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Abstract 

Transmission System Operators provide forecasts of electricity demand to the electricity 
system. The producers and sellers use this information to establish the next day production 
units planning and prices. The results obtained are very accurate. However, they have a 
great deal with special events forecasting. Special events produce anomalous load 
conditions, and the models used to provide predictions must react properly against these 
situations. In this article, a new forecasting method based on multiple seasonal Holt-
Winters modelling including discrete-interval moving seasonalities is applied to the 
Spanish hourly electricity demand to predict holidays with a 24-hour prediction horizon. It 
allows the model to integrate the anomalous load within the model. The main results show 
how the new proposal outperforms regular methods and reduces the forecasting error from 
9.5% to under 5% during holidays. 

Keywords: time series, forecasting, electricity demand, anomalous load 
 

1. Introduction 

The responsibility of the electricity production plan and schedule in western countries relies on 
the transmission system operators (TSO). They have to provide accurate forecasts of the next-
day and next-hour electricity demand to the electricity system, known as short-term load 
forecasting (STLF). The rest of the system entities –producers, sellers and resellers – use this 
information to obtain an accurate production plan, that translates to realistic prices of energy. 
The overproduction must be avoided, and the underproduction is completed with high-costs 
operations. Time series tools-based forecasts made by the TSO’s are very accurate. In Red 
Eléctrica de España (REE), the Spanish TSO, a forecast´s error under 2% is reported [1]. 
However, while anomalous load occurs, the daily forecasting is not so accurate. The forecast 
error in these conditions rises to values that could easily exceed 10%. These situations are 
commonly known as special events. They can be produced due to extreme weather conditions 
change, but most commonly due to the calendar effect: national holidays. The models try to 
reproduce a pattern, but in case a special event occurs, models have to react properly and model 
them. There is a strong appeal for forecasters to improve the forecasts during the special days. 
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Thus, TSOs create complex models where those circumstances are taken into account. Those 
models can reach several hundred parameters to solve the calendar problem.  
 
This article proposes a new model to one-day-ahead forecast Spanish hourly electricity demand, 
focused on national holidays and bridges – a source of anomalous loads –. The model uses 
Multiple Seasonal Holt-Winters models with Discrete-Interval Moving Seasonalities (nHWT-
DIMS). This model considers special loads as a part of the model itself. All special days are 
modelled as a new discrete seasonality, completely integrated, with only one new parameter. 
Thus, the model is still simple but also improves the forecasting results. The forecasting error 
during special events sinks under 5% using only a few parameters and the global forecasting 
error remains under 2%. The new model is doubly validated. First, a benchmark against other 
well-known forecasting methods is carried out using the Spanish hourly electricity demand. 
Next, a comparison with other previous validated results obtained by specific methods for 
anomalous demand [2] for French half-hourly electricity demand is made. 
 
This paper is organized as follows: in section 2 the standing literature regarding this topic is 
reviewed; section 3 presents the nHWT-DIMS for holidays methodology; in section 4 the 
nHWT-DIMS methodology applied to the case study is presented; section 5 summarizes the 
results obtained and in section 6 the conclusions reached are shown.  

2. Related work 

Artificial intelligence techniques have been widely used to predict electricity demand in recent 
years. The methods using Artificial Neural Network (ANN) and state techniques used to deal 
with the problem of holidays are based on treating holidays as weekends, as applied in [3–5]. 
Other techniques include dummy variables as regressors for holidays. An alternative technique 
to consider holidays is to divide into the predictions for the proportional curve and the daily 
extremum of electricity demand [6]. Fallah et al. [7] analyze the methodology while using ANN 
(similar-pattern, variable selection, hierarchical forecasting and weather station selection), 
concluding that a hybrid methodology would result in the most effective. Support Vector 
Regressions [8] and fuzzy logic [9] are also commonly used, in which the holidays are 
integrated as a part of the regression inputs. Recently, there is a special interest in Spatio-
temporal techniques such as the use of Wavelets for forecasting. Zhang et al. [10] use models 
based on Wavelet Neural Networks in which the optimization is carried out using Fly Fruit 
optimization algorithms (FOA). Pattern-similarity based forecasting [11–13] clusters the time 
series to select patterns to provide new forecasts, including holidays. However, artificial 
intelligence techniques need a large amount of data to train and the number of holidays or long 
weekends is too low to achieve good results in addition to other drawbacks such as very poorly 
interpretable models or a high number of hyper-parameters. 

Traditionally, statistical techniques developed to manage the special events try to adapt the 
series with external elements. Tarsitano and Amerise [14] apply use dummy variables for public 
holidays, local public holidays, Easter, days near holidays and part-time holidays while 
forecasting short-term electricity demand in some regions of Italy, confirming the most 
significant variables influencing hourly load are calendar dummy variables. This methodology 
has some drawbacks: the parameters accompany a series of dummy variables to modify the 
original model and adapt it to each special situation. López et al. [3] started a classification of 
the special events that can be applied to models. They found that there are more than 40 types 
of different special days. The Spanish’ TSO included this classification in their STLF 
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methodology [15]. However, the occurrences of the same conditions are sporadic and, 
therefore, the training for these models is complicated and insufficient. On other occasions, it 
is simply chosen to replace special days with other similar days, with the consequent loss of 
information [16]. Pros and cons of these approaches to deal with public holidays such as 
removing them from the data set, treating them as weekends or introducing separate holiday 
dummies using German electricity load are analyzed in [17]. 

Within the statistical techniques, the application to exponential smoothing methods and Holt-
Winters methods in order to forecast anomalous demand has usually been done by modifying 
the original series. In particular, special events are replaced in the time series by a normal day, 
thus filtering the series. García-Díaz and Trull generalized Holt-Winters models and included 
new initialization methods. The authors stated double seasonal models offer more precise 
forecasts than those of three seasonalities applying to the hourly electricity demand in Spain 
when using the raw time series with no filtering [18]. This situation occurs because it is 
necessary to rework the series and eliminate the effects produced by the special days to optimize 
the use of the three seasons. Therefore, modifying the original time series has some 
disadvantages that affect the performance of these methods.  In recent studies, it has been 
identified that although parameters are mostly stable, the main focus of instability is the 
calendar effect [19].  

In the last years, other approaches based on exponential smoothing and Holt-Winters methods 
have been provided for the management of special events, in which the use of variables external 
to the model is avoided and is managed with internal variables. Bermudez [20] considered the 
inclusion of covariates within the exponential smoothing model itself, considering value 1 for 
normal days, and different values according to the expected weight for each type of special 
event. Göb et al. [21] also introduced covariates within the model that allow modelling both the 
effect of temperature and special days. Arora and Taylor [2] used rule-based methods to 
establish a model without the use of exogenous variables. In this methodology, the period and 
length of the seasonality are modified in a selected way, so that the demand for a similar day is 
used to feed the model and make forecasts. Trull et al. [22] presented a Holt-Winters model, 
with discrete-interval moving seasonalities (DIMS) included in the model and used it to 
improve predictions during an Easter period. This period in Spain is characterized by having a 
duration of 120 hours (from Holy Thursday to Easter Monday), with similar and repetitive 
behavior each year, despite occurring on different dates. This technique has been recently used 
to forecast irregular seasonal situations [23]. 

Regarding which variables to use to obtain electricity demand forecasts in the short term, 
multivariate methods use meteorological variables such as air temperature and humidity 
[24,25]. Spanish’ TSO includes weather variables in its own model [15]. However, there are 
two reasons not to use them on these exponential smoothing and Holt-Winters models. The 
first, as indicated by Bunn [26], for short-term demand, the temperature varies slightly and is 
related to sunlight, which the time series itself reflects in addition to the model includes a 24-
hour seasonality that addresses these variations. Only sudden extreme changes could have a big 
influence on the model. A second drawback is that aggregated demand in Spain is almost 
insensitive to temperatures as it almost is related to firms’ consumption [27,28]. Other variables 
that could appear to be related, such as electricity prices, are not influential, since the electricity 
market in Spain is a regulated market and demand is mainly related to the country's activity 
[29,30]. However, the calendar has an important effect on their forecasts. Time factors such as 
special load days, usually related to the calendar, cannot be modelled. Many articles proposing 
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new methods to forecast electricity demand commonly omitted the forecasts during special 
days.  

This article introduces DIMS for forecasting electricity demand on holidays and bridges in 
order to make these particular days part of the model itself through a new discrete seasonality 
but with a single parameter. The approach is completely different: public holidays generally 
occur between 5 and 8 times a year, and it is not the general rule that they repeat more than 4 
consecutive times. These holidays occur at different times of the year, and therefore their 
behavior is not easily generalizable. In an even more complex way, in a year between 3 and 
five bridges can occur, without being related to the previous year. Of course, on practically 
random days for the time series. As a consequence of this complexity, the use of DIMS to make 
forecasts on these dates can be complex, but in this article, it can be seen how the robustness of 
the methods used allows making really accurate forecasts in a simple way, with a minimum 
number of parameters. 

3. Methodology 

3.1. nHWT model 

 
The Holt-Winters models initially introduced in the ‘60s by P.R. Winters [31] included a single 
seasonality in the equations. The model remained unmodified until double [32] and triple 
seasonal [33] methods were introduced by Taylor. García-Díaz and Trull [18] generalized to 
multiple seasonalities, namely nHWT models shown in (1-4). 
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where 𝛼, 𝛾 and 𝛿(() are the smoothing parameters for the level (𝐿!), trend (𝑇!) and seasonalities 
(𝐼!
(()) with cycle length 𝑠(. 𝑋! are the observed data and 𝑋4!,- are the k-ahead forecasts, through 

a forecasting equation 𝑋4!,- that use the information contained in the smoothing equations to 
provide forecasts. 𝜑01-  stands for the parameter of an adjustment using the first-order 
autocorrelation error (𝜀!). 
 

3.2. nHWT-DIMS model for holidays 

The main source of instability in the nHWT models is the effect produced by special events, 
especially the calendar effect [19]. The model tries to reproduce the previous behaviour of the 
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time series and cannot deal with the anomalous load occurring during the special event, as these 
models behave robust against variations [19]. Trull et al. [22] include discrete seasonalities 
related to special events, which only apply when the event occurs and can be smoothed as other 
general seasonality (DIMS). The general nHWT-DIMS models are described in Appendix A. 
The nHWT-DIMS model for the holidays, bridges and Easter holidays are shown in Equations 
(5-12). 
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The model includes 2 regular seasonalities: 𝐼!
(34) of length 24 hours and 𝐼!

(&56) of length 168 
hours with smoothing parameters 𝛿(34) and 𝛿(&56). For the holidays three DIMS are included: 
𝐷!6∗
(=>+!?;) managing Easter holidays with smoothing parameter 𝛿2

(=>+!?;) of length 120 hours, 

𝐷!6∗
(789) for national holidays and smoothing parameter 𝛿2

(789) and finally 𝐷!6∗
(:;<) for bridges and 

smoothing parameter 𝛿2
(:;<), having both a seasonal length of 24 hours. 

 
Figure 1 shows the procedure to follow to make forecasts with the nHWT-DIMS models. The 
diagram is organized into 3 work areas. Area 1 includes the data acquisition and the calendar 
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associated with the data period. With this information, the model can be determined, as 
described in area 2. It is necessary to determine the trend and seasonality method to use, as well 
as the number of seasonality and their cycle length. Subsequently, the DIMS are defined, 
determining how many types of DIMS are to be used, and determining their period length. From 
there, the appearances in the time series and recursion are located. With all this information, 
the parameters of the model are established.  
 

 

Figure 1. Flow chart of the forecasting process using the nHWT-DIMS models. 

Area 3 describes the process for using the nHWT-DIMS models. The first step is initialization. 
Holt-Winters models are recursive; thus, they need initial values to be able to feed the model 
[34,35]. They are obtained in a two-step process: initially, the regular initial values are obtained, 
and the initial values of the DIMS. The procedure is as follows: firstly, a multiple Seasonal and 
Trend decomposition using Loess (STL) [36] is applied to the series, from which three 
components are obtained: trend, seasonalities and remainder. The remainder is removed from 
the series, cleaning it from the anomalous load. Then, the seasonal indices of the DIMS are 
obtained by weighting the original series over the recomposed one, thus the anomalous load 
effect is captured by DIMS. Finally, an optimization algorithm is used to fit the model to the 
observed data and obtain the parameter values. From this point on, forecasts are made. 
 

4. Case study: hourly electricity demand in Spain during holidays 

To demonstrate the improvement made by the new model, this methodology is applied to the 
time series of hourly electricity demand in Spain. The data series has been obtained from REE 
through its website (http://www.ree.es). The data includes the hourly electricity demand in 
Spain in the period from 1/01/2008 to 1/01/2018. The data set has been split into two subsets, 
the first one including from 1/1/2008 until 23:00 hours on 12/31/2016 and another from 
1/1/2017 until 23:00 hours on 1/1/2018. The first subset is used to obtain the parameters and 
adjust the model, while the second subset is used to validate the results. 
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A sample of the data is shown in Figure 2. A short period of 10 weeks has been chosen to show, 
in order to better appreciate the demand series. In the representation, you can see how August 
15 (marked in red), a holiday in Spain, has a unique and anomalous behaviour compared to the 
rest of the series. 

 

Figure 2. Hourly electricity demand in Spain. 

During this period, Easter took place in the weeks listed in Table 1. It starts with Palm Sunday 
and ends with Resurrection Sunday. Throughout the ten years used, it can be observed how the 
position of Easter in the year is completely variable.  
 

 Year 2008 2009 2010 2011 2012 
Palm Sunday 16 March 5 April 28 March 17 April 1 April 
Resurrection Sunday 23 March 12 April 4 April 24 April 8 April 
Year 2013 2014 2015 2016 2017 
Palm Sunday 24 March 13 April 19 March 20 March 9 April 
Resurrection Sunday 31 March 20 April 5 April 27 March 16 April 

Table 1. General Easter Week period in Spain. 

Figure 3 shows the distribution of the hourly electricity demand in Spain during this period. It 
is shown 8 days, from Monday before Easter till Easter Monday. The central line stands for the 
median, while the greyed area stands for the 2-sigma dispersion. It is remarkable the high 
variability of the data, even though 10 years have been used to build the graph. Easter officially 
starts in Spain on Holy Friday and ends on Resurrection Sunday, but many regions start on 
Holy Thursday and end on Easter Monday. In some regions, Easter Monday also depends on 
the year. The strategy for modelling Easter is to use DIMS with 120 hours length [22].  
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Figure 3. Distribution of the hourly electricity demand in Spain during Easter. Data from year 2008 to 2017.  

The holidays considered in this article are gathered in Table 2, where crosses indicate 
occurrence, while blanks indicate the holidays took place during the weekend and has been 
removed from the study. The shaded part indicates the dates on which the forecasts were made 
for validation purposes. 
  
  2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 
1 January x x x   x x x x  x 
6 January  x x x x  x x x x  

1 May x x   x x x x  x  

15 August x   x x x x  x x  

12 October  x x x x   x x x  

1 November   x x x x   x x  

6 December   x x x x   x x  

8 December x x x x   x x x x  

25 December x x   x x x x  x  

Table 2. Holidays during the period 2008-2018. 

 
In order to describe the behavior of the electricity load during a holiday, Figure 4 has been 
included. This figure collects the median load during the holidays between 2008 and 2017, split 
by the day of the week. The black line shows the median of the electricity demand during a 
working day (no distinction was needed, as all days behave similarly). The load during holidays 
have been graphed in different colors, depending on the day of the week. No weekend has been 
included since the influence of a holiday is weak. It can be stated that, independently of the day 
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of the week, holidays in Spain behave similarly, decreasing the load consumption in the same 
ratio.  
 

 

Figure 4. Hourly electricity demand in a working day compared to holidays, depending on the day of week.  

The electricity load in different holidays shows a similar pattern as shown in Figure 5. This 
figure shows the median of the holidays grouped by type. It can be seen how the demand in 
different holidays has essentially similar behaviour, albeit at different levels. This situation 
happens because the holidays occur at different times of the year, where energy consumption 
is highly dependent on climatological characteristics. The Holt-Winters model uses the trend 
(if it is a trending model) and the level to adjust for these variations. 
 
As a result of both figures together, it can be determined that the electrical demand on holidays 
follows an anomalous pattern, which is cyclical and which repeats on all holidays, but different 
from the daily pattern. This situation allows the use of discrete interval mobile seasonality, 24-
hour in size, and which begins at 00:00 on the holiday and ends at 23:00 on the holiday. 
 

5 10 15 20 Hour
18000

20000

22000

24000

26000

28000

30000

32000

34000

De
m

an
d 

(M
W

)

Monday Holiday
Tuesday Holiday
Wednesday Holiday
Thursday Holiday
Friday Holiday
Working day



 10 

 

Figure 5. Median of hourly electricity load during the holidays. 

 
Electricity demand during the days of bridges is presented very unevenly. Table 3 enumerates 
the bridges in the period considered. Each row shows the bridges that occurred during the year 
in the row. Figure 6 presents a representation of the median electricity demand during bridges 
depending on the day of the week. An analysis of the graph does not conclude on the possibility 
of establishing a specific seasonality for the bridge days. The great variability that is shown 
may be associated with specific occurrences and their dependence on holidays to which it is 
associated. This distinction has been considered in previous works, and therefore, it is also 
considered. 
 
2008 02-may 26-dec 31-dec   
2009 02-jan 05-jan 07-dec 31-dec  
2010 11-oct 07-dec 31-dec   
2011 07-jan 31-oct 05-dec 07-dec 09-dec 
2012 30-apr 02-nov 07-dec 24-dec 31-dec 
2013 16-aug 31-dec    
2014 02-may 26-dec 31-dec   
2015 02-jan 05-jan 07-dec 31-dec  
2016 31-oct 05-dec 07-dec 09-dec  
2017 14-aug 13-oct 07-dec   

Table 3. Bridges during the period considered. 
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Figure 6. Median of the hourly electricity demand during bridges. 

Modeling discrete seasonalities requires an analysis of the behavior of demand in the discrete 
intervals where it applies. Figure 7 shows the distribution of demand on holidays in the data 
set (a), and on bridge days (b). Different behavior is observed for each case, but in both, there 
is a limited variability that throws possibilities on the use of a discrete seasonality to model this 
cyclical pattern. 
 

 

Figure 7. Distribution of the hourly electricity demand in: (a) the holidays and (b) bridges. 
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As indicated in Figure 1, the model is defined with Model and DIMS definitions. The major 
input data here is the DIMS specification. It is necessary to determine for each of them the 
length of the discrete seasonality, as well as the position in which it appears in the time series 
and the recursion associated with each appearance. 
 
Figure 8 shows an example of how to determine the recursion and position of the DIMS in the 
time series. The regular series is shown in black, while public holidays and bridge days are 
shown in red and blue. The vertical lines help to identify the beginning and end of each discrete 
seasonality, which in both cases is 24 hours. In the same way, it would be carried out for Easter, 
where the established length is 120 hours. Recursion is the distance between an occurrence and 
the one immediately before it. Thus, for December 8, 2016, the recursion is 48 hours (the 
previous appearance is December 6). The recursion for December 6 goes back to November 1, 
which involves 840 hours. In the same way, it is calculated for bridges, although with fewer 
appearances. 
 

 

Figure 8. Example of determining the position and recursion of DIMS. 

Finally, Table 4 shows the values of the DIMS used and the recursion in hours at each 
occurrence. The first occurrence has no recursion (January 1, 2008, and May 2, 2008). Easter 
DIMS has a length of 120 hours while holidays and bridges have a length of 24 hours. 
 

    Easter     
Nr Date Recurs. Nr Date Recurs. Nr Date Recurs. 
1 16-Mar-2008 --- 5 01-Apr-2012 8280 9 20-Mar-2016 8448 
2 05-Apr-2009 9120 6 24_mar-2013 8448 10 09-Apr-2017 9120 
3 28-Mar-2010 8448 7 13-Apr-2014 9120    
4 17-Apr-2011 9120 8 29-Mar-2015 8280    
    Holidays     
Nr Date Recurs. Nr Date Recurs. Nr Date Recurs. 
1 01-Jan-2008 --- 22 06-Dec-2011 840 43 01-Jan-2015 168 
2 01-May-08 2904 23 08-Dec-2011 48 44 06-Jan-2015 120 
3 15-Aug-2008 2544 24 06-Jan-2012 696 45 01-May-15 2760 
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4 08-Dec-2008 2760 25 01-May-12 2784 46 12-Oct-15 3936 
5 25-Dec-2008 408 26 15-Aug-2012 2544 47 08-Dec-2015 1368 
6 01-Jan-2009 168 27 12-Oct-12 1392 48 25-Dec-2015 408 
7 06-Jan-2009 120 28 01-Nov-12 480 49 01-Jan-2016 168 
8 01-May-09 2760 29 06-Dec-2012 840 50 06-Jan-2016 120 
9 12-Oct-09 3936 30 25-Dec-2012 456 51 15-Aug-2016 5328 
10 08-Dec-2009 1368 31 01-Jan-2013 168 52 12-Oct-16 1392 
11 25-Dec-2009 408 32 01-May-13 2880 53 01-Nov-16 480 
12 01-Jan-2010 168 33 15-Aug-2013 2544 54 06-Dec-2016 840 
13 06-Jan-2010 120 34 01-Nov-13 1872 55 08-Dec-2016 48 
14 12-Oct-10 6696 35 06-Dec-2013 840 56 06-Jan-2017 696 
15 01-Nov-10 480 36 25-Dec-2013 456 57 01-May-17 2760 
16 06-Dec-2010 840 37 01-Jan-2014 168 58 15-Aug-2017 2544 
17 08-Dec-2010 48 38 06-Jan-2014 120 59 12-Oct-17 1392 
18 06-Jan-2011 696 39 01-May-14 2760 60 01-Nov-17 480 
19 15-Aug-2011 5304 40 15-Aug-2014 2544 61 06-Dec-2017 840 
20 12-Oct-11 1392 41 08-Dec-2014 2760 62 08-Dec-2017 48 
21 01-Nov-11 480 42 25-Dec-2014 408 63 25-Dec-2017 408 
    Bridges     
Nr Date Recurs. Nr Date Recurs. Nr Date Recurs. 
1 02-May-08 --- 13 05-Dec-2011 840 25 31-Dec-2014 120 
2 26-Dec-2008 5712 14 07-Dec-2011 48 26 02-Jan-2015 48 
3 31-Dec-2008 120 15 09-Dec-2011 48 27 05-Jan-2015 72 
4 02-Jan-2009 48 16 30-Apr-2012 3432 28 07-Dec-2015 8064 
5 05-Jan-2009 72 17 02-Nov-12 4464 29 31-Dec-2015 576 
6 07-Dec-2009 8064 18 07-Dec-2012 840 30 31-Oct-16 7320 
7 31-Dec-2009 576 19 24-Dec-2012 408 31 05-Dec-2016 840 
8 11-Oct-10 6816 20 31-Dec-2012 168 32 07-Dec-2016 48 
9 07-Dec-2010 1368 21 16-Aug-2013 5472 33 09-Dec-2016 48 
10 31-Dec-2010 576 22 31-Dec-2013 3288 34 14-Aug-2017 5952 
11 07-Jan-2011 168 23 02-May-14 2928 35 13-Oct-17 1440 
12 31-Oct-11 7128 24 26-Dec-2014 5712 36 07-Dec-2017 1320 

Table 4. List of DIMS positions and recursivities (in hours) for holidays and bridges. 

 
The optimization of the parameters is obtained by minimizing the 1-hour ahead forecast error 
through an error measurement indicator. The optimization uses the root mean squared error 
(RMSE), as shown in Eq. (9). The Nelder-Mead's simplex-based minimization algorithm [37] 
in the MATLAB® platform was chosen to carry out this optimization process. Alternatives 
were also considered, such as FOA, as used in [38,39], but didn’t outperform the results. 

𝑅𝑀𝑆𝐸 = D∑ ("@!%"!)-

A
	 (13)	
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5. Results 

Results applied to the Spanish hourly electricity demand to forecast holidays and bridges with 
24-hour forecast horizon are reported in this Section. In particular, an analysis of the forecasts 
obtained by the nHWT with DIMS method is carried out in Section 5.1. Section 5.2 compares 
the performance of the proposed model with well-known forecasting methods. Finally, a 
comparison with other previous validated results obtained by specific methods for anomalous 
demand [2] for French half-hourly electricity demand is made in Section 5.3. 
 

5.1 Analysis of results  

 
All the HWT-DIMS models described in Table A.1 in Appendix A were included in the 
experimentation. After obtaining their parameters, forecasts have been made for the days 
indicated in the gray part of Table 2 and Table 3. The measurement of the forecasting accuracy 
has been performed using the Mean Average Percentage Error (MAPE) defined in Eq. (10). 
 

𝑀𝐴𝑃𝐸(%) = 100	 × &
A
	∑ |"@!%"!|

"!
	 (14)	

Among the possible forecasting strategies that can be used, two versions have been chosen: the 
first, where the data from the adjustment set are used to obtain the parameters, and with them 
projections are made for every day of the year, checking the accuracy of the predictions (named 
Method 1); the second, the adjustment period has been extended to the moment immediately 
prior to the forecast, where the parameters have been readjusted, and the same projections have 
been made (named Method 2). Among all the proposed models, only the AMC24,168,Easter,Hol,Brg 
and NMC24,168,Easter,Hol,Brg models are shown. The results obtained with other models are within 
the same order. These are chosen because they are the most commonly used for the use of 
nHWT models. The results are shown in the Table 5. In this table, the 24 hours ahead MAPE 
is shown for the days listed in the first column, including all models 2 seasonalities and DIMS 
for Easter, holidays and bridges. The information is split into Method 1 and Method 2. 
 

          Method 1         Method 2 
Forecast AMC NMC AMC NMC 
6 January 2017 2.39 2.05 2.14 2.05 
1 May 2017 5.81 5.60 6.03 5.62 
15 August 2017 4.30 4.72 4.51 4.57 
12 October 2017 1.74 2.36 1.69 2.39 
1 November 2017 1.26 1.30 1.25 1.32 
6 December 2017 4.06 3.75 3.98 3.81 
8 December 2017 3.52 3.76 3.61 3.73 
25 December 2017 10.49 9.86 10.61 9.86 
1 January 2018 4.26 4.78 4.27 4.78 
14 August 2017 3.57 4.36 3.54 4.35 
13 October 2017 2.82 2.99 2.68 3.01 
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7 December 2017 4.49 3.29 4.23 3.32 
Mean 4.06 4.07 4.05 4.07 

Table 5. 24-hours ahead MAPE (%) of the forecasts produced for the holidays and bridges. 

The results show that there is no great difference between the two methodologies. Therefore, 
the results offered by method 1 are those used, as they turn out to be more accurate. There is 
also no great difference between the different models, the differences being on the order of less 
than 1%. This time, the model that does not include a trend turns out to be more accurate in the 
predictions than the one that has a trend. 
 
The 24-hour MAPE values are below 5% when the regular method is not capable of inferring 
predictions whose MAPE is below 10%. Thus, the model DIMS proposed to forecast holidays, 
Easter and bridges show a good performance in terms of accuracy. 
 
It is necessary to pay attention to the forecasts made for December 25. After an analysis of the 
time series, it can be concluded that the demand during the previous weeks to December 25, in 
particular on December 6 and 8, was much higher and irregular than in previous years, which 
has an influence on the computation of the discrete seasonality associated with holidays 
(𝐷!6∗

(789)). Thus, these two days can be considered outliers and the DIMS for just these two days 
can be removed in order to obtain a more robust model. The effect is thus minimized, and 
forecasts are improved. Taking into account this consideration, a reduction of the MAPE around 
2.5% can be obtained for the forecast of Christmas day. However, the prediction error made on 
December 25 will remain high compared to other holidays and bridges due to demand was 
unexpectedly high on that day compared to demand on the same day in nearby years. The results 
are shown in Table 5. 
 
To observe the behavior of the predictions, Figure 9 is shown. This figure shows the evolution 
of the MAPE according to the forecast horizon, both for holidays and for bridges, compared to 
working days.  
 

 

Figure 9. Forecasting MAPE for Holidays and Bridges compared to working days. 
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The comparison allows us to see how the appearance of abnormal demand days has a challenge 
for the models. Demand on working days moves in precision values around 2% of MAPE, 
while holidays around 4.5%. An intermediate case is the bridge days. At the modeling level 
there is no distinction between bridge days and holidays, but the fact is those bridge days, 
despite being much less, behave more regularly than holidays. Therefore, although predictions 
during bridges show a better performance, with lower MAPE and thus better predictions, the 
main improvement is done with holidays forecasts that denote a large decrease in MAPE. 
 

5.2 Comparison with benchmark methods  

 
After verifying the effectiveness of nHWT models with DIMS for forecasting demand on 
special days, a comparison is made with other methods commonly used for electrical demand. 
These methods have been ANN, Bagged Regression Trees (BRT), Exponential Smoothing with 
Box Cox transformation and ARMA modeling of the residuals (BATS) and the Trigonometric 
Seasonal version of this last (TBATS). The results are summarized in Table 6. 
 
Among the most common models of Machine Learning, the use of ANN stands out for its good 
performance [40]. Similarly, BRTs are in wide use [41]. In this case, MATLAB software is 
used to make forecasts with these two methods. The variables used have been demand, holidays 
and historical demand. Climatological variables have not been used. With these data, the 
models have been trained, and forecasts have been made on the days of analysis. In the case of 
the state spaces, both BATS and TBATS, the R forecast [42] library has been used.  
 

  ANN BRT nHWT BATS TBATS 
nHWT 
DIMS 

6/1/17 15.35 15.24 14.28 6.19 6.29 3.83 
1/5/17 21.17 14.56 20.50 10.15 10.59 4.69 

15/8/17 12.86 6.18 8.98 5.94 5.86 2.84 
12/10/17 15.82 16.09 15.27 6.72 6.52 3.22 
1/11/17 15.61 16.40 16.84 6.45 6.17 2.06 
6/12/17 13.13 11.95 12.47 4.42 4.84 4.97 
8/12/17 8.36 7.96 7.47 2.76 3.31 2.15 

25/12/17 32.55 25.57 23.22 8.40 8.88 6.08 
1/1/18 13.83 9.96 23.69 10.87 11.13 4.26 

14/8/17 9.60 5.47 2.70 13.86 14.42 4.45 
13/10/17 6.06 5.45 5.03 7.22 6.66 3.13 
7/12/17 5.48 3.28 1.09 24.52 24.75 4.84 

mean 14.15 11.51 12.63 8.96 9.12 3.87 

Table 6. Daily MAPE(%) for the models tested. 

To carry out the comparison, forecasts have been made out of the sample of electricity demand 
on the days indicated in the first column (both holidays and bridges), and it has been compared 
with the real value of the demand on those days. It can be seen that the different methods tackle 
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the problem from different points of view. As a result, artificial intelligence methods turn out 
to offer the worst results, even though the BRTs have made very good predictions on bridge 
days. However, the nHWT method with DIMS offers the best results, with an average daily 
MAPE of around 4%. 
 

5.3 Comparison with RB-SARMA 

 
Finally, in order to compare the nHWT with DIMS with a specific forecasting method for 
anomalous demand, the Rule-Based SARMA (RB-SARMA) method proposed by Arora and 
Taylor in [2] has been selected. The RB-SARMA is a specific method for calculating demand 
on abnormal load days, such as holidays and bridges using France’s electricity demand. This 
article is a reference point to make a comparison of the effectiveness of the forecasts obtained 
by the proposed method. The prediction made for the average hourly electricity demand in 
France has been taken as a reference. In this case, the same data set has been used, and the same 
forecasts have been made. Several combinations of models were tested, but the most accurate 
one has been NMC48,336,Holidays,Bridges, which is a non-trend model with multiplicative 
seasonality. 
 
The objective is not to improve the results obtained in that article, as it would imply a deeper 
work, but simply to use them as a reference to observe if the forecasts given by the proposed 
model are relevant, obtaining the results shown in Figure 10. The reality is that our expectations 
have been exceeded, and the predictions made are comparable with those of that article, which 
makes us validate the process previously carried out with the Spanish time series. On average, 
the MAPE for these days using RB-SARMA has been 4.3% while nHWT-DIMS has been 3.7%. 
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Figure 10. 48-hours ahead MAPE comparison between the RB-SARMA from [2] with nHWT NMC48,336,Hol,Brg. 

6. Conclusions 

In this article, the work presented in [22] is taken up where discrete seasonality was used to 
model special events, such as Easter in Spain. The advantage of using DIMS is that they are 
seasonalities that are integrated within the model, without being external modifiers of the series. 
Here the same concept is used to model holidays and bridge days, using nHWT-DIMS models 
with 2 regular seasons, and with 3 discrete seasons. These methodologies have been applied to 
the hourly electricity demand in Spain to predict holiday and bridge days in the period of the 
year 2017. 
 
The results show that the use of DIMS allows to greatly improve the results obtained with the 
regular model. Although the regular model is highly capable of forecasting on regular days 
(those that do not suffer variations due to special events), they are not as efficient when a special 
event occurs. The use of DIMS allows nHWT models to reduce the MAPE of the forecasts by 
almost half. 
 
To test the usefulness of the model, it has been compared with other common forecasting 
models, models based on machine learning and state spaces. The comparison shows that the 
results obtained improve those of any of the other models. Furthermore, and in order to be able 
to validate the process, a comparison between a reference article and the nHWT-DIMS models 
using the French half-hourly electricity demand has been carried out. The results show that the 

All S
ain

ts 
Day

Asce
ns

ion
 Day

Bas
tille

 Day

Box
ing

 Day

Chri
stm

as
 Day

Day
 af

ter
 Asce

ns
ion

Day
 af

ter
 New

 Yea
r's

Day
 be

for
e B

as
tille

Eas
ter

 M
on

da
y

La
bo

r D
ay

New
 Yea

r's
 Eve

Rem
em

bra
nc

e D
ay

The
 Assu

mpti
on

WWII V
icto

ry 
Day

Whit
 M

on
da

y
0

3

6

9

M
AP

E(
%

)
RB-SARMA
nHWT-DIMS



 19 

proposed models offer competitive forecasts and it can thus be validated the DIMS to predict 
anomalous days such as holidays and bridges. 
 
This methodology has been applied to STLF but could be easily adapted to higher term 
forecasts. The only limitations of the methods are: The events to forecast must have appeared 
in the past at least once, and it is needed to check when two special events could overlap and 
use only one event. This methodology is limited to those events that have already occurred in 
the past and that follow a repetitive behavior. 
 
The proposed method improves the results obtained by other methodologies by adding DIMS 
for special events, also taking advantage of the prediction reliability of the nHWT models. Its 
application can be extended to other special events, as long as they have occurred in the past: 
strikes, sporting events, etc. 
 
Recently, Moral-Carcedo and Pérez-García [28] have studied the variation in electricity 
demand according to daily sunlight. This concept has not been included in the model, although 
in future works it may be included as a special fact. 
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Abbreviations 

AMC24,168,Easter,Hol,Brg nHWT-DIMS model with additive trend, multiplicative seasonalities 
of 24 and 168 hours and DIMS for Easter, Holidays and Bridges 

ANN Artificial neural networks 
ARMA Autoregressive moving average  
BATS  Exponential smoothing state space model with Box–Cox 

transformation, ARMA errors, trend and seasonal components 
BRT Bagged regression trees  
FOA Fly Fruit opmization algorithm 
DIMS Discrete interval moving seasonalities  
MAPE Mean absolut percentage error 
nHWT Multiple seasonal Holt–Winters  
nHWT–DIMS  Multiple seasonal Holt–Winters with discrete interval moving 

seasonalities  
NMC24,168,Easter,Hol,Brg nHWT-DIMS model with no trend, multiplicative seasonalities of 24 

and 168 hours and DIMS for Easter, Holidays and Bridges 
RB-SARMA Rule-Based Seasonal ARMA process 
REE Red Eléctrica de España (Spanish’ TSO) 
RMSE Root of mean squared error  
STL  Seasonal–trend decomposition procedure using Loess 
STLF Short-term load forecasting 
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TBATS  Exponential smoothing state space model with Box–Cox 
transformation, ARMA errors, trend and trigonometric seasonal 
components 

TSO Transmission System Operator 
 

Appendix A 

The nHWT-DIMS general model comprises of some smoothing equations: Level 𝐿!, trend 𝑇!, 
as many seasonal indices 𝐼!

(()  as the number of seasonal patterns considered (𝑛+). The new 
model includes as many discrete seasonal indices 𝐷!6∗

(7) as special events considered (𝑛2$CD). 
Superscripts i and h are used to name each seasonality and discrete seasonality respectively. 
The general model is shown in equations (A.1-A.5).  

𝐿! = 𝛼 / "!
∏ $!"#$

($) ∏ 2!6
∗ "#6

∗
(6)';<=>

6()
'#
$()

0 + (1 − 𝛼)(𝐿!%& + 𝑇!%&) (A.1) 

𝑇! = 𝛾(𝐿! − 𝐿!%&) + (1 − 𝛾)𝑇!%& (A.2) 

𝐼!
(() = 𝛿(() / "!

*!∏ $!"#*
(*)'#

*(),*,$ ∏ 2!6
∗ "#6

∗
(6)';<=>

6()
0 + 11 − 𝛿(()2𝐼!%+$

(()   (A.3) 

𝐷!6∗
(7) = 𝛿2

(7) $	 "!
*!∏ $!"#$

($)'#
$() ∏ 2!?∗"#?

∗
(?)';<=>

?(),?,6
% + >1 − 𝛿2

(7)?𝐷!6∗%+6∗
(7)   (A.4) 

𝑋4!,- =	 (𝐿! + 𝑘𝑇!)∏ 𝐼!%+$,-
(().#

(/& ∏ 𝐷!6∗%+6∗,-
(7).;<=>

7/& + 𝜑01- 𝜀! (A.4) 

where 𝛼, 𝛾, 𝛿(() and 𝛿2
(7) are the smoothing parameters for the level, trend, seasonalities and 

DIMS. Seasonalities have cycle length 𝑠( whereas DIMS have 𝑠7. 𝑋! are the observed data and 
𝑋4!,- are the k-ahead forecasts, through a forecasting equation 𝑋4!,- that use the information 
contained in the smoothing equations to provide forecasts. Time is expressed as 𝑡, but for the 
discrete seasonalities, it has been defined 𝑡7∗. This variable reflects the time 𝑡 in which DIMS 
ℎ must be included, otherwise it does not apply. The recurrence term 𝑠7∗  indicates the time 
distance to the previous occurrence of the DIMS h. Both values 𝑠7∗  and 𝑡7∗ are variable and 
must be calculated on every appearance of the DIMS. 𝜑01-  stands for the parameter of an 
adjustment using the first-order autocorrelation error (𝜀!).  
 
The calculation of seasonal indices can be done in several ways, such as a multiplicative ratio, 
which is the case shown in equations (A.1-A.5) or using an additive composition. Furthermore, 
depending on the method used to combine the equations, models with additive or multiplicative 
tendency can be built. To identify the method used in the model, three letters are used, the first 
to refer to the type of trend used (N: no trend, A: additive, M: multiplicative, dA: damped 
additive and DM: damped multiplicative); a second letter to indicate the type of seasonality (N: 
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no seasonality, A: additive and M: multiplicative); finally a third letter (C) to indicate if an 
adjustment using the first order autoregressive error has been applied or (L) to indicate that 
there is no adjustment. Next, the seasonality used is indicated by subscripts indicating the length 
of every seasonal period considered, and the DIMS used with identifying names. As an 
example, a model AMC24,168,Hol stands for the model with additive trend, multiplicative 
seasonality and two seasonalities: intraday and intraweek with 24 and 168 hours of length, 
respectively, and DIMS for holidays. 
 
All possible models resulting from the aforementioned combination is shown in Table A.1, 
where the multiple seasonal Holt–Winters with DIMS formulae are shown. They are organized 
according to the trend (rows) and seasonal method (columns). Here, 𝑆!  stands for the level 
equation. 𝑇!  stands for an additive trend smoothing equation, whereas 𝑅!  stands for a 
multiplicative one, with 𝛼 and 𝛽 as smoothing parameters. 𝐼!

(() are the seasonal indices with 
smoothing parameter 𝛿((). The superscript (𝑖) stands for the seasonality. There are as many 
indices of length 𝑠( as seasonalities considered. 𝐷!6∗

(7) is the DIMS index (h), with a smoothing 

parameter 𝛿2
(7). In this case, 𝑡7∗  is the region in the time series where 𝐷!6∗

(7) is defined. The DIMS 
length is indicated by 𝑠7, but the recursivity is indicated by 𝑠7∗ , that must be updated on every 
new appearance of the DIMS. 𝑋! are the observed values and 𝑋4!(𝑘) are the k-ahead forecasted 
values. 𝜑01 is the factor of the adjustment with the first autocorrelation error (𝜀!).  
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Table A.1. Multiple seasonal methods with DIMS equations. 
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Table A.1 (cont). Multiple seasonal methods with DIMS equations 
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