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ABSTRACT

The oblique collisions between two axisymmetric disks moving on a flat horizontal surface are described in terms of impact modeling based
on the assumption that normal and tangential restitution mechanisms operate independently of friction. Describing these mechanisms in
terms of the usual Coulomb formulation, the model allows for an interpretation of some “anomalous” experimental data reported in the
literature. These experimental data, corresponding to the variation of the coefficients of friction and tangential restitution with the impact
angle, remained unexplained in classic formulations, are understood within the framework of the independent friction-restitution closure.
Experimental data for metallic coins are in agreement with that formulation, including rolling friction effects.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0044963

I. INTRODUCTION

Collisions are extensively treated in the mechanics literature deal-
ing with fluid mechanics,1–6 granular matter,7–9 and aerosol sci-
ence,10,11 among other fields. Much of this research is focused on the
impact of spheres on surfaces12–17 and two-sphere collisions.18–20

More recently, the description of collisions between particles and
fluid/wall collisions is receiving attention because of the difficulty to
describe out-of-equilibrium situations21,22 and the determination of
flow velocity in deflected nanotubes.23 In this context, several studies
have evidenced the interest of disk collisions in fluid mechanics.24,25

These phenomena are described using two general approaches:
in smooth or continuous modeling, the impact event is described in
terms of forces acting during a finite time in a small region where the
contact between the bodies occurs (the contacting points); in non-
smooth or discontinuous modeling, the impact is described in terms
of instantaneous impulses determining abrupt changes in the linear
and angular momentums of the colliding bodies.26,27 Real, inelastic
impacts are governed by the laws of conservation of linear and angular
momentums, but significant energy is involved in elastoplastic defor-
mations, vibrations, and wave propagation. In the following, these last
energy terms will be neglected, as is customary in the abundant litera-
ture on impact under predominating elastoplastic contact at moderate
velocities.28–35

There is abundant experimental evidence supporting the idea
that the impact between rigid bodies involves at least two different
dynamic regimes. In a sliding collision, the tangential components of
precollision and postcollision relative velocities at the contact point are
both nonzero and projected in the same direction. Such collisions are
termed as sliding,28–31 gross sliding collisions,32 continuous sliding,33

persistent sliding,34 or fully sliding.35 The collisions where the above
condition does not apply are termed as no-sliding,29 partially sliding,35

rolling,28 nonpersistent sliding,34 noncontinuous sliding,33 or sticking
collisions.31 In the following, we will use the terms sliding and sticking
to identify these impact regimes.

In the discontinuous modeling of collisions, the information of
the impact events is obtained from Newton’s equations providing that
the geometry and impulses are known. These impulses, however, have
to be defined independently from Newton’s equations. The first level
of description is based on the use of the coefficients of restitution
(normal and tangential) and friction. These are phenomenological
coefficients, assumed—in principle—to be independent of the incom-
ing velocity and impact angle and only dependent on the materials of
the bodies. The view of these coefficients as “constants,” however, is a
rough approximation that can only be considered as reasonably valid
under conditions of low-velocity impact without adhesive and/or vis-
cous effects.36,37
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Two aspects have been unanimously treated in the literature on
collisions under moderate impact velocities and elastoplastic contact
between rigid bodies where energy losses are expressed in terms of res-
titution and friction.26–40 The first one is the expression of normal
impulses in terms of the coefficient of normal restitution, en. Although
dynamic definitions are possible,26 it is in general kinematically
defined as the negative ratio of the postimpact to preimpact normal
components of the relative velocity of the contacting points of the col-
liding bodies27,28,33,38–40 (or equivalently, in terms of the center-of-
mass velocities).8,34,41–43 The second one is the description of impact
in sliding regime on the basis of Coulomb friction laws assuming that
the tangential impulse to normal impulse ratio in an oblique, two-
dimensional sliding collision is equal to the coefficient of (kinetic)
friction.28–31

To describe the stick regime of impact, however, there are a vari-
ety of approaches. In the models of Brach29 and Kane and Levinson,30

it is assumed that the tangential relative velocity of the contact point of
the colliding bodies is zero just after the impact. This condition,
however, is contradicted by experimental data revealing that, in stick-
ing collisions, there is a reversal of such relative tangential
velocity.28,33–35,38–43

This difficulty is solved by Walton’s model38 in which the colli-
sions in sticking regime are described in terms of the coefficient of tan-
gential restitution, et. Here, we will adopt the definition of this
coefficient as the negative ratio of the postcollision to precollision tan-
gential components of the relative velocity of the contacting points of
the bodies.38–40 Although this model shows, in general, a satisfactory
agreement with experimental data, it does not capture, as emphasized
by Calsamiglia et al.,35 that entire range of impact angles with a single
value of et

8,39–43 and is unable to justify several “anomalous” experi-
mental results reported by Louge et al.39,40,44 and Chatterjee et al.35,45

The same difficulties appear for continuous–discontinuous models
considering contact force models ultimately inspired by the Hertz’s
contact theory.28,32,41,42,46–56 In these models, Young’s modulus and
the Poisson’s coefficient enter in the motion equations. These formula-
tions, although agree with experimental data, offer several problems
underlined by Kim and Dunn10 and Thornton et al.:54,55 (i) they pro-
vide semianalytical solutions of the equations of motion; (ii) involve
the use of an adjustable parameter, the tangential to normal stiffnesses;
(iii) require that some adjustable physical parameters (Young’s modu-
lus and Poisson’s coefficient) have to be known a priori, i.e., from
experiments independent of the impact event.

In this context, an alternative model was proposed within the
level of significance of this type of formulations, assuming that the res-
titution and friction effects operate independently and simultaneously
in all impact regimes.57–59 This closure involves the redefinition of
normal restitution and tangential restitution as the aforementioned
velocity ratios in the absence of frictional effects. In turn, friction is for-
mulated on the basis of the Coulombs laws as acting in the absence of
tangential restitution effects. As a result, the independent friction-
restitution modeling (IFR) yields analytical solutions of the motion
equations using a unique set of values of the coefficients of normal res-
titution, tangential restitution, and friction regardless of the impact of
angle values. Application of this closure to the impact of spheres and
disks on infinitely massive rough planes provided a satisfactory agree-
ment with experimental data in the literature10,11,28,31,33–35,39–47 for
macrospheres58,59 and microspheres,60 admitting the refinement by

incorporating rolling friction effects,61 in line with Iwashita and Oda62

and Orlando and Shen.63 In particular, the IFR formulation permits to
interpret several of the previously mentioned “anomalous” experimen-
tal data35,39,40,44,45 now becoming as “ordinary” behavior predicted by
the model.

The purpose of the current work is (i) to extend the IFR model
previously applied to the rebound of spheres on massive planes, to
two-body collisions, taking two axisymmetric disks, one of which
being initially at rest, moving on a flat horizontal surface (ii) discuss
the effect of arbitrary masses and initial rotation to describe the post-
impact parameters; (iii) compare the predictions of the IFR model
with classic impact ones; (iv) discuss the influence of rolling friction
effects. As a result, the postcollision linear and angular velocities can
be expressed as a function of the precollision ones as well as velocity-
independent relationships between the angles of impact and scattering,
able to be experimentally tested. This formulation improves those pre-
viously reported for the collisions of disks64 based on Brach’s model.29

Consideration of the translational and rotational motions of disks on
surfaces25,65 permits to propose additional testable relationships.
Experimental data for the collisions of different pairs of disks on rough
surfaces were obtained using a conventional photographic-assisted
arrangement.64

II. THEORY
A. General aspects

Let us consider the oblique impact of an axisymmetric disk, of
mass m1 and radius R1, moving on a horizontal, flat surface, on a sec-
ond homogenous disk of mass m2 and radius R2, which is initially at
rest, as schematically represented in Fig. 1. A normal-tangential coor-
dinate system will be used, the normal axis connecting the disk’s cen-
ters at the collision, and the tangential axis being perpendicular to the
above.

The motion equations are governed by the laws of conservation
of linear and angular momentum whereas energy is not conserved. In
order to establish explicit relationships between the factors (restitution
and friction, vide infra) influencing energy losses, it will be assumed

FIG. 1. Scheme for the oblique impact between axisymmetric disks moving on a
horizontal, flat surface. Inset: Diagram for the impulses acting on disks 1 and 2
during the impact event.
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that, during the “instantaneous” impact event, tangential and normal
impulses, Pt, Pn, act on the disks. Such linear impulses can be related
to the tangential and normal components (denoted in the following by
the subscripts t, n) of the center of mass velocity of the disk 1 before
the impact (vo) and the corresponding velocities of the disks just after
the impact (v1, v2), by means of the following relationships:

Pn ¼ m2v2n ¼ �ðm1v1n �m1vonÞ; (1)

Pt ¼ m2v2t ¼ �ðm1v1t �m1votÞ: (2)

If the disks have inertia moments I1 (¼m1R1/k1) and I2 (¼ m2R2/k2),
the angular velocities before (xo) and after the impact, (x1,x2), will be
related by

Pt ¼
1
k2

m2R2x2 ¼ �
1
k1

m1ðR1x1 � R1xoÞ: (3)

In the IFR closure, it will be assumed that the net impulses Pt, Pn,
result from the sum of independent contributions due to friction and
restitution mechanisms. In the normal direction, only normal restitu-
tion operates, while in the tangential direction, linear impulses due to
restitution, Pte, and friction, Pf, will be considered, as schematized in
Fig. 2. The inelasticity of the impact can be described in terms of the
normal coefficient of restitution, en, as V2n � V1n ¼ enVon, where the
normal components of the disk’s velocities of the contacting point
before (Von) and after the impact (V1n,V2n) are introduced. For a cen-
tral impact between homogeneous disks, such velocity components,
equal the corresponding normal velocities of the mass centers so that,
introducing the angles of impact (w) and scattering depicted in Fig. 1,
the above definition leads to

v2 cos d2 � v1 cos d1 ¼ envo cosw: (4)

Combining Eqs. (1) and (4) and introducing the mass ratio, M (¼m1/
m2), the normal impulse can be expressed as a function of the normal
coefficient of restitution as

jPnj ¼ m1
1þ en
1þM

� �
vo cosw; (5)

while the normal components of the center of mass velocity of the
disks will be

v1n ¼
M � en
1þM

� �
vo cosw; (6)

v2n ¼ M
1þ en
1þM

� �
vo cosw: (7)

The impulse due to tangential restitution, Pet, will be expressed in
terms of the coefficient of tangential restitution, et, defined here as the
negative ratio of the postimpact to preimpact tangential components
of the relative velocity of the contacting points of the disks when fric-
tion effects are negligible. Upon these idealized circumstances, et can be
related to the tangential components of velocity of the contacting
points, Vot, V1t, V2t, by means of the relationship V2t � V1t¼ etVot.
Since Vj¼ vj þ Rjxj (j¼ 0, 1, 2), combining the above definition with
Eqs. (2) and (3) yields

jPetj ¼ m1ð1þ etÞ
vo sinwþ R1xo

1þ k1 þMð1þ k2Þ

� �
: (8)

B. Sliding regime

This expression corresponds to the linear impulse associated with
the tangential restitution mechanism. As previously noted, it will be
assumed that both the normal impulse given by Eq. (5) and the tan-
gential restitution impulse provided by Eq. (8) act simultaneously dur-
ing the impact regardless of the collision regime. The effective
tangential impulse should incorporate, however, the contribution of
the friction mechanism. The friction impulse, Pf, when sliding occurs
will be taken, as usual, as

jPf j ¼ lm1
1þ en
1þM

� �
vo cosw: (9)

Then, the net tangential impulse will be the sum of Pet and Pf. It has to
be noted that the sign of these impulses will depend on the direction
of Vot. In the following, for simplicity, we consider the case in which
Vot > 0. Then, the center of mass tangential components of velocity
after impact will be

v1t ¼ vo sinw� ð1þ etÞ
vo sinwþ R1xo

1þ k1 þMð1þ k2Þ

� �

� lM
1þ en
1þM

� �
vo cosw; (10)

v2t¼ð1þetÞM
vo sinwþR1xo

1þk1þMð1þk2Þ

� �
þlM

1þen
1þM

� �
vo cosw: (11)

C. Sticking regime

The description of collisions in the stick regime is made difficult
by the fact that we do not dispose of a constitutive equation equivalent
to the Coulomb law for sliding friction.36,53,56 Two different approxi-
mations can be taken. The first one is equivalent to that used in classic

FIG. 2. Schemes to define the percussion center of a disk (up) and the condition of
type-B sticking (down) in the oblique impact of two disks moving on a horizontal
surface.
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models29,30 to describe collisions in stick regime and can be expressed
as v1t � R1x1¼V2t þ R2x2. In the IFR modeling, this condition is
reformulated assuming that the postcollision components of tangential
velocity of the contact points of the disks are equal in the absence of
restitution effects.57,58 This condition, in the following labeled as
“contact point model,” leads to

jPf j ¼ m1
vo sinwþ R1xo

1þ k1 þMð1þ k2Þ

� �
; (12)

and the tangential components of the center of mass velocities will be

v1t ¼ vo sinw� ð2þ etÞ
vo sinwþ R1xo

1þ k1 þMð1þ k2Þ

� �
; (13)

v2t ¼ ð2þ etÞ
vo sinwþ R1xo

1þ k1 þMð1þ k2Þ

� �
: (14)

A second approximation is based on the well-known concept of per-
cussion center in rigid body mechanics. In short, the percussion center
is a point of the body where the application of an impulsive force
results in the subsequent pure rolling motion of the body. In this per-
cussion center approach, the condition of impact with sticking is for-
mulated as assuming that the tangential velocities of the percussion
centers in the absence of restitution effects are equal just after the
impact.59,60 This model will be termed in the following as “percussion
center model.” In the case of homogeneous disks, these are located at a
distance R/k from the center (see scheme in Fig. 2) so that the friction
impulse is given by

jPf j ¼ m1
vo sinwþ R1xo

2ð1þMÞ

� �
: (15)

Then, the tangential components of the center of mass velocities will
be

v1t ¼ vo sinw� 2ð1þ etÞð1þMÞ þ 1þ k1 þMð1þ k2Þ
2ð1þMÞ 1þ k1 þMð1þ k2Þ½ �

� �

� ðvo sinwþ R1xoÞ; (16)

v2t ¼M
2ð1þ etÞð1þMÞ þ 1þ k1 þMð1þ k2Þ

2ð1þMÞ 1þ k1 þMð1þ k2Þ½ �

� �

� ðvo sinwþ R1xoÞ: (17)

D. Postimpact angles. Particular cases

The obtained equations are notably simplified for the case of
homogeneous disks (k1¼ k2¼ 2) colliding without initial spin
(xo¼ 0), yielding simple expressions for the rebound angles which
can be experimentally tested. The postcollision angles when the impact
takes place in the sliding regime are

tan d1 ¼
v1t
v1n
¼ 3ð1þMÞ � ð1þ etÞ

3ðM � enÞ

� �
tanw� l

1þ en
M � en

� �
; (18)

tan d2 ¼
v2t
v2n
¼ lþ 1

3
1þ et
1þ en

� �
tanw: (19)

For the contact point model of sticking collisions,

tan d1 ¼
3ð1þMÞ � ð2þ etÞ

3ðM � enÞ

� �
tanw; (20)

tan d2 ¼
1
3

2þ et
1þ en

� �
tanw: (21)

For the percussion point model of sticking collisions,

tan d1 ¼
6ð1þMÞ � ð5þ 2etÞ

6ðM � enÞ
tanw; (22)

tan d2 ¼
5þ 2et
6ð1þ enÞ

� �
tanw: (23)

All the precedent expressions can be extended to the case of the
rebound of a disk on an infinitely massive plane simply taking
M¼ 0.59 It is pertinent to underline here that, in contrast with the
abundant literature on the impact of rigid bodies on infinitely massive
half-spaces, the current approach considers impacts between objects of
finite masses where the mass ratioM plays a crucial role.

The transition between the sliding and sticking regimes is inde-
pendent of the masses of the disks. In the case of the contact point and
percussion point sticking, the transition occurs at impact angles wtransit

given by

tanwtransit ¼ 3l
1þ en
1þ et

� �
; (24)

tanwtransit ¼ 2l ð1þ enÞ; (25)

respectively.

E. The “anomalous” tangential restitution

It is pertinent to note that the IFR model reduces to the
Walton’s38 and Brach’s29 models for sliding collisions taking et¼�1
and reduces to the Brach’s model of no sliding29 taking et¼ 0. As
previously noted, Walton’s discontinuous model38–40 as well as the
continuous–discontinuous models based on the formulation of Maw
et al.10,11,28,33,34,42,43,46,47 involves tangential restitution coefficients.
These are usually defined as the (often minus) ratio of the tangential
component of the velocities of the contact point before and after
impact, although often defined in terms of the center of mass velocities.
This tangential coefficient of restitution, et(

�) in the following, varies
significantly with the impact angle.

As far as the coefficients of tangential restitution are defined in
previous models in the literature based on the “net” tangential veloci-
ties of the contact points, the et(

�) coefficient is representative of the
net tangential impulse. As a result, et(

�) not only depends on the mate-
rials constituting the colliding bodies but also on the impact angle.
This is to some extent in contradiction with the conception of the nor-
mal coefficient of restitution (and the coefficient of sliding friction) in
the same classic models, where these parameters only depend on the
materials. The values of the et(

�) coefficient may in principle range
between 1 for a tangentially elastic impact and 0, corresponding to the
totally inelastic impact in the tangential direction, but energy consider-
ations including friction effects have to be considered, as discussed by
Louge and Adams.44 In the IFR closure, the different definitions of et
(as the negative ratio of the tangential velocities of the contact points
in the absence of friction effects) ensure that this coefficient is indepen-
dent of the impact angle. Then, the value et¼�1 value corresponding
formally to the absence of tangential restitution effects but not of

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 043305 (2021); doi: 10.1063/5.0044963 33, 043305-4

Published under license by AIP Publishing

https://scitation.org/journal/phf


friction ones. Again, energy considerations have to be introduced, as
discussed for the oblique impact of spheres on infinitely massive
planes.58

This coefficient of restitution, et(
�), can easily be correlated with

the coefficient of restitution defined in the IFR closure (defined from
the velocities in the absence of friction effects), et, from the tangential
velocities of the contacting points of the disks. In the case of collisions
with sliding, Eqs. (2), (3), (8), and (9) yield

etð�Þ ¼ et þ 3lð1þ enÞcotanw (26)

This means that the variation of the coefficient of tangential restitution
with the impact angle obtained when experimental data are analyzed
with other models10,11,28,33,34,42,43,46,47 is “apparent” and can be justi-
fied in the theoretical frame of the IFR closure. In fact, Eq. (26) pre-
dicts a linear variation of the “apparent” coefficient of tangential
restitution, et(

�), with cotanw which is in agreement with experimental
data reported in the literature (see Fig. 8 in Ref. 47, Fig. 3 in Ref. 34,
Fig. 6 in Ref. 43, Fig. 8 in Ref. 11, Fig. 5 in Ref. 41, and Fig. 6 in Ref.
42). Figure 3 compares the et(

�) values reported by Kharaz et al.42 for
the impact of 5-mm aluminum oxide spheres on a thick soda–lime
glass anvil and Antonyuk et al.46 for the impact of Al2O3 granules on a
hardened steel plate. Data corresponding to the sliding regime display
a linear variation with cotanc that can be reproduced using Eq. (26)
with en¼ 0.98, et¼�0.96, l¼ 0.09, and en¼ 0.77, et¼�0.86,
l¼ 0.16, respectively. As previously noted, this variation of the
“apparent” tangential coefficient of restitution with the impact angle
can be justified in the IFR model based on a constant coefficient et.

For sticking collisions, the contact point and the percussion point
friction models lead to

et �ð Þ ¼ 1þ et; (27)

et �ð Þ ¼
3
2
þ et; (28)

respectively. It is pertinent to note that the stick occurs when the sur-
face properties (roughness, porosity, asperities48) determine the
appearance of sufficiently high friction effects to inhibit the slippage
between the surfaces in contact. As underlined by Schwager et al.,53

the no disposal of a constitutive model for friction in these conditions
(equivalent to Coulomb’s law for sliding friction) opens the possibility
to use different definition criteria. The two alternative models used to
describe impact in sticking regime (contact point and percussion point
models) only differ by a numerical coefficient (1, 3/2) representative of
the different adopted friction impulse model.

F. Stopping distances

After the impact, the disks slip over the horizontal surface with a
combination of translation and rotation so that the center of mass of
each disk continues in rectilinear motion, until both movements come
to a simultaneous stop.65 Under sliding friction conditions between
the disks and the supporting horizontal plane, the disks undergo uni-
form linear and angular decelerations so that translation and rotation
come to a simultaneous stop after covering distances d1, d2 which can
be easily measured. These distances must verify the relationship64

v2
v1
¼ d2

d1

� �1=2

; (29)

so that the experimental values of the (d2/d1)
1/2 ratio can be compared

with the theoretical v2/v1 ratios calculated from Eqs. (6), (7), (10), (11),
and (13), (14) or (16), (17).

As previously described,64 this two-disk arrangement can be
operationally viewed as an “inertial balance” devoted to determine
inertial mass (as different to conventional balances measuring gravita-
tional masses) based on collisions of the object body with the reference
body of mass unit so that the mass ratio can be determined from angle,
velocity, and/or stopping distance measurements

m2

m1
¼ v2 sin a2

v1 sin a1

� �
¼ d2

d1

� �1=2 sin a2
sin a1

� �
: (30)

G. Rolling friction effects

The center of mass motion previously considered is unaffected
by rolling friction effects. These can be introduced, as previously
described,61 by considering two regimes: rolling and nonrolling. In the
first case, rolling friction effects are described in terms of an additional
friction torque given by

Tf ¼ qPn; (31)

where q is the coefficient of rolling friction. It is assumed that this
is a material’s constant, independent of the incoming velocity,
impact angle, mass, and radii of the disks, having dimensions of
length. For simplicity, it will be considered only the case in which
two homogeneous disks collide without initial spin. In this case,
the nonrolling regime is described in terms of a friction torque that
can be expressed as

FIG. 3. Plots of et(
�) vs cotanc in the sliding regime region using experimental data

reported by Kharaz et al.42 for the impact of 5-mm aluminum oxide spheres on a
thick soda–lime glass anvil (circles) and Antonyuk et al.46 for the impact of Al2O3

granules on a hardened steel plate (solid circles). Theoretical lines from Eq. (26)
inserting en¼ 0.98, et¼�0.96,l¼ 0.09, and en¼ 0.77, et¼�0.86, l¼ 0.16,
respectively. Error bars were assumed to be of a 10% in cotanc and 60.02 units in
et(
�).
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jTf j ¼ m1r
vo sinwþ R1xo

3ð1þMÞ

� �
; (32)

where r¼ 2R1R2/(R1 þ R2). Notice that the sign of these angular
impulses will depend on the direction of the tangential component of
the velocity of the contacting point, Vot. The case of R1¼R2¼R, then
r¼R.

The introduction of rolling friction effects leads to four cases:
sliding plus rolling, sliding plus nonrolling, sticking plus rolling, and
sticking plus nonrolling. For brevity, only the expressions for the post-
collision angular velocity of the disk 2, the more easily measured quan-
tity, will be provided. In the case of sliding, the net tangential impulse,
Pt, becomes

jPtj ¼ m1
1þ et

3ð1þMÞ

� �
vo sinw�m1lM

1þ en
1þM

� �
vo cosw: (33)

Then, for the case of sliding plus rolling impact, combination of Eqs.
(31) and (33) gives

R2x2 ¼
2
3
M

1þ et
1þM

� �
vo sinwþ 2 l� q

R2

� �
M

1þ en
1þM

� �
vo cosw:

(34)

In turn, the case of sliding plus nonrolling can be derived from Eqs.
(32) and (33),

R2x2 ¼
2
3
M

1þ et � ðr=R2ÞM
1þM

� �
vo sinw

þ 2lM
1þ en
1þM

� �
vo cosw: (35)

In the contact point model of sticking, the net tangential impulse is

jPtj ¼ m1
vo sinw
3ð1þMÞ

� �
ð2þ etÞ; (36)

so that the sticking plus rolling and sticking plus nonrolling regimes
are described, respectively, by

R2x2 ¼
2
3
M

2þ et
1þM

� �
vo sinw� 2

q
R2

M
1þ en
1þM

� �
vo cosw; (37)

R2x2 ¼
2
3
M

2þ et � ðr=R2ÞM
1þM

� �
vo sinw: (38)

Finally, the percussion point model of sticking is represented by means
of a net tangential impulse

jPtj ¼ m1
vo sinw
6ð1þMÞ

� �
ð5þ 2etÞ: (39)

Accordingly, the percussion point sticking plus rolling and percussion
point sticking plus nonrolling regimes are described by the equations

R2x2 ¼
1
3
M

5þ 2et
1þM

� �
vo sinw� 2

q
R2

M
1þ en
1þM

� �
vo cosw; (40)

R2x2 ¼
2
3
M

5þ 2et � ðr=R2ÞM
1þM

� �
vo sinw; (41)

respectively.
Similar sets of equations can be developed for the apparent values

of the coefficient of tangential restitution. The corresponding expres-
sions for the different impact regimes are summarized in Table I.

III. EXPERIMENTAL DETAILS

The oblique impact between different coins was studied. Their
masses were determined with a balance being coincident with the
nominal masses at the level of 60.01 g. Bronze–aluminum (5 pts,
Spain 1981, mass 3.006 0.01 g, diameter 17.50mm; 100 pts, Spain
1983; mass 9.236 0.01 g, diameter 24.50mm; 500 pts, Spain 1985,
mass 12.006 0.01 g, diameter 28.00mm), copper-nickel (50 cts, Spain
1975; mass 7.806 0.01 g; diameter 24.25mm; 200 pts, Spain 1980,
mass 10.506 0.01 g, diameter 25.50mm,), and aluminum (mass
1.196 0.01 g, diameter 21.00mm) were used. Additional experiments
were performed with polyester resin disks (mass 4.036 0.02 g, diame-
ter 30.00mm). The angles of impact and rebound were measured
from images taken with an Olympus OM-D E-M1 Mark III digital
camera (CSC 80 MPixels) placed in zenithal position at a height of
75 cm over the laboratory bench. The images were taken at exposure
times of 0.5 and 1.0 s. The disks were projected with velocities between
0.20 and 1.5 m s�1 without initial spin using a rubber band powdered
launcher. The number of data points, N, ranged between 15 and 25,
being indicated in the respective figure captions. Uncertainties in angle
measurements in replicate experiments ranged typically between 0.5�

and 1�.

IV. RESULTS AND DISCUSSION

First, we studied the possible variation of the experimental
parameters with the impact velocity vo. Figure 4 shows the values of
the angle a measured for different impact velocities in the collisions
between two bronze–aluminum coins (M¼ 1.00) at impact angles of
16�, 30�, 45�, and 60�, all assumed to be 61�. The average values from
three replicate measurements carried out at each velocity are repre-
sented, the error bars corresponding to the separation between the

TABLE I. Theoretical expressions of the apparent coefficient of tangential restitution, et(
�), for the different impact regimes in the collisions between two homogeneous disks.

Notice that the equations in the first column reduce to Eqs. (26)–(28) taking q¼ 0.

Regime et(
�) Regime et(

�)

Skiding plus rolling et þ 3l� 2 q
r

� �
ð1þ enÞcotanw Sliding plus nonrolling et � 2þ 3lð1þ enÞcotanw

Sticking plus rolling,
contact point model

1þ et � 2 q
r ð1þ enÞcotanw Sticking plus nonrolling,

contact point model
et � 1

Sticking plus rolling,
percussion point model

3
2
þ et � 2

q
r
ð1þ enÞcotanw Sticking plus nonrolling,

percussion point model
et �

1
2
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extreme values. These data clearly suggest that, at each impact angle,
there is no variation of the a values with the impact velocity. As, ulti-
mately, the postimpact angle values will depend on the coefficients of
restitution and friction, the above experimental result suggests that
such coefficients can be taken as essentially velocity-independent
under our experimental conditions. Such data are coincident with
much experimental results reported in the literature where the normal
coefficient of restitution was found to be independent of the incoming
velocity.11,31,33–35,39–43,46,47 The following experimental data corre-
spond to measurements at vo¼ 1.0 6 0.1 m s�1.

Figure 5 depicts the variation of tand2 on tanw for oblique
impacts between two equal (a) copper–aluminum and (b) aluminum
coins. Consistently with the previous theoretical treatment, experi-
mental data at low and large impact angles can be fitted to two differ-
ent straight lines corresponding, respectively, to the collisions in
sticking and sliding regimes. To compare the alternative contact point
model [Eq. (21)] and the percussion point model [Eq. (23)] describing
the sticking regime, the parameters of the fitted straight lines (slope,
ordinate at the origin) corresponding to the sliding and sticking
regions were combined to calculate a set of en, et, and l values. In all
cases, the values for these parameters calculated from Eqs. (19) and
(23) were consistent with those calculated from the linear variations of
tand1 on tanw [Eqs. (18) and (22)]. In contrast, the en, et, and l values
calculated for the contact point model from Eqs. (19) and (21) and
from Eqs. (18) and (20) exhibited some discrepancies. Accordingly,
the percussion center model was selected as more appropriate to
describe experimental data under our experimental conditions.

As illustrated in Fig. 5, experimental data can be satisfactorily
correlated with theoretical predictions from Eqs. (19) (sliding regime)
and (23) (percussion point-type stick regime) inserting en¼ 0.80,
et¼�0.98, and l¼ 0.11 for copper–aluminum coins and en¼ 0.87,
et¼�0.88, and l¼ 0.21 for aluminum coins. These values fall within
the range of values of these coefficients calculated for different pairs of
materials applying the IFR model to the literature data.57–60 These val-
ues are coincident with the respective values of en and l calculated in
the literature applying classic models11,31,33–35,39–43,46,47 where the

values of l ranged between 0.0540 and 0.20,39 while the values of en
ranged between 0.5346 and 0.9733,40 (see Ref. 59 for a comparative
table).

Experimental data at low impact angles can also be fitted to Eq.
(21), corresponding to the contact point model of the sticking regime,
but the values of en and et offered relatively large variations between
the different sets of coins, so that the percussion point model of stick-
ing was used. Table II summarizes the characteristics of the studied
disks and the estimated values of the coefficients of friction, and nor-
mal restitution, and tangential restitution.

Figure 5 illustrates how the IFR model agrees with experi-
mental data in the sliding region (large impact angles) where the
plots of tand2 on tanw fit to an inclined straight line. This repre-
sentation is equivalent to the variation of the tangential to normal
impulse ratio on tanw that, in classic models, is predicted to be
constant and equal to l (prediction denoted by dotted lines). The
data in Fig. 5 are coincident with those in the literature data that
were considered as “anomalous”35,39,40,44,45 in the standard mod-
els where restitution and friction are coupled. In contrast, the IFR
closure, on separating the contributions of restitution and friction,
permits to include these results within the “ordinary” impact
behavior.

In accordance with the theoretical model, the values of d2
recorded for impacts of coins of the same material but different masses
were found to be independent of the mass ratio M. In contrast, and
also in agreement with theory, the values of the angle d1 varied with
the mass ratio, as can be seen in Fig. 6. Experimental data points can
be satisfactorily correlated with theoretical curves from Eqs. (18) (slid-
ing regime) and (22) (stick regime) inserting en¼ 0.90, et¼�0.90,
and l¼ 0.15. The agreement between theory and experimental data in
the sticking region is illustrated in Fig. 7, where the plots of tand1 vs
tanw for the impacts of the above bronze–aluminum coins are shown.
Here, error bars correspond to the averaged separation between the

FIG. 4. Values of the angle a measured at five different impact velocities (vo) mea-
sured in the impact between two bronze–aluminum coins (M¼ 1.00) at impact
angles of 16�, 30�, 45�, and 60�.

FIG. 5. Plots of tand2 vs tanw for impacts between two equal (a) copper–aluminum
and (b) aluminum coins. Experimental data points (N¼ 25) and theoretical values
from Eqs. (19) (sliding regime) and (23) (stick regime) inserting en¼ 0.80,
et¼�0.98, and l¼ 0.11 (copper–aluminum) and en¼ 0.87, et¼�0.88, and
l¼ 0.21 (aluminum). The sliding region shows the “anomalous” deviation relative
to the standard models whose prediction is denoted by dotted lines.
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extreme values in three replicate measurements. In Fig. 6, as well as in
Figs. 8 and 9, the error bars fall within the represented figures.

The angle a1 is particularly sensitive to the differences between
the materials. This can be seen in Fig. 8 where the variation of this
angle with the impact angle for oblique collisions of aluminum coins
and polyester resin disks (in both cases with M¼ 1.00) is shown.
Experimental data can be fitted satisfactorily to theoretical curves for
collisions in sliding [Eq. (18)] and sticking regime [Eq. (22)] taking
en¼ 0.87, et¼�0.88, and l¼ 0.21 (aluminum) and en¼ 0.67,
et¼�0.95, and l¼ 0.14 (polyester resin). These differences can be
associated with the different elastoplastic properties, ultimately
Young’s modulus and Poisson’s coefficient, between the “bulk” materi-
als, and the roughness/asperity of the surfaces. According to the IFR
closure, the former properties will determine the values of the normal
and tangential coefficients of restitution while the latter will determine
the values of the friction coefficient.

Similarly, the angle a1 is also sensitive to changes in the mass
ratio. This can be seen in Fig. 9 in which the a1 vs w plots for oblique
collisions of bronze–aluminum coins with M¼ 1.28, M¼ 1.00, and

TABLE II. Main characteristics of the studied disks, optimized values of the coefficients of restitution and friction and the sticking-sliding transition angle.

Disks Material M en et l wtransit (deg)

25 cts–25 cts coins Copper–nickel 1.00 0.86 �0.99 0.19 35.2
1 pta–1 pta coins Aluminum 1.00 0.87 �0.88 0.21 38.1
5 pts–5 pts coins Bronze–aluminum 1.00 0.80 �0.98 0.11 21.6
200 pts–200 pts coins Copper–nickel 1.00 0.77 �0.96 0.15 28.0
500 pts-100 pts coins Bronze–aluminum 1.28 0.90 �0.90 0.15 29.6
100 pts-100 pts coins Bronze–aluminum 1.00 0.90 �0.90 0.15 29.6
100 pts-500 pts coins Bronze–aluminum 0.79 0.90 �0.90 0.15 29.6
Polyester resin disks Polyester resin 1.00 0.67 �0.95 0.14 25.1

FIG. 6. Plots of d1 vs w for impacts between bronze–aluminum coins of different
mass ratios. Experimental data points (N¼ 20) and theoretical values (continuous
lines) from Eqs. (18) (sliding regime) and (22) (stick regime) inserting en¼ 0.90,
et¼�0.90, and l¼ 0.15.

FIG. 7. Plots of tand1 vs tanw for impacts between bronze–aluminum coins of dif-
ferent mass ratios in the region of sticking regime (low impact angles).
Experimental data points (N¼ 18) and theoretical values (continuous lines) from
Eq. (22) inserting en¼ 0.90 and et¼�0.90.

FIG. 8. Variation of the angle a1 with the impact angle for oblique collisions of alu-
minum coins (squares, M¼ 1.00) and polyester resin disks (solid squares,
M¼ 1.00). Experimental data points (N¼ 25) and theoretical lines for collisions in
sliding [Eq. (18)] and sticking regime [Eq. (22)] taking en¼ 0.87, et¼�0.88, and
l¼ 0.21 (aluminum) and en¼ 0.67, et¼�0.95, and l¼ 0.14 (polyester resin).
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M¼ 0.78 are compared. For all three mass ratios, experimental data
are consistent with theoretical curves from Eq. (18) (sliding regime)
and Eq. (22) (sticking regime) taking a unique set of values of the coef-
ficients of restitution and friction: en¼ 0.90, et¼�0.90, and l¼ 0.15.

Similar agreement between theory and experiment was obtained
using the variation of the (d2/d1)

1/2 ratio on the impact angle. This is
exemplified by the data for aluminum coins (M¼ 1) shown in Fig. 10.
Here, experimental data are superimposed with the theoretical predic-
tion combining Eqs. (6), (7), (10), (11) (sliding) and (6), (7), (16), (17)
(sticking) taking inserting en¼ 0.87, et¼�0.88, and l¼ 0.21. These
results underline the importance of the mass ratio to modulate the
postimpact velocities both in direction (postimpact angles) and abso-
lute value. As previously noted, this system can also be seen as an iner-
tial balance to measure inertial masses.

Rolling friction effects were studied from the experimental values
of the R2x2/vo ratio. Figure 11 depicts the variation of this ratio with
the impact angle determined for collisions between two bronze–alumi-
num coins withM¼ 1.00. Experimental data are consistent with theo-
retical lines for collisions in sliding plus rolling [Eq. (34)] and sticking
plus rolling [Eq. (40)] regimes taking en¼ 0.90, et¼�0.90, l¼ 0.15,
and q/R2¼ 0.02. The stick plus nonrolling regime, which should occur
at very small impact angles,61 cannot be detected here. Under our
experimental conditions, however, rolling friction effects cannot be
accurately detected, experimental data being close to the theoretical
predictions neglecting such effects (dotted lines in Fig. 11). In all cases,
the values of the q/R2 ratio estimated from experimental data were in
the 0.01–0.03 range.

Finally, the proposed IFR model describes satisfactorily the varia-
tion of the “apparent” coefficient of tangential restitution defined in
the standard models, et(

�), with the impact angle. For simplicity, and
taking into account the previous results on R2x2/vo, rolling friction
effects will be neglected here. Figure 12 compares the experimental
data from velocity measurements at the contact points of two colliding
polyester resin disks of equal mass with theory from Eqs. (26) (sliding)
and (28) taking en¼ 0.67, et¼�0.95, and l¼ 0.14. In the sliding
region, a linear variation of et(

�) on cotanw is obtained. This represen-
tation is equivalent to those reported in the literature (see Fig. 8 in
Ref. 47, Fig. 3 in Ref. 35, Fig. 6 in Ref. 43, Fig. 8 in Ref. 11, Fig. 5 in
Ref. 41, and Fig. 6 in Ref. 42) and illustrates the suitability of the IFR
closure to justify this “anomaly” which becomes within the “ordinary”
behavior predicted by this model.

In spite of its simplicity, the IFR model permits to describe two-
disk impact events with satisfactory fit to experimental data under
conditions of low velocity and absence of adhesive effects. Two aspects
can be underlined: (i) the model does not use any adjustable parameter
and does not require the previous knowledge of some empirical

FIG. 9. Variation of the angle a1 with the impact angle for oblique collisions of bron-
ze–aluminum coins with M¼ 1.28, M¼ 1.00, and M¼ 0.78. Experimental data
points (N¼ 20) and theoretical lines for collisions in sliding [Eq. (18)] and sticking
regime [Eq. (22)] taking en¼ 0.90, et¼�0.90, and l¼ 0.15.

FIG. 10. Variation of the (d2/d1)
1/2 ratio with the angle of impact for collisions

between aluminum coins of M¼ 1. Experimental data (N¼ 25) and theoretical line
inserting en¼ 0.87, et¼�0.88, and l¼ 0.21 into Eqs. (6), (7), (10), (11) (sliding)
and (6), (7), (16), (17) (sticking).

FIG. 11. Experimental data (N¼ 21) of the R2x2/vo ratio vs the impact angle deter-
mined for collisions between two bronze–aluminum coins with M¼ 1.00 and theo-
retical lines for collisions in sliding plus rolling [Eq. (34)] and sticking plus rolling
[Eq. (40)] regimes taking en¼ 0.90, et¼�0.90, l¼ 0.15, and q/R2¼ 0.02. The
dotted lines correspond to the same theoretical predictions taking q/R2¼ 0.02, i.e.,
ignoring rolling friction effects.
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information (Young’s modulus and Poisson’s coefficient) from experi-
ments independent of the impact event, problems of the standard
models:10,54,55 (ii) the interpretation of several experimental data con-
sidered as “anomalous” within the context of the standard mod-
els,35,39,40,44,45 now falling within the “ordinary” impact behavior.

V. CONCLUSIONS

The oblique collisions between axisymmetric disks can be mod-
eled upon assuming that restitution and friction effects can be repre-
sented by tangential linear impulses acting independently. Introducing
a restricted definition of the tangential coefficient of restitution in
terms of the relative tangential components of the velocities of the con-
tacting points of the disks in the absence of friction is possible to pro-
pose constitutive definitions for the impulse due to tangential
restitution. Combining such impulses with those due to normal resti-
tution and friction, the postimpact linear and angular velocities and
scattering angles can be obtained as a function of the impact angle,
masses, initial linear and angular velocity, and the coefficients of nor-
mal restitution, tangential restitution, and friction.

Experimental data for two-disk collisions of different materials
and mass ratios are in satisfactory agreement with theoretical predic-
tions from the sliding and sticking regimes using a unique set of
velocity-independent coefficients of friction and normal and tangential
restitution. The values of such coefficients can be seen within the IFR
closure as resulting from the roughness/asperity of the surfaces in con-
tact and the elastic properties of the bulk materials, respectively. The
formulation proposed here permits to justify a series of experimental
results considered as “anomalous” when studied using the standard
models, that are regarded as being within the “ordinary” impact
behavior predicted by the independent friction-restitution model.
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