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ABSTRACT We are witnessing an increasing need to accurately measure people’s mobility as it has become
an instrumental factor for the development of innovative services in multiple domains. In this context, several
ICT solutions have relied on location-based technologies such asGPS,WiFi or Bluetooth to track individual’s
movements. However, these technologies are limited by the privacy restrictions of data providers. In this
paper we propose a methodology to robustly predict citizens’ mobility patterns based on heterogeneous
data from different sources. Particularly, our methodology focuses on a human mobility predictor based on
a low-resolution mobility dataset and the use of water consumption data as a facilitator of this prediction
task. As a result, this work explores whether the water consumption within a geographical region can reveal
human activity patterns relevant from the point of view of the mobility mining discipline. This approach has
been tested in a residential area near Madrid (Spain) obtaining quite promising results.

INDEX TERMS Human mobility, water consumption, location data, forecasting methods.

I. INTRODUCTION
Nowadays, the Internet of Things (IoT) has completely trans-
formed modern societies. One clear effect of this impact is
the fact that most of the regular objects and artifacts that
we use and wear every day, from bracelets to cars, are now
equipped with location-enabling technologies like GPS,WiFi
or Bluetooth able to position such objects in real-world phys-
ical places.

In this context, the human-mobility mining discipline has
emerged as one of the most important research trends in the
vast data science and artificial intelligence ecosystem [1].
Basically, this field seeks for extracting meaningful knowl-
edge about human movement behaviours at different tempo-
ral and spatial scales. One of the most relevant findings in
this discipline is that human mobility is quite predictable at
some extend [2]. As a result, the prediction of where and
when people is going to move is an instrumental tool in
domains like healthcare [3], urban services [4] and transporta-
tion management [5].

The associate editor coordinating the review of this manuscript and
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One important factor when it comes to develop such fore-
casting methods is the location data that is going to feed the
system. Thus, it is possible to find related proposals based
on GPS traces [6], Call Detail Records (CDRs) [7] or Online
Social Media (OSM) posts [8] covering different temporal
and spatial scenarios.

Nevertheless, it is possible to observe two important
limitations in many existing methods for human-mobility
forecasting,
• On the one hand, these solutions basically rely on the
raw spatio-temporal trajectories generated by different
moving objects like taxis or individuals reporting their
current location every few seconds or minutes. Nonethe-
less, in a real-world scenario this type of high-quality
location data is, in most occasions, rather inaccessible
due to several privacy and economic policies defined
by data providers and operators [9]. At the same time,
the open data movement has promoted the release
of an increasing number of human-mobility datasets
[10]–[12]. However, such open availability comes at
the cost of data filtering and aggregation stages before
the dataset is being published to complain with several

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88651

https://orcid.org/0000-0002-1921-1137
https://orcid.org/0000-0002-8491-4592
https://orcid.org/0000-0001-7655-4438
https://orcid.org/0000-0001-5648-214X
https://orcid.org/0000-0002-1355-2168


F. Terroso-Sáenz et al.: Human Mobility Prediction With Region-Based Flows and Water Consumption

restrictions. This is because location data is quite sen-
sible in terms of privacy. The development of predic-
tors leveraging such coarse-grained mobility data is still
scarce in the mobility mining domain.

• On the other hand, the mobility behaviour of a pop-
ulation is strongly related to their latent activities
at each moment [13], [14]. However, existing solu-
tions for human-mobility prediction usually neglect the
usage of human-activity data which is not directly
related to movement or displacement actions, that is,
the spatio-temporal traces generated by the target mov-
ing objects. Indeed, most works combine different types
of mobility feeds (e.g. taxis, buses, bikes) [15], [16] or
contextual urban data like Points of Interest (POIs) [17]
for this purpose. However, the combination of heteroge-
neous data sources, not directly coming from the mobil-
ity domain, could help to obtain more robust predictors.

Taking into account the aforementioned limitations, the
present work proposes a novel mechanism to predict the
human mobility behaviour in an urban area that makes use
of two different types of human activity data.

Firstly, it is considered the human displacements related
to the target spatial area. Instead of using high-resolution
mobility data, the present work relies on an open region-based
mobility feed that defines human flows at a quite large
spatial scale. By using human movement data in an aggre-
gated manner, it would be possible to deploy the solution in
regions that do not have an IoT infrastructure able to capture
human trips with great detail. Moreover, as a side effect of
the previous reason, it can be regarded as a cost-effective
mechanism. Finally, the anonymisation of the data due to
the aforementioned aggregation will also relieve the privacy
concerns among end-users.

Secondly, this proposal also incorporates as input data the
water consumption from a set of smart meters in a large resi-
dential area allocatedwithin the target region. The rationale of
using this second dataset it that householdwater-consumption
behaviour is an indicator of human presence and, thus,
of future displacements. For example, high water-demand
levels in a region at a particular moment might indicate the
presence of a large number of people at home in that region.
In turn, when this particular high demand of water starts
decreasing, it might indicate that a large number of trips in
that region is about to occur as people are leaving home after
this event (e.g. after the morning shower to go to work).

By means of this approach, our work focuses on an impor-
tant research gap in the mobility prediction discipline when
it comes to leverage the activity patterns of a population
reflected in its water consumption profile to better anticipate
its future displacements. Moreover, in our setting, the human
mobility data and the exogenous water consumption data are
defined at different spatial scales. The human displacements
are defined at a region level in an aggregated form whereas
the water consumption data are defined at a much finer gran-
ularity as it is extracted directly from smart meters. Although
water consumption and human-flow data have already been

explored together in several prediction problems [18], [19],
it is worth mentioning that their goal was the prediction of the
water consumption of a population instead of its movement
activity as in our proposal.

To do so, a 3-step methodology was adopted in this work.
First, multiple time series representing different types of
human flows co-occurring in the spatial region of interest
were extracted from the open dataset. Then, a correlation
study between the aggregated water consumption time series
and such flows was performed. This allowed us to extract a
target human flow. Lastly, a palette of Recurrent Neural Net-
works (RNNs) were fed with the selected flow and enriched
with the water-consumption series. As a result, it was possible
to assess the impact of this series on the prediction accuracy
of the RNN models.

All in all, the goal of this paper is focused on combining
heterogeneous sources using a RNN to obtain a forecasting
method most robust than those obtained by just relying on
mobility feeds. More in detail, the main contributions of the
present work are twofold: 1) a novel human-mobility pre-
dictor based on a low-resolution mobility dataset and 2) the
usage of water-consumption data as an enabler for such a
forecasting task.

Finally, the remainder of the paper is structured as follows.
Section 2 reviews the existing trends for human-mobility
prediction and the usage of water-consumption data to
uncover human activities. Then, section 3 describes the
use-case setting where our solution has been deployed.
In section 4, the RNN predictor is described and evaluated.
Lastly, section 5 summarizes the main conclusions and poten-
tial future research lines motivated by this work.

II. RELATED WORK
The prediction of human mobility has been studied in the last
years from different approaches (see [1] for a recent survey on
the topic). Most of these works rely on the application of stan-
dard models and statistical techniques such as ARIMA [20],
[21], linear regression models [22] or Markov models [23].
However, all these traditional methods cannot work with
abnormal mobility situations such as extreme weather events
or unexpected traffic incidents.

Some studies use Online Social Networks (OSN) as an
additional source of data in order to discover human mobility
patterns in a more dynamic manner. For example, in [24] a
Twitter dataset including 10,000 unique users in New York is
utilized with the aim of calculating some mobility character-
istics such as distance-based displacements in the city. The
results were compared with data from surveys and census
of the transportation council, showing a notable similarity
in some city boroughs. Similarly for the same city, Poure-
brahim et al. [25] combined Twitter data with census data
and employment statistics to predict the commuting trip dis-
tribution in New York, obtaining a more accurate model than
only using the static data. Another example of using Twitter
for predicting mobility patterns, in this case for detecting
road-traffic events, is shown by Alomari et al. [26].
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More recently, Deep Learning algorithms have been used
for predicting human flows. In particular, Recurrent Neu-
ral Networks (RNNs) such as Long Short-Term Memory
(LSTM) networks [27]–[29] are used to combine different
data sources such as GPS, mobility feeds and online social
networks to predict the next area in a city to be visited by
tourists, the demand of public means of transport such as
taxis, etc. Another type of RNN employed in this task is
the Gated Recurrent Unit (GRU) model, as for example in
Fan et al. [30]. In this work, an ensemble of GRU mod-
els, each one focusing on a particular target day, is com-
posed in order to detect both regular and abnormal citywide
mobility. Finally, the Graph Neural Networks (GNNs) are
another widely used alternative for human flow forecasting.
For example, in [31] a GNN is applied to predict traffic
conditions based the dependencies among the road networks,
whereas a similar approach is followed in [32] but using GPS
trajectories and loop detectors as input data.

Regarding works related to water consumption data and
human mobility, Smolak et al. [18], [19] compares sev-
eral ML and statistical models to predict the water usage
based on human mobility data. The main aim of this work
is the water demand forecasting of a particular area, and
they actually concluded that the use of this mobility data
is correlated to the water demand and this it benefits its
prediction. Di Mauro et al. [33] perform a review of the
state-of-the-art urban water demand datasets. They reviewed
92 water demand datasets that are classified and analyzed
according to the following criteria: spatial scale, temporal
scale, and dataset accessibility. Barbosa et al. [34] reviewed
several recent developments regarding mobility patterns as
a collection of technical methods applicable to specific
mobility-related problems.

III. SETTING OVERVIEW
The feasibility of our solution has been evaluated in a
wide geographical area comprising three large dormitory
towns near Madrid (Spain), namely, Pozuelo de Alarcón,
Boadilla del Monte and Majadahonda. Fig. 1 depicts the
boundaries of this area whose bounding box is defined
by the latitude-longitude coordinates 〈(40.50,−3.99),
(40.35,−3.76)〉.

For this spatial area it is extracted the two target datasets,
namely the human-mobility open dataset and the water con-
sumption data for each residential area. Both of them cover
the same 4-month period from 18/06/2020 to 31/10/2020.

A. WATER CONSUMPTION DATASET
The water consumption dataset is obtained from smart
water-meters developed by the high-tech company HIDRO-
CONTA.1 These meters generate anonymous water con-
sumption data (in m3) every 10 minutes. Specifically for this
work, the data is collected from more than 200 water meters
as shown in Figure 2. The raw data obtained from the water

1https://hidroconta.com/

FIGURE 1. Geographical area under study. The three lined polygons (A, B
and C) are the Mobility Areas (MA) under consideration whereas the red
lines define the boundaries of the surrounding ones. The blue dots
indicate the locations of the water meters under consideration. The
numerical codes are the unique identifiers of each MA according to the
Spanish Ministry of Transportation mobility survey.

meters are curated to construct an homogeneous time series
of water consumption with an hourly granularity. The data
cleaning is performed as follows: First, it is identified the
missing data through a histogram.Missing data are eliminated
where possible, otherwise an imputation procedure is car-
ried out. This imputation procedure replaces missing values
by previous values. This is because the raw data indicates
the accumulated consumption of water. If there is a period
with no data from a meter, it is understood that no water
has been consumed in that period, and therefore the current
value amounts to the last one recorded. Finally, outliers are
identified through a box plot. These outlier values are deleted
and imputed as previously described.

It is worth mentioning that these water meters moni-
tor different types of installations (e.g., buildings, gardens,
swimming pools, etc.). For privacy reasons, we only have
access to the consumption data and no metadata about these
types of installation are available. In order to overcome this
problem, a clustering of the consumption data has been
developed to identify those meters that have a very high
consumption, which will normally be associated with garden
irrigation, swimming pools, etc.; a medium consumption,
which will be associated with occupied dwellings; and a low
consumption, which could be associated with unoccupied
dwellings, fire hydrants, etc. After this data cleaning and
cleaning procedure, a water consumption time-series W =

〈w1,w2, ..,wH−1,wH1 〉 is obtained where wi is the overall
water consumption at the i-th hour from all the meters and
H is the total number of hours of the dataset.

B. HUMAN MOBILITY DATASET
This dataset has been retrieved from the nation-wide human
mobility dataset released by the Spanish Ministry of Trans-
portation (SMT) in December 2020.2 It covers a 9-month
period from February 29th to November 30th, 2020 and it

2https://www.mitma.es/ministerio/covid-19/evolucion-movilidad-big-
data/opendata-movilidad
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FIGURE 2. Water meters in the geographical area. A K-means clustering is performed to group the water meters into 3 groups: High, medium and low
consumption groups.

indicates the number of trips among 3216 ad-hoc administra-
tive areas (herebyMobility Areas, MA) per hour in Spain both
in its peninsular and insular extension. A single trip stands for
the spatial displacement of an individual with distance above
500 meters. Consequently, this dataset can be regarded as a
set of tuples where each one takes the form,

〈date, hour,morigin,mdest , typeorigin, typedest , ntrp, distrange〉

reporting that there was ntrp human trips from the MA
morigin tomdest during the indicated date and hour whose cov-
ered distance in km was within the range defined by distrange.
Furthermore, the dataset also includes the type of origin and
destination of the trips (typeorigin, typedest ). In that sense,
the survey distinguisines among home,work and others as
possible values.

According to the official documents [35], these mobility
data have been collected through Call Detail Records (CDRs)
from 13 million users of an unspecified mobile-phone carrier.
Once anonymised, this dataset was used to infer representa-
tive mobility statistics at the nation-level of the population of
Spain and made publicly available open data. In its raw form,
the dataset comprises 830,450,300 trips among MAs.

Given this dataset, we first need to filter the trips related to
the target geographical area. To do so, we focused on the 3
MAs (out of the 3216 of the study) that were spatially closer
to the set of water meters described in sec. III-A. Fig. 1 shows
this set of three MAs,M = 〈mA,mB,mC 〉. The land areas of
these regions are 10, 34 and 47 km2 respectively. Besides,
their population is 45,165 people for mA, 43,823 for mB and
36,872 for mC .

From this dataset, 21 different human flows were extracted
for the MAs in M reflecting different human-mobility
behaviours. Each flow captures a different type of human dis-
placement for a particular combination of origin, destination
and covered distance. This extraction was done by filtering
the tuples of the dataset with the selection criteria defined
in Table 1. Note that the concept of inner trips included in this

table refers to those trips that occur within a particular MA,
that is, whose initial and end location belong to the same area.

More in detail, each flow is structured as time series with
the number of trips per hour accomplishing the flow criterion.
For example, according to Table 1, flow F1 is defined as
〈f 11 , f

2
1 , .., f

H−1
1 , f H1 〉 where f

i
1 is the number of human trips

that arrive to mA from any other MA to go home at the i-th
hour. Likewise,F14 = 〈f 114, f

2
14, .., f

H−1
14 , f H14 〉where f

i
14 is the

number of trips departing from mB to go to any other MA as
long as the covered distance was less than 50 km at the i-th
hour. For the sake of completeness, Appendix A comprises
the time series of all the generated flows.

C. CORRELATION STUDY
Once we defined the human mobility flows indicated
in Table 1, the next step was to study whether the water
consumption time-series W described in sec. III-A were a
suitable input to develop a forecasting method for any of such
flows. To do so, a correlation study among these sources was
performed by means of two different metrics, the Pearson’s
correlation coefficient (PCC) and the Mutual Information
Score (MIS).

In short, PCC is a number between -1 and 1 that describes
a negative or positive linear correlation, respectively. A value
of zero indicates no linear correlation.

One limitation of the PCC is that is just captures the linear
correlation between the variables. For that reason, the MIS
was also used as it allows to measure other types of non-linear
correlations [36]. In brief, MIS is a non-negative score where
higher values mean higher dependency. The MIS between
two variables X and Y is defined as,

MIS(X ,Y ) = H (X )+ H (Y )− H (X ,Y )

where H stands for the entropy, that is, the expected amount
of information held in a variable.

The first two columns of Table 2 shows the values of
these scores for each human mobility flow F and water
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TABLE 1. Criteria followed to extract the mobility behaviours and human flows from the SMT mobility survey. The * symbol stands for any value. The
rightmost column shows the average number of trips per hour of each flow and its standard deviation. The row in grey indicates the human flow
eventually used as prediction target.

consumption series W . It can be observed that all the flows
have a negative correlation with the water consumption
series. Furthermore, the trips-to-home flows (F1, F2 and F3)
have a slightly higher scores than the other flows. The higher
PCC is obtained by flow F19 with the inner trips of the
mobility area mA.
The aforementioned correlation peak in the incoming home

trips is meaningful as the water meters are installed in a
residential area. Consequently, the home activity detected
by these meters could be quite related to the movement of
people going home at each moment. Likewise, the highest
PCC obtained for F19 might be due to the fact that this MA
has the smallest land area among the ones in M. Conse-
quently, the intra-MA trips contained by this flow cover quite
short distances, and therefore they are probably composed by
regular displacements that, again, are quite correlated with
the human presence at home.

Considering both the PCC and MIS scores described
before, we eventually selected a specific flow to develop a
forecasting mechanism. It can be observed that, on average,
F2 is the most correlated flow withW as it has a quite similar
PCC score (-0.372) than the highest one (-0.380) along with
the highest MIS (0.139) (see Table 2). This flow contains
the incoming trips of mA whose final destination was the
travellers’ home. We should remark that this flow does not
only comprise commuting trips as the type of origin remains
unspecified according to the selection criterion of Table 1.
Hence, trips whose origin was not labelled as work were also
considered. Furthermore, F2 comprises a higher number of
trips per hour (1,743.095) than other flows with similar PCC
like F16 (853.503) or F19 (1,005.535) (see column avg. num.
trips in Table 1). Therefore, in operational terms, it seems
a much more challenging and useful mobility flow to detect

than other flows of the study. For the sake of completeness,
Fig. 3 shows the time series of F2 (hereby Ftarget ) andW .
To deep into the correlation among these two series,

Fig. 4 shows their additive decomposition. As can be seen,
both series do not have a clear increasing or decreasing
trend component, with a quite stochastic behavior in case
of W . This figure also shows that the residual compo-
nent of W is much more important than its trend and sea-
sonal components. Whilst this residual component roughly
ranges between -100,000 and 300,000, the trend one varies
between 25,000 and 125,000 and the seasonal one between
-40,000 and 60,000. This large difference does not occur in
Ftarget in such a clear manner.
Regarding the seasonal dimension of both time series,

Fig. 5 shows this dimension for a 24-hour interval. From these
two dimensions it is possible to observe some interesting
human patterns. In the case of theW component (see Fig. 5a),
it can be seen three peaks at 9:00am, midday and midnight.
These peaks are compatible with the time period in which
people tend to stay at home having breakfast, lunch or dinner.
In the case ofFtarget , the three peaks occur at 13:00, 14:00 and
20:00 (see Fig. 5b). Again, this is compatible with the regular
behavior of people going home at the end of the morning and
late at the evening.

These two seasonal dimensions also explain the negative
PCC observed in Table 2. Thus, whilst Ftarget exhibits a
clear increasing trend during the afternoon and evening (see
Fig. 5b),W mirrors such a behaviour with water consumption
peaks in the morning and at night (see Fig. 5a).

Finally, the correlation scores were calculated again but
only considering the seasonal component of W (denoted
Ws). The obtained PCC and MIS are shown in the two
rightmost columns of Table 2. As can be seen, these new
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TABLE 2. Correlation values between each extracted human flow and the water consumption series W . The highest value of each column is shown in
bold.

FIGURE 3. Raw time series of the target mobility flow and the water-consumption series.

values are notably higher than the ones calculated by con-
sidering the entire W series. For example, the PCC of
Ftarget (F2 in Table 2) increases to 0.520 when compared
to Ws. The same occurs with the MIS metric increasing
from 0.139 to 0.609. Therefore, the prediction mechanism
to be developed must take into account this high correlation
between the seasonal dimension of W and the target human
flow Ftarget .

D. WATER DATA CURATION
Given the noisy nature ofW observed in the correlation study,
a smooth filteringwas performed bymeans of a Kalman Filter

(KF) [37]. This method has been widely used for time series
smoothing in a large range of domains [38]–[40]. KF pro-
vides a sequential, unbiased, and minimum error variance
estimate that works well for discrete-time filtering problems
where the underlying physical phenomenon is modeled as
a discrete-time process [41]. As a result, a new smooth
water-consumption time series Wsmooth was generated as
shown in Fig. 6a.

This new time series reduces the impact that the residual
dimension had onW and it makes more relevant the seasonal
part of the series. As observed from Fig. 6b, the residual
dimension now ranges from -50,000 to 75,000 whereas in
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FIGURE 4. Decomposition of the target human mobility flow and the water consumption time series.

the original dataset its range of values was notably larger
(−100,000, 300,000) (see Fig. 4a). Likewise, the seasonal
dimension range shifts from (−40,000, 60,000) to (−20,000,
20,000). Finally, this new smoothed data is used in the fol-
lowing stages of the work.

It is worth mentioning that, in operational terms,
the smooth step performed by the Kalman Filter can be done
in real time because its recursive structure does not require to
store observations or past estimates. Therefore, it is feasible
to apply this filter to the raw water consumption data before
it is processed by the proposed forecasting model.

IV. DESIGN OF A MOBILITY PREDICTION WITH WATER
CONSUMPTION AND REGION-BASED FLOWS
This section describes in detail the human mobility predictor
based on the target flow and water consumption time series
described in sec. III-C and sec. III-D.

A. PROBLEM FORMULATION
The human-mobility prediction problem that the present work
focuses on can be formulated as the following regression
problem,

Given the hour h ∈ 〈0, .., 23〉, the number of incoming
home trips during the last hprev previous hours in the MA
mA, Fh

target = 〈f
h
target , f

h−1
target , .., f

h−hprev
target 〉 and the smoothed

water consumption from a close residential area during the
same hoursWh

smooth = 〈w
h
smooth,w

h−1
smooth, ..,w

h−hprev
smooth 〉, Find a

mapping function P ,

P(Fh
target ,Wh

smooth)→ f h+Ttarget

where f h+Ttarget is the sheer number of incoming home trips inmA
in the h+ T hour being T the time horizon of the prediction
(T ≥ 1).
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FIGURE 5. Seasonal dimension of W and Ftarget for a 24-hour interval.

B. PROPOSED MODEL
Given the sequence nature of the two input sources of our
approach (Ftarget andWsmooth), we have used a Gated Recur-
rent Unit (GRU) model to solve the prediction problem for-
mulated in the previous section. This is a foremost variant
of Recurrent Neural Networks (RNN) [42]. In brief, GRU
models are able to learn short-term and long term patterns in
sequences of data. Unlike other foremost RNN models like
Long Short-Term Memory (LSTM) models, a GRU model
has a slightly simpler structure which makes it faster to
train [43].

Fig. 7 depicts the general architecture of the GRU model
and the inner structure of its cells. As we can see, a GRU
model just follows the composition of a regular RNN. Con-
cerning the structure of the cells, Fig. 7b shows that theymake
use of a gated mechanism to memorize long-term patterns in
the target sequence. Thus, a cell receives as input the current
input vector x(t) and the previous state vector h(t − 1). Then,
the cell generates the associated output y(t) which is also the
state vector h(t) of the next cell.

More in detail, the cell comprises three different gates,
the update z(t), the reset r(t) and memory-content g(t). The
computations of each gate are as follows,

z(t) = σ (Wz xt + Uz h(t−1) + bz) (1)

r(t) = σ (Wr xt + Ut h(t−1) + bt ) (2)

g(t) = tanh(Wg xt + Ug (r(t) ⊗ h(t−1))+ bg) (3)

y(t) = h(t) = z(t) ⊗ h(t−1) + (1− z(t))⊗ g(t) (4)

where W{z,r,g} are the weight matrices for the input
xt , U{z,r,g} are the weight matrices for the connections to

the previous short-term state h(t − 1) and b{z,r,g} are the bias
terms of each layer.

V. EVALUATION OF THE PREDICTOR
In order to evaluate the suitability of our proposal, two
different GRU models were generated. One was fed with
Ftarget and W whereas the other only took as input the
human-mobility flow. This way, it was possible to assess the
actual benefit of enriching a prediction model with the water
consumption dataset.

A. METRICS
Regarding the metrics to perform the aforementioned evalu-
ation, the Mean Squared Error (MSE), Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) [44] are
three of the most common metrics used to measure accuracy
for continuous variables. They are suitable for model com-
parisons because they express average model prediction error
in the units of the variable of interest. Their definition is as
follows:

MSE =
1
n

n∑
i=1

(yi − ȳi,)2

RMSE =
√
MSE,

MAE =

n∑
i=1
|yi − ȳi|

n
,

where, for our use case, yi is the real number of incoming
home trips, ȳi is the predicted number of trips and n is the
number of observations.

Furthermore, we complement the metrics with the coeffi-
cient of variance of the RMSE. The Coefficient of Variation
of the RMSE (CVRMSE) is a non-dimensional measure cal-
culated by dividing the RMSE of the predicted number of
trips by the mean value of the actual number of trips. For
example, a CVRMSE value of 5% would indicate that the
mean variation in the actual number of trips which is not
explained by the prediction model is 5% of the mean value
of the actual number of target trips [45]. Similarly, the Mean
Average Prediction Error (MAPE) metric expresses the aver-
age absolute error as a percentage. They are calculated as
follows:

CVRMSE =

√
1
n

n∑
i=1

(yi − ȳi)2

ȳ
× 100,

MAPE =
1
n

n∑
i=1

|
yi − ȳi
yi
| × 100.

B. SINGLE MODEL COMPARISON (GRUsingle)
In this first evaluation, the two aforementioned GRU models
were configured in the same way. This allowed to compare
the actual benefit of enriching an initial model with the water
consumption data without adding complexity to the model.
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FIGURE 6. Water-consumption data smoothing.

FIGURE 7. Gated Recurrent Unit (GRU) general structure.

In that sense, the column GRUsingle of Table 3 shows the
configuration of both models in this first comparison.

Fig. 8 shows the metrics of the two models when different
time horizons T from 1 to 12h are used. From these plots, it is
possible to see that adding the water consumption as input
clearly improved the results of the model. This is particularly

remarkable for long-term predictions when the target time
horizon is larger than 3 hours (T ≥ 3h). For example,
according to Fig. 8b, the GRU model fed with the flow
and water consumption sources (GRUsingle(Ftarget ,Wsmooth))
had a 25.7 CVRMSE when it came to predict the incoming
number of home trips of mA 4 hours in advance (T = 4h).
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TABLE 3. Parameters of the models. The Num. of epochs indicate the
epoch at which the training finished given the early-stopping policy.

FIGURE 8. Metric values for the GRUsingle comparison for different time
horizons T .

However, the same model only taking Ftarget as input
(GRUsingle(Ftarget )) has a CVRMSE value of 28.3. A similar
pattern was observed in the other four metrics.

Finally, the two first rows of Table 4 include the mean
and standard deviation of the metrics for the single models
considering all the time horizons. As we can see, the model
enriched with the water consumption data outperforms the
one based solely on human flows in all the metrics.

FIGURE 9. Metric values for the GRUbest comparison for different time
horizons T .

C. BEST MODEL COMPARISON (GRUbest )
The second experiment focused on fine tuning a different
GRU model for each input configuration. This way, it was
possible to actually assess the impact of using water con-
sumption for human mobility prediction when the best model
is used in each case. In that sense, the two rightmost columns
in Table 3 show the actual configuration of both models.

According to Fig. 9, this second experiment confirmed
the benefit using the water data with respect the model only
fed with the target human flow. For example, Fig. 9b shows
that the CVRMSE of the model based on the two inputs
(GRUbest (Ftarget ,Wsmooth)) was 21.9 when it came to predict
the incoming flow of home trips 3 hours ahead (T = 3h)
whereas the model based on human flows, GRUbest (Ftarget ),
achieved 29.8 as value. Furthermore, the two last rows of
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TABLE 4. Mean and standard deviation of the metrics for the different experiments. The best metric value is marked in bold.

FIGURE 10. Time series of all the generated human flows.

Table 4 also indicated that, on average, the best model with
water and human flow data outperformed the one only relying
on mobility data regardless of the time horizon.

To conclude, it is important to remark that in the two
experiments the most important improvement in the predic-
tion accuracy was for time horizons between 3 and 7 hours
(see Figs. 8 and 9). This makes sense as the domestic water
consumption might capture anomalies in the human pres-
ence at home in the target MA that are not captured by
the human-mobility flow. However, these anomalies would
impact the incoming flow of home trips some hours later
(after people leave the MA and then go back). Actually,
bearing in mind the seasonal dimensions of both time series
in Fig. 5, the differences between the three peaks of both
series fall within the aforementioned range of time-horizon
values, 09:00 vs 13:00, 12:00 vs 14:00 and 00:00 vs 20:00.

VI. CONCLUSION
The analysis of people’s mobility patterns is a key factor
in modern societies. Actually, the mining of such patterns
is an instrumental point to develop intelligent solutions in

a wide range of domains. Existing technologies, such as
WiFI or Bluetooth, allow geolocation of citizens, but are con-
strained by regulatory restrictions. In this paper, we propose
a non-invasive methodology to analyse, in an anonymous
and aggregated way, the coarse-grained mobility patterns of
individuals.

Our results demonstrate that the use of low-resolution
mobility data together with the use of household water-
consumption data can facilitate the task of prediction of
mobility at a given location over horizons between 3-7 hours.
As we can see, the use of essential supplies such as water
or electricity, on an aggregated basis, provides anonymous
patterns that are geolocated by coarse-grained regions of
interest, and can measure mobility within those regions. This
opens up a range of opportunities to predict mobility patterns
in particular locations without the need to invade the privacy
of individuals.

Finally, future work will focus on aggregating other con-
textual sources to the model. For example, the information
of holidays and weather conditions related to the target areas
might improve the prediction accuracy of the models.
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APPENDIX A
GENERATED HUMAN FLOWS
Fig. 10 shows all the trip flows generated for the present
study.
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