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ABSTRACT Chest X-ray images are useful for early COVID-19 diagnosis with the advantage that
X-ray devices are already available in health centers and images are obtained immediately. Some datasets
containing X-ray images with cases (pneumonia or COVID-19) and controls have been made available
to develop machine-learning-based methods to aid in diagnosing the disease. However, these datasets
are mainly composed of different sources coming from pre-COVID-19 datasets and COVID-19 datasets.
Particularly, we have detected a significant bias in some of the released datasets used to train and test
diagnostic systems, which might imply that the results published are optimistic and may overestimate the
actual predictive capacity of the techniques proposed. In this article, we analyze the existing bias in some
commonly used datasets and propose a series of preliminary steps to carry out before the classic machine
learning pipeline in order to detect possible biases, to avoid them if possible and to report results that are
more representative of the actual predictive power of the methods under analysis.

INDEX TERMS
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I. INTRODUCTION

Chest X-ray (CXR) radiography is the most widely accepted
imaging modality for detecting pneumonia and it is becom-
ing crucial for tracking the clinical evolution of COVID-19
patients [1]. The COVID-19 disease is caused by Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
and has become a global pandemic in a few months. Early
diagnosis is a key factor due to the stealthy contagious nature
of the virus and a lack of vaccines or effective treatments
and, thus, it helps to prevent further spreading and to control
it under the existing healthcare facilities. The small size of
the acquisition devices, their ease of operation and their low
cost make them more widely available than the Computer
Tomography (CT) equipment, despite image quality and the
diagnostic performance of CT are superior.
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As a response to the COVID-19 outbreak, the scientific
community has rapidly reacted and a lot of works using CXR
images for COVID-19 detection have been published. The
majority of them make use of well-known CNN architec-
tures such as VGG [2], ResNet [3]-[5], SqueezeNet [3], [6],
DenseNet [7] and also combine them with decision trees [8]
and Support Vector Machines (SVM) [9]. Given the difficulty
of obtaining COVID-19 samples, GAN networks have been
used [10], [11] in order to enhance the performance. More-
over, other approaches [12], [13] based on multi-resolution
methods report results that are comparable to those obtained
by CNNs.

Machine learning models need large amounts of data
which, in this case, are difficult to acquire, being the existing
collections a mix of already well-known datasets and new
COVID-19 image datasets. This heterogeneous mixture of
observations provides more variety and usually reduces epis-
temic uncertainty. However, if these datasets, for instance, are
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FIGURE 1. Workflow of the different experiments. From left to right: Network activations, Image features evaluation and

background expansion and lung exclusion.

not equally balanced (label-wise), they may induce a certain
amount of dataset bias to the training phase. This happens
when the images can be easily discriminated by features not
relevant to the task, i.e. if the dataset inadvertently contains
some distinctive features which are not related to the disease
and are not shared among the source datasets. For instance,
let’s assume an extreme case. Two image datasets are formed
by two different classes, that is, dataset A made of class A
samples and dataset B of class B samples. Let’s assume in
most dataset A samples there is a white rectangle on the top
right corner, and the true class features are not as trivial.
Classifiers will focus on the easiest feature to discriminate
between classes and not the true class features. Therefore,
this leads to poor generalization; given a new dataset C
full of class A, samples with no white rectangle will be
misclassified.

We have detected significant biases in some of the
most commonly used datasets intended for pneumonia and
COVID-19 detection and we suspect that the accuracy
reported in some studies might be due in part to them, and thus
not directly related to the image features that could character-
ize the disease. These biases could arise, for example, when
using some specific devices to acquire images of patients with
a low probability of suffering the disease (mainly controls),
and different ones for those patients with a high probability of
suffering it (mainly cases). This could happen, for example,
when most of the patients are screened in certain health ser-
vices and highly suspicious patients are derived to a different
area or, even worse, when, aiming to increase the number
of controls or cases, a dataset is expanded with samples
coming from significantly different origins and labeled with
unbalanced class identifiers. In these cases, a CNN trained
to discriminate between cases and controls could learn to
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differentiate images from different origins rather than finding
features actually related to the disease.

Therefore, to effectively assess the performance of the
classifier, there must exist a previous study of the dataset bias,
so that the results can be validated. Thus, we present several
studies to assess the validity of the results. The following
datasets will be used to perform the experiments: BIMCV
Padchest, CheXpert, RSNA and a COVID-19 image data
collection that we will refer to as COVIDcxr, which will be
further described in Section II-A.

The main contributions of this work are:

To propose a bias analysis methodology to assert the
validity of the results achieved on a dataset.

To study the possible existence of bias in three broadly
used pneumonia classification datasets.

To study the effect of mixing several datasets.

This work is structured as follows: Section I outlines the
problem of bias in CXR datasets. After that, the datasets
and networks used, along with the proposed methodology are
described in Section II. The workflow related to this section
can be seen in Figure 1. Section III shows the results achieved
using this article’s methodology over the proposed datasets
and Section IV gives an analysis of the results. Finally, con-
clusions are presented in Section VI.

il. METHODS
A. DATASETS
Several public datasets have been used in this article:
« PADCHEST! [14] is a CXR dataset that includes
more than 160K images from 67625 patients that were
reported by radiologists at Hospital de San Juan (Spain)

1 http://bimcv.cipf.es/bimcv-projects/padchest/
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from 2009 to 2017. The reports are labeled with
174 different radiographic findings, 19 differential diag-
noses and 104 anatomic locations. 27% of the reports
were manually annotated by trained physicians and the
remaining set was labeled using a supervised method
based on a Recurrent Neural Network with attention
mechanisms. Generated labels were validated, achieving
a 0.93 Micro-F1 score using an independent test set.
For the experiments, only Posterior-Anterior images are
considered. Therefore, there are 9110 images in the
remaining dataset: 6790 control and 2320 pneumonia
images.

« RSNA pneumonia dataset’ is made up of images from
the National Institutes of Health (NIH) and labeled by
the Radiological Society of North America along with
the Society for Thoracic Radiology and MD.ai. The goal
of this dataset was to develop an Al classifier capable of
distinguishing between pneumonia and control images,
so it was released in a Kaggle competition in 2018.
It consists of 26684 images from which 20672 are con-
trol and 6012 are pneumonia images.

o CheXpert dataset’ [15] is provided by Stanford
University and contains 224316 chest radiographs
of 65240 patients with labels of 14 sub-categories. The
exams were performed at Stanford Hospital between
October 2002 and July 2017. Structured labels for the
images were created by an automated rule-based labeler,
which the researchers developed to extract observations
from free-text radiology reports. From the 224316 chest
radiographs, this article only takes the ones related to
pneumonia and control cases. Therefore, 5870 images
are remaining in the dataset: 4878 control and 992 pneu-
monia images.

« COVID-19 image data collection (COVIDcxr)* [16] is
a project to collect X-ray and CT images that present
COVID-19, SARS, MERS and ARDS from online
sources. These sources are varied: scientific publica-
tions, websites, etc. As of June 2020, COVIDcxr has
around 424 COVID-19 images and is one of the largest
COVID-19 datasets publicly available to the best of our
knowledge.

B. MOTIVATION

The motivation for this study comes from analyzing the
results of a neural network trained to classify between
radiographic images of patients with pneumonia and healthy
control patients in order to determine the validity of the
classification. An interesting first validation can be done by
visualizing the network’s activation heatmaps. When we per-
formed these checks against networks trained with pneumo-
nia datasets, we observed many suspicious patterns, as these
heatmaps often highlighted areas of the image which did not

2https://WWW.kaggle.com/c/lrsna—pneumonia-det(;tction-challenge

3 https://www.healthimaging.com/topics/artificial-intelligence/stanford-
researchers-release-chest-x-ray-dataset-train-ai

4https:// github.com/ieee8023/covid-chestxray-dataset
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contain lung tissue (see Figure 2). This made us suspect that
the networks were learning to classify, achieving large values
of AUC ROC, using features unrelated to the task. Thus,
the datasets might be biased.

FIGURE 2. Lung heatmaps for BIMCV's dataset.

Grad-CAM [17] allows us to visualize the gradient of the
label in the final convolutional layer to produce a heatmap
depicting regions of the image that are relevant for the pre-
diction. Blue pixels and red pixels correspond to low and
high values of the gradient at the final convolutional layer,
respectively.

As observed in Figure 2, there are highly activated regions
in areas without lung presence when the expected activation
should be inside the lung. It is not known how many pixels
inside the lungs should show an activation, as no detection
mask is available. However, we can assume that the activation
map in a control patient should not exceed a given threshold,
whilst a positive case’s map should show widespread activa-
tions within the lungs. Nonetheless, the activated area outside
the lungs should be minimal in all cases. For this reason,
a measure to inform about the distribution of the activated
pixels could be useful.

Given a heatmap image I = {p;} € Mat, ,,(R), where
n is the number of rows, m the number of columns, and
pij represents the pixel value at row i and column j. Let A
be a region of interest and B its complement. Let ¢ be the
activation map threshold, and let R and W be the number of
pixels with an activation value higher than ¢ that are in A and
B respectively.

We can calculate the percentage of pixels with an activation
value over a threshold that fall outside an expected region as
the quotient between W and W + R (see Figure 3 and the
equations below, where p € {p;} =1).

Considering activated pixels in region W as false posi-
tives (FP) and activated pixels in region R as true positives
(TP), the above quotient corresponds to the False Discovery
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FIGURE 3. Activation regions diagram.

Rate (FDR), which is the complement of the Positive Predic-
tive Value (PPV).

R=TP=|(p>1t)NA|
W =FP=|p>1)NB|

FP
FDR = ———
FP + TP
FDR = 1 — PPV

For instance, in this task, any activated pixel that falls
outside the lungs is marked as wrong (W), as no information
should be found there. The lower this value, the better. This
score is designed to measure the validity of the trained CNN
classifier based on its activation maps and allows the selection
of different operation points depending on the threshold ¢ to
be applied to the heatmaps. In this work, ¢ is set to 90% of the
maximum heatmap value.

Table 1 shows the computed FDR for the activation maps
under three different datasets. It is worth noting that some
image findings are usually located on the border of the lungs,
so if the highlighted area is near the border, some pixels
might easily fall outside the region (A) and be considered as
wrong (W). On the grounds of the information provided by
the FDR, further experiments would be required to measure
the extent to which this phenomenon affects the datasets.

TABLE 1. False discovery rate of activation maps for three different
datasets.

FDR
BIMCV | 71.83%
RSNA 40.46%
CheXpert | 50.68%

Additionally, some suspicious patterns appeared when
visualizing the grayscale histograms of the images.
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Ideally, gray levels of images from different sources should
be equally distributed, but in practice, this may not happen
and give rise to inaccurate conclusions. The histograms
of the images may be considered as Probability Density
Functions (PDFs) and may serve to measure the variability
among gray-level distributions using a methodology based
on information geometry [18]. This methodology has been
successfully applied to characterize EHR (Electronic Health
Record) data [19], [20], to assess the variability among
patients with different headache pain intensity [21], or to
detect pixel distribution differences among images acquired
from different mammographs [22].

Given a set of PDFs, this approach is based on the com-
putation of the distance between each pair of PDFs using
the Jensen-Shannon distance. The simplex where each point
represents a PDF and the distance between two points is
the Jensen-Shannon distance between the two PDFs they
represent is known as a statistical manifold, which in turn
is a Riemannian manifold. For visualization purposes, this
simplex may be embedded in a real Euclidean space by using
Multidimensional Scaling [23] and, finally, projected into two
dimensions using a dimension reduction algorithm such as
Principal Component Analysis.

This methodology was applied three times to a random
balanced sample of 2000 individuals (1000 pneumonia cases
and 1000 controls) of each dataset mentioned, which will
be described in section II-A. Firstly, it was applied to the
histograms of the complete images and, after a segmenta-
tion step, which will be described in detail in section II-D,
the variability analysis was applied only to the histograms
of the backgrounds, and then to the histograms of the lungs
(see Figure 4). The variability of the three datasets is shown
in Figure 5.

In the center row of Figure 5, which depicts the distribu-
tions of the backgrounds of the different datasets, we can see
that the first two columns show distinct clusters composed
predominantly of cases or controls that allow a certain degree
of discrimination without taking into account the lung tissue.
In fact, the last row, which represents lung area, shows fewer
differences between the cases and control patient histograms.
In the last column, corresponding to CheXpert’s dataset, these
differences are not evident.

This could imply that, for some datasets, as BIMCV and
RSNA, a Machine Learning algorithm can classify pneumo-
nia and control cases using features outside the lungs.

C. NETWORK

In this article, Convolutional Neural Networks (CNNs) are
used to classify the CXR images. These Machine Learn-
ing models have been widely employed in the last years
for image classification, particularly in the field of medical
imaging. The CNN topology used is VGG16 [24], which
is broadly reported as a good classifier for chest image
analysis [25]-[27]. In this scenario, a common practice with
this type of networks is to trim the last layers (usually
dense layers) and add a lighter classifier, which in this
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FIGURE 4. Example of case and control patient histograms. The first row shows the histogram of the whole image for an example of a case and a
control patient, the second row shows the histogram of the background (the image with the lung area subtracted) and, the last one shows the

histogram of the lungs.

case is a Global Average Pooling followed by a Multilayer
Perceptron, which projects the pooled features of VGG’s
last convolution to 64 dimensions before performing the
classification.

Transfer learning technique is a common practice within
Deep Learning models. It is proven that pretrained net-
works, in particular their first layers, are generic and
can be transferred to new domains without requiring
special training. In fact, it also facilitates training for
domains with a scarce amount of training samples. There-
fore, the VGG16 network used is pretrained with Ima-
genet dataset, and the last 2 convolutional layers, along
with the classification layers, are unfrozen for domain
training.

It is noteworthy that the network structure is, up to a
point, not critical for the conclusions drawn in this article,
as it is not trying to present advancement in the state-of-the-
art classification for the datasets used. The focus is rather
on comparing the results obtained for images coming from
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different datasets, and whether those results suggest the pres-
ence of classification biases within the data. Nonetheless,
it must at least achieve an acceptable accuracy in order to
ensure the extracted features are good enough and close to
the ones extracted in other articles.

D. SEGMENTATION

By segmenting the lungs, it is possible to remove parts of
the image that do not contain relevant information and that
can be a source of noise or bias, such as the presence of text
annotations that can identify a machine or a hospital, or the
appearance of images coming from specific medical devices
that have been used in more cases than control patients or vice
versa.

Lung segmentation in CXR images has been successfully
tackled with different approaches during the last years [28].
For this work, a U-Net network has been trained on the
Montgomery dataset [29]. Moreover, we have manually
labeled a total of 1115 images coming from BIMCV’s
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FIGURE 5. Image histogram variability. The first row represents the variability of the histograms of the complete images, the second row the variability of
the background histograms (the images with the lung area subtracted), and the third row the histograms of the lungs. The first column represents a
sample of BIMCV's dataset, the second column a sample of RSNA's, and the last, a sample of CheXpert's.

Padchest dataset to increase the number of training images. the true segmentation mask.

Figure 6 shows the segmentation results. This network 2|ANB|
achieves 0.974 DICE and 0.934 IoU scores over the Mont- DICE = m
gomery test partition, where DICE and IoU are defined as ANB
follows, being A and B the predicted segmentation mask and IoU = AUB

VOLUME 9, 2021 42375



IEEE Access

0. D. T. Catala et al.: Bias Analysis on Public X-Ray Image Datasets

E. BIAS ANALYSIS

This work proposes a methodology to measure the degree of
bias in a dataset. The focus is on the classification of pneu-
monia or COVID against control samples, but the methods
can be generalized to other classification tasks where prior
knowledge of the region of interest is available.

As stated before, areas that should not contain informa-
tion about the problem can be possibly used to discriminate
between classes, for example, text annotations or image fea-
tures related to the medical devices employed. In order to
solve this problem, we make use of a segmentation algorithm
to extract the relevant regions which in this case are the lungs
(see Figure 6). These regions will be referred to as masks.
The rest of the image will be considered as background
(see B in Figure 3).

FIGURE 6. Lung segmentation (left) and after post-process (right).

To check the previous hypothesis presented in II-B,
two experiments were carried out by training a model
with different image areas according to the following
ideas:

« We want to study how the background affects the results.

Starting from an image that contains only the lungs
(the background is erased), the visible region is pro-
gressively expanded to include more background by
means of sequential dilation operations over the mask
(see Figure 7a). An unbiased dataset should not increase
the classification accuracy along this process.

+« We want to analyze how the lack of lung area affects

the results; this time starting from the whole image and
progressively removing the lungs (see Figure 7b). The
classification accuracy over an unbiased dataset should
progressively drop from its maximum value (whole
image) to 0.5 AUC ROC.
Thus, adjusting the expansion or exclusion of the lung region
will allow us to trace the variation of the accuracy metric.
We used images scaled to 256 x 256 pixels. For background
expansion, lung segmentation masks were dilated 0, 10, 30,
50, 80, 120 and 140 pixels and for lung exclusion, masks were
eroded 0, 10, 20, 30, 40 and 100 pixels (from right to left
in Figure 7).

Figure 7a shows the lung segmented area in blue and
the background expansion in green. Also, Figure 7b shows
the lung exclusion area in yellow. Additionally, a detailed
workflow for this experiment is shown in Figure 8
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F. COMBINATION ANALYSIS

Combining datasets can be useful to enlarge the sample size,
increase the variability explained by the data, and reduce the
epistemic uncertainty of the classifiers. This latter is related
to the problem-domain knowledge of the model, being it the
uncertainty or lack of knowledge bound to the limited amount
of data. However, if the combination and the balance among
the classes are not carefully controlled, a classifier may learn
to discriminate between features of the different datasets.

To check this hypothesis, we mixed RSNA and CheXpert
datasets to achieve a balanced combination by adding positive
pneumonia observations from the RSNA dataset into CheX-
pert. The latter is a highly unbalanced dataset (83% of neg-
ative and 27% of positive observations after our pre-process
and segmentation validity filters), so it could be considered
a good idea to add positive samples from another dataset.
Needless to say, if the images from RSNA have distinct
features that allow the classifier to tell them apart from
CheXpert, for example including a large proportion of images
from a particular equipment brand or model, the system will
learn to classify the images from that equipment as positive,
regardless of any image content that could be related to the
disease.

Additionally, we simulated the combination of
COVID-19 and control datasets and evaluated their bias
with the proposed method. In particular, the datasets com-
bined are positive COVID-19 cases from COVIDcxr with
CheXpert’s negative control samples. COVIDcxr is built with
datasets from different origins, hence this experiment illus-
trates the likely problematic effects of heterogeneous data
combinations.

Based on our methodology that probes the discrimination
induced outside the lungs, the expectations about the results
of the experiment, if there is bias in the dataset, are: (1) the
background expansion could increase the accuracy and
(2) the accuracy when occluding the lungs should differ
significantly from the 0.5 AUC ROC. Did the results follow
these predictions, the hypothesis would be confirmed.

Ill. RESULTS

A. BACKGROUND EXPANSION AND LUNG EXCLUSION
STUDY

In the previous section, we proposed to examine the perfor-
mance of classification experiments varying the addition of
background and the reduction of the lung area. The expected
results of the first test for a non-biased dataset, where the
background area is added to the initial lung-only images,
is that the classification rate stays constant (or almost con-
stant, due to possible imprecise segmentation and other ran-
dom perturbations), as the disease information is already
present from the beginning.

In the second scenario, the accuracy should potentially
drop from the value achieved when the network sees the
complete image to a value close to 0.5 AUC ROC when the
lungs are completely removed. This drop is not necessarily
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(b) Lung exclusion

FIGURE 7. Background expansion and lung exclusion. (a) The original contour area is shown in blue and the expanded area contour in green (b) The

contour of the removed area is shown in yellow.

For each image

image

For each background and lung

Modify masks

Images

with fine-tunning

Evaluate N models

AUC
ROC

FIGURE 8. Bias analysis’s workflow.

linear, but will be shown in the graphs as a straight red line,
as can be seen in the right part of Figure 9, to offer a simplified
graphical representation of the expected behavior. In the left
part of the figure, the green line represents the classification
rate obtained using only the lung area.
This analysis has been performed in the three datasets:
o The first one (see Figure 9a), BIMCYV, clearly shows
a significant bias within the data, as the classification
rate steadily increases with the background expansion.
The second graph shows that removing the lung area is
not associated with a significant decrease in accuracy,
as it should, and even with the complete exclusion of the
lungs the classifier achieves almost 0.88 AUC ROC.
o The second one (see Figure 9b), RSNA, displays a
slightly lower but still consistent bias within the data
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in both graphs. However, the RSNA dataset was harder
to segment than the other ones and, thus, part of the
variability shown could arise from poorly segmented
images. Nonetheless, a 0.79 AUC ROC is achieved with
the lungs completely occluded, which is far from the
expected 0.5 AUC ROC.

o The third one (see Figure 9c), CheXpert, conveys inter-
esting results. The left graph’s trend is the one expected
for an unbiased dataset, as it doesn’t vary along with
the background expansion. Nevertheless, the precision
achieved when the lung is completely occluded is
around 0.74 AUC ROC. This implies that the bias is not
located specifically in the background, but it must lie in
the whole image.

B. COMBINATION STUDY

As mentioned before, the combination study seeks to evaluate
how the combination of datasets might provoke the creation
of biased data and how the methodology proposed can detect
these weaknesses in the final data collection.

The experiments of Section III-A have been reproduced
using the combined dataset. Figure 10(a) shows the effect
of varying background expansion and lung exclusion when
the combination is designed to balance CheXpert with RSNA
cases (4878 control and 992 positive pneumonia images from
CheXpert plus 3886 positive images from RSNA, giving a
balanced dataset with 50% observations from each class).

The last experiment explored a combination of 4878 images
of control patients from CheXpert and the whole set
of 424 COVID-19 images from COVIDcxr. This dataset
combination is typical of the recent crisis scenario, where few
images from the new disease are available, they are obtained
from different locations, under uncontrolled conditions, with
different equipment and acquisition protocols, etc. This is the
worst-case scenario and the results are in accordance with it,
as can be seen in Figure 10(b).

The results for these experiments show, in a similar fashion
to Chexpert’s base case, that the bias is ubiquitous in the
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FIGURE 9. Accuracy as a function of the background expansion and lung reduction. The green dotted lines
mark the correct behavior of a non-biased dataset when more and more background is included, and the
red dotted lines indicate the expected reduction of the classification rate as the lungs are removed from the
analysis. Blue lines show the accuracy for a given expansion or reduction with a vertical line indicating the

standard deviation.

image. Despite increasing the amount of background inside
the images doesn’t affect the accuracy, the effect of the lung
occlusion is not remarkable within the results.

IV. DISCUSSION

Deep learning has been receiving a lot of attention
as a very powerful methodology for analyzing medical
images [30]. The ability of Convolutional Neural Net-
works (CNN) to obtain excellent results even when it is used
as a blackbox, as opposed to the classical design of ad-hoc
algorithms, has attracted many researchers.

Some works using CNNs for COVID-19 detection on
cxr images report high accuracies for a variety of network
architectures. In particular, studies using VGG16 report [9]
89.8% accuracy for a dataset built of 180 COVID-19 and
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200 control samples, 90% accuracy is obtained [27] for a
dataset composed of 202 COVID-19 images, 300 of pneumo-
nia and 300 negative and 93.48% accuracy [31] is achieved
using a dataset that contains 224 COVID-19 images, 700 of
pneumonia and 504 negative. The fact that VGG16 achieves
good results for detecting pulmonary diseases strengthens
the hypothesis that the features extracted by the network
are relevant to the task and therefore, as detected from our
experiments, related to some sort of bias within the images.
One of the drawbacks of CNNs is that they often need
large amounts of data to learn and, while generic CXR
databases are available, public existing COVID-19 datasets
are composed of a few images that were collected by
volunteers [16]. As a consequence, these datasets show
unbalanced labels and a mix of different data sources that
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indicating the standard deviation.

makes getting a robust model and reliable performance
measures difficult. In this regard, some articles report the
problem of small and unbalanced datasets for COVID-19
detection [4], [32], and propose solutions to mitigate the
problem.

Bias analysis has been tackled by other authors. For
instance, in [33] the authors proposed that train and test
partitions should come from different datasets (related to the
same task), as the classifier is trying to achieve maximum
performance over a certain task and not over a dataset. This
may also assert the true generalization capacity of the classi-
fier. On the other hand, [34] sought to minimize the effects
of different biased datasets by way of converting different
dataset observations to prototypes, greatly reducing possible
intra-dataset specific features.

Recently, [35] addresses this issue for COVID-19 detection
and reports that the problem of mixing different datasets may
lead the network to learn background information. Our study
performs a similar approach to the one presented in thisar-
ticle, i.e. both study possible biases within the lungs. [35]
occludes the lungs with rectangular fixed-size black boxes
and measures the accuracy achieved. However, the proposed
methodology extends the concept proposed to more precise
masks and progressive inclusion and exclusion of information
to the learning process. This allows the ability to detect
where the bias approximately is and enables more precise bias
estimation.
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Furthermore, [36] studies bias within the nCov2019 dataset
using information about patients (symptoms, comorbidities,
age, and sex). This dataset collects clinical data from differ-
ent sources rather than images. They found significant bias
related to the origin of the data and exposed several issues
related to multisource variability.

This article is focused on detecting some biases within
widely used CXR datasets to glimpse the degree to which
these biases affect the results and proposes a bias detection
methodology to assert the validity of results. This methodol-
ogy makes use of techniques such as heatmap visualization,
histogram analysis and selective image occlusion which are
combined to evaluate which parts of the images are being
used as discriminative features for a classification task. In this
work, this methodology has been applied in two case scenar-
ios, one for the existence of bias on individual pneumonia
datasets and another to detect the existence of bias in a mix
of datasets.

V. LIMITATIONS OF THE STUDY

Regarding possible limitations, there could be a problem with
the methodology proposed, since the segmentation masks
used for expansion and reduction may be biased themselves.
The segmentation process might be more prone to fail in
images with pneumonia since the borders of the lungs are
more diffuse, whereas this could not happen in images of
control patients. This could pose a significant difference
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between cases and controls masks, and therefore, we might
be introducing a new bias that would imply a problem with
the proposed methodology.

However, to rule this out, we designed an experiment where
the occlusion masks were substituted by rectangles the size
of the lungs. This experiment is similar to the one presented
in [35], but here we ensure that the lungs are completely
removed using the segmentation mask shape whereas in the
aforementioned work they just place a fixed size black rect-
angle in the central area leaving some lung area uncovered.
Some examples from our method can be seen in Figure 11.
The results achieved for BIMCV’s dataset can be seen
in Figure 12, where the differences found are not significant,
suggesting that the shape of the lung masks is not influencing
the bias detection algorithm proposed.

Furthermore, to increase the confidence in our conclusions,
we pre-processed all the images by means of CLAHE his-
togram normalization to assert how this pre-process affected
the results. As can be seen in Figure 13, there is no difference
in the results achieved between the normalized and plain
images.

Talking about strengths, the results of the experiments
described in Section IT1I-B demonstrated that the classification
rate does not improve when the background area is included
in the images, which means that either there is no bias
specifically on the background or the most significant bias
is already within the lungs. However, when the lung area
is progressively removed from the image we find in both
experiments that the accuracy does not decrease, suggesting
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that the system is classifying the images according to some
elements present in the whole image, not only inside the
lungs. That result confirms the hypothesis that powerful sys-
tems like Convolutional Networks can find subtle features
in the images and give optimistic classification results if no
measures are taken to avoid biases in the data.

To summarize, further research should be conducted to
reduce the impact of the intrinsic bias for the datasets whose
images are collected from several sources. Recent literature
has demonstrated the emergence of methodologies useful
to reduce the impact of such a bias. Image preprocess-
ing methods [22] or deep learning architectures designed
to deal with biased datasets [37] may be a good starting
point.

VI. CONCLUSION

In this work, a novel methodology to assess the existence of
bias in CXR image datasets is presented. Techniques such
as activation heatmap visualization, histogram analysis and
selective image occlusion are combined to evaluate which
part of the images are being used as discriminative features
for a classification task. In this case, the regions of interest
were the lungs. The datasets used show different levels of
bias, these comprising datasets that try to make informa-
tion quickly available in an urgent scenario like the current
COVID-19 crisis. Some examples are BIMCV’s collection or
the combination of datasets created for this purpose, which
are the ones with more problems. The results are confirmed
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with the other methodologies used, such as the FDR of the
activation map or the histogram analysis.

The study of the effects of combining datasets from differ-
ent sources is especially interesting because it shows that, if it
is not strictly controlled, important biases can be induced in
the final dataset. A typical solution for the lack of samples
of a given class is to compile different datasets into one that
collects all the categories to study, as the recent COVID-19
datasets. In particular, the widely used COVIDcxr dataset,
built from different sources, might in fact have included
significant biases that inadvertently affected the results pub-
lished. This kind of heterogeneous dataset often mix observa-
tions coming from very diverse equipment, acquisition proto-
cols and processing software. In that context, features found
by Deep Convolutional Networks in the images, including the
background areas, are enough to get a good classification rate,
whilst the actual performance of the classifier for the clinical
task attempted can be much lower.
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