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Abstract  

The capability of laser-backscattering imaging technique as a non-destructive method to control 

the effect of fat on curdling process phases was studied. It was based on capturing images of the 

diffraction patterns generated by a laser-matrix interaction, from which data were acquired. The 

studied phases were: raw material inspection; curdling monitoring; fresh curd inspection and curd 

storage monitoring. Milk was used with three different fat contents (0, 1.5 and 3.5%). An extra 

category of 1.5% fat without lactose was added to test the effect of modification on other 

compounds. All the phases were characterised by a destructive analysis (rheology, texture profile 

analysis, syneresis) to study both the evolution of the physical properties during the process and 

the relation to imaging data. Images successfully captured the variance generated by fat content 

and physical modifications. Differences in fat content were distinguished for raw material and 

fresh curd despite lack of lactose. Curdling monitoring also allowed the fat effect to be 

characterised and coagulation time to be established. Matrix evolution during storage was 

modelled from imaging for 24 h and 96 h. Imaging data correlated with syneresis evolution and 

texture features. The obtained results showed that laser-backscattering imaging was capable of 

capturing the effect of both fat and physical changes on each processing phase, which implies that 

this technique can be employed as a common system for independent phase control. 

 

 

 

Keywords: cheese production; laser backscattering imaging; non-destructive technique; 

curdling process; monitoring; characterisation; phase change  
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1. Introduction 

Improving food industry processes has favoured developing control procedure efficiency 

improvements to ensure quality and safety standards. These developments focus on reducing 

product variability, energy costs and operation times. The aim of the main improvements made 

to control and inspect modifications is to substitute outdated devices and techniques. Thus 

adapting new techniques to analyse products and control procedures in different process phases 

can lead to major short-term improvements without incurring high economic and time costs 

(Abdul Halim Lim, Antony, Garza-Reyes, & Arshed, 2015; Lim & Antony, 2016). Collecting 

vast quantities of data from the operations of all process phases is one of the most generalised 

tendencies of this approach. These data can be managed as databases to improve decision making 

about any modifications required in real time. This is plausible because the information collected 

from each process phases can be combined to generate data structures with which new knowledge 

about the behaviour of the whole production chain can be developed by using automatic learning 

applications. This approach is performed mainly by devices and techniques that operate non-

destructively (Chen, Zhang, Zhao, & Ouyang, 2013; Ropodi, Panagou, & Nychas, 2016). Such 

techniques need to be based on solid physico-chemical facts from which data are collected, but 

without coming into contact with the food matrix in any process phase. In addition, the objective 

entails non-destructive techniques followed to avoid modifications made in places, temperatures, 

positions, etc. These systems have been successfully applied in the food industry in quality/safety 

control terms from raw material delivery to end product storage (Arendse, Fawole, Magwaza, & 

Opara, 2018). The main principles on which those non-destructive techniques are based are 

ultrasound, light spectroscopy, image analyses, voltametric devices, and combinations of them all 

(Barbin et al., 2015; Fuentes et al., 2017; Sendin, Manley, & Williams, 2017; Shi et al., 2018; 

Verdú et al., 2016; Wu et al., 2014; Xie, Chu, & He, 2017; Yang et al., 2018). The main 

conditional aspects for both the application and development of these techniques are the physico-

chemical nature of the selected food matrix and the processing that takes place in each process 

phase.  
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A vast number of non-destructive applications have been used in the dairy industry to control 

most of the phases involved in its processes. Some examples are the detection of microbial 

contamination and air traces in milk packages with ultrasound (Elvira et al., 2005; Ouacha et al., 

2015) and tyramine determination in mouldy cheese based on voltammetric sensors (Küçük & 

Torul, 2018). Different imaging analysis types have been reported as successful tools to help to 

control cheese processing: characterisation of curd grain size and distribution (Iezzi et al., 2012), 

quantification of the amount of rind in grated cheese, (Barreto et al., 2018) starch content 

determination in adulterated fresh cheese by hyperspectral imaging (Calvini et al., 2020), 

visualising and modelling the maturity of long-ripening hard cheeses (Priyashantha et al., 2020), 

etc. In line with this, another imaging technique is laser light backscattering imaging, which has 

been applied to continuously monitor the cheese curdling process (Verdú et al., 2021). This 

technique is based on capturing images of the diffraction patterns generated by the interaction 

between coherent light (laser) and a given matrix. The laser is transmitted through the matrix up 

to the surface and is scattered because of the sample’s internal structure and components. These 

phenomena may provide information about the structures and morphology of the matrix as 

backscattered photons inherently interact with internal components (Mollazade et al., 2013). Then 

scattering properties can be used to study the properties of a matrix, food material in this case 

(Mireei et al., 2010). Hence this technique’s sensitivity and versatility allow normalised 

information to be taken of the changes made to a matrix in both static and dynamic regimes, and 

also offers the possibility of being adapted to control the different operations that come into play 

during a food process with common imaging variables. This technique has been successfully 

applied to other dairy processes, such as non-destructive yogurt fermentation modelling (Verdú 

et al., 2019b). Other developed applications in food processing and products include predicting 

moisture content and colour of bell pepper simultaneously during drying (Romano et al., 2012), 

quality evaluation of watermelon during storage (Mohd Ali et al., 2017b), predicting the textural 

properties of vegetable creams (Verdú et al., 2018), modelling the effect of fibre enrichment on 

biscuit properties (Verdú et al., 2019a), classifying of seeded and seedless watermelons (Mohd 

Ali et al., 2017a) or characterising antimicrobial particles with essential oils (Verdú et al., 2020). 
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The objective of this study is to test the capability of laser backscattering imaging to characterise 

the milk matrix in static and dynamic phases during curd processing as a unique non-destructive 

control technique.  

 

2. Material and Methods 

2.1 Experiment procedure 

The experiment focused on testing the capability of laser backscattering imaging to collect useful 

data from different curd processing phases in order to obtain information about composition and 

physical properties while manufacturing non-destructively. As the objective was to obtain a 

common tool to control the entire process, the procedures for extracting and processing images 

and data were done before destructive analyses and common for all phases, despite it working in 

the static or continuous mode. In this case, the experiment was carried out using milk with 

different fat fractions (Xg) to evaluate the impact of such composition changes on studying this 

matrix. Destructive physical analyses were done to acquire information about how both 

composition and phase modified the matrix, and to then study the relation to the imaging data in 

each case. Four process points were studied: raw material (liquid milk) inspection; curdling 

process monitoring; fresh curd inspection; storage monitoring. Raw material inspection was done 

on four lots of milk with different Xg (0, 1.5 and 3.5%): one of 0 and 3.5% Xg; two of 1.5% Xg 

of which one lacked lactose. All the phases were analysed by the imaging technique and 

destructive analyses. Raw material was characterised by static images and rheological analyses. 

The curdling process was dynamically monitored by the imaging technique and characterised by 

a rheological analysis to detect the end of the liquid phase and then gel formation. Finished fresh 

curd was inspected by static imaging, in the same way as with raw material, and in addition to 

characterisation in textural terms. The changes in matrix during storage were monitored by static 

imaging, and textural and syneresis measurements were taken at 24 h and 96 h/4ºC.  
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The destructive analyses and imaging data were singly studied by different statistical analyses. 

Afterwards, destructive analyses data and imaging data were related to evaluate the relation 

between both. Then the capability of the imaging technique to capture the variance generated in 

the milk matrix due to both Xg and physico-chemical changes during the process was assessed.  

 

Figure 1. Experiment procedure. Studied curdling process phases and the performed analysis. M0: raw 

material/liquid milk; C0: fresh curd; C24h: curd storage 24 h: C96h: curd storage 9 

 

 

2.2 Sample preparation in each phase 

The raw materials employed for curd formulas were three types of fresh cow's milk with three fat 

fractions: 0%, 1.5%, and 3.5% fat (S, M and W, respectively). The fractions of protein and 

carbohydrates were constant for them all: 4.5±0.3% carbohydrates and 3.1±0.3% protein. A 

second M category was added, but without lactose (ML), to test the effect of Xg despite variation 

in other components. The skimmed milk powder composition was 54±1.5% carbohydrates, 

33±1.9% proteins and 1±0.3% lipids. The three milk types and skimmed milk powder were 

purchased from a local distributor. CaCl2 was supplied by Sigma-Aldrich (Madrid, Spain). The 
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animal rennet preparation (chymosin 80% w/v, 180 international milk clotting units (IMCU)/ mL) 

came from the company Productos Nievi S.L. (Biscay, Spain).  

The samples for each phase (Figure 1) were prepared as follows: 

1. Raw material inspection: milk types were analysed by destructive and imaging techniques 

at 4ºC with no modifications made to the parameters of the used devices.  

o 50 mL of milk were placed inside two thermoformed polystyrene cylindrical 

containers (7 cm high, 5.5 cm diameter).  

o The first container was used for the viscosity analysis, and the second for the 

image analysis. 

2. Continuous curdling monitoring: this was carried out with the previously prepared 

samples.  

o Samples were heated to 40ºC and mixed with the other components of the 

formula until completely mixed: skimmed milk powder at 1% (w.b., w/v) and 

0.15 g of CaCl2 (0.001% w/v).  

o The first container was used for continuous viscosity evolution monitoring, while 

the second one for continuous imaging evolution monitoring.  

o The curdling process was started by adding two drops of rennet preparation and 

stirring for 5 sec.  

o Samples were left for 30 minutes at 40ºC to ensure complete phase transition 

from milk to curd following the rennet provider’s instructions. Temperature was 

maintained in both the rheological and image analysis systems.  

3. Fresh curd inspection: in this step, analyses was done on the obtained fresh curd samples 

o  Refrigeration of fresh curd during 30 min/4ºC by maintaining the same 

container.  

o Two containers for the texture analysis and syneresis, and one for the image 

analysis  
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4. Curd storage monitoring: this was done with the fresh curd samples in the same 

containers, which were sealed with plastic film to avoid them drying during this period. 

o  Storage was carried out in a refrigerator (Liebherr Mediline) at 4ºC away from 

light.  

o The analysis times during storage were 24 h and 96 h.   

o Three containers for the analysis at 24 h (texture, syneresis, image), and three at 

96 h 

The cylindrical shape and selected dimensions of containers allowed a homogeneous heat 

transfer from the heat exchanger to the matrix, and also avoided containers walls interacting 

with the laser beam during analyses. The experiment was replicated 10 times per level of Xg 

from 10 different milk lots. 

 

Figure 2. Imaging capture, processing and data extraction. A: Device scheme showing real diffraction 

patterns; B: Scheme of the resulting time series of the diffraction patterns in each process phase; C: 

Orthogonal images extracted from each phase in original colours and composite images from split channels 

R (red), G (green) and B (blue); C: Data matrix extracted from the processed images containing intensity 
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information; D: Resulting spectral data for statistical studies. M0: raw material/liquid milk; C0: fresh curd; 

C24h: curd storage 24 h: C96h: curd storage 96 h. 

 

2.3 Imaging device  

In order to collect information from the images of the different curd processing phases generated 

by light-matrix interactions, a low-cost device was designed based on coherent light and a digital 

camera connected to a computer. Figure 2-A offers a scheme of the device setup. The elements 

were a camera used as the digital capture system, a laser beam, a computer and a heat exchanger 

for carrying out the curdling process. The setup was installed inside a dark cabin away from light. 

The capture system was a digital Logitech C920 camera (CMOS sensor, resolution of 

2304x1535). All the camera’s automatic light controls were set to the manual mode to work and 

avoid uncontrolled modifications to the capture regime (gain, shutter speed, white balance, etc.). 

Images were captured in the RGB (red, green and blue) format and were saved as .JPEG 

(1980x1080). The camera was vertically placed 15 cm over the sample, which lay in the middle 

of the vision field. The laser beam (650 nm, 50 mW, 3 mmᴓ) was perpendicularly placed 20 cm 

under the sample container by projecting on the central zone of the bottom surface. The 

configuration of elements was the same as that employed for analysing samples from all the 

phases by changing temperature and capture rates depending on whether static or dynamic 

measurements were required. In the curdling phase, the sample container was coupled to the heat 

exchanger in the middle of the vision field.  Both the laser beam and camera were connected to a 

conventional computer that ran Linux. This device was used for all the samples in each phase. 

The only differences were the capture regime and number of images. It was static for raw material, 

fresh curd and storage, from which one image per sample was captured. For curdling monitoring, 

the system was controlled by a specific programme that automatically triggered the camera by 

software to take images at a rate of 1 image/sec. while the milk curdling process was underway 

(30 min). By the end of the curdling phase, 1,800 images from each sample were obtained. As a 

result, 1,804 images (raw material= 1; curdling process= 1,800; fresh curd= 1; storage curd 24 h= 
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1 and storage curd 96 h= 1) from replicates were obtained. Ten replicates per formula from 10 

different milk lots were analysed.   

 

2.4 Image processing and data collection  

The images captured in the studied process phases were the data reservoir from which the 

information from milk matrix-laser interactions was collected. The data collection protocol was 

based on a previous exclusive application for the curdling process with modifications. As 

explained in Verdú et al., (2021), the protocol was run as follows: 

The first step was to create an image stack with the images captured in each phase for every 

sample category (Figure 2-B). The second step was to extract the orthogonal image from the stack. 

That image was extracted by slicing the stack across the time axis. Slice size was 50 mm wide 

(diameter of the sample´s container), which crossed the central zone of the captured diffraction 

pattern (Fig. 2-B, white line, orthogonal slice). This width corresponded to 180 pixels, which were 

taken as single variables to collect variance in intensity. Thus any change in light intensity 

throughout the studied phases was captured in these orthogonal images to simplify the image-

stack from 1,804 images to 1 image. The obtained orthogonal image was split in colour channels 

R, G, and B, from with a composite image was generated (Fig. 2-C). Colour channels were split 

to collect information from not only R pixels, but also from G and B. In this case, the used 

wavelength in the laser stimulated the pixels from all the channels because digital cameras do not 

capture colour in each channel as a particular wavelength of visible light. Typical sensors tend to 

isolate the R, G and B bands of the visible light spectrum as they are seen by human eyes, but 

some zones overlapped because laser excites sensors G and B, albeit less efficiently (Batistell et 

al., 2014). These zones allow extra data to be collected, which can be useful for this type of 

imaging processing and analysis applications.  

The obtained images contained the intensity profile of the diffraction pattern along the selected 

pixels from each channel in all phases. Each composite image represented a data matrix of the 
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changes in the intensity profiles with time (Figure 2-C). The extracted matrix was organised and 

labelled in a common data matrix to study the evolution of the information captured in each phase, 

as well as the later relation to the viscosity and textural properties (Fig. 1-D). Thus the data matrix 

provided spectra of the intensities in each pixel position, which were used as a basis for analytics.  

 

2.5 Destructive analysis  

2.5.1  Viscosity measurements 

Samples (raw material and the curdling process) were characterised by a rotational viscosimeter 

(Fungilab EVO Expert Rotational Viscometer, Global Gilson, USA) to measure viscosity. These 

measurements were based on Ay and Gunasekaran (1994), and taken in the aforementioned 

thermoformed polystyrene cylindrical containers. A cylinder (2 m diameter), operating at 60 rpm, 

captured shear stress in mPa.s every second. An analysis was done for 5 min for raw material and 

for 30 min in the case or curdling phase. Temperature was kept by a tubular heat exchanger 

connected to an Ultraterm 200 thermostat (JP Selecta, Barcelona, Spain) at 4ºC for raw material 

and at 40ºC for the curdling process.  

 

2.5.2 Texture measurements  

Texture properties were measured in the phases with solid matrix samples: fresh curd and storage 

curd at 24 h and 96 h. Samples were formed by 50 mL of curd which placed inside thermoformed 

polystyrene cylindrical containers (7 cm high, 5.5 cm diameter). The curd texture analysis was 

done with a TA-TX2 texture analyzer (Stable Micro Systems, Surrey, UK), equipped with a 25-

kilogram load cell, and was used in an unanalysed sample. A probe with a disc (∅= 35 mm) 

operated at constant velocity from 1 mms−1 to 50% of sample depth. The texture study focused 

on the hardness parameter, which was represented by the maximum resistance during 

compression measured as g.  
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2.5.3 Syneresis measurements 

Syneresis is the liquid phase migration of a gel because of contraction with no external force 

applied. It is related to the instability of the network making up the gel, which results in loss of 

ability to trap or contain serum in the matrix (Walstra, 1993). This phenomenon was analysed in 

the stored curd in the storage phase at 24 h and 96 h by measuring samples’ weight difference 

after separating the released serum. The result was expressed as a percentage of syneresis (Sy), 

which was calculated according to Equation 1: 

𝑆𝑦 =
𝑅𝑠

𝑀
          (1) 

where Rs is the released serum mass during a given period and M is the sample’s initial mass.  

 

2.6 Statistical analysis 

The physical properties of the matrix obtained by destructive analyses were studied by a one-way 

ANOVA. In those cases in which the effect was significant (P-value < 0.05), means were 

compared by Fisher's least significant difference (LSD) procedure. The imaging technique data 

were explored after applying multivariable statistical procedures to reduce data-matrix 

dimensionality. For this purpose, the multivariate unsupervised statistical method called principal 

component analysis (PCA) was employed. The objective was to simplify the analysis of variance 

collected by the image data matrix obtained from raw material by continuously monitoring the 

curdling process and storage. These procedures were run with the PLS Toolbox, 6.3 (Eigenvector 

Research Inc., Wenatchee, Washington, USA), a toolbox extension in the Matlab 7.6 

computational environment (The Mathworks, Natick, Massachusetts, USA). 

 

3. Results and Discussion  

3.1 Exploring data from destructive analyses    
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The physico-chemical characterisation results of the matrix in each phases are included in Figure 

3. The raw material analysis showed increased viscosity with Xg (Figure 3-A). In general, the 

viscosity of a colloidal suspension increases as the particle concentration rises (McClements et 

al., 2019). In this case, as the only particle concentrations were fat globules, the observed 

differences could be exclusively attributed to that modification.  

The results about viscosity evolution during the curdling process are included in Figure 3-B. The 

observed kinetics shows an increase from t= 0 to t~ 1.75 min, which is common for all the sample 

categories. This point was taken as coagulation time Gt, the time when the sample underwent a 

phase change. Although the observed peaks coincided for all the samples, the maximum increased 

viscosities were different following Xg, with significant differences between them. In 1.5% Xg, 

the fact that lactose was absent did not generate any differences. This agrees with Hadde et al., 

(2015), who observed that lactose in milk did not affect the viscosity of fluid in a study about the 

rheological characterisation of thickened milk components. 
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Figure 3. Results of destructive analyses. A: Viscosity in raw material (milks) during the previous curdling process; 

B: Viscosity evolution during the curdling process. The red zone represents the liquid phase (Lp), arrows denote 

coagulation time (Gt); C: The texture analysis of fresh curd and storage times (blue zone); D: Syneresis during storage. 

Black: W; Grey: M; White-dashes: ML; Blue: S. Bars indicate standard deviation. Letters denote significant differences 

at the 95% confidence between categories within a time (lower case letters) and between times (capital letters). 

 

In the Lp, enzymatic activity takes place and modifies the hydrophilic properties of casein 

micelles. These modifications focus on the surface of casein units via the proteolysis of the Phe105-

Met106 bonds of κ-casein. This phenomenon induces the destabilisation of colloid and aggregation 

across three-dimensional spaces to form the gel structure. From this point, values lowered until 

the end of the analysis. The observed decreased viscosity was due to the effect of the probe on 

the matrix structure after gelation. Therefore, when casein aggregation sufficed to form a 

continuous gel, peaks were recorded and then these structures were broken by the device’s 

gyratory movement because solid behaviour was acquired when flux capacity reduced. Hence the 

effect of Xg on viscosity remained after Lp despite changes in the matrix due to enzymes and shear 

movement.  

The fresh curd texture presented significant differences in Xg. The highest hardness value was 

found in S, but with no significant differences among the rest. The presence of fat globules in 

relation to the gel network arrangement during curdling, and subsequent pore size, can modulate 

the curd structure and, hence, curd texture (Logan et al., 2015). Michalski et al., (2002) reported 

that fat globules can act disruptively and reduce gel integrity when the pore size of the gel network 

reduces. Hence the observed results can be attributed to the effect of fat micelles interrupting the 

casein interaction during the agglomeration process, and then the continuous phase of the formed 

gel could present less cohesion compared to less Xg. This behaviour has been previously reported 

as lack of fat globules in reduced fat cheese resulted in a firmer texture (Drake et al., 1996; 

Karaman & Akalin, 2013). Hardness increased during storage in all cases, although S presented 

the most marked changes, mostly at 96 h. Conversely, water retention in the gel reduced, as shown 

by the syneresis results (Figure 3-D). This tendency differed at 96 h. A generalised increase took 
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place and the least marked one was still W, but no differences were observed for the other 

categories. Increased hardness is related to the contact dynamics between casein micelles over 

time. The number of bonds per casein unit junction increases with ageing (Fagan et al., 2017). 

Micelles have a given fusion level in a fresh curd matrix. After some hours however, the original 

particles making up the gel can no longer be distinguished, and firmness increases with time (van 

Vliet et al., 1991). This phenomenon produces the progressive and spontaneous retraction of the 

protein matrix at low storage temperature, which allows water with hydro-soluble compounds to 

escape. Thus the rearrangement of the matrix network causes syneresis to increase. These texture 

modifications to this matrix during ripening are also related to proteolysis, along with changes in 

the matrix structure’s water-binding ability. In this case however, it can be neglected because 

chymosin is inactive at temperatures below 15ºC (Ardö et al., 2017).  

 

3.2 Exploring imaging data   

After acquiring the images from each studied phase, data were extracted and processed following 

the above-mentioned procedure. Some examples of images from each phase and Xg are included 

in Figure 4 to display the effect of the studied factors on the generated diffraction patterns captured 

during the experiment. A matrix formed by the raw images of sample surfaces is included in 

Figure 4-A. The columns of that matrix represent time evolution, divided into the studied phases: 

raw material Mo; fresh curd Co; stored curd 24 h (C24h) and stored curd 96 h (C96h). Rows represent 

increased Xg. Figure 4-B shows the matrix of images after splitting colour channels (RGB). In 

addition, the intensity profiles of each diffraction pattern are included to numerically visualise the 

observed differences. The generated diffraction patterns presented two differentiable zones: a 

central zone with higher intensity, from which a second zone was generated and corresponded to 

the most diffracted laser beam fraction. This structure has been previously studied to model other 

matrix types like biscuits and yogurt (Verdú et al., 2019b, 2019a). The effect of Xg was observed 

on these properties of the diffraction pattern. Light transmittance lowered because of the intense 

zone reduced with increasing Xg in all the process phases, while storage time had the opposite 



16 
 

effect. This effect was better evidenced in the G channel. The central zone transmitted more 

radiation to the camera´s sensor by stimulating not only the R pixels, but also the G and B ones.  

 

Figure 4. Examples of the diffraction patterns from the whole process. A: Matrix of diffraction patterns obtained from 

each process phase, the X-axis marks time and the Y-axis denotes Xg. B: Composite image from the matrix’s RGB 

channels. Lines indicate the extraction zone of the intensity data; C: Spectra of the intensity data from the shown 

images. Black: W; Grey: M; White-dotted: ML; Blue: S 

 

The presence of fat globules increased the light-matrix interaction in both the liquid and solid 

states, with a smaller diffraction pattern in all cases (Figure 5-A). The basis of this effect as 

regards the light interaction in the dairy matrix, measured by some light-based techniques, has 

been previously reported by several authors, who indicate increased turbidimetry and refractive 

indices (Penchev et al., 2015). The structural modifications that occurred in the matrix during 

both the curdling and storage processes also altered the light-matrix interaction. The reduced 

transmittance observed after the curdling process (fresh curd C0) evidenced changes in the matrix 

due to the proteolysis and aggregation of casein micelles (Figure 5-B).  From this point, 

transmittance seemed to once again increase with storage time. The images from the storage phase 

(Figure 4, columns C1 and C4) showed this increase. It can be explained by the local deformation 

or breakage of the casein structures that formed during the curdling process, which underwent 

modifications, including compaction and structural loss in localised zones. Thus after evidencing 

the dependence of the diffraction pattern structures from the studied factors, images were 
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processed, and data were extracted and arranged, to study each process phase with the 

corresponding statistical procedures.  

 

3.2.1 Raw material inspection  

The first step was to characterise raw material after the curdling process in order to test the 

influence of Xg on the light-matrix interaction of milk, and then how the information captured by 

the imaging technique would be conditioned by this factor. For this purpose, dimensionality was 

reduced by means of PCA from the spectra obtained from the images corresponding to the raw 

material of all the Xg. Figure 6-A shows the space of variance delimited by PC1 and PC2. Samples 

were spontaneously clustered following an increase in Xg across PC1. Thus PC1 collected the 

variance generated in the diffraction patterns captured in the images given the differences in Xg. 

Note how the samples from ML are placed in the same zone of M according to the common Xg 

for both sample categories. In this case, apparently the differences in composition in lactose terms 

did not generate enough variance in the captured data because M samples overlapped in this space 

of variance. The observed placement was in accordance with the above-mentioned differences, 

which are observed in the raw data shown in Figure 4. In addition, when the correlation study 

between the average of the PC1 scores and the viscosity data of raw material (Figure 3-A) was 

carried out, r= 0.95 was obtained, which evidenced the previously observed dependence. 

Therefore, the differences in the Xg of raw material were significantly affected in the data captured 

by the imaging technique, a phenomenon from which the non-destructive characterisation of 

different milk types can be carried out before the curdling process.   

 

3.2.2 Continuous curdling process monitoring  

The effect of Xg on monitoring the milk curdling phase was studied by the same procedure, but 

using the data from the images captured in the dynamic mode throughout the process. The time 

series of the images from all the sample categories was joined in stacks and a PCA was used to 
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reduce the dimensionality of the resulting data matrix. The result of generating the space of 

variance is included in Figure 7-A, where the PC1 collected 89% of total variance. The PC1 

scores were plotted with time to observe data evolution throughout the phase. The sample 

categories showed very similar evolution over time, with the main difference lying in the position 

at t= 0. At the beginning of the process, samples were placed following Xg, like that previously 

observed in the raw material characterisation. From this point, evolution seemed parallel for them 

all up to t= 30min, which was the end of the process, although some differences were noted. These 

differences were observed in segments t= 0 and t= 1min. The observed slopes differed between 

Xg, although a change in tendency occurred at the same time. In this case, PC1 collected both the 

variance generated by Xg and rennet enzymes in this phase. Two zones were differentiated during 

the process based on change in slope. However, it was difficult to determine the matrix’s gelation 

(Gt) time. In order to amplify the change in tendency and to determine the instant when data 

generated the change in evolution, the PC1 scores were transformed into the first derivative. 

Figure 7-B shows the first derivative of the scores from PC1, where a peak for all the categories 

is observed at the same time. This confirmed a change in matrix behaviour at around t= 1.75 min, 

which coincided with that observed in the rheological measurements. The relation between the 

values of the observed peaks in the first derivative of the scores from PC1 and the viscosity data 

at Gt reported r= 0.97, which confirmed the above-observed covariance. 

The differences in PC behaviour allowed us to relate differences to several diffraction pattern 

zones, which could explain the effect of proteolysis and aggregation on the light-matrix 

interaction. These results agree with former curdling process modelling in Verdú et al., (2021), 

where this imaging technique allowed the curdling phase between milk with different dry 

fractions to be characterised. It showed how intensity reduced due to the increasing interaction of 

light with the casein network structures, and despite the differences in Xg. These phenomena have 

also been described by the classic light backscattering method to study the curdling process in a 

laboratory, where reduced light transmittance was also detected during milk curdling by 

spectroscopic techniques (Mateo et al., 2010).  
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Although Xg generated significant differences in the captured diffraction patterns because of the 

influence on the light-matrix interaction, the variance generated by proteolysis and caseins 

aggregation allowed successful curdling phase monitoring for all the sample categories and Gt 

was determined.   

 

Figure 5. Scheme of the laser-matrix interaction with the studied factors. A: effect of a fat globule; B: effects of gelation 

and gel restructuration during storage.   
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The fresh curd samples (C0) were characterised with the imaging device after the curdling process 

and tempering for 30 min at 4ºC. The collected data were analysed by a PCA. The resultant space 

of variance in shown in Figure 6-B. Sample coordinates displayed similar behaviour to the raw 

material one. The distribution of samples maintained the clusters corresponding to the used 

categories based on Xg. After the gelation and refrigeration of the matrix, the interaction of the 

gel structure with the laser beam allowed the variance captured in the raw material analysis to 

remain due to the differences in Xg, albeit with a generalised reduction in transmittance. This 

result followed the differences observed during the curdling process at the end of the phase 

(Figure 7-A) when, although the curdling kinetics was almost equal, differences in intensity 

between Xg were observed. So although the biochemical modifications that occurred during the 

curdling process generated significant variance in the state and structure of the matrix, the 

variance generated by Xg still represented a wide fraction of the total captured by images. That 

fraction of variance was enough to differentiate fresh curds non-destructively.  

 

Figure 6. Results of the characterisation of milk (A) and fresh curd (B) using imaging data after dimensionality 

reduction by PCA. Black triangles: W; Grey circles: M; White squares: ML; Blue squares: S. 
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Figure 7. The curdling process study results with the imaging data. A: PC1 evolution according to a PCA over curdling 

time for all categories; B: Transformed PC1 scores from a common PCA as the first derivative. Red zone represents 

the liquid phase (Lp), arrows mark the coagulation time (Gt). Black: W; Grey: M; black dotted: ML; Blue: S.  

 

 

 

3.2.4 Curd storage monitoring   

Fresh curd characterisation during storage at 4ºC was carried out by statically capturing images 

at 24 h and 96 h. The results were compared to those of fresh curd to characterise the captured 

data evolution and to evidence the observed matrix evolution in the previously presented physical 

characterisation. Figure 8 shows the average of the raw intensity data for each colour channel and 

all the milk categories at each time. Generally for this phase, spectra once again showed bigger 

differences with time for channels G and B. Storage time seemed to increase matrix transmittance, 

unlike Xg, which had the opposite effect. Thus although the matrix underwent changes during 

storage, which generated differences in the diffraction patterns, the change in variance generated 

by Xg remained during the study period. Moreover, transmittance varied less over storage time 

when fat was present in the matrix (Figure 8-D). This matched the texture and syneresis results, 

which also showed fewer changes following the increase in Xg. This confirmed how fat induced 
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a stabler matrix during storage. If it is considered the compaction previously evidenced with 

increased hardness, then the observed effect of time on transmittance was not expected. This can 

be explained by the previous results of several authors. Rearrangements of casein micelles during 

storage modifies the curd matrix, and it becomes a more compact structure because the number 

of bonds increases and, hence, the system’s total free energy decreases (see Figure 5B, storage 

time). As casein structures form part of the gel network, it must be deformed or break locally to 

form new junctions (Ardö et al., 2017; Walstra, 1993). Thus an increase in local breaks during 

storage can explain the increasing intensity observed in C24h and C96h due to discontinuities being 

generated across the gel. 

 

Figure 8. Raw intensity spectra from the processed images over storage time. A: S; B: M; C: ML; D: W. Image channels: 

R (red), G (green), B (blue).  Continuous line: C0; semi-dotted line: C24h; dotted line: C96h 
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The placement of categories followed both Xg and storage time, from which it was possible to 

determine each one across the axis, although no factor was attributed to any PC because the 

observed models presented diagonal tendency. Note how M and WL were placed without 

differences. Thus the generated space of variance collected the effect of both Xg and storage time, 

from which the differentiation of each category of samples at several storage times can be done. 

Direct relations were observed when the imaging data dimensionally reduced as PC1 correlated 

with hardness and syneresis. Figure 9-B shows a 3D-plot with that relation. The imaging data 

showed a positive relation with hardness and syneresis. The results revealed a direct relation 

between the imaging data and matrix evolution in hardness and syneresis terms, which evidences 

the imaging technique’s capability to control and characterise the evolution of gel stability and 

textural properties during a given storage.  

 

Figure 9. Results of imaging data studies from storage time. A: Space of variance of a PCA from the imaging data 

from all the sample categories on C0, C24h and C96h; B: Relation of texture and syneresis results with imaging data after 

dimensionally reduction via PCA. Black triangles: W; Grey circles: M; White squares: ML; Blue squares: S. Bars 

indicate standard deviation. 
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The laser-backscattering imaging technique can be applied as a tool to characterise and control 

the effect of fat content on different curd processing phases. The technique captured data from 

which variance generated because both the fat content and physical modifications of the dairy 

matrix were studied and modelled. The effect of fat content can be characterised in all the studied 

phases despite modifications in other components, such us lactose. Moreover, continuous curdling 

process monitoring allowed the characterisation of the effect of fat quantity and 

proteolysis/aggregation phenomena of casein micelles across time. With this information, the end 

of the liquid phase can be detected in real time, and then the coagulation time can be established. 

Data evolutions continued to correlate with the evolution of the syneresis and texture features of 

each fat content during storage. This means that the obtained results showed the imaging 

technique’s capability to non-destructively capture the produced variability because of the 

composition modifications, fat in this case, in each curdling processing phase. These features 

offer the possibility of using this technique as a common data collection system for the entire 

process regardless of the phase or physical state of the matrix. 
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