

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/183667

Wang, S.; Li, X.; Sheng, QZ.; Ruiz García, R.; Zhang, J.; Beheshti, A. (2021). Multi-Queue
Request Scheduling for Profit Maximization in IaaS Clouds. IEEE Transactions on Parallel
and Distributed Systems. 32(11):2838-2851. https://doi.org/10.1109/TPDS.2021.3075254

https://doi.org/10.1109/TPDS.2021.3075254

Institute of Electrical and Electronics Engineers

1

Multi-Queue Request Scheduling for Profit
Maximization in IaaS Clouds

Shuang Wang, Xiaoping Li, Quan Z. Sheng, Rubén Ruiz, Jinquan Zhang, and Amin Beheshti

Abstract—In cloud computing, service providers rent heterogeneous servers from cloud providers, i.e., Infrastructure as a Service
(IaaS), to meet requests of consumers. The heterogeneity of servers and impatience of consumers pose great challenges to service
providers for profit maximization. In this paper, we transform this problem into a multi-queue model where the optimal expected
response time of each queue is theoretically analyzed. A multi-queue request scheduling algorithm framework is proposed to maximize
the total profit of service providers, which consists of three components: request stream splitting, requests allocation, and server
assignment. A request stream splitting algorithm is designed to split the arriving requests to minimize the response time in the
multi-queue system. An allocation algorithm, which adopts a one-step improvement strategy, is developed to further optimize the
response time of the requests. Furthermore, an algorithm is developed to determine the appropriate number of required servers of
each queue. After statistically calibrating parameters and algorithm components over a comprehensive set of random instances, the
proposed algorithms are compared with the state-of-the-art over both simulated and real-world instances. The results indicate that the
proposed multi-queue request scheduling algorithm outperforms the other algorithms with acceptable computational time.

Index Terms—Profit maximization, consumer impatience, queue, scheduling, cloud computing.

F

1 INTRODUCTION

S ERVICE providers offer resources to service consumers
by renting resources from cloud providers such as A-

mazon EC2, Alibaba Cloud, and Microsoft Azure. Service
consumers often put up with a short wait [1], i.e., a service
consumer becomes impatient if the waiting time exceeds
his/her MWT (maximum waiting time) [2], [3]. The profit
of an agent increases if requests of consumers are met
before their MWTs and decreases when consumers leave.
Different service consumers have different impatience level-
s, implying that MWTs vary, e.g., MWT is stochastic with the
exponential distribution [4]–[6].

Impatient consumers are common in practice. For exam-
ple, consumers send requests to a call center [7], [8] which
rents servers from Alicloud to fulfill the requests. If service
consumers cannot obtain responses within their MWTs,
they will leave the call center and their satisfaction would
decrease. The most common resource instance provisioning
alternatives are: reserved, on-demand, and spot. The rental
costs of reserved instances are much lower than those of
on-demand but with much longer rental duration. Though
spot instances have much lower costs than the reserved

• S. Wang and X. Li are with the School of Computer Science and Engineer-
ing, Southeast University, Nanjing, 211189, China; and also with the Key
Laboratory of Computer Network and Information Integration (Southeast
University), Ministry of Education, Nanjing, 211189, China (Tel: 86-25-
52091916; Fax: 86-25-52091916).
E-mail: {wangshuang, xpli}@seu.edu.cn.

• Q. Z. Sheng and A. Beheshti are with the Department of Computing,
Macquarie University, Sydney, NSW 2109, Australia.
E-mail: {michael.sheng, amin.beheshti}@mq.edu.au.

• R. Ruiz is with Grupo de Sistemas de Optimización Aplicada, Universitat
Politècnica de València, Camino de Vera s/n, 46022, València, Spain (Tel:
34-96-3877007 ext.74946; Fax: 34-96-3877499).
E-mail: rruiz@eio.upv.es.

• Jinquan Zhang is with the School of Computer Science and Engineering,
Southeast University, Nanjing, 211189, China.
E-mail:15895906975@163.com

ones by bidding instances, i.e., the user paying the highest
price obtains the instance, the risk of being interrupted or
preempted by a higher bid might lead to late completion or
even higher costs due to multiple rentals. Different rental
instances result in different prices. Therefore, how to select
suitable servers is crucial for dealing with impatient service
consumers to maximize the total profit.

In this paper, we consider the problem of scheduling
independent requests with distinct MWTs to heterogeneous
servers to maximize the total profit of the service agent.
Requests arrive at the system stochastically. The hetero-
geneity of the servers means that servers have different
rates which further result in different server configurations
and prices. To maximize the total profit, the service agent
rents resources from cloud providers by reserved and on-
demand instances. In this paper, we do not consider the
spot renting alternative because the MWTs of customers
would be violated in the case of failed renting with limited
bidding prices. If requests are processed within the MWT,
these requests are executed by reserved instances and are
computed by on-demand instances otherwise.

The considered problem is complicated because of the
stochastically arriving requests from often impatient con-
sumers, heterogeneous servers and different types of rented
instances. Requests of impatient consumers in distributed
systems are processed by a multi-queue system [9], [10] that
is common in real scenarios. Each queue contains homoge-
neous servers, i.e., the same kind of servers are included
in the same queue. The number of heterogeneous servers
and that of their types are closely related to the total cost
of the rented instances and the response time of requests.
The bigger the number of heterogeneous servers, the higher
the total rental cost. Moreover, less reserved servers lead
to more requests unsatisfied and more on-demand servers
needed to improve the response time with higher rental

2

costs. The main challenges of the problem under this study
are:

(i) How to segment the incoming requests into queues
corresponding to heterogeneous servers in order to
minimize the expected response time,

(ii) How to allocate tasks to specific queues in order to
minimize the number of impatient consumers or to
minimize the actual response time, and finally

(iii) How many reserved and on-demand servers have to
be rented for the stochastically arriving requests in a
period to maximize the total profit.

Over-reserved instances translate into more idle server-
s while under-reserved instances lead to more impatient
consumers. Furthermore, over-rental of on-demand servers
incur more rental cost whereas under-rental on-demand
servers lead to leaving of more consumers.

We first propose a mathematical model for the consid-
ered problem. The MQRS (Multi-Queue Request Schedul-
ing) algorithm framework is then proposed which consists
of three phases: (i) splitting the request arrival rate λ into
S queues, (ii) allocating requests of each queue to servers,
and (iii) deriving the number of rental servers. The main
contributions of our work are summarized as follows:

(i) By constructing the M/M/nri /n
r
i + R model for each

queue Qi, the optimal expected response time can be
theoretically analyzed,

(ii) Based on the proved properties of the stochastic sys-
tem, a request stream splitting algorithm is proposed
to appropriately split the request arrival rate λ into
pieces, and

(iii) To minimize the actual response time of requests, an
allocation strategy is introduced to allocate arriving
requests to the appropriate queues.

The rest of the paper is organized as follows. The related
work is reviewed in Section 2. Section 3 details the model
and problem formulation. The optimization methods are
proposed in Section 4. The experimental results are reported
in Section 5, followed by conclusions and future research
direction discussions in Section 6.

2 RELATED WORK

Handing requests from impatient consumers has attract-
ed a considerable research attention recently [2], [11]–[14].
Cost minimization was studied under deadline constraints
[11], [12], [14]. Requests have to be processed before the
deadlines. A multiple priority preemptive M/G/1/./EDF
model for requests was proposed in [12] which processes
requests with the earliest deadlines. An M/M/m+D queu-
ing model was constructed with requests and a constant
MWT (maximum waiting time) D for profit maximization
[2]. The deadline factor in [12] is used to describe the
impatience levels of different consumers. All the consumers
have the same MWT in [2]. In this queuing model, the
deadlines and MWT are constant [2], [11]–[14]. However,
it is common in reality for different service consumers to
have different levels of impatience. Unfortunately, very few
research works consider requests with stochastic MWT for
impatient consumers in cloud computing.

Developing an appropriate queue model dealing with
requests arriving stochastically has been considered [15]–
[18], [23]. Specifically, a multi-queue system processing the
requests has been studied in [9], [10], [19]–[23]. The con-
structed model in [9], [10], [19]–[21] was considered differ-
ently from [15]–[18]. A dynamic assignment of impatient
customers to multi-queue systems using Markov process
technology was analyzed in [9]. Two different queue types
were studied in [9]. The system throughput was analyzed
using the Markov decision process for assigning services
to customers in [10]. Two parallel queues were analyzed
for requests in [19]. Near-optimal policies for multi-queue
based on wait and performance objectives were studied
in [20]. A distributed algorithm was proposed to balance
the performance and power consumption for heterogeneous
servers [21] for a multi-queue system. The performance was
optimized with power constraint in [22]. A G/G/1 queuing
system was adopted to analyze the performance of servers
in distributed green cloud systems [23]. A geography-aware
task scheduling approach was proposed by considering spa-
tial variations in distributed green data centers to maximize
the total profit by intelligently scheduling tasks of all appli-
cations [24]. According to the constructed multiple queue
models, different objectives were considered [10], [20]–[24].
In this paper, we consider the multi-queue for requests in
terms of impatient customers for maximizing the total profit,
which was not considered in [9], [10], [19]–[21].

Profit maximization for service providers in cloud com-
puting was studied in [2], [25]–[30]. AnM/M/m+D queue-
ing model was constructed in [2] to obtain the optimized
configurations for maximizing the total profit. Price bidding
strategies by a utility function were proposed to maximize
the total profit in [25]. Customer satisfaction was found
to be a major factor to affect the total profit [26], [27]. A
model of cloud networks with different types of servers
was constructed by using the auction theory [30]. A profit
maximization algorithm was studied aiming to discover the
temporal variation of prices in hybrid clouds [28]. A two-
stage strategy was proposed to maximize task scheduling
performance and minimize non-reasonable task allocation
in clouds [29]. Requests processed by multi-queue systems
were not studied in [2], [25]–[29]. The stochastic impatience
for different consumers was not considered in [27].

Compared to our previous research in [31] that considers
heterogeneous servers in a queue, multiple queues for het-
erogeneous servers are studied in this paper. To the best of
our knowledge, the profit maximization problem of renting
suitable heterogeneous servers for impatient consumers has
never been considered. This makes the studied problem
closer to real world applications.

3 SYSTEM MODEL AND PROBLEM DESCRIPTION

Requests arrive stochastically and independently following
a Poisson process with rate λ [6], [32] (e.g., λ of the
real requests in Alicloud1 takes 35.6, 41.8, etc. [31]). Cloud
providers offer S types of servers and each type is regarded
as a queue, i.e., there are S queuesQ1, . . . , QS in the system.
There are two phases for scheduling the arriving requests:

1. http://clusterdata2018pubcn.oss-cn-beijing.aliyuncs.com/batch_
task.tar.gz

3

(i) they are distributed into S queues, and (ii) the requests
in each queue are allocated to specific servers. The main
notations used in this paper are collected in Table 1.

TABLE 1: Notations used in this paper.
Notation Explanation
λ Arrival rate of requests
S Types of servers
Qi The ith queue
µi Service rate for the i type server
cri Unit price for reserved servers with µi
coi Unit price for on-demand servers with µi
nri Number of reserved servers with µi
noi Number of on-demand servers with µi
R Queue capacity in each queue
1
θ

Expected MWT of service consumers
pij Steady state probability with j requests in Qi
L(λi) Expected number of requests L(λi) of Qi
T i Expected response time of requests with split λi
T osi Actual response time by allocating requests to Qi
W j
i Waiting time of a new request with j requests in Qi

P iM Probability of a new request exceeding the MWT
P oi Probability of requests processed on on-demand

servers in Qi
α Income per request
ω Time period for the reserved servers
Note: in the table, i ∈ {1, . . . , S}; j ∈ {0, . . . , nri +R}

The processing time of a request by a server is an
independent and exponentially distributed random variable
[31], [33] where the processing rates satisfy µ1 ≤ µ2 ≤ . . . ≤
µS . The length of each queue in the system is R. Service
providers rent servers from cloud providers with either the
reserved or the on-demand alternative. Similar to [41], on-
demand servers are rented to improve the system perfor-
mance if reserved servers cannot meet the requirements of
consumers. Corresponding to the server rates µ1, µ2, . . . ,
µS , the unit prices of reserved servers are cr1, c

r
2, . . . , c

r
S

and those of on-demand servers are co1, c
o
2, . . . , c

o
S . The

numbers of the required reserved and on-demand servers
are (nr1, n

r
2, . . . , n

r
S) and (no1, n

o
2, . . . , n

o
S), respectively. The

income is α after a request is processed. The renting period
is ω for each reserved server. Figure 1 illustrates the system
queue model.

The MWT of each service consumer is assumed to be an
independent and exponentially distributed random variable
with the expected time parameter 1

θ .

MWT (t) = 1− e−θt (1)

The request stream is split into S small streams (queues)
with rates λ1, λ2, . . . , λS , which follow the Poisson distribu-
tion by the Controller as shown in Figure 1. The Controller
dispatches each new request to one of the queues following
the first-come, first-served (FCFS) rule. The capacity of each
queue is R. Requests are executed with reserved servers
except in the following two cases: (i) the queue is full, or
(ii) the waiting time of the requests exceeds the MWT. For
these two cases, the requests are processed by on-demand
servers.

Since both the number of queues and impatience have
a great influence on the performance of the system, the
theoretical properties of the problem under this study are
completely different from those in [31]. Though impatience
was also considered in [35], only a single queue and a fixed

number of servers were considered. For the studied multiple
queue problem with unfixed number of servers, the main
challenges are:

• Different splitting strategies result in different re-
sponse time and further lead to different profits.
Therefore, how to split the request stream is chal-
lenging for profit maximization, and

• The number of on-demand servers is crucial for the
total rental cost. Deciding the number of on-demand
servers to be rented is also challenging for profit
maximization.

How to split the coming request stream is crucial for the
total profit, i.e., different request stream splitting strategies
lead to different performance. We therefore analyze the
performance of the request stream splitting first.

3.1 Performance of Request Stream Splitting

Since requests are processed on either reserved or on-
demand servers, they have different impacts on perfor-
mance. Generally, more requests to be processed on reserved
servers or less requests to be processed on on-demand
servers in a time unit result in a higher total profit, i.e., it
is desirable to minimize the expected response time.

(1) Requests on reserved servers. For λi requests with impatient
consumers, anM/M/nri /n

r
i+R queue model is constructed.

In queue Qi, there are nri + R + 1 states {0, 1, . . . , nri + R}
and each state represents the number of requests. We define
a variable h(x) = 1 if x > 0 and h(x) = 0 otherwise. pij
(i ∈ {1, . . . , S}; j ∈ {0, . . . , nri + R}) denotes the steady
state probability of Qi with j requests. Therefore,

nr
i +R∑
j=0

pij = 1. (2)

According to [35], pij can be calculated using:

pij =h(nri + 1− j)pi0
λji
µji j!

+ h(j − nri)pi0
λji

µ
nr
i−1
i (nri − 1)!

∏j−nr
i

k=0 (nriµi + kθ)

(3)

Let q+
i,j=

λj
i

µ
nr
i
−1

i (nr
i−1)!

∏j−nr
i

k=0 (nr
iµi+kθ)

for j ∈{ nri +1,. . . , nri +

R}, and q−i,j=
λj
i

µj
i j!

for j ∈{0, 1, . . . , nri }. According to Equa-

tions (2) and (3), pi0 can be obtained by:

pi0 =
1∑nr

i
j=0 q

−
i,j +

∑nr
i +R
j=nr

i +1 q
+
i,j

. (4)

Therefore, the expected number of requests L(λi) of Qi in
the queue is:

L(λi) =

nr
i +R∑

j=nr
i +1

(j − nri) · pij . (5)

Note that L(λi) includes the requests waiting in Qi. The
expected waiting time W i is L(λi)

λi
in the system. Therefore,

W =
∑S
i=1

λi

λW i = 1
λ

∑S
i=1 L(λi). For the S types of

4

...

...

...

Controller

...

0 1 ...

0 1 ...

0 1 ...

...

...

...

...

1 1 1

1 1 1

rn

2 2 2

2

S

1

2

S

R

R

R

S S S

...

...

...

1 1

2 2

S S

... ...

1

2

S

Reserved On-demand Execution

Full capacity Beyond MWT

1

rn 1

rn R

1 1

rn 1 1

rn

2

rn 2

rn R

2 2

rn 2 2

rn 2 2

rn

r

Sn r

Sn R

r

S Sn r

S Sn r

S Sn

Fig. 1: The system queue model.

reserved servers, the optimal split of λ into (λ∗1, . . . , λ
∗
S)

satisfies:

W
∗

= min{W} =
1

λ
min

{ S∑
i=1

L(λi)
}
. (6)

(2) Requests on on-demand servers. Let W j
i be the waiting time

of a new request coming to Qi with j requests. According
to [35], the probability of W j

i ≤ 1
θ is:

P (W j
i ≤

1

θ
) =

nriµi
nriµi + h(j − nri + 1)(j − nri)θ

(7)

The probability of a new request exceeding the MWT P iM
can be calculated by:

P iM =

nr
i +R−1∑
j=nr

i

pijP (W j
i >

1

θ
)

=

nr
i +R−1∑
j=nr

i

pij
(
1− P (W j

i ≤
1

θ
)
) (8)

According to the above two cases for on-demand request
allocation, the probability P oi of a request being processed
on an on-demand server in Qi is:

P oi = P iM + pinr
i +R (9)

Therefore, the number of requests being processed on on-
demand servers is

∑S
i=1 λiP

o
i , which is also closely related

to the split strategy, i.e., it is desirable to have an optimal
split (λ∗1, . . . , λ

∗
S).

3.2 Mathematical Model for the Problem
With respect to the expected response time T , the optimal
split (λ∗1, . . . , λ

∗
S) can be obtained. However, the total profit

of the arriving requests per unit time depends on the strate-
gy for actually allocating them to the reserved or on-demand
servers. After the requests in the coming stream are split into
different queues, the actual response time T osi of requests in
Qi is determined by the waiting time in the queue and the

processing time on servers. During the renting period ω,
d ω
T os
i
e time units are required. The ratio of processing time

of each request to a time unit is d 1
µi
e. Different allocation

strategies lead to different total profits. More specifically,
the total profit β is closely related to the rental cost of
the reserved servers nri c

r
iω (i ∈ {1, 2, . . . , S}) and that

of on-demand servers noi c
o
i d ω
T os
i
ed 1
µi
e (i ∈ {1, 2, . . . , S}).

The considered problem can be mathematically modeled as
follows:

maxβ =
S∑
i=1

(
λiαd

ω

T osi
e − (nri c

r
iω + noi c

o
i d

ω

T osi
ed 1

µi
e)
)

(10)

s.t. :
S∑
i=1

λi = λ (11)

nriµi ≥ λi(1− P oi),∀i ∈ {1, 2, . . . , S} (12)
λ ≥ λi ≥ 0,∀i ∈ {1, 2, . . . , S} (13)
nri ≥ 0,∀i ∈ {1, 2, . . . , S} (14)
noiµi ≥ λiP oi ,∀i ∈ {1, 2, . . . , S} (15)
noi ≥ 0,∀i ∈ {1, 2, . . . , S} (16)
cri > 0,∀i ∈ {1, 2, . . . , S} (17)
coi > 0,∀i ∈ {1, 2, . . . , S} (18)

α >
coSP

o
i

µ2
i

,∀i ∈ {1, 2, . . . , S} (19)

Equation (10) indicates that the total profit is determined
by both the total income

∑S
i=1 λiαd ω

T os
i
e and the total cost∑S

i=1(nri c
r
iω + noi c

o
i d ω
T os
i
ed 1
µi
e). The total income is affected

by T osi and λi while the total cost is influenced by both
the number of rented servers and T osi . For the optimal split
(λ∗1, . . . , λ

∗
S), β depends only on (T os1 , . . . , T osS) in terms of

Theorem 1.

Theorem 1 The profit of Qi (i ∈ {1, . . . , S}) with λ∗i is
inversely proportional to the actual response time T osi .

Proof Equation (10) implies that the profit of Qi (i ∈
{1, . . . , S}) with λ∗i is (λ∗iα −

no
i c

o
i

µi
) ω
T os
i
− nri c

r
iω in which

5

nri c
r
iω is a constant. According to Equation (15), noi =

λ∗iP
o
i

µi

with the minimal rental cost of on-demand servers. Since
coi ≤ coS and α >

coSP
o
i

µ2
i

, λ∗iα −
no
i c

o
i

µi
= λ∗i (α −

coiP
o
i

µ2
i

)

≥ λ∗i (α−
coSP

o
i

µ2
i

) ≥ 0. Therefore, the profit of Qi is inversely
proportional to T osi .

4 THE PROPOSED METHODS

According to Equation (10) and Theorem 1, the profit β is
affected by λi, T osi , nri and noi (i ∈ {1, . . . , S}). To maximize
the total profit, an optimal nri and noi should be provi-
sioned to Qi. According to Equation (6), it is desirable to
optimally split λ to minimize the expected response time,
which implies that most requests might be processed with
the maximum profit. Furthermore, T osi is minimized by
optimally allocating the requests. Consequently, there are
three optimization subproblems in the considered problem:

(i) Optimally splitting λ into (λ∗1, . . . , λ
∗
S) for the given

number of reserved servers nri and the corresponding
on-demand servers noi (i ∈ {1, . . . , S}),

(ii) Optimally allocating requests of each queue to servers
so as to minimize T osi (i ∈ {1, . . . , S}), and

(iii) Repeatedly searching to obtain the optimal number of
servers nri (i ∈ {1, . . . , S}).

Due to the considered impatience and hybrid resource
provision, there are new challenges in these subproblems as
compared to the existing studies [31], [36]. All these three
subproblems are NP-hard, meaning that the considered
problem is also NP-hard.

To deal with the considered problem, an MQRS (Multi-
Queue Request Scheduling) algorithm framework is pro-
posed as depicted in Algorithm 1. The optimal numbers of
reserved servers ~n∗r are initialized to

(
d λ
mµ1
e, . . . , d λ

mµS
e
)

.
Here ~nr is an S-dimensional vector representing the op-
timal numbers of reserved servers for all the queues in
the previous loop. Assume that there are d neighborhood
structures [42] in MQRS. U = (µ1, µ2, . . . , µS) denotes the
service rates for the S queues.

There are three components in MQRS: Request Stream
Splitting (RSS), Request Allocation (RA), and Server Number
Adjustment (SNA). RSS optimally splits the arrival rate λ into
(λ∗1, . . . , λ

∗
S) for the given number of servers nri using the

Lagrange Multiplier method [37]. According to Theorem 1,
RA schedules the requests in each queue to the correspond-
ing servers leading to the minimum actual response time by
the one-step improvement policy strategy for semi-Markov
decision processes [36]. SNA adjusts and searches the appro-
priate number of reserved servers. MQRS is repeated until
~nr = ~n∗r. The computational time complexity of MQRS is
hard to estimate because of the number of iterations is not
fixed. However, in the worst case, it can be estimated as
O
(
d λ
mµ1
eSd2Smax

{
λ
mε , S

2(d λ
mµ1
e+R)

})
.

4.1 Request Stream Splitting
Since the impatience constraint has a clear influence on the
response time that is further closely related to the number of
requests in each queue, it is essential to appropriately split
the request stream. Equation (6) implies that minimizing T
is related to minimizing the number of requests

∑S
i=1 L(λi)

Algorithm 1: Multi-Queue Request Scheduling
(MQRS)
1 begin
2 β ← 0, ~nr ← ~0 ;
3 for i = 1 to S do
4 n∗ri ← d λ

mµi
e;

5 while ~nr 6= ~n∗r do
6 k ← 0, t← 0, ~nr ← ~n∗r ;
7 while k ≤ d do
8 β′ ← 0, ~nr1 ← ~n∗r ;
9 for k1 = 1 to S do

10 for k2 = 0 to 2k do
11 Call RSS;// Request Stream

Splitting(Algorithm 3)
12 Call RA;// Request Allocation

(Algorithm 5)

13 Compute ~nr
′

and β′ by calling SNA;
// Adjustment the number of

servers (Algorithm 6)

14 if (nr
′
k1
< 0 OR ~nr

′
U> < λ) then

15 Continue;

16 if β′ ≥ β then
17 ~n∗r ← ~nr

′
, β ← β′;

18 k ← k + 1;

19 t← t+ 1;

20 return β.

in the queues. The request stream splitting problem can be
modeled mathematically as follows:

min
S∑
i=1

L(λi) (20)

s.t.
S∑
i=1

λi = λ (21)

λi − nriµi ≤ 0,∀i ∈ {1, 2, . . . , S} (22)
λi ≥ 0,∀i ∈ {1, 2, . . . , S} (23)

Let λ̃ = (λ1, . . . , λS) be a splitting vector of the arrival
rate of requests to S queues, ~ζ and ~υ be S−dimensional
vectors, and φ a Lagrange multiplier. We observe that
φ
(∑S

i=1 λi − λ
)

= 0,
∑S
i=1

~ζiλi = 0 and
∑S
i=1 ~υi(n

r
iµi −

λi) = 0. According to the Lagrange Multiplier method [37],
the objective function can be equivalently transformed into:

minH(λ̃, φ, ~ζ, ~υ) =
S∑
i=1

L(λi)− φ
(S∑
i=1

λi − λ
)
−

S∑
i=1

~ζiλi −
S∑
i=1

~υi(n
r
iµi − λi).

(24)

The Karush-Kuhn-Tucher (KKT) conditions [38] of Equation

6

(24) satisfy:

∂L(λi)

∂λi
− φ− ~υi − ~ζi = 0, (i ∈ {1, . . . , S}) (25)

~ζiλi = 0, (i ∈ {1, . . . , S}) (26)
~υi(n

r
iµi − λi) = 0, (i ∈ {1, . . . , S}) (27)

S∑
i=1

λi − λ = 0. (28)

Equation (26) implies that: (i) ~ζi = 0 if λi > 0, and (ii)
the ith type server is not rented if λi = 0, i.e., ~ζi can be set as
0. Similarly, Equation (27) indicates that ~υi = 0 if λi < nriµi
and ~υi can be set as 0 when λi = nriµi. Therefore, only the
following conditions are necessary:

∂L(λi)

∂λi
− φ = 0, (i ∈ {1, . . . , S}) (29)

S∑
i=1

λi − λ = 0 (30)

Theorem 2 L(λi) is non-decreasing with the increase of
λi (λi ∈ (0, nriµi]).

Proof Equation (3) implies that
∂pij
∂λi

(i ∈ {1, . . . , S})

is determined by ∂pi0
∂λi

. From Equation (4) and

q+
i,j−1= λj−1

i

µ
nr
i
−1

i (nr
i−1)!

∏j−1−nr
i

k=0 (nr
iµi+kθ)

, we have:

∂pi0
∂λi

= −
∑nr

i
j=1

q−
i,(j−1)

µi
+
∑nr

i +R
j=nr

i +1

jq+
i,(j−1)

nr
iµi+(j−nr

i)θ(∑nr
i−1
j=0 q−i,j +

∑nr
i +R
j=nr

i
q+
i,j

)2

= −(pi0)2
(nr

i∑
j=1

q−i,(j−1)

µi
+

nr
i +R∑

j=nr
i +1

jq+
i,(j−1)

nriµi + (j − nri)θ
)

= − (pi0)2(1− pi0)j

λi

According to Equation (5), ∂L(λi)
∂λi

=
∑nr

i +R
j=nr

i +1(j − nri) ·
∂pij
∂λi

.
Therefore,

φ =
∂L(λi)

∂λi
=

nr
i +R∑

j=nr
i +1

(j − nri)
(
pi0

jq+
i,(j−1)

nriµi + (j − nri)θ
+
∂pi0
∂λi

pij

)

=

nr
i +R∑

j=nr
i +1

(j − nri)pi0
jq+
i,(j−1)

nriµi + (j − nri)θ

(
1− pi0 + (pi0)2

)

=

nr
i +R∑

j=nr
i +1

(j − nri)pi0
jq+
i,(j−1)

nriµi + (j − nri)θ

(
(pi0 −

1

2
)2 +

3

4

)
(31)

Therefore, φ ≥ 0, which means that ∂L(λi)
∂λi

≥ 0 and L(λi) is
non-decreasing with the increase of λi (λi ∈ (0, nriµi]).

Theorem 3 φ is non-decreasing with the increase of λi (λi ∈
(0, nriµi]).

Proof Let ξ = (j − nri)pi0
jq+

i,(j−2)

(nr
iµi+(j−nr

i)θ)(nr
iµi+(j−1−nr

i)θ) >

0. From Equation (31), we have:

∂φ

∂λi
=

nr
i +R∑

j=nr
i +1

ξ
(

(j − 1)(1− pi0 + (pi0)2)

− (1− 2pi0 + 3(pi0)2)(pi0 − (pi0)2)j
)

=

nr
i +R∑

j=nr
i +1

ξ
(

(j − 1)(1− pi0 + (pi0)2)

− (1− 2pi0 + 3(pi0)2)(pi0 − (pi0)2)j
)

=

nr
i +R∑

j=nr
i +1

ξ
(
j(3(pi0)4 − 5(pi0)3 + 4(pi0)2 − 2pi0 + 1)

− ((pi0)2 − pi0 + 1)
)

≥
nr
i +R∑

j=nr
i +1

ξ
(
j(3(pi0)4 − 5(pi0)3 + 4(pi0)2 − 2pi0 + 1)− 1

)
(32)

Let ξ1 = j(3(pi0)4 − 5(pi0)3 + 4(pi0)2 − 2pi0 + 1). We obtain
∂ξ1
∂pi0

= j(12(pi0)3−15(pi0)2 +8pi0−2). When pi0 = 0, ∂ξ1
∂pi0

< 0

while when pi0 = 1, ∂ξ1
∂pi0

> 0. There is a value pi0 ∈ (0, 1),
∂ξ1
∂pi0

= 0 where pi0 = 0.6027. Therefore, ξ1 decreases when
pi0 < 0.6027 while it increases when pi0 > 0.6027. When
pi0 = 0.6027, ξ1 obtains the minimum value ξ1 = 0.5488j.
When the server type is selected, there is at least one server
which implies that j ≥ 2. Therefore, ξ1 ≥ 0 which implies
that ∂φ

∂λi
≥ 0. φ is non-decreasing with the increase of λi

(λi ∈ (0, nriµi]).

Theorem 2 illustrates that a smaller λi (i ∈ {1, . . . , S})
results in a smaller L(λi) while they are constrained by
Equation (30). Therefore, it is crucial to obtain the best esti-
mator (λ∗1, . . . , λ

∗
S) with a minimum

∑S
i=1 L(λ∗i). Since pi0 ∈

[0, 1], the maximum value of φ is nriµi for each queue. There-
fore, the upper bound of φ is φmax = mini∈{1,...,S}{nriµi},
i.e., φ ∈ [0, φmax]. Equation (31) means that φ is determined
by pi0. Both of them depend on λi. The RSS (Request Stream
Splitting) algorithm obtains λ∗i (i ∈ {1, . . . , S}) by changing
φ from 0 to φmax. For each φ, λi is iteratively estimated
by the binary search method as depicted in Algorithm 2.
Since Λ =

∑S
i=1 λi might be more or less than λ, λi

is normalized by λλi

Λ , which is denoted by λ∗i . The best
estimator (λ∗1, . . . , λ

∗
S) obtains the minimum

∑S
i=1 L(λ̃i) in

terms of Theorem 3. RSS is described in Algorithm 3.
For a given φ, λi is iteratively searched by the following

binary search procedure. The lower bound λmin and the
upper bound λmax of requests are initialized to 0.001 and
nriµi respectively. Theorem 3 demonstrates that φ increases
with an increase of λi. For λi = λmin+λmax

2 , pi0 and φ1 are
calculated by Equation (4) and Equation (31) respectively. If
φ1 ≥ φ, φ increases with the increase of λi, which implies
that λi locates in [λmin,

λmax+λmin

2], i.e., λmax ← λmax+λmin

2

and λmin ← λmax+λmin

2 otherwise. The procedure terminates
when λmax − λmin > ε.

To illustrate the procedure of Algorithm 2, the following
example is given: λ=3, R=2, θ=10, nri=3, ε=0.1, µi=0.6,

7

Algorithm 2: Arrival Rate Estimation (ARE)
Input: nri , µi, R, φ, ε

1 begin
2 λmin ← 0.001, λmax ← nriµi;
3 while λmax − λmin > ε do
4 λi ← λmax+λmin

2
;

5 Calculate φ1 by Equation (31);
6 if φ1 ≥ φ then
7 λmax ← λi;
8 else
9 λmin ← λi;

10 return λi.

Algorithm 3: Request Stream Splitting (RSS) Algorithm
Input: λ, µ1, . . . , µS , ~n

r, R, Z
1 begin
2 Λ← 0, φmax ← 1000, φmin ← 0;
3 for i = 1 to S do
4 λ∗i ← nriµi, Λ← Λ + λ∗i ;
5 Calculate φ in terms of Equation (31);
6 if φmax > φ then
7 φmax ← φ;

8 while φmax − φmin ≤ 0.001 do
9 φ← φmin+φmax

2
;

10 Λ← 0, L← 0, F ← 0;
11 for i = 1 to S do
12 Calculate λi by Algorithm 2;
13 λ̃i ← λi, Λ← Λ + λi;

14 if Λ < λ then
15 φmin ← φ;
16 else
17 φmax ← φ;

18 for i = 1 to S do
19 λ∗i ← λ

Λ
λ̃i;

20 return (λ∗1, . . . , λ
∗
S).

TABLE 2: An Example on Arrival Rate Estimation
λmin λmax λi φ1

0.001 1.80 0.90 0.0408
0.90 1.80 1.35 0.0835
0.90 1.35 1.1254 0.0618
0.90 1.1254 1.0129 0.0511
0.90 1.0129 0.9567 0.0458

0.9567 1.0129 0.9848 0.0484
0.9848 1.0129 0.9989 0.0497
0.9848 0.9989 0.9919 0.0491

φ=0.0494. According to the given parameters, the values
calculated by Algorithm 2 are shown in Table 2. The time
complexity of Algorithm 2 is O(log(

nr
iµi

ε)).
To illustrate the process of Algorithm 3, the same ex-

ample for Algorithm 2 is used with S=2, ~nr=(3, 2), µ1=0.6,
µ2=0.8. The results are shown in Table 3 and the final arrival
rate splitting vector is (1.46, 1.54). The time complexity of
Algorithm 3 is O(max(S, log(1000φmax))).

4.2 Request Allocation
Theorem 1 illustrates that a smaller response time T osi leads
to a higher profit of Qi (i ∈ {1, . . . , S}) with λ∗i . To maxi-

TABLE 3: An Example on Request Stream Splitting
φmin φmax φ λ̃

0 0.0987 0.0494 (1.5777,1.4223)
0.0494 0.0987 0.0740 (1.5165,1.4835)
0.0740 0.0987 0.0864 (1.4887,1.5113)
0.0864 0.0987 0.0925 (1.4671,1.5239)
0.0925 0.0987 0.0956 (1.4642,1.5358)
0.0925 0.0956 0.0941 (1.4620,1.5380)
0.0925 0.0941 0.0949 (1.4631,1.5369)

mize the total profit, it is desirable to obtain the minimum
T osi of each queue Qi (i ∈ {1, . . . , S}). RSS obtains the
optimal request split, i.e., how to optimally split requests.
However, which requests should be allocated to each Qi
(i ∈ {1, . . . , S}) has a great impact on T osi . Besides the new-
ly arriving requests, there are some requests in Qi waiting
to be processed. Since the processing time of each request
is given, T osi depends on the waiting time that is affected
by the number of requests in Qi. Therefore, minimizing T osi
is related to minimizing the number of requests in Qi, i.e.,
maximizing the total profit implies minimizing the number
of requests in the system.

For each queue Qi with arrival rate λi and nri servers,
the ratio λ∗i

λ (i ∈ {1, . . . , S}) indicates the probability of a
new request to be allocated to Qi. The Poisson process of
arriving requests means that the arriving requests allocated
to each queue also follow a Poisson distribution with rate
λ∗i . Therefore, each queue system can be constructed using
an M/M/nri /n

r
i + R model [1]. ~x = (~x1, . . . , ~xS) is rep-

resented as a system state where ~xi ∈ {0, 1, . . . , nri + R}
(i ∈ {1, . . . , S}) is the number of requests in Qi. When a
new request arrives at the system, the Controller allocates
the request to a certain queue using the following strategy.

Let a = i (i ∈ {1, . . . , S}) be an action which means that
the new request is assigned to Qi. The request allocation
procedure is a semi-Markov decision problem that makes
the allocation decision only when a new request arrives. For
an initial state ~x, the new request takes either the action a

or the (
λ∗1
λ , . . . ,

λ∗S
λ) allocation policy. ∆

(
~x, a, (

λ∗1
λ , . . . ,

λ∗S
λ)
)

is the difference between them, which is defined as the
total expected number of requests in the system over an
infinitely long period of time. According to [36], minimizing
the number of requests in the system is equivalent to min-
imizing ∆

(
~x, a, (

λ∗1
λ , . . . ,

λ∗S
λ)
)

for each state ~x. The semi-
Markov decision problem can be solved by the one-step
policy improvement (OSPI) procedure that consists of two
steps [39]: (i) calculating (

λ∗1
λ , . . . ,

λ∗S
λ) and (ii) computing

∆
(
~x, a, (

λ∗1
λ , . . . ,

λ∗S
λ)
)

by the OSPI procedure.
Let vi(j) represent the difference of the number of ex-

pected requests in Qi between starting from j + 1 requests
and from j requests over an infinitely long period of time.
∆
(
~x, a, (

λ∗1
λ , . . . ,

λ∗S
λ)
)

of each state ~x with action a = i can
be calculated by:

∆
(
~x, a, (

λ∗1
λ
, . . . ,

λ∗S
λ

)
)

= vi(~xi)−
S∑
j=1

λ∗j
λ
vj(~xj) (33)

Since
∑S
j=1

λ∗j
λ vj(~xj) is independent to the action a = i,

8

it is desirable to allocate the new request to Qi to obtain
min

i∈{1,...,S}
vi(~xi).

During the dynamic request coming/departure process
from the ~xi state first returning to the empty state of Qi,
the total expected number of requests is Ki(~xi) and the
expected time is Ti(~xi). By defining:

wi(~xi) = Ki(~xi)− Li(λ∗i)Ti(~xi), (34)

we can calculate vi(~xi) using:

vi(~xi) = wi(~xi + 1)− wi(~xi). (35)

Ki(~xi) is obtained according to [36] as:

Ki(~xi) =
[~xi
λ∗i + ~xiµi

+
~xiµi

λ∗i + ~xiµi
Ki(~xi − 1)+

λ∗i
λ∗i + ~xiµi

Ki(~xi + 1)
]
h(nri + 1− ~xi)+{ ~xi − nri

nriµi − λ∗i

[1

2
(~xi − nri + 1)+

+ nri +
λ∗i

nriµi − λ∗i

]}
h(~xi − nri) (36)

There are nri + R + 1 states corresponding to the number
of requests in Qi. Since Ki(0) = 0, there are ni + R
unknown quantities Ki(~xi) (~xi ∈ {1, 2, . . . , ni}) which can
be solved by the nri equations determined by Equation (36).
Let ~Ki = (Ki(1), . . . ,Ki(n

r
i +R)). The nri equations can be

represented as Ai
~K>i = ~Bi where Ai is:

Ai =

1

−λ∗i
λ∗i +µi

−2µi

λ∗i +2µi
1

−λ∗i
λ∗i +2µi

. . .
. . .
−nr

iµi

λ∗i +nr
iµi

1

and ~B is:

~B =(
1

λ∗i + µi
,

2

λ∗i + µi
, . . . ,

nri
λ∗i + nriµi

)

According to [36], Ti(~xi) is calculated by:

Ti(~xi) =[
1

λ∗i + ~xiµi
+

~xiµi
λ∗i + ~xiµi

Ti(~xi − 1)+

λ∗i
λ∗i + ~xiµi

Ti(~xi + 1)]h(nri + 1− ~xi)+

[
~xi − nri
nriui − λ∗i

+ Ti(n
r
i)]h(~xi − nri) (37)

Similarly, Ti(0) = 0 and let ~Ti = (Ti(1), . . . , Ti(n
r
i+R)). The

nri equations derived from Equation (37) can be denoted as
Ai

~T>i = ~Ci where:

~Ci =(
1

λ∗i + µi
,

1

λ∗i + µi
, . . . ,

1

λ∗i + nriµi
)

Let ~N = (N1, . . . , NS) in which Ni = nri + R is
the maximal number of requests in Qi. ~Ki and ~Ti can
be calculated by the elimination method as depicted in
Algorithm 4. wi(~xi) is computed in terms of Equation (34)
and vi(~xi) by Equation (35). The new request is allocated to
the queue with index argi min

i∈{1,...,S}
vi(~xi) to minimize the

Algorithm 4: Elimination Method

Input: λ̂, µ1, . . . , µS , ~n
r, R, θ, ~N

1 begin
2 K← 0, T← 0, ~υ ← ~0;
3 for i = 1 to S do
4 A← 0, ~B, ~C ← ~0, ~B1 ← 1

λi+µi
, ~C1 ← ~B1;

5 for j = 1 to nri do
6 Ajj ← 1;
7 if 1 < j < nri then
8 Aj(j−1) ← −jµi

λ∗i +jµi
, Aj(j+1) ←

−λ∗i
λ∗i +jµi

;

9 ~Cj ← 1
λ∗i +µi

, ~Bj ← j
λ∗i +µi

;
10 else
11 Aj(j−1) ← −jµi

λ∗i +jµi
;

12 ~Cj ← 1
λ∗i +µi

, ~Bj ← j
λ∗i +µi

;

13 for j = 2 to nri do
14 Ajj ← Ajj −

Aj(j−1)

A(j−1)(j−1)
A(j−1)j ;

15 Aj(j+1) ← Aj(j+1) −
Aj(j−1)

A(j−1)(j−1)
A(j−1)(j+1);

16 ~Bj ← ~Bj −
Aj(j−1)

A(j−1)(j−1)

~Bj−1;

17 ~Cj ← ~Cj −
Aj(j−1)

A(j−1)(j−1)

~Cj−1, Aj(j−1) ← 0;

18 ~Kj ←
~Bj

Ajj
, ~Tj ←

~Cj

Ajj
;

19 for j = nri to 1 do

20 ~Kj ←
~Bj−Aj(j+1)

~Kj+1

Ajj
, ~Tj ←

~Cj−Aj(j+1)
~Tj+1

Ajj
;

21 for j = nri + 1 to Ni do
22 Calculate ~Kj , ~Tj by Equation (36) and (37);

23 Ki ← ~K, Ti ← ~T ;

24 return K,T

actual response time. According to [40], the actual response
time of the jth request in Qi calculated by the one-step
policy improvement method is:

T osij = h(j + 1− nri)
(

(Ti(j)− Ti(j − 1)− 1

µi
)pinr

i
+

1

µi

)
+

h(j − nri)
(
Ti(j) − Ti(j − 1)− 1

µi
− j − nri
nriµi − λi

)pinr
i

+
1

µi

)
.

The expected actual response time of the requests in Qi
is T osi =

∑nr
i +R
j=1 pijT

os
ij . If T osi is less than 1, no more

requests are processed because of the constant arrival rate
λ. Therefore, T osi is calculated by:

T osi = h(T osi − 1)

nr
i +R∑
j=0

pijT
os
ij + h(1− T osi). (38)

The RA (Request Allocation) procedure is described
in Algorithm 5. The above example is used to illus-
trate Algorithm 5. Based on the split arrival rate vector
(1.59, 1.41) obtained by Algorithm 3, the results obtained
are shown in Table 4. The time complexity of Algorith-
m 4 is O(S max

i∈{1,...,S}
(Ni)) and that of Algorithm 5 is

O(S2 max
i∈{1,...,S}

(Ni)) = O
(
S2(max

i∈{1,...,S}
(nri) +R)

)
.

4.3 Adjustment of the Number of Servers
Since the total profit is impacted by the number of servers,
it is possible to obtain a better total profit by adjusting the

9

Algorithm 5: Request Allocation (RA) Algorithm

Input: λ̂, µ1, . . . , µS , ~n
r, R, θ, ~N

1 begin
2 Compute K,T by calling Algorithm 4;
3 for i = 1 to S do
4 Calculate Li using the Equation (5);
5 for j = 1 to Ni do
6 wij ← Kij − LiTij ;

7 ~X ← ~0, ~x← 0, q ← 1;
8 for i = 1 to S do
9 Calculate Li using the Equation (5);

10 for j = 1 to Ni do
11 wij ← Kij − LiTij ;

12 vi1 ← wi1, viNi ← 10;
13 for j = 2 to Ni − 1 do
14 vij ← wij −wi(j−1);

15 while ~x ≤ ~N do
16 for i = 1 to S do
17 ~υi ← vi(~xi+1);

18 vmin ← ~υ1;
19 for i = 2 to S do
20 if ~υi < vmin then
21 vmin ← ~υi, j ← i;

22 ~xj ← ~xj + 1, q ← q + 1;

23 for i = 1 to S do
24 Calculate T osi in terms of Equation (38);

25 return T os

TABLE 4: The Request Allocation Example.
λ̂ ~K ~T T os

1.4631 (3.26, 3.91, 3.07, 24.77,52.51) (1.92, 2.02, 1.42, 2.97,5.94) 1.23
1.5369 (1.27, 1.29, 433.14, 822.11) (0.96, 0.81, 15.84, 31.68) 2.57

number of servers. The Server Number Adjustment (SNA)
algorithm is depicted in Algorithm 6.

The probability P oi of requests to be processed by on-
demand servers is calculated by Equation (9). The number
of on-demand servers is computed by noi ←

⌈λ∗iP o
i

µi

⌉
. The

total profit β is calculated by Equation (10). Because differ-
ent server rates result in various ranges, the neighborhood
structure N s

j (j ∈ {1, 2, . . . , d}) for nr
′

i (i ∈ {1, . . . , S}) of
~nr1 is changed to nr

′

i ± j, where d represents the number of
neighborhood structures. It is obvious that |N s

1 | ≤ |N s
2 | ≤

. . . ≤ |N s
d | and |N s

j | = 2jS. Let ~nr
′

be the neighborhood
of ~nr1, which is determined by the neighborhood structures
N s
j (j ∈ {1, 2, . . . , d}). The time complexity of Algorithm 6

is O(S).
To illustrate the process of the overall Multi-Queue Re-

quest Scheduling (MQRS, Algorithm 1), the same exam-
ple for Algorithm 3 is used with ω=720, cr1=1.59, cr2=2.13,
co1=3.99, co2=5.31, α=20, and d=2. Figure 2 shows the MQRS
process for searching the optimal number of servers to
maximize the total profit. The optimal solution for each loop
is in gray color. According to λ, the initial number of servers
is ~n∗r=(3,2). If k=0, the profit for the number of reserved
servers ~n∗r=(3,2) is estimated. The neighbor set of ~n∗r=(3,2)
is N s

1 ={(2,2), (4,2), (3,1), (3,3)} when k=1.

Algorithm 6: Server Number Adjustment (SNA)
Input: (λ∗1, . . . , λ

∗
S), T os, ~nr1, k1, k2

1 begin
2 β′ ← 0;
3 for i = 1 to S do
4 Calculate the probability P oi by Equation (9);
5 noi ←

⌈λ∗i Po
i

µi

⌉
;

6 β′ ← β′ + λ∗iαd ω
Tos
i
e − nri criω − noi coi d ω

Tos
i
ed 1
µi
e;

7 ~nr
′
← ~nr1, k3 ← (−1)k2b k2+1

2
c, nr

′
k1
← nr

′
k1

+ k3;
8 return ~nr

′
, β′

The arrival rate λ=3 is split into two rates 1.46 and 1.54
by Algorithm 3. All the requests are allocated to the two
queues by Algorithm 5. The profit of each element in N s

1 is
calculated by Algorithm 6. The neighbors (2, 2) and (3, 1)
are not considered because they violate the λ∗i ≤ nriµi con-
straint. By comparing the neighbors, the optimal solution
(4, 2) is obtained. The neighbor set of (4, 2) is obtained
N s

2 ={(4,1), (4,3), (5,2), (3,2), (4,0), (4,4), (2,2), (6,2)} when
k=2 while neighbors (4, 0) and (2, 2) do not satisfy the
λ∗i ≤ nriµi constraint. Similarly, the optimal solution (5, 2)
is obtained. The procedure stops because ~nr=(5,0)=~n∗r .

5 EXPERIMENTAL EVALUATION

In the proposed MQRS framework, there are five system
parameters and one algorithm component which are cal-
ibrated over real life instances. Moreover, the proposed
MQRS algorithm is evaluated by comparing it against three
similar algorithms over both simulated and real instances.
All compared algorithms are coded in Matlab 2017b and
run on an Intel Core i7-4770 CPU @3.20GHz with 8 GBytes
of RAM.

5.1 Parameter and Component Calibration

In cloud centers for profit maximization, the commonly
tested parameters are: the long term rental period parameter
ω, the income per request α, the arrival rate λ, the queue
capacity R and the delay rate θ. In [2], most of these
parameters are given in advance. To statistically analyze the
effects of the system parameters on the proposed algorithm
framework, we calibrated these parameters over randomly
generated test instances.

Since the values of the calibrated parameters should
be as close as possible to real life scenarios, we set the
parameter configurations according to the Alibaba cloud2

and Azure data sets [43] as: ω ∈{720, 4,320, 8,640} (hours),
α ∈{20, 30, 40}, λ ∈{{1, . . . , 10}, {11, . . . , 20}, {21, . . . , 30},
{31, . . . , 40}}, R ∈{1, 6, 10}, θ ∈{5, 10, 15}. In addition,
the total server types S=6 using the general instances by
Alibaba cloud: the server rates µ ∈{0.1, 0.2, 0.4, 0.6, 0.8,
1.2}, the prices for the reserved servers cr ∈{0.27, 0.53,
1.06, 1.59, 2.13, 3.19}(U) and the prices for the on-demand
servers co ∈{0.66, 1.33, 2.66, 3.99, 5.31, 7.97}(U). Although
the server type S is determined, the numbers of servers
are dynamic. Furthermore, there is one algorithm parameter

2. https://www.aliyun.com

10

(2,4)

14165.8

rn

P

(4,4)

5343.7

rn

P

(4,3)

1210.5

rn

P

(6,4)

4944.3

rn

P

(4,2)rn
(5,4)

5280.7

rn

P

(3,4)

4304.2

rn

P

(4,5)

6446.3

rn

P

2, (3,3), (3,3)r rk n n

(5,3)

4060.1

rn

P

(4,3)

1210.5

rn

P

1, (4,3), (5,3)r rk n n

(3,3)

11484.6

rn

P

(4,4)

5343.7

rn

P

(4,2)rn

(4,6)

6483.1

rn

P

(2,8)

8355.8

rn

P

(3,6)

6090.9

rn

P

(4,5)

6446.3

rn

P

(4,7)

6035.0

rn

P

(5,6)

5563.9

rn

P

(3,6)

6090.9

rn

P

(5,6)

5563.9

rn

P

(4,8)

8769.8

rn

P

(2,6)

6915.0

rn

P

(5,8)

7684.6

rn

P

(3,8)

6431.8

rn

P

(6,6)

4687.3

rn

P

(6,8)

6731.3

rn

P

(4,10)

7033.7

rn

P

(4,6)

6483.1

rn

P

(4,4)

5343.7

rn

P

(4,8)

8769.8

rn

P

(4,6)

6483.1

rn

P

(5,8)

7684.6

rn

P

(3,8)

6431.8

rn

P

(4,9)

7948.7

rn

P

(4,7)

6035.0

rn

P

(4,8)

8769.8

rn

P

(5,8)

7684.6

rn

P

(3,8)

6431.8

rn

P

(4,9)

7948.7

rn

P

(4,7)

6035.0

rn

P

(4,6)

6483.1

rn

P

' (2,4)

' 8143

rn

' (4,3)

' 7981

rn

' (6,4)

' 6418

rn

' (4,2)rn
' (5,4)

' 7447

rn

' (3,4)

' 9424

rn

' (4,5)

' 8147

rn

' (5,3)

' 7651

rn

(4,3)

7981

rn

' (3,3)

' 11485

rn

' (4,4)

' 8539

rn

' (4,2)rn

' (4,6)

' 7514

rn

(4,4)

8539

rn

(3,4)

9424

rn

' (4,4)

' 8539

rn

' (2,4)

' 8143

rn

' (3,5)

' 9353

rn

' (3,3)

' 11485

rn

(3,4)

9424

rn

' (4,4)

' 8539

rn

' (2,4)

' 8143

rn

' (5,4)

' 7447

rn

' (3,5)

' 9353

rn

' (3,6)

' 8750

rn

' (1,4)rn ' (3,3)

' 11485

rn

' (3,2)rn

14973

)2,3(

rn

)1,3(
rn

)2,2(
rn

28653

)2,4(

rn

28318

)3,3(

rn

28653

)2,4(

rn

28736

)2,5(

rn

14793

)2,3(

rn

25603

)1,4(

rn

27864

)3,4(

rn

27028

)2,6(

rn

24797

)4,4(

rn

)2,2(
rn
)0,4(

rn

28736

)2,5(

rn

27028

)2,6(

rn

28653

)2,4(

rn

26330

)3,5(

rn

21982

)1,5(

rn

28736

)2,5(

rn

27028

)2,6(

rn

28653

)2,4(

rn

25180

)2,7(

rn

14973

)2,3(

rn

26330

)3,5(

rn

21982

)1,5(

rn

23263

)4,5(

rn

35532

)0,5(

rn

35532

)0,5(

rn

33998

)0,6(

rn

21982

)1,5(

rn

)0,4(
rn

35532

)0,5(

rn

33998

)0,6(

rn

32465

)0,7(

rn

21982

)1,5(

rn

28736

)2,5(

rn

)0,4(
rn

)0,3(
rn

Fig. 2: An illustration of the overall MQRS process.

which takes values d ∈ {1, 2, 3, 4}. Therefore, there are
3×3×4×3×3 = 324 parameter combinations and 1×4 = 4
component combinations in total. Five instances are gener-
ated randomly for each arrival rate λ, i.e., five instances are
generated for each combination, that is, 324 × 4 × 5=6,480
instances in total are tested for calibrating the parameters
and the component combinations.

Experimental results are analyzed by the multi-factor
analysis of variance (ANOVA) statistical technique. Three
main hypotheses (normality, homoscedasticity, and inde-
pendence of the residuals) are checked from the residuals
of the experiments. All three hypotheses can be accepted
considering the well-known robustness of the ANOVA tech-
nique. The resulting p-values are less than 0.05, meaning
that all studied factors have a significant impact on the
response variables at the 95% confidence level within the
ANOVA.

The mean plot of the six studied factors on the total profit
β with 95% HSD (Tukey’s Honest Significance Differences)
intervals is shown in Figure 3 and we can observe that:

(i) ω greatly influences the total profit β. β increases
with the increase in ω. The differences are statistically
significant. β becomes the minimum when ω=720. The
reason lies in that a higher ω implies a higher profit.

(ii) Similarly, α has a great impact on β and the differences
are statistically significant. β increases with an increase
in α. β takes the minimum value when α = 10 because
a bigger α implies more profits.

(iii) λ exerts a great influence on β. With an increase in
the upper bound of λ, β increases with statistically
significant differences. β is minimum when λ takes
values from {1, . . . , 10}. The reason lies in that fewer
arriving requests translate as expected into few profits.

(iv) R has some minor influence on β. With an increase in
R, the influence on β decreases a little. A greater R
results in an increase in waiting time of requests.

(v) d has little influence on β with statistically insignificant

differences. With an increase in d, the cardinal number
of the neighbor set increases. More choices are evaluat-
ed to adjust the number of servers. The profit tends to
be more stable with an increase in d because the final
solution is searched more intensively.

(vi) The statistical differences of θ on β are insignificant.
With an increase in θ, the impatience time decreases.

5.2 Algorithms Comparison

Implementing multiple parallel queues involves more de-
sign options compared to the single queues [34]. Unfortu-
nately, few existing research considers stochastic requests
allocated to a multi-queue system. A representative work
is the distribution algorithm (DA) [21] that is proposed to
solve the load distribution problem for multiple queues
with a server in each queue. DA is adopted in one of non-
observable parallel queues which does not consider the OS-
PI procedure. To evaluate the performance of the proposed
algorithm, we compare four algorithms: MQRSD , MQRSA,
MQRSR and DA [21]. MQRSD , MQRSA and MQRSR are
based on the proposed MQRS framework with different re-
quest stream splitting processes. More specifically, MQRSD
splits the request stream using the RSS algorithm. MQRSA
averagely splits the request stream based on the number
of server types while MQRSR conducts the request stream
according to the proportion which is the total service rate
of all servers in each queue to that of the system. The four
algorithms are compared using both randomly generated
simulation instances and the real instances provided by
AuverGrid3 and the real production Cluster-trace-v20184

published by the Alibaba Group for parallel systems where
requests are processed by reserved or on demand servers..

3. http://gwa.ewi.tudelft.nl/datasets/gwa-t-4-auvergrid
4. https://github.com/alibaba/clusterdata

11

720 4320 8640

Means and 95.0 Percent Tukey HSD Intervals

T

.5

1

1.5

2

2.5

3

(X 1.E6)

P

10 20 30 40

Means and 95.0 Percent Tukey HSD Intervals

lamda

.5

1

1.5

2

2.5

3

(X 1.E6)

P

(X 1.E6)

20 30 40

Means and 95.0 Percent Tukey HSD Intervals

a

.5

1

1.5

2

2.5

3

P

1 6 10

Means and 95.0 Percent Tukey HSD Intervals

R_1

5

10

15

(X 100000)

P

1 2 3 4

Means and 95.0 Percent Tukey HSD Intervals

r

5

10

15

(X 100000)

P

5 10 15

Means and 95.0 Percent Tukey HSD Intervals

theta

5

10

15

(X 100000)

P

720 4320 8640

Means and 95.0 Percent Tukey HSD Intervals

T

5

10

15

20

25

(X 100000)

P

10 20 30 40

Means and 95.0 Percent Tukey HSD Intervals

lamda

5

10

15

20

25

(X 100000)

P

10 20 30 40

Means and 95.0 Percent Tukey HSD Intervals

lamda

5

10

15

20

25

(X 100000)

P

610

720 4320 8640

.5

1

1.5

2

2.5

3

10 20 30 40 20 30 40

510

1 6 10

R

5

10

15

1 2 3 4

d
5 10 15

Fig. 3: The mean plots of the six studied parameters with 95% confidence level Tukey HSD intervals.

5.2.1 Performance comparison on simulated instances
Since there are no benchmark instances for the consid-
ered problem, we first compare the four algorithms across
simulated instances. In terms of the calibrated results in
Section 5.1, the system parameters ω (the time period for the
reserved servers) ∈{720, 4,320, 8,640}, α (income per request)
∈{20, 30, 40}, λ (arrival rates of requests) ∈{{1, . . ., 10}, {11,
. . ., 20}, {21, . . ., 30},{31,. . .,40}}, R=6 (queue capacity) and
1
θ=0.1 (expected MWT of consumers) are tested along with
the algorithm component d=2. Five instances are randomly
generated for each of the 36 combinations, i.e., 180 instances
are tested on each of the four algorithms. The results are
shown in Figure 4.

From Figure 4, we can observe that with an increase in
ω, MQRSD obtains the best profit. The profit of MQRSR
is smaller than that of MQRSD while it is better than that
of MQRSR. MQRSA always demonstrates the worst profit
performance among MQRSD , MQRSR and DA. With an
increase in α from 20 to 40, MQRSD always obtains the
largest profit whereas MQRSA obtains the smallest. Only
when α takes 40, there is small difference among MQRSD ,
MQRSR and DA algorithms. The results also indicate that a
higher α value results in a better profit for MQRSD .

When the arrival rate λ takes a value from {1, . . . , 10}
and {11, . . . , 20}, the profit obtained by MQRSD is slightly
larger than those of the other three algorithms. MQRSR
always obtains a higher profit than DA. In other words,
with an increase in λ, MQRSD is the most effective method.
MQRSA always shows the worst profit performance among
the four compared algorithms.

To compare the algorithms comprehensively, the total
profit and CPU times are shown in Table 5. From Table 5,
it can be observed that the profits of MQRSD, MQRSR and
MQRSA are 2,496,470, 2,376,320 and 1,155,410, respectively.
The profit of DA is 2,418,690 which is better than that
of MQRSR but worse than that of MQRSD . MQRSD uses

TABLE 5: Comparison of the MQRS Algorithms and DA.
MQRSA DA [21] MQRSD MQRSR

β (Total profit) 1,155,410 2,418,690 2,496,470 2,376,320
CPU time (Second) 26 4787 227 203

227s of computation time, which is acceptable in practice.
The CPU time of MQRSA and MQRSR is 26s and 203s
respectively because MQRSA and MQRSR are deterministic
in the request splitting procedure. DA is the most time-
consuming method which spends the longest CPU time
even if it does not include the OSPI procedure.

5.2.2 Performance comparison on real life instances
To verify the performance of the proposed algorithm in real
world applications, the VM workload data set provided by
Microsoft Azure [43] and the real production Cluster-trace-
v2018 published by the Alibaba Group are tested.

According to Microsoft Azure [43], the lifetime of 87.4%5

of VMs is within 12.5 hours, i.e., the service rate of VMs is
0.08 per hour. To thoroughly evaluate the proposed MQRS,
we take the service rate from {0.08, 0.17, 0.25, 0.33, 0.41,
0.5, 0.67, 0.75, 0.83, 0.92, 1, 3}. The arrival rate λ takes
values from {1,2,3,. . . ,40}. Based on µ1, the prices for renting
faster reserved and on-demand servers are 0.27(µi

µ1
+ i)(i ∈

{2, . . . , S}) and 0.66(µi

µ1
+ i)(i ∈ {2, . . . , S}) (U) respec-

tively. The other parameters are identical to those in the
simulation. The comparison results on different algorithms
are shown in Figure 5. According to Figure 5, MQRSA
always obtains the minimum profit when λ ≤ 32. When λ
is between 1 and 18, the profit curves of MQRSD, MQRSR
and DA are intertwined, i.e., the superiority changes dy-
namically. When λ > 32 , the profit of MQRSR fluctuates

5. https://azurecloudpublicdataset.blob.core.windows.net/azure
publicdataset/sosp_data/lifetime.txt

12

Interactions and 95.0 Percent Tukey HSD Intervals

T

0

1

2

3

4

5
(X 1.E6)

P

720 4320 8640

Algorithm
AVG
DA
MQRS
Ratio

Interactions and 95.0 Percent Tukey HSD Intervals

lamda

0

1

2

3

4

5
(X 1.E6)

P

10 20 30 40

Algorithm
AVG
DA
MQRS
Ratio

Interactions and 95.0 Percent Tukey HSD Intervals

a

0

1

2

3

4

5
(X 1.E6)

P

20 30 40

Algorithm
AVG
DA
MQRS
Ratio

0

1

2

3

4

5

720 4320 8640

610

Algorithm
MQRSA

DA
MQRSD

MQRSR

{1, ,10} {11, ,20} {21, ,30} {31, ,40}

Algorithm
MQRSA

DA
MQRSD

MQRSR

20 30 40

a

Algorithm
MQRSA

DA
MQRSD

MQRSR

Fig. 4: The mean plots of the interaction between algorithms and parameters with 95% confidence level intervals.

Interactions and 95.0 Percent Tukey HSD Intervals

T

0

1

2

3

4

5
(X 1.E6)

P

720 4320 8640

Algorithm
AVG
DA
MQRS
Ratio

Interactions and 95.0 Percent Tukey HSD Intervals

lamda

0

1

2

3

4

5
(X 1.E6)

P

10 20 30 40

Algorithm
AVG
DA
MQRS
Ratio

Interactions and 95.0 Percent Tukey HSD Intervals

a

0

1

2

3

4

5
(X 1.E6)

P

20 30 40

Algorithm
AVG
DA
MQRS
Ratio

0

1

2

3

4

5

720 4320 8640

Algorithm
MQRSA

DA
MQRSD

MQRSR

{1,…,10} {11,…,20} {21,…,30} {31,…,40}

Algorithm
MQRSA

DA
MQRSD

MQRSR

20 30 40

a

Algorithm
MQRSA

DA
MQRSD

MQRSR

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

MQRSR

DA

MQRSA

MQRSD

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

MQRSR

DA

MQRSA

MQRSD

105

Fig. 5: Profit comparison among different algorithms.

significantly because the proportion split results in local
optimal solutions. In addition, when λ is bigger than 18,
MQRSD outperforms the other two and MQRSR out-
performs DA. These results are in accordance with those
obtained in random instances.

The real production Cluster-trace-v2018 published by
the Alibaba Group, which contains eight-day sample data
from one of the production clusters, is also tested. By
analyzing the start_time6 of the requests, the arriving time
intervals are obtained. The distributions of each request is
Poisson and the execution time of each server is exponential
with different arrival and service rates which have been
calibrated in [31]. According to start_time and end_time7,
the execution times of servers are calculated where service
rates are 0.80, 1.69, 4.98, 6.77, 7.71, 10.54, respectively. Other
parameters are identical to those in the simulation. The
difference from the profit of MQRSD to all the algorithms
are compared in Figure 6. From the figure we can observe
that with the increase of λ, the difference increases. When λ
is between 1 and 18, the profit difference curves ofMQRSD ,
MQRSR and DA are intertwined, i.e., the superiority
changes dynamically. When λ is bigger than 18, MQRSD
outperforms the other two and MQRSR outperforms DA.
These results are in accordance with those obtained in the

6. http://clusterdata2018pubcn.oss-cn-beijing.aliyuncs.com/batch
task.tar.gz

7. http://clusterdata2018pubcn.oss-cn-beijing.aliyuncs.com/batch
instance.tar.gz

0 5 10 15 20 25 30 35 40 45
-0.5

0

0.5

1

1.5

2

2.5

x 10
4

MQRS
D

DA

MQRS
A

MQRS
R

Fig. 6: Profit difference comparison among different algo-
rithms and MQRSD .

Microsoft Azure instances.

6 CONCLUSIONS AND FUTURE RESEARCH

In this paper, a multi-queue system is constructed to max-
imize the total profit for service providers by specially
considering impatient service consumers of e.g., call cen-
ters. An MQRS (Multi-Queue Request Scheduling) algo-
rithm framework is proposed for the considered problem.
Several methods are developed to determine the number
of reserved servers and to calculate the probability of the
expected number of on-demand servers. All parameters
and components of the proposed algorithm framework are
calibrated by the multi-factor analysis of variance statistical
technique over a comprehensive set of random instances.
The results show that for a long time period, the income per
request and the arrival rates have a statistically significant
influence, whereas the queue capacity and the delay rate
have little impact, on the profit performance of the proposed
algorithms. By comparing the proposed algorithms with the
state-of-the-art algorithm DA (distribution algorithm) for a
similar problem on both simulated and real life instances,
our results demonstrate that: MQRSA always obtains the
worst profit among the four compared algorithms, MQRSR
is sometimes better than the others, and DA is generally
worse than MQRSD . MQRSD mostly outperforms the other
three algorithms across a comprehensive set of real life

13

instances with acceptable computation times. The reason
lies in that the proposed stream splitting method adaptively
divides the request stream in terms of the service rates, i.e.,
all servers work in balanced loads.

For heterogeneous cloud centers, there are still many
open research issues that are worth studying in the future,
e.g., the arrival rates of requests could be relaxed to more
practical distributions, and similarly for more realistic ser-
vice rates of cloud servers.

ACKNOWLEDGMENTS

This work is supported by the National Key Research
and Development Program of China (No. 2017YFB1400800),
the National Natural Science Foundation of China (Nos.
61872077, 61832004) and Collaborative Innovation Center
of Wireless Communications Technology. Quan Z. Sheng’s
work is partially supported by Australian Research Coun-
cil (ARC) Future Fellowship FT140101247, and Discovery
Project DP180102378. Rubén Ruiz is partially supported by
the Spanish Ministry of Science, Innovation, and Univer-
sities, under the project “OPTEP-Port Terminal Operations
Optimization” (No. RTI2018-094940-B-I00) financed with
FEDER funds.

REFERENCES

[1] D. Gross, J. F. Shortie, J. M. Thompson, and C. M. Harris, Funda-
mentals of Queueing Theory, Fourth Edition, 2013.

[2] J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme
with guaranteed quality of service in cloud computing,” IEEE
Transactions on Computers, vol. 64, no. 11, pp. 3064–3078, 2015.

[3] Y. J. Chiang, Y. C. Ouyang, and C. H. Hsu, “Performance and
cost-effectiveness analyses for cloud services based on rejected and
impatient users,” IEEE Transactions on Services Computing, vol. 9,
no. 3, pp. 446–455, 2016.

[4] A. A. Bouchentouf and A. Guendouzi, “Cost optimization analysis
for an MX/M/c vacation queueing system with waiting servers
and impatient customers,” SeMA Journal, vol. 76, no, 2,pp. 309–
341, 2019.

[5] E. Zohar, A. Mandelbaum, and N. Shimkin. “Adaptive behavior
of impatient customers in tele-queues: Theory and empirical sup-
port.” Management Science, vol. 4, no. 48, 566-583, 2002.

[6] A. Mandelbaum, A.Sakov, and S.Zeltyn. Empirical anal-
ysis of a call center. URL http://iew3. technion. ac.
il/serveng/References/ccdata. pdf. Technical Report, 60, 2000.

[7] S. Zeltyn and A. Mandelbaum, “Call centers with impatient cus-
tomers: Many-server asymptotics of the M/M/ n + G queue,”
Queueing Systems Theory and Applications, vol. 51, no. 3-4, pp. 361–
402, 2005.

[8] R. Ibrahim, “Managing queueing systems where capacity is ran-
dom and customers are impatient,” Production and Operations
Management, vol. 27, no. 6, pp.234–250, 2018.

[9] A. Movaghar, “Analysis of a dynamic assignment of impatient
customers to parallel queues,” Queueing Systems, vol. 67, no. 3, pp.
251–273, 2011.

[10] M. Delasay, “Maximizing throughput in finite-source parallel
queue systems,” European Journal of Operational Research, vol. 217,
no. 3, pp. 554–559, 2012.

[11] M. Malawski, K. Figiela, and J. Nabrzyski, “Cost minimization
for computational applications on hybrid cloud infrastructures,”
Future Generation Computer Systems, vol. 29, no. 7, pp. 1786–1794,
2013.

[12] V. G. Abhaya, Z. Tari, P. Zeephongsekul, and A. Y. Zomaya, “Per-
formance analysis of EDF scheduling in a multi-priority preemp-
tive M/G/1 queue,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 8, pp. 2149–2158, 2014.

[13] L. Aminizadeh and S. Yousefi, “Cost minimization scheduling
for deadline constrained applications on vehicular cloud infras-
tructure,” in International Conference on Computer and Knowledge
Engineering. Mashhad, Iran: IEEE, October 2014, pp. 358–363.

[14] L. Chen, X. Li, and R. Ruiz, “Resource renting for periodical cloud
workflow applications,” IEEE Transactions on Services Computing,
vol. 13, no. 1, pp. 130–143, 2020.

[15] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud computing centers using M/G/m/m+ r queuing systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 5,
pp. 936–943, 2011.

[16] H. Khazaei, J. Misic, V. B. Misic, and S. Rashwand, “Analysis of
a pool management scheme for cloud computing centers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 5, pp.
849–861, 2013.

[17] T. Atmaca, T. Begin, A. Brandwajn, and H. Castel-Taleb, “Per-
formance evaluation of cloud computing centers with general
arrivals and service,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 8, pp. 2341–2348, 2016.

[18] H. Khazaei, J. Misic, and V. B. Misic, “Performance of cloud centers
with high degree of virtualization under batch task arrivals,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 12, pp.
2429–2438, 2013.

[19] C. Knessl, B. Matkowsky, Z. Schuss, and C. Tier, “Two parallel
queues with dynamic routing,” IEEE Transactions on Communica-
tions, vol. 34, no. 12, pp. 1170–1175, 1986.

[20] B. Legros, “Waiting time based routing policies to parallel queues
with percentiles objectives,” Operations Research Letters, vol. 46,
no. 3, pp. 356–361, 2018.

[21] Y. Tian, C. Lin, and K. Li, “Managing performance and power
consumption tradeoff for multiple heterogeneous servers in cloud
computing,” Cluster Computing, vol. 17, no. 3, pp. 943–955, 2014.

[22] K. Li, “Optimal power allocation among multiple heterogeneous
servers in a data center,” Sustainable Computing: Informatics and
Systems, vol. 2, pp. 13–22, 2012.

[23] H. Yuan, M. C. Zhou, Q.Liu , et al. “Fine-grained resource pro-
visioning and task scheduling for heterogeneous applications in
distributed green clouds”. IEEE/CAA Journal of Automatica Sinica,
vol. 7, no. 5, pp.1380-1393, 2020.

[24] H. Yuan, J. Bi and M. Zhou, "Geography-Aware Task Scheduling
for Profit Maximization in Distributed Green Data Centers," IEEE
Transactions on Cloud Computing, doi: 10.1109/TCC.2020.3001051.

[25] K. Li, C. Liu, K. Li, and A. Y. Zomaya, “A framework of price
bidding configurations for resource usage in cloud computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 8,
pp. 2168–2181, 2016.

[26] J. Mei, K. Li, and K. Li, “Customer-satisfaction-aware optimal
multiserver configuration for profit maximization in cloud com-
puting,” IEEE Transactions on Sustainable Computing, vol. 2, no. 1,
pp. 17–29, 2017.

[27] J. Cao, H. Kai, K. Li, and A. Y. Zomaya, “Optimal multiserver
configuration for profit maximization in cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp.
1087–1096, 2013.

[28] H. Yuan, J. Bi, W. Tan and B. H. Li, "Temporal Task Scheduling
With Constrained Service Delay for Profit Maximization in Hybrid
Clouds," IEEE Transactions on Automation Science and Engineering,
vol. 14, no. 1, pp. 337-348, Jan. 2017.

[29] P. Zhang and M. Zhou, "Dynamic Cloud Task Scheduling Based
on a Two-Stage Strategy," IEEE Transactions on Automation Sci-
ence and Engineering, vol. 15, no. 2, pp. 772-783, April 2018, doi:
10.1109/TASE.2017.2693688.

[30] S. Hosseinalipour and H. Dai, “Options-based sequential auctions
for dynamic cloud resource allocation,” IEEE International Confer-
ence on Communications (ICC). Paris, France: IEEE, May 2017

[31] S. Wang, X. Li and R. Ruiz, “Performance analysis for heteroge-
neous cloud servers using queueing theory” IEEE Transactions on
Computers, vol. 69, no. 4, pp. 563–576, 2020.

[32] H. Khazaei, J. Misic and V. B. Misic, "Performance of Cloud
Centers with High Degree of Virtualization under Batch Task
Arrivals," IEEE Transactions on Parallel and Distributed Systems, vol.
24, no. 12, pp. 2429-2438, Dec. 2013, doi: 10.1109/TPDS.2012.318

[33] R. R. Inman. “Empirical evaluation of exponential and indepen-
dence assumptions in queueing models of manufacturing sys-
tems.” Production and Operations Management, vol. 4, no.8, 409-
432,1999.

[34] A. Psarras, M. Paschou, C. Nicopoulos, and G. Dimitrakopoulos,
“A dual-clock multiple-queue shared buffer,” IEEE Transactions on
Computers, vol. 66, no. 10, pp. 1809–1815, 2017.

[35] A. Movaghar, “On queueing with customer impatience until the
beginning of service,” Queueing Systems, vol. 29, pp. 337–350, 1998.

14

[36] H. C. Tijms, A First Course in Stochastic Models. Wiley, 2004.
[37] B. W. Wah and T. Wang, Efficient and Adaptive Lagrange-Multiplier

Methods for Nonlinear Continuous Global Optimization, 1999.
[38] D. G. Luenberger, Optimization by Vector Space Methods, 1969.
[39] J. Nino-Mora, “Overcoming numerical instability in one-step pol-

icy improvement for admission and routing to queues with firm
deadlines,” in International Conference on Network Games, Control
and Optimization. Trento, Italy: IEEE, 2014.

[40] K. R. Krishnan, “Joining the right queue: A markov decision-rule,”
in IEEE Conference on Decisionand Control, Los Angeles, California,
USA, 9 1987.

[41] J. L. Diarialgo, M. Garcia, J. Garcia, and D. F. Garcia, ”Optimal
allocation of virtual machines in z, J. Entmulti-cloud environments
with reserved and on-demand pricing,” Futre Generation Computer
Systems, vol. 71, pp. 129–144, 2017.

[42] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Computing
Surveys, vol. 35, pp. 268–308, 2001.

[43] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud plat-
forms,” in Proceedings of the 26th Symposium on Operating Systems
Principles, 2017, pp. 153–167.

Shuang Wang received her B.Sc. in the Col-
lege of Sciences from the Nanjing Agricultural
University in 2015. She finished her PhD in the
School of Computer Science and Engineering,
Southeast University, Nanjing, China in 2020.
She was also a visiting PhD student at Depart-
ment of Computing, Macquarie University, Syd-
ney, Australia from 2019 to 2020. She is currently
a postdoctoral research fellow at Department
of Computing, Macquarie University. She is the
author or co-author of several papers published

on international journals and conferences such as IEEE Transactions on
Computers, ICSOC. Her main interests focus on Cloud Computing, task
scheduling, performance analysis and truth discovery.

Xiaoping Li (Senior Member, IEEE) received his
B.Sc. and M.Sc. degrees in Applied Computer
Science from the Harbin University of Science
and Technology, Harbin, China, in 1993 and
1999, respectively, and the Ph.D. degree in Ap-
plied Computer Science from the Harbin Institute
of Technology, Harbin, China, in 2002. He is cur-
rently a distinguished professor at the School of
Computer Science and Engineering, Southeast
University, Nanjing, China. He is the author or
co-author over more than 100 academic papers,

some of which have been published in international journals such as
IEEE Transactions on Computers; IEEE Transactions on Parallel and
Distributed Systems; IEEE Transactions on Services Computing; IEEE
Transactions on Cybernetics; IEEE Transactions on Automation Sci-
ence and Engineering; IEEE Transactions on Cloud Computing; IEEE
Transactions on Systems, Man and Cybernetics: Systems; Information
Sciences; Omega, European Journal of Operational Research. His re-
search interests include Scheduling in Cloud Computing, Scheduling
in Cloud Manufacturing, Service Computing, Big Data and Machine
Learning.

Quan Z. Sheng is a full Professor and Head
of Department of Computing at Macquarie Uni-
versity, Sydney, Australia. His research interests
include service oriented computing, distributed
computing, data analytics, Internet computing,
and Internet of Things. Dr Sheng holds a PhD
degree in computer science from the Universi-
ty of New South Wales (UNSW) and did his
postdoc as a research scientist at CSIRO ICT
Centre. He has more than 400 publications. Prof
Sheng is ranked by Microsoft Academic as one

of the most impactful authors in Services Computing. He is the recipient
of AMiner Most Influential Scholar Award in IoT in 2019, ARC Future
Fellowship in 2014, Chris Wallace Award for Outstanding Research
Contribution in 2012, and Microsoft Fellowship in 2003.

Rubén Ruiz is a full professor of Statistics and
Operations Research at the Universitat Politèc-
nica de València, Spain. He is co-author of more
than 80 papers in International Journals and has
participated in presentations of more than a hun-
dred papers in national and international confer-
ences. He is editor of the Elsevier’s journal Op-
erations Research Perspectives (ORP) and co-
editor of the JCR-listed journal European Jour-
nal of Industrial Engineering (EJIE). He is also
associate editor of other important journals like

TOP as well as member of the editorial boards of several journals most
notably European Journal of Operational Research and Computers and
Operations Research. He is the director of the Applied Optimization
Systems Group (SOA, http://soa.iti.es) at the Universitat Politècnica de
València where he has been principal investigator of several public
research projects as well as privately funded projects with industrial
companies. His research interests include scheduling and routing in real
life scenarios.

Jinquan Zhang received his B.Sc. in College
of Science from Nanjing University of Aeronau-
tics and Astronautics, Nanjing, China, in 2017.
He is currently a PhD candidate at School of
Computer Science and Engineering, Southeast
University, Nanjing, China. His research interest-
s focus on reinforcement learning, combinatorial
optimization, and cloud resource scheduling.

Amin Beheshti is the Director of AI-enabled
Processes (AIP) Research Center and the head
of the Data Analytics Research Lab, at Depart-
ment of Computing, Macquarie University. He is
Senior Lecturer in Data Science at Macquarie
University and an Adjunct Academic in Comput-
er Science at UNSW Sydney. Amin completed
his PhD and Postdoc in School of Computer
Science and Engineering in UNSW Sydney and
holds a Master and Bachelor in Computer Sci-
ence both with First Class Honours. Amin has

been invited to serve as Keynote Speaker, General-Chair, PC-Chair,
Organization-Chair and program committee member of top international
conferences. He is the leading author of the book entitled “Process
Analytics”, co-authored with other high-profile researchers in UNSW and
IBM research, recently published by Springer.

