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The fourth agricultural revolution is leading us into a time of using data science as a
tool to implement precision viticulture. Infrared spectroscopy provides the means for
rapid and large-scale data collection to achieve this goal. The non-invasive applications
of infrared spectroscopy in grapevines are still in its infancy, but recent studies have
reported its feasibility. This review examines near infrared and mid infrared spectroscopy
for the qualitative and quantitative investigation of intact grapevine organs. Qualitative
applications, with the focus on using spectral data for categorization purposes, is
discussed. The quantitative applications discussed in this review focuses on the
methods associated with carbohydrates, nitrogen, and amino acids, using both invasive
and non-invasive means of sample measurement. Few studies have investigated the
use of infrared spectroscopy for the direct measurement of intact, fresh, and unfrozen
grapevine organs such as berries or leaves, and these studies are examined in
depth. The chemometric procedures associated with qualitative and quantitative infrared
techniques are discussed, followed by the critical evaluation of the future prospects that
could be expected in the field.

Keywords: infrared spectroscopy, chemometrics, grapevine organs, non-invasive, carbohydrates, nitrogen,
amino acids

INTRODUCTION

The agricultural sector is entering its fourth revolution, thus moving toward more sustainable
farming practices. Improved sustainability is achieved through the implementation of digital
technologies and precision farming or precision viticulture (Lopo et al., 2015). The practice of
precision viticulture can be used to successfully manage the challenges of global competition,
decreasing natural resources, and increasing environmental pressures (De Orduña, 2010; Fraga
et al., 2012). This practice uses innovative technologies and data science, of which infrared
spectroscopy is an example.

The application of infrared technologies in the agricultural sector can supply the means
to measure intact, fresh, and unfrozen samples directly, and implement precision viticulture
successfully. Infrared spectroscopy is becoming increasingly popular in the agricultural
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and the agri-food industries for its capability to supply rapid
results while remaining cost-effective (Lopo et al., 2015;
Diago et al., 2018; Cuq et al., 2020). Infrared spectroscopy
provides an invaluable tool for qualitative and quantitative
applications in plant and food production. This review article
will present an overview of infrared spectroscopy applications,
focusing on near infrared (NIR) and mid infrared (MIR)
spectroscopy, (i) qualitative investigation of grapevine organs
will be examined. Then, (ii) discussing the quantification
of specifically carbohydrates, nitrogen, and amino acids
using infrared technologies, (iii) assessing the chemometric
applications used for qualitative and quantitative analysis and
associated performance evaluation indices, and (iv) concluding
with future prospects anticipated in the field of infrared
spectroscopy applications for viticultural investigations.

QUALITATIVE SPECTRAL
INVESTIGATION OF GRAPEVINE
ORGANS

Infrared spectroscopy provides information on multiple
properties of a sample simultaneously and therefore is
considered a fingerprinting technique (Cozzolino, 2014;
Dos Santos et al., 2017). When looking at complex organic
samples, this spectral fingerprint subjected to chemometric
methods can be used to investigate and elucidate compositional
characteristics in the sample, as well as the relationship between
several metabolites in the plant. Additionally, important
information about the similarities or dissimilarities of groups
can emerge (Cozzolino et al., 2011; Dos Santos et al., 2017).
Thus, infrared spectroscopy technologies are a valuable tool for
data acquisition.

A study conducted by Lopo et al. (2015) used a portable NIR
instrument to scan fresh soil and leaf samples to identify soil
type. Using principal component analysis (PCA) and supervised
partial least squares discriminant analysis (PLS-DA) the authors
grouped the soil samples according to soil type. The leaf
samples showed similar separation which correlated to soil type
and indicated the feasibility of scanning fresh leaves for soil
type determination. PCA was used to extract groupings while
PLS-DA was used for model development to determine soil
type (Lopo et al., 2015). This study indicated the benefit of
using infrared spectroscopy for the direct measurement of fresh
grapevine material.

Musingarabwi et al. (2016) studied Sauvignon blanc berry
samples at five distinct phenological stages namely green, pre-
véraison, véraison, post-véraison, and ripe using NIR and MIR
spectroscopy. Berry samples were analyzed as fresh and frozen,
and homogenized to a pulp. The best separation between
phenological stages was seen using PCA for fresh homogenized
samples measured with MIR. Additionally, separation was
also seen using orthogonal PLS-DA for NIR and MIR data.
This study linked the absorption bands associated with
sugars and organic acids to the separation seen between
phenological stages. However, there was some overlapping
of certain phenological stages, specifically post-véraison and

ripe, that showed some degree of similarity between these
stages. Although homogenized samples were used in this study,
the fresh samples showed the best separation (Musingarabwi
et al., 2016). The results showed that using fresh samples
could be beneficial and valuable. This study also demonstrated
the capability of infrared spectroscopy to detect variability
throughout the growing season.

Furthermore, Dos Santos Costa et al. (2019) investigated
the development of classification models for three maturation
stages for Shiraz and Cabernet Sauvignon berries. Whole berries
were scanned throughout the growing season using visible/near
(Vis-NIR) infrared spectroscopy. PCA was used to identify the
clustering of the samples based on maturation stages. Although
some overlapping was seen, three stages were identified namely
green, véraison, and ripe. Once these clusters were identified,
supervised PLS—DA models were compiled for classification
of grapes according to maturation stage. Maturation stages
could be successfully predicted with 93.15% accuracy (Dos
Santos Costa et al., 2019). These results not only emphasized
that infrared spectroscopy can detect changes occurring during
the growing season but also that these changes could be
predicted and monitored.

Additionally, Cuq et al. (2020) sampled fresh berries at two
phenological stages, pea-size and véraison. Fresh leaves were
also sampled at véraison and separated into leaf blades and leaf
petioles. PCA was performed on the data and clear separation was
seen between the four sample groups. The PCA loadings showed
spectral regions that discriminated between the grapevine organs.
The same regions were identified when the spectra of each
organ was averaged and compared directly (Cuq et al., 2020).
Although the results showed that spectral regions could be used
to distinguish between organs, the wavenumbers or regions
associated with each organ type were not specified.

Two studies measuring dried and ground grapevine samples
used PCA and found separation based on grapevine organs
(Schmidtke et al., 2012; De Bei et al., 2017). Schmidtke et al.
(2012) used MIR and identified separation between trunk and
root samples. Separation along PC1 positively correlated to
regions from 1,650 to 1,550 cm−1 with smaller contributions
from 1,500 to 1,300 cm−1, while PC2 corresponded with the
region between 1,000 and 875 cm−1. De Bei et al. (2017) used
NIR spectroscopy and noted that the spectra looked similar
for trunk and leaf samples with prominent peaks at 4,300,
5,200, and 7,000 but that leaf samples had an additional peak
at 5,900 cm−1. Although certain wavenumbers associated with
grapevine organ groupings were identified in these studies,
multiple wavenumbers and regions need to be examined in
future research.

A study using Vis-NIR investigated the spectra and response
of basal, young, and apical leaves on iron deficiency in young
rootstock vines (Rustioni et al., 2017). The spectra were
transformed, normalized, and compared directly. The leaves had
responded differently to the iron deficiency and these differences
were evident in the spectra. Not only were differences seen
between leaves from the same shoot, but differences between the
veins and interveinal area of a specific leaf were also observed.
These differences were mostly based on the chlorophyll synthesis
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and pigmentation distribution in the leaves (Rustioni et al., 2017).
The results indicated that spectroscopy is able to detect subtle
differences between leaves of the same shoot and even variation
within one leaf.

Recently, non-linear methods were also used for classification
purposes (Fuentes et al., 2018; Murru et al., 2019). Grape samples
have been classified according to variety and ripeness using
Fourier transform infrared spectroscopy (FTIR) and artificial
neural networks (ANN). The specific compounds influencing
the classification were identified (Murru et al., 2019). Machine
learning algorithms together with NIR spectra of grapevine
leaves were utilized to compile ANN models for cultivar
classification. Classification with 92% accuracy was achieved
leading to enhanced capabilities for ampelography (Fuentes
et al., 2018). Both linear and non-linear methods need to be
considered in future spectral investigations of grapevine organs
for increased knowledge.

The studies discussed in this section have reported separation
between grapevine organs or phenological stages (Schmidtke
et al., 2012; Musingarabwi et al., 2016; De Bei et al., 2017;
Dos Santos Costa et al., 2019; Cuq et al., 2020). However,
the reasons for the differences in spectral properties observed
for the grapevine organs or phenological stages were not
fully investigated and could have provided interesting insights.
Numerous changes occur in grapevine organs throughout the
growing season and lead to large heterogeneity between organs
and phenological stages (Hunter et al., 1995; Zapata et al.,
2004; Holzapfel et al., 2010; Rossouw et al., 2017). Infrared
spectroscopy could be used to monitor changes throughout
the growing season and link the changes to specific spectral
regions or wavenumbers of interest. Infrared spectroscopy could
also be used to identify the characteristic spectral properties
of grapevine organs at different phenological stages. Currently,
available literature shows a lack of interpretation of the
spectral differences perceived for various grapevine organs or
phenological stages. More research is required to investigate
the reason for the changes in spectral properties throughout
the growing season.

SPECTROSCOPY TECHNIQUES FOR
QUANTIFICATION OF
CARBOHYDRATES, NITROGEN, AND
AMINO ACIDS IN GRAPEVINES

Although the studies discussed above reported qualitative
methods to investigate grapevine organs, most of the same
studies focused on quantification methods (Schmidtke et al.,
2012; De Bei et al., 2017; Cuq et al., 2020). The following
sections focus on the quantification of carbohydrates, nitrogen,
and amino acids, henceforth referred to as key metabolites,
using infrared spectroscopy methods. Firstly, the importance
and role of key metabolites will be discussed. Next, the non-
direct approaches will be evaluated, followed by the proposed
methods using direct, non-invasive measurement of fresh
grapevine material.

Importance of Carbohydrates, Nitrogen,
and Amino Acid Analysis in Grapevines
Carbohydrates, nitrogen, and amino acids form a key part
of grapevine physiology affecting growth, yield, and grape
quality (Holzapfel et al., 2010; Rossouw et al., 2017). The
grapevine source-sink balance causes the concentration of these
metabolites to continuously change throughout the growing
season (Hunter et al., 1995; Zapata et al., 2004; Rossouw
et al., 2017). Carbohydrate and nitrogen reserves play an
integral role in vegetative growth and fruiting responses, and
are influenced by various factors (Schmidtke et al., 2012;
Li-Mallet et al., 2016; Rossouw et al., 2017). The amino
acid composition of grape must affects fermentation kinetics,
yeast metabolism, and aroma composition. Thus, amino acid
content contributes directly to wine quality (Fernández-Novales
et al., 2019). Figure 1 summarizes the numerous factors
that contribute to carbohydrate, nitrogen, and amino acid
concentrations in grapevines.

Despite the importance of these key metabolites, the current
analysis methods are costly and time-consuming (Edwards
et al., 2011; López et al., 2012; Schmidtke et al., 2012). Using
wet chemistry methods to monitor compounds continuously
throughout the growing season is not yet feasible. By the time
the results are obtained with these methods, concentrations
in the grapevine would have changed. The measurement of
the key metabolites during the growing season in berries,
shoots and leaves could provide valuable information to aid
fertilization, irrigation, canopy management, and winemaking
decisions (Fernández-Novales et al., 2019; Cuq et al., 2020). New
methods for quantifying these metabolites need to be investigated
to increase our knowledge, facilitate management decisions, and
implement precision viticultural practices.

Non-direct Quantification Using Infrared
Spectroscopy
The quantification of carbohydrate and nitrogen reserves using
infrared spectroscopy with non-direct methods was investigated
(Schmidtke et al., 2012; Smith et al., 2014; De Bei et al., 2017;
Jones et al., 2020). Non-direct methods still use destructive
sampling where samples need to be removed in the field and
transported to laboratories. The methods also use extensive
sample preparation, where the sample material needs to be
freeze-dried to remove moisture, and then ground to a powder
to obtain a completely homogenized sample. Favorable results
were shown for numerous infrared spectroscopy applications
and multivariate regression techniques to quantify chemical
components in grapevine samples (Schmidtke et al., 2012; Smith
et al., 2014; De Bei et al., 2017; Jones et al., 2020).

The use of attenuated total reflectance Fourier transform
infrared spectroscopy (ATR-FT-IR) was investigated to assess
nitrogen and starch reserves in grapevine wood and root
samples (Schmidtke et al., 2012). Over a thousand samples
were selected spanning over four vintages, two countries, five
locations, and three cultivars, leading to a suitably representative
dataset. Cross validation was used with a data split of ten for
the calibration subsets. Accurate models were obtained with
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FIGURE 1 | Summary of viticultural, physiological, environmental, and oenological factors that have an influence on, or are influenced by the key metabolites
[Adapted from Noronha et al. (2018)].

PLS regression and support vector machine (SVM) regression
using dried and powdered samples (Schmidtke et al., 2012).
Although sample preparation was still used, the improvement
from the existing wet chemistry methods was substantial. This
research demonstrated that infrared spectroscopy could be
used to develop accurate calibrations for complex compounds
across various vintages and locations. Both linear and non-
linear regression techniques performed equally well with SVM
regression leading to marginally improved models. This study
also showed the diverse applications of infrared spectroscopy
when sufficient variability is included during the model
development stage (Schmidtke et al., 2012).

A related study used NIR spectroscopy to assess non-
structural carbohydrates in grapevine trunks and leaves (De
Bei et al., 2017). Models were obtained for trunk and leaf
samples separately for starch, sugar, and total non-structural
carbohydrates using PLS regression. Test set validation was
used with the calibration set corresponding to two thirds of
the dataset, and validation consisting of one third. Sampling
was performed at three phenological stages and clear separation
was seen between the phenological stages in the trunk samples’
PCA plot. However, during model development the data for
all the stages were combined, although separate models were
developed for trunk and leaf samples. The study reported
that the models could not provide quantifiable data but that
the practical viticultural applications were still significant.
The sample set for this study was limited with only 261
trunk samples and 222 leaf samples included. The samples
were all collected from one cultivar and vineyard on which
irrigation treatments were tested (De Bei et al., 2017). In future
research several cultivars and locations could be investigated to
increase dataset representativeness as well as model variability

and accuracy. Although a limited number of samples could
be used to compile sufficient models, special care needs
to be taken to ensure that the samples account for the
largest possible variability and are representative. Additionally,
the irrigation treatment could have negatively influenced the
model performance.

A recent study investigated the feasibility of using NIR
reflectance spectroscopy to quantify starch in ground and intact
grapevine cane samples (Jones et al., 2020). Samples were
collected during dormancy and first measured directly with
and without bark, and then freeze-dried and ground. Direct
measurement led to poor calibration models with no substantial
improvement after bark removal (Jones et al., 2020). The
calibrations using the ground samples yielded accurate results in
agreement with previous studies (Schmidtke et al., 2012; De Bei
et al., 2017; Jones et al., 2020).

As discussed, various authors have investigated infrared
spectroscopy for the quantification of carbohydrates and nitrogen
in grapevine plant material (Schmidtke et al., 2012; De Bei et al.,
2017; Jones et al., 2020). However, extensive sample preparation
methods were still employed. Most sample preparations change
the anatomical and physical properties of the sample. Even fixing
the samples in resin could lead to structural and chemical changes
that could alter the infrared spectra. Thus, it is suggested that
using fresh samples could be less invasive, preserving the sample
integrity and structure (Türker-Kaya and Huck, 2017). Current
research suggests that methods consisting of direct measurement
of intact, fresh samples using infrared spectroscopy with no
sample preparation could lead to accurate calibrations and will be
investigated in the next section (Lopo et al., 2015; Musingarabwi
et al., 2016; Diago et al., 2018; Fernández-Novales et al., 2019; Cuq
et al., 2020; Jones et al., 2020).
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FIGURE 2 | Regression workflow for model development using infrared spectra and grapevine reference data. NIR, near infrared; MIR, mid infrared; PLS, partial least
squares; ANN, artificial neural networks; MSC, multiplicative scatter correction; LASSO, least absolute shrinkage and selection; SVM, support vector machines;
LOCAL, locally weighted; SOM, Self-organizing maps; RMSE, root mean square error; RPD, residual predictive deviation; SI, slope and intercept; ICC, inter-class
correlation coefficient; SEM, standard error of measurement; LOD, limit of detection; LOQ, limit of quantification.

Direct Quantification Techniques Using
Infrared Spectroscopy
The investigation of using infrared spectroscopy for the non-
invasive measurement of fresh grapevine samples could lead
to direct, in-field applications allowing for the implementation

of precision viticulture. Although limited studies have been
reported on fresh samples, the feasibility of using infrared
spectroscopy as a direct, non-invasive quantification method for
nitrogen, amino acids, and other metabolites, are explored in this
section (Fernández-Novales et al., 2019; Cuq et al., 2020).
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A method using on-the-go, contactless NIR explored the
possibility of monitoring grapevine water status (Diago et al.,
2018). Predictive models were compiled with R2 values ranging
from 0.68 to 0.85. The models were used to spatially map the
water status variability of a vineyard on different dates, providing
useful information and facilitating decisions regarding irrigation
schedules (Diago et al., 2018).

Vis-NIR reflectance spectroscopy was also used to explore
quality attributes in intact grape berries (Dos Santos Costa et al.,
2019; Fernández-Novales et al., 2019). Fernández-Novales et al.
(2019) investigated amino acid and total soluble solid content
using PLS with fivefold cross validation. Samples were collected
from one cultivar and one vineyard with 128 grape clusters
sampled at five phenological stages. Accurate models were
developed for total soluble solids, but the amino acid calibration
models were only sufficient for screening purposes (Fernández-
Novales et al., 2019). The quantification of amino acid content
of berries, even just for screening purposes, could greatly aid
harvesting and oenological decisions. Dos Santos Costa et al.
(2019) achieved robust prediction models for total soluble solids
and total anthocyanins using 432 Shiraz and 576 Cabernet
Sauvignon berries. Separate models for Shiraz and Cabernet
Sauvignon berries were developed, as well as a combined model.
Similar results were reported for the separate and combined
models (Dos Santos Costa et al., 2019). These studies were
conducted on limited cultivars and vineyards, and although a
large number of samples were included the representativeness
of those samples were restricted. Future research should include
various cultivars, regions, grapevine organs, and phenological
stages to include sufficient variability and representativeness in
the dataset. The similar results found for separate models per
cultivar and for combined models suggest that individualized
models should be explored and could lead to more accurate
prediction calibrations.

Lastly, a study conducted in southern France used NIR
spectroscopy to investigate and assess macro-elements in fresh
grapevine leaves and berries (Cuq et al., 2020). The macro
elements that were considered in this study were carbon (C),
hydrogen (H), nitrogen (N), and sulfur (S). Four cultivars were
sampled across 63 plots, and leaf petioles, leaf blades, pea-size
berries and véraison berries were collected for each plot leading
to 252 total samples. Each sample was made up of a representative
number of leaves (50) or berries (200). The blades and petioles of
the same leaves, and berries at two phenological stages (pea-size
and véraison) were measured as fresh and dried (homogenized)
samples. PLS regression using test set validation was employed
with a 75:25 split. During model development all data for leaves
and berries were combined, but separate models for fresh and
dried samples were compiled. Model performance showed only
the models for nitrogen and carbon:nitrogen ratio was usable
according to the residual predictive deviation (RPD) for fresh and
dried samples. The models for the dried samples still performed
somewhat better than the fresh samples (Cuq et al., 2020).

However, the predictive difference observed for fresh and
dried samples could be offset by the time needed for sample
preparation. Using fresh samples could also lead to direct, in-field
applications. As previously discussed, this study found separation

based on grapevine organs and phenological stage (Cuq et al.,
2020). However, during model development, all the data was
combined into a single database. Models for each organ were
considered but the data was not shown, and the models were
said to be inconclusive and less accurate than the combined data.
The inconclusive results for the individual models could be due
to limited samples, organs, or phenological stages in this study
leading to poor representativeness in the dataset.

The studies discussed in this section investigated infrared
spectroscopy for quantification of amino acids, quality
parameters, and macro elements in fresh grapevine organs
(Dos Santos Costa et al., 2019; Fernández-Novales et al., 2019;
Cuq et al., 2020). Although the quantification of some key
metabolites was reported in fresh grapevine organs, carbohydrate
determination has not yet been attempted. The studies mostly
focused on berries and although some reported sampling
throughout the growing season, the data from all phenological
stages were combined for model development. Similarly,
when more than one grapevine organ was sampled, the data
for all organs were combined into one dataset. The fact that
grapevine organs are extremely heterogeneous, based on their
morphological, anatomical, and chemical structure could lead
to large variations between grapevine organs, and even within
one organ at different phenological stages. This variation could
explain why models that combine all the data from different
organs, and phenological stages, into a single database for model
development are not leading to very accurate prediction models.

By monitoring fresh grapevine organs at several phenological
stages across the growing season, specific models for each organ,
and possibly phenological stage, could be investigated. These
individualized models could lead to more accurate predictions of
complex chemical compounds such as carbohydrates, nitrogen,
and amino acids. The successful monitoring of these key
metabolites during the growing season could greatly aid the
implementation of precision viticulture.

CHEMOMETRIC APPLICATIONS

The investigation and interpretation of infrared spectra is a
complex process. The MIR and NIR spectra show peaks and
vibrations for all the major molecular bonds in the measured
sample. Additionally, NIR also includes the combinations
and overtones present (Massart, 1973; Massart et al., 1988;
Varmuza and Filzmoser, 2016). Infrared spectroscopy generates
spectral data that contains immense amounts of information.
Therefore, as previously stated, infrared spectroscopy is seen as
a fingerprinting technique because it provides information about
several properties of a sample simultaneously (Cozzolino, 2014;
Dos Santos et al., 2017).

Chemometrics is needed to decipher this information and
is defined as the procedure of extracting relevant information
from chemical data using mathematical and statistical tools
(Massart, 1973; Massart et al., 1988; Varmuza and Filzmoser,
2016). Chemometrics, and more specifically multivariate data
analysis (MDVA), has been extensively used for qualitative
and quantitative applications in the agricultural industry
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TABLE 1 | Chemometric techniques and calibration parameters reported in discussed literature.

References Chemometric/MDVS technique
used

Calibration parameters reported

De Bei et al., 2017 PLS R2
cal, R2

val, SECV, SEP, Slope, Bias, Ranka, RPD

Schmidtke et al., 2012 PLS and SVM R2
val, RMSEP, Bias, Rank

Jones et al., 2020 PLS R2
cal, R2

val, RMSEC, RMSEV, RPD, Bias

Fernández-Novales et al., 2019 PLS SEC, R2
cal, SECV, R2

cv, RPD, SEP, R2
pred, Bias, Slope, Rank

Cuq et al., 2020 PLS, PCA R2
cal, RMSEC, RPDcal, R2

val, RMSEV, RPDval, R2
pred, RMSEP, RPDpred,

percentage (reported for PCA)

Diago et al., 2018 PLS R2
cal, RMSEC, R2

cv, RMSECV, R2
pred, RMSEP

Dos Santos Costa et al., 2019 PCR, PLS, MLS for calibration
models. PCA-LDA, PCA-QDA,
PCA-LDA Mahalanobis, PLS-DAb

for maturation classification.

R2
cal, RMSEC, SEC, R2

cv, RMSECV, SECV, R2
pred, RMSEP, SEP, Bias, Rank

Percentage (reported for classification), confusion matrix

Petrovic et al., 2020 PLS R2
cal, RMSEC, RPDcal, R2

val, RMSEV, RPDval, Slope, Bias, Rank

Aleixandre-Tudo et al., 2018a PLS R2
cal, RMSECV, RPDcal, R2

val, RMSEV, RPDval, Rank, ICC, SEM

Aleixandre-Tudo et al., 2018b PLS R2
cal, RMSECV, R2

val, RMSEV, RPD, Bias, Rank, Slope, ICC, SEM, LOD, LOQ

Wang et al., 2017 PCR, PLS, SMLR, BPNNc R2
cal, R2

val, RMSEC, RMSEV

Quentin et al., 2017 PLS R2
cal, RMSEC, SEC, RPDcal, R2

pred, RMSEP, RPDpred, Slope, Bias

Ramirez et al., 2015 PLS R2
cal, R2

cv, R2
val RMSEC, RMSECV, RMSEP, RPDcv, RPDval, Rank

aRank defined as the number of latent variables or principal components/partial least square terms in calibration.
bPCA using linear discriminant analysis (PCA-LDA), quadratic discriminant analysis (PCA-QDA), linear discriminant analysis using Mahalanobis distance (PCA-LDA
Mahalanobis) and PLS-DA.
cSMLR, stepwise multiple linear regression; BPNN, back propagation neural network.

(Dambergs et al., 2015; Varmuza and Filzmoser, 2016; Williams,
2019). Qualitative applications will be mentioned in this
section, while quantitative chemometric applications will be
discussed in more detail.

The chemometric techniques most often used in the literature
discussed in this review for infrared spectroscopy data are PCA
and PLS regression, as shown in Table 1. PCA is mostly utilized
as a qualitative method for screening, grouping, extraction,
and compression of multivariate data. Using mathematical
procedures, the correlated response variables in spectral data are
transformed into non-correlated variables known as principal
components (PC’s) (Cozzolino et al., 2011; Dos Santos Costa
et al., 2019; Cuq et al., 2020).

Although most literature in the agricultural and viticultural
field report the use of PLS, it is worth mentioning that
other regression techniques have recently been proposed that
could outperform PLS. Ridge regression and lasso (least
absolute shrinkage and selection operator) regression are variable
selection methods that can be applied to spectroscopy data to
reduce variables used during model development leading to
more interpretable models (Piaskowski et al., 2016; Frizzarin
et al., 2021; Gao et al., 2021). Although limited agricultural
applications for ridge and lasso regression have been reported,
it has been successfully employed to predict quality traits in
cow’s milk (Frizzarin et al., 2021) as well as lignin content in
poplar trees (Gao et al., 2021). However, in a study conducted
on NIR data seven different regression methods were investigated
including PLS, ridge, and lasso regression, to assess carbohydrates
in wheat samples with PLS yielding the most accurate results
(Piaskowski et al., 2016).

Regression methods, such as PLS regression, are employed
for classification purposes (PLS-DA) as well as quantification

using spectral and reference data to compile prediction models.
Chemometrics uses statistical techniques and reference data to
extract and correlate the spectral data with a property of interest.
This chemometric approach uses model development, including
model calibration and validation, for the prediction and
quantification of chemical and physical properties (Cozzolino
et al., 2011; Schmidtke et al., 2012; De Bei et al., 2017; Bureau
et al., 2019). Figure 2 shows the main steps during regression
model development implemented on infrared spectra and
grapevine reference data. Regression techniques employed
for quantification purposes will be discussed extensively.
Preprocessing techniques, model development steps, and
performance evaluation indices and other methods used to
compare model performance will be evaluated.

Preprocessing Techniques
Before multivariate regression techniques are applied to
spectral data, preprocessing is often used to enhance spectral
features and remove undesirable sources of variation or
irrelevant information (Dos Santos et al., 2017; Bureau
et al., 2019). Various spectral preprocessing techniques
exist, such as scattering or baseline correction, smoothing
or transforming to first or second derivatives, standardization,
and normalization. During model development some of
the preprocessing methods are often investigated and the
optimal technique or combination of techniques are chosen
based on model performance (Nicolaï et al., 2007; Cozzolino
et al., 2011; Varmuza and Filzmoser, 2016). As discussed
in previous sections the study done by Cuq et al. (2020)
was one of few that used fresh grapevine material. They
employed preprocessing to eliminate light scattering effects
and compensate for baseline bias and offset. They used
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multiple methods including the Savitzky-Golay algorithm and
multiplicative scatter correction (MSC).

The Savitzky-Golay algorithm uses smoothing and
transformation to remove random noise, baseline shifts
and superimposed peaks to the first or second derivative.
These derivatives help to highlight small peaks and bands and
to elucidate overlapping peaks. The application of the MSC
method to spectral data reduces the effect of light scattering and
linearizes the spectra. MSC compensates for the non-uniform
light scattering throughout the sample caused by particle size,
refractive index, and radiation wavelengths (Nicolaï et al., 2007;
Cozzolino et al., 2011; Varmuza and Filzmoser, 2016). Both these
methods were proven to be useful when dealing with whole, fresh
grapevine organs (Cuq et al., 2020).

Various other studies also used the Savitzky-Golay algorithm
and MSC for preprocessing and these methods were often used
in conjunction (Schmidtke et al., 2012; Dos Santos Costa et al.,
2019; Fernández-Novales et al., 2019). Schmidtke et al. (2012)
applied these algorithms to spectra from grapevine samples that
were dried and ground to a powder, while Dos Santos Costa
et al. (2019) and Fernández-Novales et al. (2019) used fresh grape
berries. The wide application of these algorithms to dried and
fresh samples show their applicability in the field of viticulture
(Schmidtke et al., 2012; Dos Santos Costa et al., 2019; Fernández-
Novales et al., 2019; Cuq et al., 2020).

The sample type, instrument, and purpose of the analysis all
contribute to choosing an appropriate preprocessing technique
(Stuart, 2004; Varmuza and Filzmoser, 2016; Türker-Kaya and
Huck, 2017; Aleixandre-Tudo et al., 2019; Bureau et al., 2019).
Often numerous preprocessing techniques and combinations
need to be investigated to find the correct approach. The
correct choice could also be not to implement any preprocessing
techniques. The scattering components in some NIR spectra
could include physical information of the sample such as density
and removing scattering effects could reduce a sample’s physical
information. Using smoothing techniques often only marginally
improves the calibration model or even causes unfavorable
effects. The use of smoothing could lead to decreased prediction
accuracy because of correlations introduced in the noise
structure (Olivieri, 2015). The option of using preprocessing or
the raw spectra should be carefully considered before model
development is initiated.

Model Development
During linear regression model development, the dataset is often
subdivided into a calibration set that is used to construct the
model and a validation set used to test the model. This is
done using various methods including test set validation, cross
validation with leave-one-out or k-fold cross validation. During
test set validation the dataset is split using algorithms, such
as Kennard-Stone, based on a percentage (Porep et al., 2015;
Petrovic et al., 2020). The split, between calibration and validation
datasets, generally applied is 70:30 or 50:50 for PLS calibrations
or even 80:20 for machine learning models. These dataset splits
differ based on sample type and application (Fuentes et al., 2018;
Bureau et al., 2019; Murru et al., 2019; Petrovic et al., 2020).

Alternatively, cross validation can be used. This involves
leaving out one sample at a time for the construction of
the calibration model, and then using the left-out sample for
validation. However, with larger datasets it is often difficult
to leave out one sample at a time because of the numerous
calibrations generated when using this method and the minimal
effect that leaving one sample out has on model performance. In
the instance of large datasets, cross validation uses sample sets of
up to ten or twenty samples that are left out at a time and used
for validation (Cozzolino et al., 2011; Varmuza and Filzmoser,
2016). Similarly, when using k-fold cross validation the dataset
is split into K subsets. One subset is applied for validation while
the other K-1 subsets are used for calibration. This is repeated K
times so that after K iterations all data is used for calibration as
well as validation. K values between five and ten are commonly
used (Paiva et al., 2021; Santos et al., 2021).

Although test set and cross validation datasets are considered
as independent from a statistical viewpoint, model accuracy and
robustness should preferably be tested with an independent,
completely external sample test set. The samples for the external
test set should be collected under the same conditions as
the calibration set. Samples collected from different vintages,
cultivars, and regions should be included in the external test set
to assess the model’s robustness and ability to handle spectral
variability in samples beyond those used in the calibration
set (Cozzolino et al., 2011; Dos Santos et al., 2017; Bureau
et al., 2019). Including sufficient variability could be difficult in
agriculture and viticulture where ample variations exist between
years because of vintage and climatic effects. However, if sufficient
sample variability was included in previous vintages the model
should have a better ability to predict future samples.

Performance Evaluation Indices
The application of various preprocessing strategies, multivariate
regression techniques and model optimizations lead to multiple
calibration and validation models that need to be assessed
based on their performance. Multiple performance evaluation
indices or calibration parameters are used to report the results
of calibration and validation models. The indices test the
model’s accuracy and reliability (Aleixandre-Tudo et al., 2018b;
Bureau et al., 2019; Dos Santos Costa et al., 2019; Fernández-
Novales et al., 2019; Williams, 2019). The most commonly used
parameters in the discussed literature are summarized in Table 1
and the values associated with them in Tables 2, 3.

One of the most widely used parameters is the root mean
square error (RMSE) that is used for calibration (RMSEC),
cross validation (RMSECV) and prediction (RMSEP). RMSECV
indicates the possible error for future predictions and RMSEP
estimates the model’s ability to accurately predict new samples.
Alternatively, the standard error of calibration (SEC), cross-
validation (SECV) and standard error of prediction (SEP) could
be used. RMSEP and SEP values are related but unlike RMSEP,
SEP is independent of bias, while RMSEP include bias error.
Some authors prefer using SEP together with bias while others
favor RMSEP and some authors report all of the above as shown
in Tables 1–3 (Aleixandre-Tudo et al., 2018b; Bureau et al., 2019;
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TABLE 2 | Direct and non-direct applications of infrared spectroscopy for quantification tasks in grapevines.

References Application Sample type Sample collection IR technique Chemometric/MDVS
technique used

Calibration accuracy

De Bei et al., 2017 Total non-structural
carbohydrates (TNC),
starch and sugar

Non-direct Trunk and
leaf samples—Freeze
dried, and ground to
powder

One cultivar, two
vintages, four
phenological stages

NIR PLS Trunk models:
TNC: R2

cal = 0.84, R2
val = 0.82, SECV = 10.92 mg/g,

SEP = 12.65 mg/g, PC’s = 11, RPD = 2.17
Starch: R2

cal = 0.84, R2
val = 0.80, SECV = 10.60 mg/g,

SEP = 12.51 mg/g, PC’s = 11, RPD = 2.51
Leaf models:
TNC: R2

cal = 0.92, R2
val = 0.86, SECV = 17.83 mg/g,

SEP = 22.86 mg/g, PC’s = 5, RPD = 3.48
Starch: R2

cal = 0.93, R2
val = 0.88, SECV = 16.18 mg/g,

SEP = 21.13 mg/g, PC’s = 7, RPD = 3.73

Schmidtke et al.,
2012

Nitrogen and starch
reserves

Non-direct Root and
wood samples—Freeze
dried, and ground to
powder

Three cultivars, four
vintages, five regions
(across two countries),
35 vineyards

ATR-FT-IR PLS and SVM Nitrogen
SVM: R2 = 0,98, RMSEP = 0,07% DW
PLS: R2 = 0,97, RMSEP = 0,08% DW
Starch
SVM: R2 = 0,95, RMSEP = 1,56% DW
PLS: R2 = 0,95, RMSEP = 1,43% DW

Jones et al., 2020 Starch Direct and non-direct
Cane wood

Two cultivars, five
vineyards, three
vintages

NIR PLS Starch -ground samples
R2 = 0.88, RMSEV = 0.73 mg/g, RPD = 2.85
Starch—intact samples with bark
R2 = 0.20, RMSEV = 0.86 mg/g, RPD = 1.08
Starch—intact samples without bark
R2 = 0.36, RMSEV = 0.75 mg/g, RPD = 1.24

Fernández-Novales
et al., 2019

Amino acids Direct Berries—fresh One cultivar, one
vineyard, five sampling
dates

Vis + SW-NIR
(Visible + Short wave
NIR) and NIR

PLS Asparagine
SEC = 0.38 mg N/l, R2

cal = 0.71, SECV = 0.44 mg N/l,
R2

cv = 0.64, RPD = 1.63, SEP = 0.45 mg N/l, R2
pred = 0.66

Cuq et al., 2020 C, H, N, S Direct Leaves and
berries—fresh

Four cultivars, 63
vineyards, two
phenological stages

NIR PLS, PCA Nitrogen
R2

cal = 0.90, RMSEC = 0.181% DW, RPDcal = 3.14,
R2

val = 0.84, RMSEV = 0.237% DW, RPDval = 2.41,
R2

pred = 0.91, RMSEP = 0.172% DW, RPDpred = 3.32

Dos Santos Costa
et al., 2019

Quality (total soluble solids,
total anthocyanins, yellow
flavonoids) and maturation

Direct Berries—fresh Two cultivars, one
region, one vintage

Vis/NIR PCR, PLS, MLS for
calibration models.

Shiraz model
TSS: R2

cal = 0.97, RMSEC = 0.89%, SEC = 0.89%,
R2

cv = 0.94, RMSECV = 1.33%, SECV = 1.33%,
R2

pred = 0.95, RMSEP = 1.15%, SEP = 1.13%

PCA-LDA, PCA-QDA,
PLS-DA for maturation
classification.

Cabernet Sauvignon model
TSS: R2

cal = 0.97, RMSEC = 1.08%, SEC = 1.09%,
R2

cv = 0.97, RMSECV = 1.13%, SECV = 1.13%,
R2

pred = 0.96, RMSEP = 1.39%, SEP = 1.40%

Combined model
TSS: R2

cal = 0.96, RMSEC = 1.21%, SEC = 1.21%,
R2

cv = 0.95, RMSECV = 1.37%, SECV = 1.37%,
R2

pred = 0.95, RMSEP = 1.38%, SEP = 1.39%
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Dos Santos Costa et al., 2019; Fernández-Novales et al., 2019;
Williams, 2019).

These parameters’ values are given in the same units as
the measured compounds and should be as small as possible
(Tables 2, 3). The threshold or accuracy will depend on the unit
of measure for the compounds and the sensitivity of the existing
analysis. The parameters can also be expressed as a percentage
calculated using the population mean of the calibration or
validation set used and a percentage below 20% is regarded as
acceptable for analytical methods (Cozzolino et al., 2008; Torchio
et al., 2013; Aleixandre-Tudo et al., 2019). These calculations do
not include possible errors associated with the reference methods,
but despite these limitations, they are still the most commonly
used (Dos Santos et al., 2017).

Another performance index that is often used is the coefficient
of determination or R squared (R2). R2 is used to explain the
variance of the response variable in the calibration (R2

CAL) and
validation (R2

VAL) sets. The value should be close to 1 so that as
much variance as possible is explained for the response variable
in the dataset (Cozzolino et al., 2011; Bureau et al., 2019).

The ratio of prediction to deviation or residual predictive
deviation (RPD) is also often used to evaluate the predictive
ability of a model (Ramirez et al., 2015; De Bei et al., 2017;
Quentin et al., 2017; Cuq et al., 2020; Jones et al., 2020).
RPD is calculated as the ratio of the standard deviation of the
response variable to the RMSEP or RMSECV (Aleixandre-Tudo
et al., 2019; Bureau et al., 2019). Values between 2 and 3 have
been reported as acceptable for wine and grape applications
(Aleixandre-Tudo et al., 2019; Cuq et al., 2020). In addition,
other authors have interpreted values below 3 as adequate for
screening and values above 5 capable of classification, quality,
and process control tasks (Tables 2, 3) (Ramirez et al., 2015;
De Bei et al., 2017; Quentin et al., 2017; Cuq et al., 2020; Jones
et al., 2020). However, the RPD values’ interpretation is somewhat
controversial since these thresholds were not determined using
statistical basis (Cozzolino et al., 2011). Furthermore, other
authors have argued that reporting both R2 and RPD is redundant
since the calculation of RPD is inversely related to R squared
(Minasny and McBratney, 2013).

Other statistics such as bias, rank and fit for purpose criterion
are also used to assess model performance. Bias is measured
as the difference between expected values (predicted) and true
values (reference data) of a distribution. The selection of an
optimal number of latent variable or principal components
(often called rank) when using multivariate regression techniques
such as PLS is also extremely important. If a model’s
rank is too high there might be over-fitting and too low
rank could lead to a model incapable of capturing all the
variability present in the dataset (Cozzolino et al., 2011;
Aleixandre-Tudo et al., 2019).

The fit for purpose criterion also needs to be considered
after model development and judges the applicability of the
model for routine use. The models need to be interpreted
based on application as well as statistics (Cozzolino et al.,
2011; Bureau et al., 2019). The successful implementation of a
method also depends on model robustness. A calibration model
is robust when the prediction accuracy is independent of external

Frontiers in Plant Science | www.frontiersin.org 10 September 2021 | Volume 12 | Article 723247

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-723247 September 3, 2021 Time: 14:37 # 11

van Wyngaard et al. Spectroscopy and Chemometrics Grapevine Organs

factors. Including a large representative sample set consisting of
various cultivars, regions, vintages, and climatic conditions in the
calibration model will help to ensure robustness (Cozzolino et al.,
2011; Dos Santos et al., 2017; Petrovic et al., 2020).

In agricultural applications even less accurate prediction
models can supply the ability to screen samples for low and
high values. Rapid screening can be invaluable compared to
the existing time-consuming and destructive methods. Although
each of the performance evaluation indices do not supply all
the answers, by investigating, and evaluating, all of them a clear
picture of the regression techniques’ performance could emerge.

Tables 2, 3 list the studies using direct and indirect
measurement of grapevines and other plants, respectively. The
sample types, analytical application, and sampling procedures are
reported together with the infrared and chemometric techniques
used. Most of the studies reported numerous calibrations.
However, only the most accurate calibration results were included
in the tables. Most of the information shown in these tables were
discussed in previous sections.

Statistical Tests for Model Comparison
During model development with agricultural samples, a large
number of models are often created to investigate the dataset.
The values of the performance evaluation indices such as RMSE
are often directly compared to evaluate the models’ predictive
ability. Direct comparison of these absolute values can show
differences between the models but not if the differences are
significant in terms of model performance. Comparing the
values directly might not be the best strategy to evaluate
prediction performance. Statistical tests to compare the difference
in observed and predicted values could be applied to evaluate
significant differences (Olivieri, 2015; Aleixandre-Tudo et al.,
2018a, 2019; Petrovic et al., 2020).

A randomization test has been investigated for the comparison
of RMSE values. Hypothesis testing is employed to determine if
calibrations differ significantly with the null hypothesis stating
that the two compared RMSE values are equal (RMSE1 = RMSE2)
and the alternative hypothesis proposing that one value is
larger or different than the other (RMSE1 > RMSE2) (Van
der Voet, 1994; Olivieri, 2015; Aleixandre-Tudo et al., 2019;
Petrovic et al., 2020). Randomization testing could determine if
significant differences between sample types, infrared methods
or multivariate statistical techniques are present (Petrovic et al.,
2020). Some literature has also suggested randomization testing
for classification problems. Several classification methods could
be compared, testing the hypothesis that two classification
methods have similar classification ability (Van der Voet, 1994).

Other methods for model comparison, such as the slope
and intercept test (SI test), have also been proposed in the
literature (Linnet, 1993; Aleixandre-Tudo et al., 2018a,b). The
SI test investigated the systematic error between the predicted
values and the reference data and used a combined analysis of
the regression line’s slope and intercept. SI testing can show if
differences observed between predicted and reference values are
due to random noise or not. The SI test can be used to evaluate
and compare model performance and measurement methods

such as infrared methods compared to reference methods
(Linnet, 1993; Aleixandre-Tudo et al., 2018a,b).

Another proposed approach is the use of the inter-class
correlation coefficient (ICC) and the standard “typical” error of
measurement (SEM) calculated from the ICC. ICC is sensitive to
detecting systematic error and both ICC and SEM are often used
in reliability studies (Aleixandre-Tudo et al., 2018b). Reliability is
defined as the consistency of measurements and ICC can be used
to test the reliability of an instrument, person, or prediction value.
The ICC values are unitless and are reported as a relative measure
of reliability with values between 0 and 1. Values closer to 0 show
no reliability and values closer to 1 indicate higher reliability. The
magnitude of the ICC values depends on both the between sample
variability as well as variability within the dataset (Yen and Lo,
2002; Weir, 2005; Aleixandre-Tudo et al., 2018a,b).

Therefore, the heterogeneity of the sample set should be
considered when using ICC. Large ICC values could mask
systematic errors when between-sample variability is high and
low ICC values could still be found with a low systematic error
and little between-sample variability. These values could lead
to the conclusion that if samples are homogenous, it could be
difficult to differentiate between them although the systematic
error is small (Yen and Lo, 2002; Weir, 2005; Aleixandre-Tudo
et al., 2018a,b).

The misinterpretation of the ICC values can be avoided by
investigating the SEM in conjunction with ICC values. SEM
values have the same unit as the measurement of interest and
provide an absolute measure of reliability while ICC is a relative
measure. SEM quantifies the precision of separate measurements
and shows measurement error. SEM could also be used to
construct confidence intervals for separate measurements and to
determine the minimum difference needed to show true variance
between separate measurements (Yen and Lo, 2002; Weir, 2005;
Aleixandre-Tudo et al., 2018a,b).

Lastly, PLS calibrations could be assessed using the limit of
detection (LOD) and limit of quantification (LOQ) adapted for
multivariate purposes. LOD and LOQ values could still indicate
the minimum concentration accurately predicted by the PLS
calibration. Although, some studies have suggested that these
values should be calculated for each sample. The multivariate
LOD and LOQ will then be represented by a concentration range
rather than a single value. LOD is seen as a good indicator of
the quality of a calibration model because it incorporates the
sensitivity and precision of analytical measurements (Allegrini
and Olivieri, 2014; Olivieri, 2015; Aleixandre-Tudo et al., 2018b).
Calibrations and methods could be evaluated and assessed using
the statistical model comparison methods discussed. During
model development, calibrations for each grapevine organ or
developmental stage could be compiled and compared using the
comparison methods.

Non-linear Regression Techniques
The multivariate regression techniques discussed up to this
point have all been linear regression methods, but sometimes
agricultural models behave in a non-linear way. Linearity, or the
lack thereof, can be assessed using statistical tests. Only when
a statistically significant improvement of the prediction model
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is found, non-linear methods can be explored (Olivieri, 2015).
Recently, non-linear regression techniques such as artificial
neural networks (ANN) and Kernel-based techniques such as
least squares support vector machines (LS-SVM) have been used
more frequently (Fuentes et al., 2018; Murru et al., 2019).

Although ANN may perform better than linear techniques in
some cases, the results are often difficult to understand, visualize,
and interpret. Kernel-based techniques are often more favorable
because they allow interpretation of the calibration model.
LS-SVM has the benefit of including an added regularization
parameter. The regularization parameter penalizes the use of
large regression coefficient values leading to improved robustness
of calibration models. Kernel versions of PCR and PLS as a
logical extension of ordinary PCR and PLS have also been
described. These statistical methods could be easier to work with
for someone already familiar with PCR and PLS (Nicolaï et al.,
2007; Cozzolino et al., 2011).

In recent viticultural research, non-linear methods have been
employed for various classification purposes (Fuentes et al.,
2018; Murru et al., 2019). Machine learning techniques such
as ANN have been implemented together with NIR to develop
models capable of cultivar classification based on leaf samples
(Fuentes et al., 2018). FTIR and ANN have been utilized for
the classification of grape samples according to cultivar and
ripeness levels (Murru et al., 2019). LOCAL (locally weighted)
regression has also been applied for the prediction of red grape
quality parameters, and was found to perform better than PLS
(Dambergs et al., 2006).

Other non-linear regression techniques, not widely used in
the field of viticulture, should also be considered. Self-organizing
maps (SOM) is a type of neural network specifically suited
to large and multi-dimensional datasets making it ideal for
spectral data (Tan et al., 2013; Wehrens and Kruisselbrink,
2018; Xu et al., 2019). SOM is an unsupervised clustering
algorithm unique in that it transforms complex data into
visually interpretable clusters and still preserve the topological
properties of the input space (Milovanovic et al., 2019; Xu
et al., 2019). This is achieved using a neighborhood function to
plot objects into a two-dimensional space with similar objects
close together and dissimilar objects further apart. SOMs can be
implemented to assess clustering in data as well as investigate the
structure within the clusters (Wehrens and Kruisselbrink, 2018;
Milovanovic et al., 2019).

In a recent study PCA and SOM were used to investigate
the classification of wine based on origin. Both methods yielded
acceptable clustering results, although it was stated that SOM
treatments provided better resolution. Although this study was
not conducted on spectral data, the feasibility of using SOM
as an alternative to PCA was shown. The added advantage of
the unsupervised nature of SOMs is that no assumptions are
made during clustering, visualization, and construction of the
data (Milovanovic et al., 2019). The use of SOM in conjunction
with PLS has also been proposed to improve spectral prediction
models. SOM is initially used to cluster the data based on spectral
variables or samples, after which PLS is performed on the clusters,
leading to a consensus model. These models fully incorporate
the sample information while highlighting the role of applicable

variables and samples, and reducing the effect of useless variables
or samples (Tan et al., 2013; Xu et al., 2019). Often a combination
of linear and non-linear methods needs to be considered together
with the technique’s purpose (prediction or classification) to
achieve the desired outcome.

Final Remarks
The main advantage of chemometric methods is that they look
beyond the one-dimensional approach and investigate the sample
in its entirety, making it well suited for use with spectroscopy.
Both multivariate and infrared spectroscopy techniques do not
assess just a single component but the interactions, interferences,
and combined effects of the whole sample matrix. Many modern
applications of spectroscopy techniques in the food industry are
based on indirectly measuring chemical and physical properties.
Instrumental techniques established using infrared spectroscopy
are often correlated methods meaning that the measurement
variable does not directly correlate with the compound of interest
or the concentration of the compound (Gishen et al., 2005). The
spectral regions identified in the prediction model might not
correlate directly to the compound of interest. The complexity of
spectra makes it difficult to correlate prediction models with the
specific or relevant functional groups of a reference compound
(Cozzolino, 2014). The correlation of the prediction models with
other spectral regions can be explained by the fact that infrared
spectroscopy measures all components in the sample, as well
as the interaction between compounds, and the interference
or combined effects they have on each other. Therefore, these
interactions or interferences could contribute to the data used in
the prediction model. Multivariate data analysis techniques can
incorporate and investigate all the aspects of spectroscopy data
making it the favored approach (Gishen et al., 2005).

Furthermore, new chemometric techniques and new ways
of reporting results are continuously being developed. Recent
studies have proposed using statistical tests such as the
randomized test, SI test, ICC, SEM, LOD, and LOQ values
to compare model performance (Allegrini and Olivieri, 2014;
Olivieri, 2015; Aleixandre-Tudo et al., 2018a,b). Most studies
still use direct comparison of the absolute values of the model
performance indicators for the comparison of calibrations. Direct
comparison is not the most suitable approach since it does not
indicate if these values differ significantly, and if there truly are
significant differences between the calibrations. The comparison
methods could also be used for various purposes including testing
the reliability of measurements, comparing instrumentation,
detecting systematic error, and reporting the sensitivity of the
calibration (Yen and Lo, 2002; Weir, 2005; Allegrini and Olivieri,
2014; Olivieri, 2015; Aleixandre-Tudo et al., 2018a,b). The future
application of infrared spectroscopy will be elucidated in the
following section.

DISCUSSION AND FUTURE PROSPECTS

Despite numerous articles on infrared spectroscopy
techniques published in scientific literature, the majority
described feasibility studies (Dos Santos Costa et al., 2019;
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Fernández-Novales et al., 2019; Cuq et al., 2020; Jones et al.,
2020). The heterogeneous nature of grapevine samples further
complicates the matter, and a more representative sample set
might be needed to accurately capture the variability, including
various cultivars, regions, vintages, organs, and phenological
stages. Thus, two contrasting approaches to optimize prediction
models could be to construct a universal calibration or to build
individualized calibrations per grapevine organ or phenological
stage. Both these approaches will be discussed in this section.

However, the number of samples is not the most important
factor, but rather how representative the samples are of future
datasets. Studies conducted on just one cultivar or region
could still measure thousands of samples without capturing the
variability present in a vineyard (Schmidtke et al., 2012; De
Bei et al., 2017; Rossouw et al., 2017; Fernández-Novales et al.,
2019). During sample selection special care needs to be taken to
incorporate representative samples. This could include sampling
from various cultivars, regions, and vintages. Calibration
development has also been mostly based on experimental data
using cross-validation techniques where no independent sample
set was used to validate the calibration model (Dambergs et al.,
2015). Using a dataset of external and new samples to validate the
calibration model could lead to more robust models capable of
dealing with samples from different vintages, cultivars, or regions.

The frequent use of less representative sample sets of only
one cultivar, organ, or phenological stage could be caused
by expensive and time-consuming reference methods that are
needed during calibration development. The reference methods
require intense analytical, and human resources. Often cultivars,
regions, vintages, organs, and phenological stages need to be
analyzed to accurately capture the variability required for robust
prediction models (Schmidtke et al., 2012; De Bei et al., 2017;
Rossouw et al., 2017; Fernández-Novales et al., 2019).

In viticultural studies it is often difficult to include cultivars,
regions, and vintages in a single study. Still, large variability of
the samples is commonly needed to achieve sufficient robustness
in the calibration (Schmidtke et al., 2012; De Bei et al., 2017;
Dos Santos Costa et al., 2019; Fernández-Novales et al., 2019;
Cuq et al., 2020). Similarly, conducting experiments on various
climatic conditions, viticultural practices, or multiple growing
regions could be challenging. It is not yet feasible to conduct
studies including all these factors simultaneously. Therefore,
collaborations among universities, research groups, and countries
could be considered to develop a universal calibration capable
of predicting multiple key metabolites in grapevines across the
world. However, this will require global cooperation, immense
datasets, and years to achieve.

Hyperspectral imaging (HSI) has also been proposed as a
solution for the non-invasive quality assessment of fruits and
vegetables. The main advantage of HSI is that it simultaneously
provides the spatial and spectral information of the whole
sample, whereas NIR provides the spectra of a given spot
(Lorente et al., 2012; Chandrasekaran et al., 2019). The use
of HSI for various quantification applications in grape berries
has been reported, such as pH, anthocyanin, and soluble solid
content (Chandrasekaran et al., 2019). A recent study done on
grapevine bunches found that HSI was capable of distinguishing

between healthy bunches and bunches infected with powdery
mildew (Pérez-Roncal et al., 2020). Hyperspectral imaging has
also been successfully applied to classification tasks such as the
identification of grape varieties based on leaf spectra (Diago
et al., 2013). The monitoring of vegetative indices throughout the
growing season using HSI on grapevine leaves was also proposed
(Yang et al., 2021). The use of NIR and MIR spectroscopy has
been widely applied and researched for various agricultural and
viticultural applications, unlike HSI. Although NIR and MIR
spectroscopy generate extensive datasets, these datasets are still
easier to analyze than the even more extensive datasets generated
with HSI. While most research on HSI has been done in the last
2 years, these studies showed the significant potential of using HSI
in future for non-invasive applications on grapevines.

Furthermore, studies have investigated portable infrared
devices for in-field applications. Portable devices are mostly used
for qualitative purposes such as classification (Gutiérrez et al.,
2015; Lopo et al., 2015) while the samples for direct quantification
are still taken to the laboratory (Fernández-Novales et al., 2019;
Cuq et al., 2020). The few studies involving portable devices for
viticultural applications have shown very contradicting results.
Some recent studies have reported promising results for the
prediction of water status in vineyards. The quantitative studies
confirmed that NIR spectroscopy was robust and capable of
reliably evaluating water status across diverse environmental
conditions (Tardaguila et al., 2017; Diago et al., 2018). Although
bench-top and portable devices represent different measurement
technologies, similar measurement parameters were reported in
a comparison study (Rodgers et al., 2017). However, portable
devices often do not cover the entire spectral range and use
fiber optics which could potentially introduce spectral noise
(Reeves, 2010; Pasquini, 2018; Cuq et al., 2020). It has also
been suggested that portable devices could lack the same
quality components (detectors) found in bench-top instruments
(Zumba et al., 2018).

Some studies have also raised the concern that extreme
environmental conditions such as high temperatures or relative
humidity could affect spectra (Zumba et al., 2018; Baca-
Bocanegra et al., 2019). Temperature and humidity could affect
samples’ moisture content and thus influence spectra (Zumba
et al., 2018). A recent study investigated different detectors
and sample temperatures under simulated field conditions. It
was found that the temperature of the detector could influence
spectral reproducibility, although sample temperature did not
have the same effects. However, very few samples were included
in the study (Phuphaphud et al., 2020).

The monitoring of grapevine organs throughout the growing
season using infrared spectroscopy could yield valuable
information. Extensive knowledge on the morphological and
anatomical changes occurring in grapevine organs during
the growing season are available, but the changes influencing
spectral properties are not well understood. Changes have
been observed in infrared spectra between different grapevine
organs or phenological stages (Schmidtke et al., 2012; De
Bei et al., 2017; Dos Santos Costa et al., 2019; Fernández-
Novales et al., 2019; Cuq et al., 2020), but the reason
for the differences have not been examined or explained.
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Further investigation is needed to understand the relationship
between morphological and anatomical changes, and spectral
properties. These investigations could lead to the linking of
certain morphological or anatomical changes to specific spectral
properties. Spectral regions could be correlated to changes
occurring throughout the growing season such as lignification
or leaf aging. Once identified, the regions could be used
for future monitoring of changes or used for classification
purposes. The classifications could in turn lead to more
individualized calibrations.

The heterogeneity found between grapevine organs and
phenological stages has not often been considered during
calibration development. Most calibrations have been compiled
by combining all data from various organs and stages to yield
one prediction model (Schmidtke et al., 2012; De Bei et al., 2017;
Dos Santos Costa et al., 2019; Fernández-Novales et al., 2019; Cuq
et al., 2020). Calibrations could be developed not just for each
grapevine organ (shoots, leaves and berries), but possibly also for
different phenological stages of the organs. Specific calibrations
for young leaves vs. old leaves, or green shoots vs. lignified shoots
could be established. This could possibly lead to more accurate
and robust individualized calibration models, as an alternative to
compiling a universal calibration.

The future of infrared spectroscopy lies in the rapid prediction
of key metabolites in vineyards (Schmidtke et al., 2012;
Rossouw et al., 2017; Cuq et al., 2020). Infrared technologies
could lead to the continuous measurement and monitoring
of the metabolites throughout the growing season under
diverse conditions, which has not been feasible until now.
There is still a lack of knowledge regarding the mobilization,
accumulation, and storage of carbohydrates, nitrogen, and
amino acids under different viticultural and climatic conditions.
Infrared spectroscopy might supply the solution to monitor the
metabolites on a continuous basis per vineyard block or even
per grapevine. Continuous measurements could greatly increase
our knowledge of the metabolites’ movement throughout the
growing season under divergent conditions. This knowledge
in turn could aid the implementation of precision viticulture
and assist with viticultural decisions regarding fertilization,
irrigation, and harvesting.

CONCLUSION

Infrared spectroscopy has emerged as a rapid and reliable
quantification method for agricultural crops. With the added
benefit that infrared technology can be used for the direct
measurement of intact plant material, it could lead to
future agricultural applications. Infrared technologies could
be implemented for the continuous monitoring of key
metabolites in grapevine organs throughout the growing season.
Continuous monitoring could greatly increase the knowledge
of the movement and effects of these compounds under
varying conditions.

The investigation of the grapevine organs’ spectral properties
at different phenological stages could elucidate the changes
occurring in the organs throughout the growing season. The
observed spectral changes could lead to the classification of
grapevine organs to develop individualized calibrations, possibly
leading to improved quantification. Individualized calibrations
based on grapevine organs or phenological stages could be
considered to compensate for the heterogeneity in grapevines
and develop more robust prediction models. The field of infrared
spectroscopy is complex and comprehensive and could lead to
specialized solutions for the broader agricultural sector, and more
specifically the viticultural industry.
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