also an incomplete requirements model defines the limitations, validation
can be carried out immediately while the design model is being created. This approach
allows efficient exploration of “state-of-the-art solutions”, and exploits all the information
about the system that has been modeled so far. An important requirement is the avail-
ability of tools that not only automatically derive and update refined artefacts (e.g., based
on design rules), but also perform continuous validation and verification of the as yet
unspecified system. This anticipation of validation and verification activities provides
immediate feedback to the system engineers and helps to reduce the round-trip time during
the design phase.

7. Conclusions

The impact of the digitization of industrial systems has opened a range of new opportu-
nities for automation and adaptation of production processes. Some analysts consider that
we are facing a new industrial revolution and the term “Industry 4.0” has been established
to refer to the set of technologies and procedures related to the exploitation of production
systems through the massive exchange and analysis of information. The advantages of
digitization are associated with new problems to be solved, mainly in the areas of security,
reliability, and control of information flows. Considering the specific requirements of I4.0
systems, this article has analyzed the current context of the technological development



Electronics 2021, 10, 226 15 of 16

of mixed criticality systems. In this paper we propose the use of hypervisors as a possi-
ble solution for the execution of automation processes in a reliable way, and analyze the
characteristics of a middleware platform that enables the integration of different execution
supports. An architectural proposal for the I4.0 system has been drafted that is compatible
with the ideas presented and with the reference models established by the international
consortia. Finally, some technological and research challenges have been envisioned.
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