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Abstract. We introduce and discuss several types of α − ψ-contractive mappings on quasi-metric spaces.
We obtain some fixed point theorems in this setting and present suitable examples to show the validity
of our approach and results. Finally, we give a characterization of doubly Hausdorff right K-sequentially
complete quasi-metric spaces in terms of α − ψ-contractive type mappings having fixed point.

1. Introduction and preliminaries

Samet, Vetro and Vetro obtained in [18] various general and important fixed point theorems by using
α − ψ-contractive mappings, where the so-called α-admissible functions play a crucial role. Since then,
several authors have continued the research of this type of contractions from different approaches (see e.g.
[1, 3, 4, 7, 10, 11, 19]). In particular, a slight variant of one of these theorems was recently extended to the
setting of quasi-metric spaces in [17], where the authors also proved that this extension actually characterizes
left K-sequential completeness for Hausdorff quasi-metric spaces and consequently that variant of Theorem
2.2 of [18] characterizes metric completeness. The fact that the α-admissible functions are not necessarily
symmetric provides in the quasi-metric setting various appealing types of α−ψ-contractive mappings that
are useful to obtain some fixed point results not only for Hausdorff left K-sequentially complete quasi-
metric spaces but also for Hausdorff right K-sequentially complete quasi-metric spaces, a relevant type
of quasi-metric completeness to the study of completeness of hyperspaces and function spaces, and in
characterizing the weak form of Ekeland’s Variational Principle (see e.g. [12–14]). This approach will be
discussed in Section 2 where we also provide several suitable examples to illustrate the obtained results.
Finally, in Section 3 we characterize doubly Hausdorff right K-sequentially complete quasi-metric spaces
in terms of α − ψ- contractive mappings having fixed point, from which we will derive that Samet, Vetro
and Vetro theorem [18, Theorem 2.2] characterizes the metric completeness.

Related to our research, the recent papers [9, 20–22], suggested by the referee, are of interest.
Throughout this paper by R andNwe will denote the set of all real numbers and the set of all positive

integer numbers, respectively. Our basic reference for general topology is [6] and for quasi-metric spaces it
is [5].

In the rest of this section we recall some concepts and properties on quasi-metric spaces which will be
useful along the paper. Our terminology is standard.

A quasi-metric on a set X is a function d : X × X→ [0,∞) such that for all x, y, z ∈ X :
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(i) x = y⇔ d(x, y) = d(y, x) = 0, and
(ii) d(x, z) ≤ d(x, y) + d(y, z).
A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric on X.
Each quasi-metric d on X induces a T0 topology τd on X which has as a base the family of open balls

{Bd(x, ε) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and ε > 0.
It follows from the definition of the topology τd that a sequence (xn)n∈N converges to some x ∈ X in τd if

and only if d(x, xn)→ 0 as n→∞.
If τd is a T2 topology on X we say that (X, d) is a Hausdorff quasi-metric space.
If d is a quasi-metric on a set X, the function d−1 defined by d−1(x, y) = d(y, x) is also a quasi-metric on X,

while the function ds defined by ds(x, y) = max{d(x, y), d−1(x, y)} is a metric on X.
Let (xn)n∈N be a sequence in a quasi-metric space (X, d). Then (xn)n∈N is called left K-Cauchy if for each

ε > 0 there exists nε ∈ N such that d(xn, xm) < ε whenever nε ≤ n ≤ m; and it is called right K-Cauchy if is
left K-Cauchy in (X, d−1).

A quasi-metric space (X, d) is said to be left (resp. right) K-sequentially complete if every left (resp.
right) K-Cauchy sequence converges in τd.

It is well known (see e.g. Examples 1, 4 and 5 in Section 2) that the notions of left K-sequential
completeness and right K-sequential completeness are independent of each other.

2. α − ψ-contractive mappings on quasi-metric spaces, fixed point theorems and examples

Let X be a (non-empty) set and α : X ×X→ [0,∞) be a function. By α−1 we denote the function defined
on X × X by

α−1(x, y) = α(y, x), for all x, y ∈ X.

Definition 1 [18, Definition 2.2]. Let X be a (non-empty) set. A self map T of X is called α-admissible if
there is a function α : X × X→ [0,∞) such that, for any x, y ∈ X, α(x, y) ≥ 1 implies α(Tx,Ty) ≥ 1.

Several interesting examples of α-admissible self maps may be found in [18].

Remark 1. Observe that a self map Tof X is α-admissible if and only if it is α−1-admissible.

Remark 2. If T is a self map of a set X with fixed point x0 ∈ X, then T is α-admissible for the symmetric
function α : X × X→ [0,∞) defined as α(x0, x0) = 1 and α(x, y) = 0 otherwise.

As usual (see e.g. [18, page 2154]) we shall denote by Ψ the set of all nondecreasing functions
ψ : [0,∞) → [0,∞) such that

∑
∞

n=0 ψ
n(t) < ∞ for each t ≥ 0. Recall that if ψ ∈ Ψ, then ψ(t) < t for all

t > 0.

Definition 2. Let T be a self map of a quasi-metric space (X, d), α : X × X → [0,∞) a function and ψ ∈ Ψ.
Then

(1) T called α − ψ-contractive if

α(x, y)d(Tx,Ty) ≤ ψ(d(x, y)),

for all x, y ∈ X.

(2) T is called α−1
− ψ-contractive if

α−1(x, y)d(Tx,Ty) ≤ ψ(d(x, y)),

for all x, y ∈ X.
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Remark 3. Observe that, by the symmetry of d, a self map T of a metric space (X, d) is an α − ψ-contractive
mapping if and only if it is an α−1

− ψ-contractive mapping.

In constrat to Remark 3 there exist α − ψ-contractive mappings on quasi-metric spaces that are not
α−1
− ψ-contractive and there exist α−1

− ψ-contractive mappings that are not α − ψ-contractive mappings
(see e.g. Examples 3, 4, 5 and 6 below).

As we indicated above, the theorem of reference in our context is the following.

Theorem A [18, Theorem 2.2]. Let (X, d) be a complete metric space and T : X → X be an α − ψ-contractive
mapping satisfying the following conditions:

(i) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1;
(ii) T is α-admissible;
(iii) for any sequence (xn)n∈N in X satisfying α(xn, xn+1) ≥ 1 for all n ∈ N and such that d(x, xn) → 0 for some

x ∈ X it follows that α(xn, x) ≥ 1 for all n ∈N.
Then T has a fixed point.

A metric space (X, d) satisfying condition (iii) in Theorem A is said to be regular with respect to α.
A first question arises in a natural way: Is it possible to extend Theorem A to the realm of quasi-metric

spaces?
Regarding to this question, next we present examples which show that Theorem A does not hold if we

replace the condition that (X, d) be a complete metric space with the condition that (X, d) be a Hausdorff right
K-sequentially complete or a Hausdorff left K-sequentially complete quasi-metric space. However, we shall
show (Theorem 1) that, despite this, it is still possible to obtain a quasi-metric extension of Theorem A by
using right K-sequential completeness and α−1

− ψ-contractivity. At this point it seems interesting to recall
that by replacing “α(xn, x) ≥ 1 for all n ∈ N” with “α(x, xn) ≥ 1 for all n ∈ N” in condition (iii) of Theorem
A, a fixed point theorem for Hausdorff left K-sequentially complete quasi-metric spaces was obtained in [17].

Example 1. Let d be the quasi-metric on N given by d(n,n) = 0 for all n ∈ N, d(n,m) = 1/n if n < m, and
d(n,m) = 1 if n > m. Since the right K-Cauchy sequences are those that are eventually constant, (N, d) is
right K-sequentially complete. Moreover, it is Hausdorff because τd is the discrete topology onN.

Now let T be the self map ofN defined as Tn = 2n for all n ∈N.
Define α :N ×N→ [0,∞) by α(n, 2n) = 1 for all n ∈N, and α(n,m) = 0 otherwise.
We have that α(1,T1) = 1.
Moreover T is α-admissible because if α(n,m) ≥ 1, then m = 2n, and thus α(Tn,Tm) = α(2n, 4n) = 1.
We also have that T is an α − ψ-contractive mapping for ψ ∈ Ψ given by ψ(t) = t/2 for all t ≥ 0. Indeed,

we get

α(n, 2n)d(Tn,T2n) = d(2n, 4n) =
1

2n
=

1
2

d(n, 2n),

for all n ∈N.
Finally, if (xn)n∈N is a sequence inN such that α(xn, xn+1) ≥ 1, we deduce that (xn)n∈N does not converge

in τd, so condition (iii) in Theorem A is obviously satisfied.
We have shown that all conditions of Theorem A are satisfied, but T has no fixed points. Notice that

(N, d) is not left K-sequentially complete.

Example 2. Let d be the quasi-metric on the set Z of all integer numbers given by
d(x, x) = 0 for all x ∈ Z,
d(0, x) = 2−|x| for all x ∈ Z\{0},
d(x, y) = 2−x if x, y ∈Nwith x < y,
d(x,−y) = 2−x if x, y ∈Nwith x ≤ y,
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d(x,−y) = 2−y if x, y ∈Nwith x > y, and
d(x, y) = 1 otherwise.
Clearly (X, d) is a Hausdorff quasi-metric space (note that 0 is the unique non-isolated point in τd).

Moreover (X, d) is left K-sequentially complete (note that the sequence (n)n∈N is left K-Cauchy and converges
to 0 in τd).

Now let T be the self map of Z defined as Tx = x + 1 if x ∈N, and Tx = x − 1 otherwise.
Define α :N ×N→ [0,∞) by
α(x, x + 1) = α(x, 0) = 1 if x ∈N,
α(x,−y) = 1 if x, y ∈Nwith x > y, and
α(x, y) = 0 otherwise.
We have that α(1,T1) = α(1, 2) = 1.
Moreover T is α-admissible. Indeed, let a, b ∈ Z such that α(a, b) ≥ 1.
If a = x and b = x + 1 for some x ∈Nwe deduce that α(Ta,Tb) = α(x + 1, x + 2) = 1.
If a = x for some x ∈N and b = 0 we deduce that α(Ta,Tb) = α(x + 1,−1) = 1.
If a = x and b = −y for some x, y ∈Nwith x > y we deduce that α(Ta,Tb) = α(x + 1,−(y + 1)) = 1.
Now we prove that T is an α−ψ-contractive mapping for ψ ∈ Ψ given by ψ(t) = t/2 for all t ≥ 0. Indeed,

for any x ∈Nwe get

α(x, x + 1)d(Tx,T(x + 1)) = d(x + 1, x + 2) = 2−(x+1) =
1
2

d(x, x + 1),

and

α(x, 0)d(Tx,T0) = d(x + 1,−1) =
1
2

=
1
2

d(x, 0),

and for any x, y ∈N, with x > y,

α(x,−y)d(Tx,T(−y)) = d(x + 1,−(y + 1))

= 2−(y+1) =
1
2

d(x,−y).

We have shown that T is an α − ψ-contractive mapping.
Finally, if (xn)n∈N is a sequence in Z such that α(xn, xn+1) ≥ 1 for all n ∈ N, and there is x ∈ X for which

d(x, xn)→ 0 as n→∞,we deduce that x = 0 and (xn)n∈N is a strictly increasing sequence of natural numbers,
so α(xn, x) = 1 for all n ∈N.

Consequently, all conditions of Theorem A are satisfied, but T has no fixed points.

Lemma 1. Let (X, d) be a quasi-metric space and T : X → X be an α−1
− ψ-contractive mapping satisfying the

following conditions:
(i) there exists x0 ∈ X for which α(x0,Tx0) ≥ 1;
(ii) T is α-admissible.

Then, the sequence (Tnx0)n∈N is right K-Cauchy in (X, d).

Proof. The proof is an adaptation of the first part of the proof of Theorem A as given in [18, Theorem
2.2]. For each n ∈N put xn := Tnx0. Then, by conditions (i) and (ii), α(xn, xn+1) ≥ 1 for all n ∈N∪{0}. Then

d(xn+1, xn) ≤ α−1(xn+1, xn)d(xn+1, xn) ≤ ψ(d(xn, xn−1),

for all n ∈ N. So, by induction, d(xn+1, xn) ≤ ψn(d(x1, x0)). Since ψ ∈ Ψ we get (see [18, page 2156]) that
(xn)n∈N is a right K-Cauchy sequence in (X, d).
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Theorem 1. Let (X, d) be a Hausdorff right K-sequentially complete quasi-metric space and T : X → X be an
α−1
− ψ-contractive mapping satisfying the following conditions:
(i) there exists x0 ∈ X for which α(x0,Tx0) ≥ 1;
(ii) T is α-admissible;
(iii) for any sequence (xn)n∈N in X satisfying α(xn, xn+1) ≥ 1 for all n ∈ N and such that d(x, xn) → 0 for some

x ∈ X it follows that α(xn, x) ≥ 1 for all n ∈N.
Then T has a fixed point.

Proof. By Lemma 1, the sequence (Tnx0)n∈N is right K-Cauchy in (X, d). Since (X, d) is Haudorff and right
K-sequentially complete, there is a unique x ∈ X such that d(x,Tnx0)→ 0 as n→ ∞, where we assume that
x , Tnx0 for all n ∈N ∪ {0}.

We show that x is a fixed point of T. Indeed, from condition (iii) it follows that α(Tnx0, x) ≥ 1 for all
n ∈N. Therefore

d(Tx,Tn+1x0) ≤ α−1(x,Tnx0)d(Tx,Tn+1x0)
≤ ψ(d(x,Tnx0)) < d(x,Tnx0),

for all n ∈ N. Hence d(Tx,Tnx0) → 0 as n → ∞. Since (X, d) is Hausdorff we conclude that x = Tx. This
finishes the proof.

Remark 4. By Remark 3 and the fact that every complete metric space is a right K-sequentially complete
quasi-metric space, we deduce that Theorem 1 is, indeed, a quasi-metric generalization of Theorem A.

In the light of the conditions of regularity with respect to α involved in [17, Theorem 1] and in Theorems
A and 1 above, we propose the following notions.

Definition 3. Let (X, d) be a quasi-metric space and α : X × X→ [0,∞) be a function.
(1) We say that (X, d) is (A1)-regular with respect to α if for any sequence (xn)n∈N in X satisfying

α(xn, xn+1) ≥ 1 for all n ∈ N and such that d(x, xn) → 0 for some x ∈ X it follows that α(xn, x) ≥ 1 for all
n ∈N.

(2) We say that (X, d) is (A2)-regular with respect to α if for any sequence (xn)n∈N in X satisfying
α(xn, xn+1) ≥ 1 for all n ∈ N and such that d(x, xn) → 0 for some x ∈ X it follows that α(x, xn) ≥ 1 for all
n ∈N.

(3) We say that (X, d) is (A−1
1 )-regular with respect to α if for any sequence (xn)n∈N in X satisfying

α−1(xn, xn+1) ≥ 1 for all n ∈ N and such that d(x, xn) → 0 for some x ∈ X it follows that α−1(xn, x) ≥ 1 for all
n ∈N.

(4) We say that (X, d) is (A−1
2 )-regular with respect to α if for any sequence (xn)n∈N in X satisfying

α−1(xn, xn+1) ≥ 1 for all n ∈ N and such that d(x, xn) → 0 for some x ∈ X it follows that α−1(x, xn) ≥ 1 for all
n ∈N.

In Theorem 1 we have obtained a fixed point theorem for Hausdorff right K-sequentially complete
quasi-metric space by using the notion of (A1)-regularity. In the rest of this section we shall give fixed point
theorems for Hausdorff right K- and left K-sequentially complete quasi-metric spaces with the help of the
rest of notions of regularity given in the preceding definition. To this end, the following easy observation
is appropriate.

Remark 5. Let (X, d) be a quasi-metric space and α : X × X→ [0,∞) be a function. Then:
(X, d) is (A−1

i )-regular with respect to α if and only if it is (Ai)-regular with respect to α−1, i = 1, 2.

Theorem 2. Let (X, d) be a Hausdorff right K-sequentially complete quasi-metric space and T : X → X be an
α − ψ-contractive mapping satisfying the following conditions:
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(i) there exists x0 ∈ X for which α−1(x0,Tx0) ≥ 1;
(ii) T is α-admissible;
(iii) (X, d) is (A−1

1 )-regular with respect to α.
Then T has a fixed point.

Proof. Put β := α−1. Then T is a β−1
− ψ-contractive mapping. Moreover β(x0,Tx0) ≥ 1, and, by Remark

1, T is β-admissible. Finally, by Remark 5, (X, d) is (A1)-regular with respect to β. We deduce from Theorem
1 that T has a fixed point.

Theorem 3 [17, Theorem 1]. Let (X, d) be a Hausdorff left K-sequentially complete quasi-metric space and T : X→ X
be an α − ψ-contractive mapping satisfying the following conditions:

(i) there exists x0 ∈ X for which α(x0,Tx0) ≥ 1;
(ii) T is α-admissible;
(iii) (X, d) is (A2)-regular with respect to α.

Then T has a fixed point.

Theorem 4. Let (X, d) be a Hausdorff left K-sequentially complete quasi-metric space and T : X → X be an
α−1
− ψ-contractive mapping satisfying the following conditions:
(i) there exists x0 ∈ X for which α−1(x0,Tx0) ≥ 1;
(ii) T is α-admissible;
(iii) (X, d) is (A−1

2 )-regular with respect to α.
Then T has a fixed point.

Proof. As in the proof of Theorem 2 put β := α−1. Then T is a β − ψ-contractive mapping. Moreover
β(x0,Tx0) ≥ 1, and, by Remark 1, T is β-admissible. Finally, by Remark 5, (X, d) is (A2)-regular with respect
to β. We deduce from Theorem 3 that T has a fixed point.

Next we give an example where we can apply Theorem 1 but not Theorems 2, 3 and 4, directly, because
the α−1

−ψ-contractive mapping involved is not α−ψ-contractive, and, in addition, we get α−1(x0,Tx0) < 1
for all element x0 of the quasi-metric space.

Example 3. Let Σ be an alphabet, i.e., a non-empty set, such that |Σ| > 1. The elements of Σ are usually called
symbols or letters. Denote by ΣF the set of all finite sequences (strings) of symbols over Σ, and by Σω the
set of all infinite sequences. We assume that the empty sequence ∅ is an element of ΣF. Put Σ∞ = ΣF

∪ Σω.
As usual we denote by v the prefix order on Σ∞, i.e., x v y⇔ x is a prefix of y. If x is a prefix of y with x , y,
we write x @ y. For each x ∈ Σ∞ we denote by `(x) is length. Thus `(∅) = 0, `(x) < ∞ if x ∈ ΣF and `(x) = ∞
if x ∈ Σω. (See e.g. [2, Chapter 1]).

Let d be the quasi-metric on Σ∞ given by d(x, y) = 2−`(y)
− 2`(x) if y v x, and d(x, y) = 1 otherwise. Then

(Σ∞, d) is a Hausdorff right K-sequentially complete quasi-metric space [15, Theorem 2 and Remark 4(a)].
Let T be any self map of Σ∞ satisfying the following two conditions: (i) `(Tx) = `(x) + 1, and (ii)

x v y⇒ Tx v Ty.
Of course, if x ∈ Σω, `(Tx) = ∞, so Tx ∈ Σ∞.Notice also that condition (ii) implies that Tx @ Ty whenever

x @ y.
In fact, conditions (i) and (ii) above are not strange or very restrictive. Indeed, this type of self maps

are key when discussing the existence and uniqueness of solution to recurrence equations associated to
probabilistic divide and conquer algorithm by means of fixed point techniques (see e.g. [15, page 629], [16,
Example 4.2], [8, Example 4.2]).

We first observe that T is not a Banach contraction on (Σ∞, d) because for x, y ∈ Σ∞ such that y is not
prefix of x, it follows that Ty is not a prefix of Tx, and thus d(Tx,Ty) = 1 = d(x, y).

Let α : X × X→ [0,∞) given by α(x, y) = 1 if x @ y, and α(x, y) = 0 otherwise.
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We will check that all conditions of Theorem 1 are satisfied for ψ ∈ Ψ given by ψ(t) = t/2. Indeed:
We have α(∅,T∅) = 1.
Moreover T is clearly α-admissible because if α(x, y) ≥ 1, then x @ y, so Tx @ Ty, and thus α(Tx,Ty) = 1.
Next we show that T is an α−1

− ψ-contractive mapping.
Let x, y ∈ Σ∞ such that α−1(x, y) = 1. Then y @ x. Hence Ty @ Tx, so

α−1(x, y)d(Tx,Ty) = 2−(`(y)+1)
− 2−(`(x)+1)

=
1
2

(2−`(y)
− 2−`(x)) =

1
2

d(x, y).

It remains to show that (Σ∞, d) is (A1)-regular with respect to α. To this end, let (xn)n∈N be a sequence in
Σ∞ such that α(xn, xn+1) ≥ 1 for all n ∈ N. Then xn @ xn+1 for all n ∈ N. Let x be the unique element of Σω

such that xn @ x for all n ∈ N. Then d(x, xn)→ 0 as n→ ∞, and α(xn, x) = 1 for all n ∈ N. We conclude that
(Σ∞, d) is (A1)-regular with respect to α.

However, we cannot apply Theorems 2 and 3 for this α because T is not an α − ψ-contractive mapping
for any ψ ∈ Ψ. Indeed, take x = ∅ and y = T∅. Then, we get

α(x, y)d(Tx,Ty) = d(Tx,Ty) = 1 > ψ(1) = ψ(d(x, y)).

Finally, we cannot apply Theorem 4 because α−1(x0,Tx0) = 0 for all x0 ∈ Σ∞.

The following is an example where we can apply Theorem 2 but we cannot apply Theorems 3 and 4,
nor can Theorem 1 directly. In fact, the involved quasi-metric space is not left K-sequentially complete and
the α − ψ-contractive mapping is not α−1

− ψ-contractive.

Example 4. Let (R, dS) the famous Sorgenfrey quasi-metric line (see e.g. [5, Example 1.1.6]), where dS is the
Hausdorff quasi-metric on R given by dS(x, y) = y − x if x ≤ y, and dS(x, y) = 1 if x > y.

It is well known that dS induces the Sorgenfrey topology on R and that (X, dS) is a right K-sequentially
complete quasi-metric space

Let T be the self map on X given by Tx = 1 if x > 1, Tx = (x + 1)/2 if x ∈ [0, 1], and Tx = 1/2 if x < 0.
We first observe that T is not a Banach contraction on (R, dS) because dS(T2,T0) = dS(1, 1/2) = 1 = dS(2, 0).
Let α : R ×R→ [0,∞) given by α(x, y) = 1 if x ≤ y, and α(x, y) = 0 if x > y.
We will check that all conditions of Theorem 2 are satisfied for ψ ∈ Ψ given by ψ(t) = t/2. Indeed:
We have α−1(2,T2) = α(1, 2) = 1.
Moreover T is clearly α-admissible because if α(x, y) ≥ 1, then x ≤ y, so Tx ≤ Ty, and thus α(Tx,Ty) = 1.
Now let x, y ∈ R such that α(x, y) = 1. If x, y > 1 or x, y < 0, we have dS(Tx,Ty) = 0. If x ≤ 1 < y, we get

α(x, y)dS(Tx,Ty) = dS(
x + 1

2
, 1) =

1 − x
2

<
y − x

2
=

1
2

dS(x, y).

If x < 0 and y > 1, we get

α(x, y)dS(Tx,Ty) = dS(
1
2
, 1) =

1
2
<

1
2

(y − x) =
1
2

dS(x, y).

If x < 0 and y ∈ [0, 1], we get

α(x, y)dS(Tx,Ty) = dS(
1
2
,

y + 1
2

) =
y
2
<

1
2

(y − x) =
1
2

dS(x, y),

and if x, y ∈ [0, 1] we get

α(x, y)dS(Tx,Ty) = dS(
x + 1

2
,

y + 1
2

) =
y − x

2
=

1
2

dS(x, y).
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We have shown that T is an α − ψ-contractive mapping.
It remains to show that (R, dS) is (A−1

1 )-regular with respect to α. To this end, let (xn)n∈N be a sequence
in R such that α−1(xn, xn+1) ≥ 1 for all n ∈ N. Then xn+1 ≤ xn for all n ∈ N. Suppose there exists x ∈ R such
that dS(x, xn)→ 0 as n→∞. Then x = infn∈N xn. Consequently α−1(xn, x) = 1 for all n ∈N.We conclude that
(R, dS) is (A−1

1 )-regular with respect to α.
We have verified that all conditions of Theorem 2 are satisfied (in fact T has a (unique) fixed point z = 1).

However, we can not apply to this example Theorems 3 and 4 because (X, dS) is not left K-sequentially
complete. Furthermore, we cannot apply Theorem 1 for this α because T is not α−1

− ψ-contractive for any
ψ ∈ Ψ. Indeed, let ψ ∈ Ψ. Then, for x, y ∈ [0, 1] with x > y we have

α−1(x, y)dS(Tx,Ty) = 1 > ψ(1) = ψ(dS(x, y)).

Next we present an example where we can apply Theorem 3 but not Theorems 1, 2 and 4.

Example 5. The one-point compactification of N consists of the set ω := N ∪ {∞} endowed with the
topology τω whose open sets are all subsets ofN, and the sets of the form {∞} ∪ (N\F) where F is a finite
subset ofN (see e.g. [6, page 222]).

Obviously τω is a metrizable topology, but in our context we can construct an appealing and interesting
quasi-metric on ω, denoted by dω and whose induced topology agrees with τω, as follows:

dω(x, x) = 0 for all x ∈ ω;
dω(∞,n) = 2−n for all n ∈N;
dω(n,m) = 2−n if n,m ∈Nwith n < m, and
dω(x, y) = 1 otherwise.
Then (ω, dω) is left K- and right K-sequentially complete (note, in particular, that the right K-Cauchy

sequences are those that are eventually constant). Moreover τdω = τω, τ(dω)−1 is the discrete topology on ω
and (dω)s is the discrete metric on ω.

Now let A = {1/n : n ∈N\{1}} and X := ω ∪ A.
Denote by q the quasi-metric on X given by
q(x, y) = dω(x, y) if x, y ∈ ω,

q(x, y) =
∣∣∣x − y

∣∣∣ if x, y ∈ A, and
q(x, y) = 1 otherwise.
It is almost obvious that (X, q) is a Hausdorff left K-sequentially complete quasi-metric space. However,

it is not right K-sequentially complete because (1/n)n∈N is a right K-Cauchy sequence in (X, q) that does not
converge in τq.

Let S be a strictly increasing self map of ω such that n < Sn for all n ∈N. (Note that this implies S∞ = ∞
for all n ∈N).

Denote by T the self map of X defined as Tx = Sx for all x ∈ ω, and Tx = x/2 for all x ∈ A.
We first observe that T is not a Banach contraction on (X, q) because for n,m ∈ N with n > m we have

Tn > Tm, and thus q(Tn,Tm) = 1 = q(n,m).
Let α : X × X → [0,∞) given by α(n,m) = 1 if n,m ∈ N with n < m, α(∞, x) = 1 for all x ∈ ω, and

α(x, y) = 0 otherwise, and let ψ ∈ Ψ given by ψ(t) = t/2.
We will check that all conditions of Theorem 3 are satisfied. Indeed:
We have α(1,T1) = 1 because 1 < T1.
Now let α(x, y) ≥ 1. If x, y ∈ N then x < y, so Tx < Ty, and thus α(Tx,Ty) = 1. If x = ∞ and y ∈ ω we

deduce that α(Tx,Ty) = α(∞,Ty) = 1. Hence T is α-admissible.
Next we show that T is α − ψ-contractive.
Let x, y ∈ ω such that α(x, y) ≥ 1.
If x = y = ∞, we have q(Tx,Ty) = 0.
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If x, y ∈N, we have x < y, so Tx < Ty and thus

α(x, y)q(Tx,Ty) = 2−Tx
≤ 2−(x+1) =

1
2

q(x, y).

If x = ∞ and y ∈Nwe deduce

α(x, y)q(Tx,Ty) = q(∞,Ty) = 2−Ty
≤ 2−(y+1) =

1
2

q(x, y).

It remains to check that (X, d) is (A2)-regular with respect to α. To this end, let (xn)n∈N be a sequence in
X such that α(xn, xn+1) ≥ 1 for all n ∈ N. We suppose, without loss of generality, that xn ∈ N for all n ∈ N.
Then xn+1 > xn for all n ∈N. Therefore q(∞, xn)→ 0 as n→∞. Since α(∞, xn) = 1 for all n ∈N,we conclude
that (X, q) is (A2)-regular with respect to α.

Thus, all conditions of Theorem 3 are satisfied. (In fact,∞ is the unique fixed point of T).
However, we cannot apply Theorems 1 and 2 because (X, q) is not right K-sequentially complete.

Moreover, we cannot apply Theorem 4 because T is not α−1
− ψ-contractive for any ψ ∈ Ψ. Indeed, let

ψ ∈ Ψ. Then, for n,m ∈Nwith n > m we have

α−1(n,m)q(Tn,Tm) = 1 > ψ(1) = ψ(q(n,m)).

We conclude this section with an example where we can apply Theorem 4 but not Theorems 1, 2 and 3.

Example 6. Let (X, q) and T the quasi-metric space and the self map of X of Example 5, respectively. We
know that (X, q) is left K-sequentially complete.

Put β := α−1. Then β−1 = α, so T is a β−1
− ψ-contractive mapping. Moreover β−1(1,T1) = 1, and, by

Remark 1, T is β-admissible. Furthermore (X, q) is (A−1
2 )-regular with respect to β, by Remark 5. Thus, all

conditions of Theorem 4 are satisfied.
However, we can not apply Theorems 1 and 2 because (X, q) is not right K-sequentially complete.

Moreover, we cannot apply Theorem 3 for β because T is not β − ψ-contractive for any ψ ∈ Ψ.

3. A characterization of doubly Hausdorff right K-sequentially complete quasi-metric spaces

In [17, Theorem 3] its was proved that Theorem 3 above characterizes Hausdorff left K-sequentially
complete quasi-metric spaces. More exactly it was stated the following.

Theorem 5 [17, Theorrem 3]. A Hausdorff quasi-metric space (X, d) is left K-sequentially complete if and only if
every α − ψ-contractive mapping T on (X, d) satisfying the following conditions has a fixed point:

(i) there exists x0 ∈ X for which α(x0,Tx0) ≥ 1;
(ii) T is α-admissible;
(iii) (X, d) is (A2)-regular with respect to α.

As an immediate consequence it was deduced that a slight modification of [18, Theorem 2.2] provides
a characterization of the metric completeness in the following way.

Corollary 1. A metric space (X, d) is complete if and only if every α − ψ-contractive mapping T on (X, d) satisfying
the following conditions has a fixed point:

(i) there exists x0 ∈ X for which α(x0,Tx0) ≥ 1;
(ii) T is α-admissible;
(iii) (X, d) is (A2)-regular with respect to α.

In this section we show a characterization of doubly Hausdorff right K-sequentially complete quasi-
metric spaces from which we will deduce (see Corollary 2 below) that the original fixed point theorem of
Samet, Vetro and Vetro (Theorem A) also allows to characterize the metric completeness.
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We say that a quasi-metric space (X, d) is doubly Hausdorff if both (X, d) and (X, d−1) are Hausdorff
quasi-metric spaces.

There exist doubly Hausdorff quasi-metric spaces in abundance. In fact, it is straightforward to check
that all quasi-metric spaces given in our six examples above are doubly Hausdorff. In particular, the
Sorgenfrey quasi-metric line provides a distinguished example of a doubly Hausdorff right K-sequentially
complete quasi-metric space.

Theorem 6. A doubly Hausdorff quasi-metric space (X, d) is right K-sequentially complete if and only if every
α−1
− ψ-contractive mapping T on (X, d) satisfying the following conditions has a fixed point:
(i) there exists x0 ∈ X for which α(x0,Tx0) ≥ 1;
(ii) T is α-admissible;
(iii) (X, d) is (A1)-regular with respect to α.

Proof. We only prove the “if” part because the “only if” part follows from Theorem 1.
To this end, we suppose that there is a right K-Cauchy sequence (xn)n∈N in (X, d) of distinct points that

does not converge in τd.
Put F := {xn : n ∈ N}. Then, the key step consists in observing that, without loss of gnerality, we can

assume that d(F\{xn}, xn) > 0 for all n ∈N.
Indeed, if the sequence (xn)n∈N does not converge in τd−1 or converges in τd−1 to some x ∈ X\F, the

inequality d(F\{xn}, xn) > 0 is obviously satisfied for all n ∈ N. In case that the sequence converges in τd−1

to some xn0 ∈ F we consider the sequence (yk)k∈N where yk := xn0+k for all k ∈ N. Then (yk)k∈N is a right
K-Cauchy sequence in (X, d) that does not converge in τd. Furthermore d(F0\{yk}, yk) > 0 for all k ∈N,where
F0 := {yk : k ∈ N}, because by the Hausdorffness of (X, d−1), xn0 would be the unique limit point of (xn)n∈N
and, hence, of (yk)k∈N in τd−1 .

Hence, since (xn)n∈N is right K-Cauchy and d(F\{xn}, xn) > 0 for all n ∈ N, we can find a subsequence
(s(n))n∈N of (n)n∈N such that s(n + 1) > s(n) > n and

d(xr, xq) <
1
2

d(F\{xn}, xn),

for all q, r ∈N such that s(n) ≤ q ≤ r.
Let T : X→ X be the mapping given by
Tx = x1 for all x ∈ X\F, and Txn = xs(n) for all n ∈N.
Notice that T has no fixed points because s(n) > n for all n ∈N.
Now let α : X × X→ [0,∞) given by
α(x, y) = 1 if x = xn and y = xm for n,m ∈Nwith n < m, and α(x, y) = 0 otherwise.
We will prove that T is an α−1

− ψ-contractive mapping for ψ ∈ Ψ given by ψ(t) = t/2, that satisfies
condition (i), (ii) and (iii) of the statement of Theorem 6.

We first note that α(x1,Tx1) = 1 because 1 < s(1).
Now we are going to check that T is α-admissible. Suppose that α(x, y) ≥ 1. Then x = xn and y = xm

with n < m. Therefore α(Tx,Ty) = α(xs(n), xs(m)) = 1 because s(n) < s(m).
Next we show that T is α−1

−ψ-contractive. To this end, it suffices to take x = xn and y = xm with n > m.
Thus, we have s(n) > s(m) and we deduce

α−1(x, y)d(Tx,Ty) = α(xm, xn)d(xs(n), xs(m)) <
1
2

d(F\{xm}, xm)

≤
1
2

d(xn, xm) =
1
2

d(x, y) = ψ(d(x, y).

Finally, it is clear that (X, d) is (A1)-regular with respect to α because the only τd-convergent sequences in F
are those that are eventually constant and for any x ∈ F we have α(x, x) = 0.
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Since T has no fixed points we have reached a contradiction. This concludes the proof.

Corollary 2. A metric space (X, d) is complete if and only if every α − ψ-contractive mapping T on (X, d) satisfying
the following conditions has a fixed point:

(i) there exists x0 ∈ X for which α(x0,Tx0) ≥ 1;
(ii) T is α-admissible;
(iii) (X, d) is (A1)-regular with respect to α.
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