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ABSTRACT In this paper a novel tuning procedure for Two-Degree-of-Freedom (2-DOF) PID controllers
is proposed. The tuning methodology is based on an Uncertainty and Disturbance Estimator. As a result,
an equivalent 2-DOF PID controller with simpler tuning rules is obtained. One advantage of the proposed
method is that tracking performance and disturbance rejection can be accommodated separately in control
synthesis. Moreover, the trade-off between disturbance rejection and robustness can easily be adjusted
by tuning a single parameter without affecting the desired set-point tracking specifications. Numerical
comparisons with well-known tuning methods are performed to illustrate the advantages of the proposed
method. Finally, the effectiveness of the proposal is experimentally validated in an open-loop unstable plant
consisting of a test-bed quadrotor platform.

INDEX TERMS PID controller, unstable systems, time-delay, disturbance observers, linear matrix
inequality.

I. INTRODUCTION
Proportional-Integrative-Derivative (PID) control is still one
of the most widely used in many industrial processes owing
to its simplicity and robustness [1]–[3]. The key advantage is
that a PID controller can easily be tuned without any in-depth
knowledge of control [4] by intutively designing the PID con-
trol components: the Integrative part contributes to eliminate
steady-state errors, but has a negative impact in the transient
behavior; the Derivative part can achieve a faster response,
but leads to a worse disturbance rejection; and the Propor-
tional gain can be helpful to adjust the compromise between
both aspects to some extent. One of the most well-known
methods for PID tuning is the classic Ziegler-Nichols rules
[5], which has the advantage of providing specific tuning
rules for a wide variety of plants in order to meet reasonable
requirements. Ziegler-Nichols method offers a very good
disturbance response for integrating processes, but generally
exhibits poor performance for processes with dominant time
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delay and rather aggressive control actions [6]. Apart from
the Ziegler-Nichols method, many efforts have concentrated
on finding improved PID control synthesis methods. Some
of them are related to classic control design approaches
such as the frequency-domain [7] or root locus method [8]
and other extensions for nonlinear plants [9], while other
more sophisticated methods for PID control design aimed at
improving performance are available under fractional order
PID [10]–[12], or PIDwith time predictors [13]. Other related
works have addressed the PID control synthesis by means of
complex numerical optimizations [14], [15].

Nevertheless, for many control engineering applications,
disturbance rejection performance can be more relevant
than set-point tracking [16]. Hence, controller synthesis
has recently taken into consideration disturbance rejection,
rather than set-point tracking. For instance, by means of
One-Degree-of-Freedom (1-DOF) PID structure, set-point
tracking performance and disturbance rejection requirements
cannot generally be simultaneously achieved for control
applications [17]. In order to circumvent this drawback,
a Two-Degree-of-Freedom (2-DOF) PID was presented
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in [18], [19] so as the set-point tracking and the disturbance
rejection can be handled by tuning a PID controller for each
control loop. For control design, analytical [20]–[23] and
numerical methods [24] were considered in order to handle
both specifications. Other popular control design approaches
such as the AMIGO method [25], the internal model control
(IMC) [26], [27] and the SIMC method [28] offer a simple
guide for tuning the PID control parameters. Nevertheless,
such methods might lead to poor performance when they are
applied to integrating, unstable and non-minimum phase pro-
cesses if the tuning is not properly addressed [29]. Moreover,
precise knowledge of the system model is often required to
tune the controller adequately [30], [31].

The actual controlled system is inevitably affected by
model uncertainties and external disturbances, which might
lead the closed-loop system to instability if they are not
considered in control synthesis. In contrast to PID tech-
niques, which are error-based, Disturbance Observer Based
Control (DOBC) has been developed from a model-based
perspective. DOBC is designed to cope with model uncer-
tainties and external disturbances [32]. The underlying idea
behind DOBC is that, given a theoretical model of the plant
and its input/output measurements, an equivalent disturbance
that ’explains’ the unknown behavior is obtained and then
used to counteract its effects. Hence DOBC techniques are
focused on making the plant to behave like the theoretical
one. The disturbance observer approach has been success-
fully applied to a wide range of applications, such as robotic
manipulators [33], high speed XY positioning [34], missile
control [35], and quadrotors [36], [37], among others. Due
to its potential applications, the DOBC approach has been
widely studied over the past years. Generalized Extended
State Observer (GESO) [38], Disturbance Observer (DOB)
[39], [40], Active Disturbance Rejection Control (ADRC)
[41], and Uncertainty and Disturbance Observer (UDE) [42]
are some examples of DOBC techniques.

In this paper, an equivalent 2-DOF PID from an UDE
control scheme is presented for first and second order systems
with time delays, including unstable systems. The proposed
method can be extended to higher-order systems by reduc-
ing them to a lower-order, and further treating the unknown
behavior as a disturbance. This approach, initially raised in
[43], makes it possible to obtain a 2-DOF PID easily with
only the set-point requirement and a single-parameter to deal
with the compromise between disturbance rejection perfor-
mance and robustness. It is worthwhile mentioning that the
addition of a lead-lag filter allows to deal with more advanced
systems than the previous proposal. The closed-loop robust
stability analysis with guaranteed disturbance rejection in the
sense of H∞ norm for systems with time-varying parametric
uncertainties is formulated in terms of Linear Matrix Inequal-
ities (LMIs) [44]. In addition, some representative examples
are studied and an experimental validation is validated in a
test-bed quadrotor platform.

The rest of the paper is organized as follows: the prob-
lem statement is given in Section II. The proposed 2-DOF

PID control scheme with the lead-lag filter is presented in
Section III. In Section IV, the trade-off between closed-loop
disturbance rejection and robustness against model uncertain-
ties is discussed. Comparative simulation results are provided
in Section V. Experimental results with a quadrotor test-bed
platform are performed in Section VI, and finally, some con-
clusions and perspectives are gathered in Section VII.

II. PROBLEM STATEMENT
Consider the following SISO system expressed in Laplace
domain subject to a matched disturbance:

Y (s) = G(s)e−Ls (U (s)+ D(s)) (1)

whereG(s) = bn−1sn−1+···+b0
sn+an−1sn−1+···+a0

is the transfer function of the
plant system, L ≥ 0 is a positive delay, U (s) (or u(t) in time-
domain) is the control input, andD(s) represents a disturbance
signal.

Note thatG(s) can be represented in the state-space canon-
ical form as:

A =
[

0 In−1
−a0 −a1 · · · −an

]
, B =

[
0
b0

]
,

C =
[
1 b1/b0 · · · bn−1/b0

]
(2)

The goal is to regulate the state x(t) of the closed-loop
system through u(t) so that it asymptotically tracks the state
of a reference model with the desired stable closed-loop
dynamics given by

ẋm(t) = Amxm(t)+ Bmr(t), (3)

where r(t) ∈ R is the desired reference signal, and

Am =
[

0 In−1
−a0m −a1m · · · −anm

]
,

Bm =
[

0
a0m

]
, Cm = C (4)

being Am a Hurwitz matrix.
Hence, the objective is to find a simple criterion to design

the controller parameters u(t) with a 2-DOF PID control
scheme so that the closed-loop dynamics (given by the choice
of the coefficients aim, i = 0, 1, . . . , n in (3)) and disturbance
rejection performance (given by a single scalar tuning param-
eter, introduced later) can be designed separately.

III. PROPOSED CONTROL SYNTHESIS METHOD
In this section the proposed 2-DOF PID control scheme is
developed. First, a general view of the UDE is provided,
showing its inherent 2-DOF structure. Finally, the equiva-
lence between the obtained control and the 2-DOF PID with
lead-lag cascade filter is settled for the most representative
plant models.

A. PRELIMINARIES
Let us define the tracking error of the system state as

e(t) = xm(t)− x(t), (5)
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Differentiating (5), and taking into account (1) and (3),
the following expression is obtained

ė(t)=Ame(t)+Bmr(t)+(Am − A)x(t)− Bu(t)− Bd(t). (6)

or equivalently in the Laplace domain:

Ė(s) = AmE(s)+ BmR(s)

+(Am − A)X (s)− BU (s)− BD(s).

Let B+ = (BTB)−1BT the pseudo-inverse matrix of B,

satisfying B+B = 1 and B+ =
[
0n−1 0
0 1

]
. From the definition

of matrices A,Am,B,Bm in (2), (4), and the fact that Am is
Hurwitz, it is easy to see that the tracking error e(t) in (6) will
be asymptotically stable taking into account the closed-loop
response given by the eigenvalues of Am by defining U (s) as:

U (s) = B+[(Am − A)X (s)+ BmR(s)]− D(s), (7)

Note that U (s) cannot be implemented since D(s) is
unknown and unmeasurable. Nevertheless, from the system
model, the disturbance D(s) can be approximated in the fre-
quency domain by using a strictly proper low-pass filter Q(s)
with unity gain:

D̂(s) = Q(s)B+[(sIn − A)X (s)− BU (s)], (8)

where Q(s) = 1/(Ts + 1) is the filter and T is the param-
eter which makes it possible to tune the filter bandwidth.
This single scalar parameter will be the key to adjusting the
trade-off between robustness and disturbance rejection with-
out impacting the closed-loop dynamics (as later discussed).
Consequently, an implementable control scheme is derived
from (7) as:

U (s) = B+[(Am − A)X (s)+ BmR(s)]− D̂(s), (9)

By substituting (8) into (9) we obtain:

U (s) =
1

1− Q(s)
B+
(
(Am − A)X (s)

−Q(s)(sIn − A)X (s)+ BmR(s)
)
. (10)

It can be deduced from the state-space representation given
in (2) that Y (s) = b0 X1(s)+b1 sX2(s)+· · ·+bn−1sn−1Xn(s).
Therefore, the following equivalence holds:

X (s) =
b0Wn−1(s)

bn−1sn−1 + · · · + b0
Y (s) (11)

where Wn−1(s) =
[
1 s s2 · · · sn−1

]T . By replacing X (s)
into (10) and rearranging terms, the control action U (s) can
be expressed as

U (s) = Cr (s)R(s)− Cy(s)Y (s), (12)

represented as a block diagram in Fig. 1, where

Cr (s) =
a0m(Ts+ 1)

b0 Ts
,

Cy(s) =
(v1 + Tv2)Wn(s)

Ts
(
bn−1sn−1 + · · · + b1s+ b0

) (13)

FIGURE 1. Block diagram of the 2-DOF structure.

whereWn(s) =
[
1 s s2 · · · sn

]T and

v1 =
[
a0,m a1,m · · · an−1,m 1

]
,

v2 =
[
0 (a0,m − a0) · · · (an−1,m − an−1)

]
(14)

Considering the plant to control (1) with the controller
expression (12)-(13), the following transfer functions can be
obtained:

Gyr (s) =
Y (s)
R(s)
=

G(s)Cr (s)
1+ G(s)Cy(s)

= Gm(s)e−Ls,

Gyd (s) =
Y (s)
D(s)
=

G(s)
1+ G(s)Cy(s)

=
Ts

Ts+ 1
Gm(s)e−Ls, (15)

where Gyr (s) and Gyd (s) are the transfer functions which
relate the set-point and the disturbance with the output,
respectively.

Note from Gyr (s) that the transient response does not
depend on the choice of the filter parameter T , but only on
the selection of the coefficients aim, i = 0, . . . , n − 1. From
Gyd (s), it can be seen that the disturbance rejection capability
can be improved by choosing the smallest possible T without
affecting the tracking control performance, which is one of
the key advantages of the proposed method. Nevertheless,
small values of T may lead the system to instability in the
presence of model uncertainties. The next section proposes
an LMI based criterion to find the most suitable value of T
with a reasonable trade-off between disturbance rejection and
robustness.

B. EQUIVALENT 2-DOF PID
Consider a 2-DOF PID control scheme with a first-order
lead-lag filter:

U (s) = PIDr (s)R(s)− PIDy(s)F(s)Y (s), (16)

where

PIDr (s) = Kp
(
β +

1
Tis
+ γTd s

)
,

PIDy(s) = Kp
(
1+

1
Tis
+ Td s

)
,

F(s) =
αs+ 1
τ s+ 1

. (17)

being R(s) ∈ R the set-point reference signal. The param-
eters Kp, Td and Ti are the proportional gain, derivative
time and integral time, respectively, α and τ the lead-lag
filter parameters, β and γ are the proportional and derivative
set-point weights that only affect the tracking performance.
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Note that (16) is reduced to a 1-DOFPID controller by setting
β = γ = 1. Nevertheless, a common practice is to set γ = 0
when designing a 2-DOF PID in order to avoid high control
actions in case of tracking non-smooth references [45].

From (12)-(13) and (16) with γ = 0, the following equiv-
alence can be obtained by setting PIDr (s) = Cr (s):

Kp
(
β +

1
Tis

)
=
a0m(Ts+ 1)

b0Ts
(18)

Matching the polynomial coefficients, the expressions for
the PID parameters Ti and β given in Table 1 can be deduced
as a function of the system parameters and T , aim, i = 0, 1,
which are independent of the order system and the delay L.
Similarly, the rest of the PID parameters Kp,Td , τ and α can
be obtained from the equivalences given below, which are
obtained by matching PIDy(s) to Cy(s) (or PIDy(s)F(s) to
Cy(s)) with the input delay approximated as a lag dynamics
as e−sL ≈ 1/(1 + Ls). For first and second-order systems,
the following equivalences can be obtained:
• First order plant (Td = 0, τ = 0, α = 0):

Kp
(
1+

1
Tis

)
=
a0,m + s(1+ T (a0m − a0))

Tb0s
(19)

• First order plant with time delay (τ = 0, α = 0):

Kp
(
1+

1
Tis
+ Td s

)
=

(
a0,m + s(1+ T (a0m − a0))

)
(1+ Ls)

Tb0s
(20)

• Second order plant (α = 0):

Kp
(
1+

1
Tis
+ Td s

)( 1
τ s+ 1

)
=

a0,m + s(a1m + T (a0m − a0))
Tb1s2 + Tb0s

(21)

+
s2(1+ T (a1m − a1))

Tb1s2 + Tb0s
(22)

• Second order plant with time delay:

Kp
(
1+

1
Tis
+ Td s

)(αs+ 1
τ s+ 1

)
=

a0,m + s(a1m + T (a0m − a0))
Tb1s2 + Tb0s

(23)

+
s2(1+ T (a1m − a1)) (1+ Ls)

Tb1s2 + Tb0s
(24)

Table 1 summarizes the equivalent expressions for each
parameter and the representative plant models.
Remark 1: For non-minimum phase processes, i.e., a pos-

itive zero in the controlled plant, the proposed method cannot
be directly applied. To solve this, the non-minimum phase
dynamics can be approximated as a time delay [46] or simply
treated as a unknown disturbance.
Remark 2: Although first-order or second-order systems

are only considered for the equivalence of PID controller
parameters given in Table 1, higher-order systems can also be
included in our analysis by applying approximation methods

based on reduction model approaches. This is a common
practice in many control applications [47], where most pro-
cesses are identified as first or second-order directly [48] or
approximated in the frequency range of interest [49]. On the
other hand, the delay L in (1) makes it possible to deal with
higher order systems using the Pade approximation technique
[46] and further include the presence of input and output
delays in the control loop.
Remark 3: Note that the proposed method is applicable to

a 2-DOF PID control scheme, where the set-point tracking
control only depends on the choice of the coefficients ami
through the desired eigenvalues of Am in (4). Hence, the filter
parameter T can be used to adjust the trade-off between
robustness and disturbance rejection without affecting the
set-point tracking response.

IV. TRADE-OFF BETWEEN DISTURBANCE REJECTION AND
ROBUSTNESS
This section offers a guide to determine the value of T in order
to reach a trade-off between disturbance rejection and robust-
ness against model uncertainties. The system performance
is usually evaluated by means of the integral absolute error
(IAE) [1], defined by IAE =

∫
∞

0 |e(t)|dt with respect to any
of the possible system inputs. In particular, the disturbance
rejection performance can be evaluated as the IAE when a
unitary step in the disturbance is introduced and r(t) = 0,
which can be simply computed as:

IAEd = lim
s→0

1
s
Gyd (s) =

Ti
Kp
=
b0T
a0m

(25)

assuming that the response of Gyd does not exhibit overshoot
(this is guaranteed if the poles of Gm(s) are real) or in case of
small overshoot values. From (25), it is easily deduced that T
should be chosen as small as possible in order to increase the
disturbance rejection performance.

Robustness can be evaluated by the classic robustness mar-
gins [50], i.e., the gain margin (GM), the phase margin (PM)
and the delay margin (DM), which are defined as

GM =
1

|L(jω180◦ )|
,

PM = 180◦ − 6 L(jωcr ),

DM =
PM
ωcr

,

where L(jω) = PIDy(jω)F(jw)G(jω) and ωcr , ω180◦ are
defined such that |L(jωcr )| = 1 and 6 L(jω180◦ ) = 180◦,
respectively. These indexes refer to the gain, phase and time
delay which could be introduced before the system becomes
unstable.

Other relevant performance indices are the integral of
time-multiplied absolute-value of error (ITAE) [51], the root
mean square error (RMSE) [51] and the Total Variation
(TV) [28]. The ITAE and RMSE are employed to evaluate
the set-point tracking performance, while the TV is used
to measure the control efforts (manipulated input usage) or
smoothness of the control signal. These indices are defined
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TABLE 1. Equivalence of PID controller parameters for first and second-order systems.

as: ITAE =
∫ t
0 t |yr − y| dτ ; RMSE =

√
1
t

∫ t
0 (yr − y)

2 dτ

and TV =
∑i=∞

i=1 |ui+1 − ui|. As in the IAE, the resulting
error |yr − y| can be attributed to a set-point change or a dis-
turbance, which will allow to evaluate the set-point tracking
performance and the disturbance rejection independently.

On the other hand, with the objective of evaluating the
closed-loop robust performance against time-varying para-
metric uncertainties on the system model, first consider the
following state space realization of the plant G(s) defined
in (1):

ẋ(t) = (A+1A(t)) x(t)+ (B+1B(t)) (u(t)+ d(t)) ,

y(t) = Cx(t) (26)

where A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n are any set
of system matrices such that G(s) 1

Ls+1 = C (sIn − A)−1 B
where G(s) is defined in (1), and all possible time-varying
uncertainties in the system model (including those of the
approximation error of delay e−Ls ≈ 1/(Ls+1)) are described
by the classical norm-bounded form [52]:

(1A(t),1B(t)) = µG1(t) (HA, HB) (27)

where G,HA,HB are time-constant matrices of appropriate
dimensions,1(t) is an unknown time-varying matrix satisfy-
ing 1(t)T1(t) ≤ I , ∀t ≥ 0 and µ ≥ 0 is a scalar that deter-
mines the size of uncertainties. The state-space realization of
PIDy(s) = Cy(s) (see (13)) can be expressed as:

ẋc(t) = Acxc(t)+ Bcy(t),

u(t) = Ccxc(t)+ Dcy(t) (28)

where Ac ∈ Rnc×nc , B ∈ Rnc×1 and C ∈ R1×nc are
any set of system matrices such that PIDy(s) = Cy(s) =
Cc
(
sInc − Ac

)−1 Bc + Dc where Cy(s) = PIDy(s) is the
proposed PID control scheme, and nc is the order of the
controller. From (26), (12) and (28), the closed-loop system
with r(t) = 0 renders:

˙̄x(t) = Ā(t)x̄(t)+ B̄(t)d(t),

y(t) = C̄ x̄(t) (29)

where Ā(t) = Ā + µḠ1(t)H̄ , B̄(t) = B̄ + µḠ1(t)HB, C̄ =[
C 0

]
, and

Ā =
[
A−BDcC −BCc
BcC Ac

]
, B̄ =

[
B
0

]
,

Ḡ =
[
G
0

]
, H̄ =

[
HA − HBDcC −HBCc

]
. (30)

The following theorem gives a sufficient condition based
on Linear Matrix Inequalities (LMIs) [44] to ascertain the
robust exponential stability of the resulting closed-loop sys-
tem described above with guaranteed H∞ disturbance rejec-
tion from the controlled output y(t) and any disturbance signal
d(t) of bounded energy, that is to say,

∫ t
0 y

T (s)y(s)ds ≤
δ2
∫ t
0 d

T (s)d(s)ds,∀t > 0, where δ is the L2 induced gain
from d(t) to y(t). It is worthwhile mentioning that LMIs
can easily be solved by means of semidefinite-programming
tools [44]. Indeed, efficient polynomial-time optimization
algorithms (e.g., interior-point [53]) are available in standard
commercial libraries, such as the LMI Control Toolbox [54]
and SEDUMI [55].
Theorem 1: Given a prescribed level of H∞ disturbance

rejection δ, the closed-loop system (29) is robustly expo-
nentially stable against all possible time-varying parametric
uncertainties on the form (27) if there is a symmetric matrix
P = PT ∈ Rn+nc > 0 and scalars ε > 0, ρ > 0 such that the
following LMI holds:

ĀTP+ PĀ PB̄ PḠ H̄T εC̄T

(∗) εδ2I 0 HT
B 0

(∗) (∗) −ρI 0 0
(∗) (∗) (∗) −I 0
(∗) (∗) (∗) 0 −εI

 < 0 (31)

Moreover, the size of uncertainties defined in (27) can be
obtained as µ = ρ−1/2.

Proof: Consider the quadratic Lyapunov function can-
didate V (t) = x̄T (t)Px̄(t). Hence, the closed-loop system
(29) is robustly exponentially stable with guaranteed H∞
disturbance rejection from y(t) to d(t) if V̇ (t) + yT (t)y(t) −
δ2 dT (t)d(t) < 0, leading to the following condition:

V̇ (t)+ yT (t)y(t)− δ2 dT (t)d(t)

= ˙̄xT (t)Px̄(t)+ x̄T (t)P ˙̄x(t)

= x̄T (t)
(
ĀT (t)P+ PĀ(t)+ C̄T C̄

)
x̄(t)

+x̄T (t)PB̄(t)d(t)+ dT (t)B̄T (t)Px̄(t)− δ2 dT (t)d(t)[
x̄T (t)
dT (t)

]T [ĀT (t)P+ PĀ(t)+ C̄T C̄ PB̄(t)
(∗) −δ2 I

] [
x̄(t)
d(t)

]
< 0 (32)

The condition (32) is true if and only if[
ĀT (t)P+ PĀ(t)+ C̄T C̄ PB̄(t)

(∗) −δ2 I

]
< 0, ∀t ≥ 0.
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Taking into account that Ā(t) = Ā+µḠ1(t)H̄ and B̄(t) =
B̄+ µḠ1(t)HB, the latter inequality renders:[

ĀTP+ PĀ+ C̄T C̄ PB̄
(∗) −δ2 I

]
+

[
µPḠ
0

]
1(t)

[
H̄ HB

]
+

[
H̄T

HT
B

]
1T (t)

[
µḠTP 0

]
< 0 (33)

Applying Petersen’s inequality [56], one has that ∀1(t)
satisfying 1(t)T1(t) ≤ I , the following inequality holds:[
µPḠ
0

]
1(t)

[
H̄ HB

]
+

[
H̄T

HT
B

]
1T (t)

[
µḠTP 0

]
≤ ε

[
µPḠ
0

] [
µḠTP 0

]
+ ε−1

[
H̄T

HT
B

] [
H̄ HB

]
(34)

Substituting (34) into (33), the following inequality is
obtained:[
ĀTP+ PĀ+ C̄T C̄ PB̄

(∗) −δ2 I

]
+ε

[
µPḠ
0

] [
µḠTP 0

]
+ ε−1

[
H̄T

HT
B

] [
H̄ HB

]
< 0

(35)

Applying three times the Schur Complement [57],
the above inequality (35) is true if the following matrix
inequality holds:
ĀTP+ PĀ PB̄ µPḠ H̄T C̄T

(∗) −δ2 I 0 HT
B 0

(∗) (∗) −ε−1I 0 0
(∗) (∗) (∗) −εI 0
(∗) (∗) (∗) (∗) −I

 < 0 (36)

From the congruence transformation obtained by pre-
and post-multiplying the above matrix inequality by
diag

(
I , I , µ−1I , ε−1I , I

)
and defining P̃ = εP, it is

obtained

ε−1ĀT P̃
+ε−1P̃Ā

ε−1P̃B̄ ε−1P̃Ḡ ε−1H̄T C̄T

(∗) −δ2 I 0 ε−1HT
B 0

(∗) (∗) −ε−1µ−2I 0 0
(∗) (∗) (∗) −ε−1I 0
(∗) (∗) (∗) (∗) −I

<0

(37)

Finally, pre- and post-multiplying the above matrix
inequality by diag

(
ε1/2I , ε1/2I , ε1/2I , ε1/2I , ε1/2I

)
and

renaming P = P̃, ρ = µ−2, the above inequality is proven to
be equivalent to LMI (31), concluding the proof. �
Remark 4: Given a prescribed H∞ disturbance rejection

δ, the maximum tolerance against model uncertainties can
easily be determined by solving the convex optimization
problem ρ̄ = min ρ s.t LMI (31), where µ̄ = ρ̄−1/2. This
result will be used to compare the robust performance of the
different PID control designs with the proposed one.

Remark 5: One of the advantages of the proposed method
is that the existing trade-off between disturbance rejection
and robustness can easily be adjusted by tuning a single scalar
parameter (namely T ) taking into account the disturbance
indices IAE and δ, and some of the robustness indices defined
above: µ̄, GM , PM or DM . In particular, given a prescribed
value forH∞ disturbance rejection δ, the convex optimization
problem described in Remark 3 and Theorem 1, in combi-
nation with dichotomic search in T , is helpful to find the
best choice for T such that the tolerance against time-varying
model uncertainties in µ̄ is maximized.

V. EXAMPLES
This section provides three comparative examples aimed at
showing the effectiveness of the proposed method and the
improvements with respect to other existing PID tuningmeth-
ods.
Note that Cr (s) in (13) is always a PI-like control scheme,

but Cy(s) is a full PID structure. Hence, in order to ensure
that PIDy(s) is realizable, the following PID with a derivative
filter has been used in the examples.

PID(s) = Kp
(
1+

1
Tis
+

Td s
NTd s+ 1

)
. (38)

A. EXAMPLE 1
Consider the following FOPTD plant consisting in a spherical
tank system [58]:

G(s) =
3.6215

330.46s+ 1
e−11.7s,

Applying the approximation e−11.7 s ≈ 1/(11.7s + 1),
a state-space representation as (26) of the above system can
be obtained with system matrices

A =
[

0 1
−0.00026 −0.0885

]
,B =

[
0

0.00094

]
,

C =
[
1 0

]
and model uncertainties are described by (27) with matrices

G = µ
[
1
1

]
, HA =

[
1 1

]
and HB = 1. The above state-space

representation will be useful to compare the robust per-
formance of different control designs via Theorem 1 and
Remark 4 by maximizing the size of uncertainties µ.

A 2-DOF PID control design with Kp = 3.067, Td = 0.48,
Ti = 37, β = 0.16 and γ = 0.11 is obtained by applying a
heuristic method for control design in [58]. Both PID will use
a derivative filter of N = 0.1.
For the control design, a similar closed-loop settling time

(about 200s) is established, which correspond to a a0m =
b0m = 0.02. The filter parameter T is obtained to guarantee
the same disturbance rejection performance in terms of IAEd
(25) as [58]. Hence, it is obtained (25) that T = 30.91. Note
that the plant model corresponds to the second row in Table 1,
leading to the PID controller parameters: Kp = 5.17, Td =
10.14, Ti = 87.98, β = 0.35 and γ = 0.
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TABLE 2. Disturbance rejection and robustness performance indices for Example 1, Example 2 and Example 3.

FIGURE 2. Simulation of Example 1.

Table 2 shows the IAEd from (25) computed from the sim-
ulation results (namely IAE∗d ), withH∞ disturbance rejection
δ = 1. Note the value is not exactly IAEd = 17 due to
the model approximation, i.e. delay dynamics. Table 2 also
depicts the robustness and performance indices defined in
Section IV corresponding to both control designs: µ̄, PM ,
GM , ITAE , RMSE and TV .

A comparative time-evolution of the closed-loop system
state with both controllers is depicted in Fig. 2. A step incre-
ment of 1 in the reference signal r(t) has been introduced at
the beginning of the simulation. Moreover, a step disturbance
signal d(t) of −1 has been induced at time instant 400s.
It can be appreciated that the settling time is around 200s in
both cases, as expected from the closed-loop specifications.
However, it can also be noted that the proposed control (blue
dashed-line) achieves a better transient response with less
overdamping than the previous design (red dash-dotted line).
This fact shows that the proposed control is more robust
against the model uncertainties derived from the approxima-
tion error of the delay term e−11.7s.

B. EXAMPLE 2
The balanced lag and delay process proposed in [25] has the
following fourth-order transfer function:

G(s) =
1

(s+ 1)4
,

FIGURE 3. Simulation of Example 2.

An approximated SOPTD model of the above system can
be obtained as:

G2(s) =
0.67

s2 + 1.67s+ 0.67
e−1.5s,

using the half rule, a simple reduction model method
explained in detail in [28].

A 2-DOF PID control design with Kp = 1.12, Td = 0.71,
Ti = 2.40, β = 0 and γ = 0 is obtained by means of
the AMIGO method in [25]. As in the previous example,
the set-point tracking and disturbance rejection have been
selected similar to the previous design: a settling time around
10s and IAEd = 2.35. From these specifications, we obtain
(25) in which T = 0.85. Note that the plant model in this
example corresponds to the fourth row in Table 1, obtaining
the 2-DOF PID controller parameters: Kp = 1.37, Td =
0.996, Ti = 3.21, β = 0.175, α = 1.5 and τ = 0. Both
controllers have a derivate filter of N = 0.01.
Simulations are shown in Fig. 3. A unitary step reference

signal r(t) has been introduced at the beginning of the simu-
lation. Also, a step disturbance signal d(t) of amplitude equal
to −1 has been introduced at time instant 30s. As it can be
seen in the Figure, a better transient response (less overshot)
is achieved by the proposed control design.

Table 2 summarizes the comparative indices of the second
example for a H∞ disturbance rejection index δ = 1. As in
the previous example, it shows better tolerance against model
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FIGURE 4. Simulation of Example 3.

uncertainties coming from the phase and time-delay model
errors.

C. EXAMPLE 3
In this example, the following unstable plant with time-delay
studied in [59] is considered:

G3(s) =
1.5

(0.5s+ 1)(s− 1)
e−0.3s

In [59], an optimal PID tuning via LQR for SOPTD is
presented. For this plant, it yields the parameters Kp = 1.22,
Td = 0.47, Ti = 7.20, β = 1 and γ = 1. As in the previous
examples, tracking and disturbance rejection performance
have been selected similar to the previous design with LQR:
a settling time around 10s and IAEd = 5.9. Then, from (25),
it is obtained that T = 0.64. Note that the plant model in this
example corresponds to the fourth row in Table 1, obtaining
the PID controller parameters: Kp = 1.37, Td = 0.41,
Ti = 8.10, β = 0.08, α = 0.3 and τ = 0. The derivative
filter is N = 0.01 for both PID.

The comparative indices for the third example are pre-
sented in Table 2, with H∞ disturbance rejection δ = 3.
In Fig. 4, the closed-loop dynamics of both controllers (pro-
posed vs LQR) is compared. Here, a unitary step reference
signal r(t) has been introduced at the beginning of the sim-
ulation. Also, a step disturbance signal d(t) of amplitude
equal to -1 has been introduced at time instant 30s. When the
reference change is introduced, the LQR synthesis shows a
considerable overshoot on the system response while the pro-
posed tuning does not. As above pointed out, this is produced
by the non-zero value of the γ PID parameter. Regarding
the disturbance rejection performance, it can be observed a
similar performance with a slight reduction of the peak value
with the proposed method.

VI. EXPERIMENTAL RESULTS
The proposed solution has been implemented in the 3DOF
Hover of Quanser shown in Fig. 5. This experimental plat-
form consists of a quadrotor installed in a pivot joint.
Therefore, it can freely spin in roll, pitch and yaw angles.

FIGURE 5. 3DOF Hover of Quanser.

TABLE 3. Controller parameters designed for the experimental results.

The angles aremeasured by optical encoders with an accuracy
of 0.04 degrees, and the control inputs of the system are
the voltages applied to the four motors, which can range
between −10V and 10V. The designed control strategy has
been executed on a PC with a real-time Linux distribution,
which makes it perfectly possible to run the full algorithm
with a sampling time of 0.01 sec. The computer is connected
to the Quanser hardware bymeans of a data acquisition board.

The quadrotor could be seen as a decoupled system with
each axis modeled as a double integrator [36]. If the addi-
tional dynamics introduced by the motors and sensors were
considered, they could be approximated to a constant time
delay [60]. In addition, the real system has some additional
dynamics not included in the system model, such as param-
eter uncertainty or nonlinear dynamics. Nevertheless, close
to the equilibrium point, such extra dynamics can be consid-
ered as a time-constant disturbance. Hence, the model of the
Quanser platform is

G(s) =
0.1
s2
e−0.12s,

where input and output signals are expressed in volts (V) and
radians (rad), respectively. Analogously to previous exam-
ples, by applying the approximation e−0.12 s ≈ 1/(0.12s+1),
a state-space representation as (26) of the above plant system
model G(s) can be obtained with system matrices

A =

0 1 0
0 0 1
0 0 −8.33

 , B =

 0
0

0.833

 , C = [1 0 0
]

and model uncertainties are described by (27) with matri-
ces G = µ

[
1 1 1

]T , HA = [
1 1 1

]
and HB = 1.
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TABLE 4. Disturbance rejection and robustness performance indices for the experimental results.

FIGURE 6. Experimental results.

The above state-space representation will be useful to com-
pare the robust performance of different control designs via
Theorem 1 and Remark 4 by maximizing the size of uncer-
tainties µ (see µ̄ in Table 4).
In [61], authors proposed an extension of [59] to deal with

different integrator systemswith time-delay. Contrary to [25],
[58], [59], this methodology explicitly includes the double
integrator as a particular case, so it will be used here for a
fair comparison. Following the methodology given in [61]
applied to the Quanser platform above described, a stabilizing
2-DOF PID control with Kp = 113.7, Td = 0.32, Ti = 1.84,
β = 0 and γ = 0 is designed. As in the previous examples,
a similar closed-loop settling time (about 3s) is established.
The filter parameter T is obtained to guarantee the same
disturbance rejection performance in terms of IAEd . For
instance, given IAEd = 0.015, it can be deduced from (25)
that T = 0.26. Hence, the 2-DOF PID controller parameters
Kp = 117.8, Td = 0.55, Ti = 1.77, β = 0.15, α = 0.12 and
τ = 0 are designed taking into account the expressions given
in the fourth row of Table 1.

To show the effect of the tuning parameter T on the
closed-loop system performance, we set T = 0.13, T = 0.26
and T = 0.39, leading to a more aggressive control in the first
case and a smoother control in the third case. In all controller
designs, the same settling-time specifications of the previous
comparative studies have been considered, together with a
H∞ disturbance rejection δ = 1 and the choice N = 0.1.
The obtained control parameters are summarized in Table 3.
For experimental essays, different set-points variations are

established: a set-point change of 5 degrees at time instants
1s and 21s, a negative −5 degree step at 11s and 41s, and a

step disturbance of amplitude −5V at 31s (see black-dotted
line in Fig. 6). Table 4 and Fig. 6 show respectively the
comparative indices and time evolution of the roll angle and
control action for the experimental results. For the IAEd , note
that the angular magnitudes are expressed in radian units,
but they are expressed in degrees for the sake of readability
in Table 4 and Fig. 6.
Here, it can be observed a slightly faster response by the

proposed method (T = 0.26) and a softer response on
disturbance rejection. The performance indices show, except
for GM and TV , that the proposal can deal with a wider
variety of uncertainties, such as those coming from the phase
and time delay modeling, as well as external disturbances.

As can be seen in Fig. 6, the three proposed experiments
have similar transient responses for set-point tracking. This
is due to the fact that the three design have considered a
settling time of 3s. However, there exists a little difference
between them in the achieved performance due to the intrinsic
disturbances that affect the system, which lead the more
aggressive designed controller with T = 0.13 to achieve a
set-point response more similar to the nominal case. Conse-
quently, the best disturbance rejection response is achieved
for T = 0.13, and the worst transient response is obtained
for T = 0.39. Regarding the control action, it exhibits the
worst behavior (higher TV ) for T = 0.13, and the best one for
T = 0.39. This fact confirms the existing trade-off between
the disturbance rejection IAEd and TV which only depends
on the choice of the parameter T . Note also from 4 that
the IAEd experimentally obtained (namely IAE∗d ) is approxi-
mately proportional to T , as it can be deduced from (25). Note
also from Table 4 the trade-off between disturbance rejection
and robustness, that is to say, better disturbance rejection
(lower values for IAE∗d ) leads to worse robust performance.

VII. CONCLUSION AND PERSPECTIVES
A single-parameter 2-DOF PID tuning approach based on an
Uncertainty and Disturbance Estimator (UDE) has been pro-
posed. A general procedure to obtain the 2-DOF PID param-
eters, as well as the proper selection of the single parameter,
has been shown. The key aspect of the proposed method is
that the 2-DOF PID parameters can be obtained from the
desired set-point settling time and tuning a single param-
eter, which can be obtained from the disturbance rejection
index IAEd or a certain robustness margin for time-varying
parametric uncertainties by means of LMIs, without need-
ing any complex numerical optimization. Therefore, the dis-
turbance rejection and robust performance trade-off can be
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easily settled. The proposed method is presented for first
and second-order systemswith time-delay, including unstable
plants, although it is shown that this method can be applied
to higher order systems, since the proposed method can deal
with the ignored extra-dynamics of the plant system by treat-
ing it as a disturbance.

Simulations and experimental essays have been carried
out. Three academic examples have been simulated in order
to compare the proposed approach with three well-known
classic tuning methods: (2-DOF PID with heuristic-based
algorithms for tuning parameters, AMIGO and LQR syn-
thesis methods). In all cases, it has been shown that better
disturbance rejection can be achieved keeping a similar robust
performance. A test-bed quadrotor platform was used to vali-
date the controller presented. Future works could consider the
use of the proposal with a self-tuning regulator, or be able to
deal with larger time-delays by including predictor-feedback
delay compensation approaches.
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