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Abstract

This paper proposes an Energy Management Strategy (EMS) for a plug-in par-

allel Hybrid Electric Vehicle (pHEV) with the goal of minimising the fuel con-

sumption while fulfilling the constraint on the terminal battery State-of-Charge

(SoC). The proposed strategy assumes that the route was previously covered

several times by the vehicle, in order to extract information about the feasible

operating conditions in the driving cycle. Note that this situation is usual in

commuting and daily trips. In this sense, the history of vehicle speeds and posi-

tions are used to build space-dependent transition probability matrices that are

latter used for driving cycle estimation by means of Markov-Chain approach.

Once the driving cycle is estimated, the torque-split problem in parallel hy-

brid powertrain is addressed using the Equivalent Consumption Minimisation

Strategy (ECMS), where the associated boundary value problem of finding the

weighting factor between battery and fuel cost that drives the SoC to the de-

sired level at the end of the estimated cycle is solved and applied to the system.

Finally, in order to make up for cycle estimation error, the ECMS is solved re-

currently. For the sake of clarity, the proposed strategy is initially developed and

analysed in a modelling environment. Then tests in an engine-in-the-loop basis

are done for validation. In order to show the potential of proposed strategy,

results are presented using a trade-off between the fuel consumption and the
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terminal-SoC for four different methods: the optimal power-split that requires

a priori knowledge of the driving cycle for benchmarking, online ECMS with

a fixed cycle estimation (average speed profile obtained from previous trips on

the route), the proposed method, i.e. online ECMS with a dynamic cycle esti-

mation and finally a rule-based charge depleting and charge sustaining strategy.

The results demonstrate that the online ECMS outperforms the rest of online

applicable methods.

Keywords: Plug-in Hybrid Electric Vehicles, Energy Management Strategy,

Online Optimal Control, Stochastic Driving Prediction, Adaptive-ECMS,

Markov Chain Principle

2020 MSC: 00-01, 99-00

1. Introduction

With two energy sources Hybrid Electric Vehicles (HEVs) present a sys-

tem with higher degree-of-freedom and improved possibilities for reducing fuel

consumption and emission than traditional Internal Combustion Engine (ICE)

based vehicles . The achievable improvement in fuel economy depends strongly5

on the vehicle and the driving cycle; realistic figures range from below 10% for

mild hybrids to more than 30% for highly hybridized vehicles as shown by the

authors in [1]. This potential is even larger in the case of plug-in Hybrid Electric

Vehicles (pHEV) since the energy to move the vehicle does not necessarily come

from the ICE. Authors in [2], use real-world driving data of a mid-sized sedan10

pHEVs with 40 miles of Electric Vehicle (EV) range and report 71% reduction

in gasoline consumption as compared to conventional vehicle. This potential

can be realised through optimisation in any of the three HEV system levels:

the powertrain topology(series HEV, parallel HEV, series-parallel HEV), the

technology and sizing of the components and the EMS [3, 4, 5]. Extensive lit-15

erature is explored by the authors in [6, 7] regarding the topology of HEVs.

However, the present work is focused on developing an EMS for but not limited

to a pHEV architecture. This topology is chosen for demonstrating the EMS,
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but the proposed strategy is general and can be extended to other architectures

(e.g. Series HEV).20

The full potential of the pHEV can be realized with a smart EMS that

optimizes energy flow within the vehicle. The objective of EMS is essentially to

minimise fuel consumption of the vehicle while fulfilling driver power demands

and restraining the battery SoC (SoC) within a certain range. In general, the

pHEVs operating modes are classified by the author in [2] as25

The EMS is broadly classified by authors in [6] as : rule-based and optimisation-

based. Heuristic methods, based in exhaustive calibration to consider the large

set of operating conditions that the vehicle may face, is widely explored in the

literature [8, 9, 10, 11]. These methods require exhaustive experiments and ex-

perience to set-up a rule based control scheme such as Charge-Depleting (CD)30

and Charge-Sustaining (CS). In CD, the battery is the main energy source, so

despite SoC may fluctuate, on-average it decreases while driving. In CS, the

ICE is used frequently to avoid the battery depletion. Optimal Control (OC)

methods are based on applying a control policy that minimises a predefined cost

function by exploring their impact with the aid of a model. The classical OC35

approach is done offline since it requires a priori knowledge of the driving cycle.

Amongst OC techniques applied to the EMS are Dynamic Programming [12]

and Pontryagin’s Minimimum Principle [13]. In general, the main drawback

of optimisation-based method is that they require a detailed description of the

problem to be optimised, so a-priori knowledge of the driving cycle, which rules40

them out from on-board application due to their lack of causality. On the con-

trary, they are often used to obtain a standard optimal solution for comparing

the results obtained with the online methods.

In order to cope with limitations of both heuristic and optimal Control ap-

proaches, several model based approaches have been proposed, most of them45

based to some extent on OC, but sacrificing optimality for the sake of appli-

cability. Amongst them, one can find Equivalent Consumption Minimization

Strategy (ECMS) proposed by [14] and Deterministic or Stochastic Model Pre-

dictive Control [15]. The ECMS is probably the most widely explored approach

3



with several versions, all of them showing near-optimal results with a chal-50

lenge of properly determining the equivalent factor between fuel and battery

power(hereinafter EF) [16]. The values of EF are cycle-dependent and hence

pose the issue of requiring a priori knowledge of future driving conditions. In

order to achieve near-optimal results, the EF should be adapted as the driving

scenario varies. Method falling in this category are referred in the literature as55

Adaptive-ECMS(A-ECMS) strategy [17, 18]. The EF adaptation is addressed

by taking advantage of the driving information [19, 20] to estimate the suit-

able values that weighs the fuel and battery energy sources to keep the SoC in

a given range with minimum fuel consumption (or other defined cost, such as

CO2 emissions, economical cost, etc.)60

The adaptation techniques in the literature are classified in two categories-

The first category is adaptation based on the driving cycle prediction. The

equivalence factor is estimated online based on a look-ahead horizon defined in

terms of energy at the wheels, to determine at each instant the most likely be-

haviour [21, 22]. In the literature, the task of driving cycle prediction is usually65

performed using Neural-Network (NN) and Markov-Chain (MC) based meth-

ods. In the article by authors in [23], a comparison of the two approaches is

shown in terms of prediction accuracy and computation speed. The MC based

method is shown to outperform the NN based method. In the article [24], au-

thors proposed a RBF-NN speed prediction method integrated to the A-ECMS.70

This method used open-loop speed prediction derived from the current vehicle

state. The second category of the adaptation methods rely on the unproven

but rational hypothesis that driving cycles with similar statistical properties in

certain energy related variables are expected to have similar EFs. To recognise

the driving cycle characteristics, the authors in [25, 26, 27, 28] use statistic and75

clustering techniques to classify the driving type. Most of the pattern recogni-

tion algorithms in the literature first identify the kind of driving conditions the

vehicle is undergoing, and then select the most appropriate equivalence factors

from a predefined set.

This article addresses the adaptation using a method within the first category80
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mentioned above. In the original A-ECMS, introduced by the authors in [29],

the algorithm predicts the mission that the vehicle is following and determines

the optimal EF for the current mission by the direct optimization method.

The cycle prediction does not account for the deviation in the predicted and

the actual vehicle velocity. To this end, a close-loop driving cycle prediction85

method based on the MC approach is introduced in the A-ECMS. The driving

prediction uses the historical information to obtain space dependent transition

probability matrices and then uses Markov principle to recursively predict the

driving cycle and update the EF based on the online ECMS results. In this way,

the paper introduces two main novelties: On the one hand, the MC is space-90

dependent to take into account that the characteristic driving depends(amongst

other things) on the vehicle location (e.g. urban versus highway) so the EF

will depend on that. On the other hand, the predicted speed and the EF adapt

themselves periodically during the control horizon window (CHW) such that, at

any instance the power-split is optimal and the expected terminal SoC is close95

to the desired level.

Presenting the described idea, the paper is structured as follows: First, in

section 2, the Proposed Study is described. Then, in 3, the HEV model used

during the study is presented. Section 4 describes the problem formulation.

Next, is the experimental set-up in section 5 followed by obtained results and100

discussion in section 6. Finally, the conclusions of the work are highlighted in

section 7.

2. Proposed Study

The main objective of the study is to develop an online applicable EMS for

a pHEV that exploits the information obtained when the vehicle recurrently105

covers a given route. For application purposes, a commuting driving route of

21 km including rural, highway and urban areas was chosen. The route was

covered 50 times during consecutive working days.

Regarding the vehicle, a pHEV is chosen to show the potential of developed
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Table 1: Description of the main vehicle features

Vehicle mass 2120 kg

Engine power 98 kW

Motor power 24.5 kW

Battery energy capacity 0.0432 MJ

Number of gears 6

strategy while the method can be adapted to deal with other powertrain types110

(series, series-parallel, charge sustaining, etc.). In this architecture, i.e paral-

lel arrangement ,the vehicle can be driven by the internal combustion engine

(ICE), the electric motor (EM), or both simultaneously. Thus, there are differ-

ent solutions to provide the power required by the driver with different costs

and impacts in future operation, which poses an interesting optimisation prob-115

lem. The battery is charged either by an external power source, by the ICE or

by regenerative braking through the electric motor. The main characteristics

of the vehicle considered in the present paper are shown in table 1, while the

layout and main energy flows in the powertrain are shown in figure 1.

+-
-

Engine

Battery

Motor

Wheels

Gearing

+

+
+

+
-

-

Fuel tank
+

PICE = TICEωgPM = TMωg

Pg = Tgωg

Pf = −
dEf
dt

Pb = −
dEb
dt

Pel = V · Ib

Pw = Twωw

Figure 1: System layout, nomenclature and sign criteria for the parallel pHEV architecture

considered in this paper.
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The addressed problem will be to optimize the power-split of the pHEV in120

order to minimise the fuel consumption of the vehicle on the considered route

avoiding SoC excursions over the battery limits.

3. HEV model

The model used to compute the optimal power-split in the present paper

follows the approach based on longitudinal vehicle dynamics, backward propa-125

gation and quasi-steady behaviour of ICE and motor presented by [30] and used

in most of the EMS optimization works [31, 32, 33]. While the model may be

over-simplified to consider aspects such as pollutant emissions or control of par-

ticular elements, this approach provides a suitable balance between simplicity

for real-time applications and plant representativeness in terms of fuel consump-130

tion, since the characteristic times of power-split decisions are, in general, larger

than those of motors and ICEs [6]. Note that with this approach, a suitable

estimation of vehicle speed (and therefore) acceleration trajectories can be used

to progressively compute the required power in powertrain elements by means

of energy balances done with inverted physical causality. In a first step the135

torque at the wheels (Tw) can be obtained from vehicle speed and acceleration

trajectories (v(t) and v̇(t))as:

Tw = rw[m.v̇(t) +
1

2
ρa.Af .cd.v

2(t)+

cr.m.g.cos(γ) +m.g.sin(γ)]

(1)

where rw is the wheel radius, m is an equivalent vehicle mass, ρa is the air den-

sity, Af the frontal area of the vehicle, cd its aerodynamic drag coefficient, cr

the rolling friction coefficient, γ is the road angle and g the gravitational acceler-140

ation. Note that wheel speed (ωw) can be also obtained from the corresponding

values for vehicle and the wheel radius.

The speed (ωg) at the gearbox input to satisfy the demanded wheel speed

can be calculated using the transmission ratio (νg) depending on the selected

gear (gn):145
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ωg = νg(gn).ωw (2)

and assuming a transmission efficiency (νg) depending on the selected gear, the

torque at gearbox input yields:

Tg =


Tw

ηg(gn)νg(gn)
, if Tw ≥ 0

Tw.ηg(gn)
νg(gn)

, if Tw < 0

(3)

where the case with Tw ≥ 0 represents the powertrain propelling the vehicle

while Tw < 0 represents braking according to the sign criteria defined in figure

1. The torque coupler divides the required torque using the following balance:

Tg = TICE + TM (4)

Then, the fuel quantity (ṁf ) can be computed from the engine torque and

speed with a map based on experimental data:

ṁf =

fICE(TICE , ωg), if TICE > 0

0, if TICE ≤ 0

(5)

The engine is shut-off, if no torque is required, i.e., the clutch is then disen-

gaged and the injection is stopped. The electric motor is also modelled using

quasi-static approach where the power of electric motor is modelled as an ex-150

perimentally identified function of torque and speed.

Pel = fM (TM , ωg) (6)

The battery is modelled with an electrically equivalent circuit consisting on

a voltage source and a resistance, so:

Vb = V0 +R.Ib (7)

8



where Vb is the battery voltage, V0 is the battery open circuit voltage. R is the

internal resistance of the battery depending on the SoC and Ib is the battery

current that can be computed from the electrical power demand (Pel) as:

Ib =
V0 −

√
V 2
0 − 4.R.Pel
2.R

(8)

Provided the battery voltage and current, the discharging power of the battery

becomes:

Pb = VbIb (9)

and the SoC in the battery will evolve as:

˙SoC = − Ib
Cb

(10)

with Cb the battery capacity.

Note that in the current approach, provided that the torque demand (Tg)

can be obtained from the vehicle speed prediction, the engine torque will be the

only control variable (u):

u = TICE (11)

while the only model state (x) is SoC :

x = SoC (12)

and making use of equations 4 6-10 its dynamics can be expressed as:

ẋ = −
V0(x)−

√
V0(x)2 − 4R(x)fM (Tg(v, v̇, γ)− u, ωg)

2R(x)Cb
(13)

that only depends on the control action (u), disturbances such as vehicle speed,155

acceleration and road profile (v, v̇, γ) and the state itself (x).

4. Problem formulation and proposed solution

The problem previously described fits perfectly in the field of Optimal Con-

trol, as the extensive literature on EMS shows [34, 35, 36]. The associated OC

Problem can be written as:160
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
arg minu

∫ τ
0
ṁf (u, v)dt

ẋ = g(x, u, v, v̇, γ)

h(x, u, v, v̇, γ) ≤ 0

(14)

where, for the sake of readability, the explicit dependence of the variables on

time has been omitted, τ is the driving cycle duration, g is a function describing

the state dynamics (equation 13) and h represents the local constraints imposed

on the state and control variables in order to guarantee the physical operation

limits (maximum and minimum limits on battery SoC and power, speed and165

torque of powertrain elements).

Regarding the solution of system 14, one can observe that provided the

dependence on τ, v, v̇ and γ a proper estimation of such parameters is needed.

In fact, the optimal solution of the problem can only be obtained if perfect

knowledge of the driving cycle is available. Assuming a suitable approximation

of those variables, there is a wide set of solutions in literature consolidated by the

authors in [37]. Amongst them, those derived from the ECMS are widespread

since provide a feasible on-board application. The ECMS is aimed to replace

the integral problem presented in equation 14 with a set of equivalent problems

to be solved at every time step:

J = Pf + µPb (15)

where the parameter µ, is a weighting factor between fuel and battery energy

sources. An analytical derivation of the ECMS can be obtained from the Pon-

tryagin’s Minimum Principle [38], in any case, intuition shows that a penalty on

the battery use should be included in the cost function to avoid its depletion.170

The selection of the proper value of µ depending on the driving conditions is

the key aspect of the ECMS. Provided a driving cycle (τ, v, v̇ and γ) the value

of µ that fulfils with constraints in problem 14, and particularly the limitations

in SoC.
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According to suitability of the ECMS method and the requirement of a175

driving cycle estimation, the proposed controller is presented in figure 2.

Driving cycle 
prediction

Power demand 
estimation

µ calculation

ECMS

Vehicle

�τ, �vt:�τ, �̇vt:�τ, �γt:�τ

�ωgt:�τ
,�Tgt:�τ

µt

TICEt , TMt

vt, st

SoCt

Figure 2: Proposed control architecture where st is the current vehicle position, ·̂ represents

an estimated variable and subindex t : τ̂ represent the evolution from current time (t) to the

estimated end of the cycle (τ̂)

The prediction block uses the current vehicle position (st) and speed (vt) to

estimate the driving cycle main parameters, consisting on the duration τ̂ − t,

vehicle speed and acceleration sequences (v̂t:τ̂ and ˆ̇vt:τ̂ ) and estimated road slope

evolution during the cycle (γ̂t:τ̂ ). The prediction block is based on the previous

work by the authors in [39, 40]. The process starts recording instantaneous

vehicle velocity on a real vehicle during several trips on a particular route.

Then, in order to take into account the particularities of driving conditions

depending on the vehicle position, e.g. differences between urban and highway

driving, the obtained velocity profiles are divided into several segments, in the

case at hand with 1km length. Short driving cycles obtained for each segment

are used to model the vehicle speed as a Markov process, where the vehicle

speed is considered a random process (V ) satisfying:

P (Vn+1 = vn+1|V1 = v1, V2 = v2, . . . , Vn = vn)

= P (Vn+1 = vn+1|Vn = vn)
(16)
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where vj represent possible values of V , subindex n is the present time, n + 1

represents some point in the future and subindex 1, 2, ..., n − 1 points in the

past. Equation 16 states that given the present state (Vn = vn) the probability

for this random process for the next future (Vn+1 = vn+1) is independent of the

past. In this sense, estimating the transmission matrix can be done by observing

the sequences of states and the frequency in the transitions between them. For

practical reasons, the data has been discretised in steps of 1 km/h in velocity.

Let Ni,j the number of times the vehicle speed is i in a given time (Vn+1 = i)

provided that was j in the previous instant (Vn = j). The probability of being

in state i given that it was in state j in the previous time can be estimated as:

P (Vn+1 = i|Vn = j) = pij =
Nij∑
j Nij

(17)

where pij is introduced for the sake of brevity. In this sense, expression 17

allows to estimate a transition matrix by counting the transitions that have

occurred in the previously recorded driving cycles, on the same interval of the

route. Once the TPMs have been built, the vehicle position within the route180

is used to choose the corresponding TPM. After identification, the Cumulative

Probability Function (CPF) is constructed by integrating TPM rows. Then at

every time-step, the next vehicle speed is selected generating a random number

between 0 and 1 (r ∈ [0, 1]) choosing the vehicle speed whose CPF is equal to

this random number r. The integration of the vehicle speed allows to compute185

the next vehicle position in the route, which is used to estimate the road slope

and identify the next TPM to be used. The process will be repeated in time

until the vehicle destiny is reached. The detailed description of the synthesis

process is presented in Figure 3.

Note that the availability of the current vehicle position requires a tracking190

device, e.g. GPS. On the other hand, the estimation of the road profile needs

cartographic information and the specification of the route in order to compute

the road slope by interpolating the estimated position obtained from integration

of v̂t:τ̂ .

Once the driving cycle is estimated, the power demand block calculates the195
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Input driving cycles

Obtain next state
vt+1 = F (vt , st , r)

Convert 
from time to space 

domain (length L km)

Partition in
equal segments (1 km)

Construct TPMs for each 
segment and store the CPF 

matrix

Calculate 
st+1

If 
St+1 < L

Predicted DC

Generate
r

Initialize vt ,r

vt = vt+1
st = st+1

F(vt , st , r)

vt+1

st+1

Yes

No

Yes

v10:1 v20:1 … v500:1
v11:2 v21:2 … v500:1

… … … …
v1L-1:L v2L-1:L … v50L-1:L

v10:L
v20:L

…
v500:L

v11:T1
v21:T2

…
v501:T50

Figure 3: Driving cycle prediction method

desired torque and speed based on the model described in section 3 using τ̂ ,

v̂t:τ̂ , ˆ̇vt:τ̂ and γ̂t:τ̂ .

The inputs to the µ calculation block are the estimated torque and speed

vectors (T̂gt:τ̂ and ω̂gt:τ̂ ) and the current SoC (SoCt). The optimal µ in the

sense of that leading to minimum SoC at the end of the estimated driving200

cycle is iteratively calculated, in the case at hand by bisection method. Note

that the condition of minimum SoC at the end of the cycle is chosen since due

to the plug-in nature of the vehicle the fuel consumption is minimised at this

condition. In any case, the target SoC can be modified adding a new calibration

parameter to the control strategy or considering the initial SoC to assure the205

change sustainability in the case of a non-plug-in HEV. The calculated µ is
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applied during a predefined control horizon (CHW), where the ECMS block

calculates the optimal torque split between the ICE and the Electric motor at

every time-step. The CHW is a sliding distance window whose size decides the

frequency at which the µ is updated during the trip in order to compensate210

the deviations in the SoC due to driving cycle estimation errors. In the present

work a 1 km CHW is used to avoid excessive computation cost.

5. Experimental set-up

The experimental validation of the proposed EMS has been carried out in

an engine test bench by means of an engine-in-the-loop approach. In particular,215

a Diesel engine with specifications as in table 2 has been tested while rest of the

powertrain characteristics are presented in table 1 has been simulated. To this

aim, the engine is coupled to an asynchronous Horiba DYNAS 3 dyno which

is controlled with a Horiba SPARC through the PC interface Horiba STARS.

The dyno is able to perform steady-state and transient tests to simulate the220

engine behaviour in real driving missions. The test bench is equipped with a

dSpace Microauto164 box II that simulates the HEV powertrain and interacts

with the dyno by means of modifying the engine throttle to follow the torque

demand from the EMS. The dSpace system interfaces with Matlab/Simulink

where the complete powertrain can be simulated by implementing forward ver-225

sions of the models described in section 3, and the EMS described in section 4

is programmed.

The experimental scheme followed to simulate the HEV behaviour is depicted

in figure 4. The actual vehicle speed, acceleration and road grade from the

driving cycle is used by the powertrain model to compute the torque and speed230

demand (Tgt and ωgt), which is used as input for the ECMS with the SoC from

the battery model and the weighting factor µ coming from the corresponding

block described by figure 2. The ECMS will choose the engine demanded torque

(T 0
ICEt

) and the corresponding motor torque (T 0
Mt

) that minimises equation 15

while satisfying the torque demand. A map-based engine model is able to apply235
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Stroke x Bore[mm] 84.8 x 75

Displacement[cc] 1498

Compression ratio 16:1

Number of Cyl. Inline 4

Valves per Cyl. 4

Rated Torque 300Nm @ 1750rpm

Emission std. Euro 6

Table 2: Engine specification.

the throttle according to the engine desired operating conditions (T 0
ICEt

, ωgt).

The calculated throttle is applied to the engine, which is turning at ωgt as

imposed to the dyno. Of course, the engine will produce a torque (TICEt
) that

will not exactly correspond to the desired value (T 0
ICEt

). It has been assumed

that the electric motor will be able to absorb the deviations from the desired240

engine torque (∆TICEt
) instantaneously, which is a feasible hypothesis since

the characteristic time of the motor and battery is substantially lower than that

of the engine. This approach allows comparing different EMS approaches with

exactly the same driving cycle, note that without this hypothesis, i.e. if the

motor is not able to absorb engine torque deviations, those deviations will lead245

to variations in the speed that finally will affect the driving cycle. In this sense,

the torque measured in the test bench is used as feedback for the simulation

environment and small deviations from the demanded engine torque are assumed

to be absorbed by the motor, leading to modifications in the battery SoC.

Regarding the engine instrumentation, specific sensors for temperatures,250

pressures, flows and pollutant emissions have been used along the air and fuel

path. Specially important are the open Electronic Control Unit (ECU) allow-

ing registering engine variables and eventually modify its control, and the fuel

balance FQ2100 .
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Driving cycle

Cycle prediction 
& Power 

estimation & 𝜇𝜇
calculation

ECMS

Test Bench

TICEt
0

vt, v̇t, st, γt

ICE Model

throttle

TMt
0

TICEt

Motor & 
Battery Model

SOCt

ΔTICEt

TMt

𝜇𝜇

EMSωgt

𝑚̇𝑚𝑓𝑓𝑡𝑡

Simulation
environment

Powertrain 
model

Tg𝑡𝑡

+

+
− ωgt

ωgt

Figure 4: Hardware-in-the-loop architecture to test the EMS in an engine test bench.

6. Results255

In order to compare the performance of the proposed EMS with other alter-

natives, a benchmark considering the following candidates has been done:

• CD-CS: The standard, Charge Depleting - Charge Sustaining strategy.

For convenience, in CD-CS a low weighting factor µ is employed, from the

beginning of the driving cycle until the battery SoC reaches the minimum260

value and then µ is increased or decreased online to keep the SoC as

constant as possible.

• ACP + ECMS (Average Cycle Prediction + ECMS): The driving cycle is

not known in advance however, as the considered route has been previously

covered 50 times, the average vehicle speed at every point of the route265

(represented by black line in 5) is used as an estimation of the driving

cycle to feed the power demand estimation block in 2, then calculate µ

and apply the ECMS. The value of µ is updated after a given space window

(1 km) to make up for deviations in the SoC.
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• MCP + ECMS (Markov based Cycle Prediction + ECMS): The driving270

cycle is not known in advance and the method proposed in 4 is used

following all the steps in figure 3. Several predicted vehicle speed profiles

are presented by the gray lines in figure 5.

• Optimal (Equivalent Consumption Minimisation Strategy): The driving

cycle is known in advance and an optimal weighting factor (µ) is applied275

during the complete driving cycle to minimise fuel consumption with a

constraint in the minimum SoC.

The predicted vehicle speeds using the MC based method and the average

of the registered speeds is shown in figure 5.

0 5 10 15
0

50

100

Figure 5: Real driving missions

In order to assess the performance of the proposed control strategy in a wide280

set of scenarios, a simulation campaign using forward versions of the powertrain

model presented in section 3 is performed. The trade-off between fuel consump-

tion and terminal SoC for 50 driving cycles using each strategy is presented in

figure 6. The target terminal SoC is 0.15 ± 0.05 for each strategy. The disper-

sion of the fuel consumption for the similar value of the terminal SoC for each285

strategy is presented in 7. It can be noticed that the MCP+ECMS strategy is

nearest and CD-CS is farthest from the optimal; hence proving the potential of

the current intervention. The performance of CD-CS which does not take into
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account any prediction is inferior to the other two prediction based methods

(MCP and ACP).290
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1
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Figure 6: Simulation based validation, the black dots represents the optimal results of all

the driving cycle, blue dots represents the charge depleting charge sustaining strategy, red

dots represents the results with average cycle prediction strategy and gray dots are with the

proposed Markov chain based driving cycle prediction method.

Then, a verification of the method suitability is done experimentally on the

test cell described in section 5. A single driving cycle has been chosen to confirm

the modelling results previously discussed. Figure 8 shows the driving cycle (ve-

hicle speed and gear) in the top plot, the evolution of µ and SoC with the tested

strategies in the central plots, and the accumulated fuel consumption in the bot-295

tom plot. One can observe how knowing the driving cycle in advance (Optimal)

allows to choose a constant weighting factor µ between fuel and battery energy

that allows the ECMS to obtain the minimum fuel consumption fulfilling with

the constraint in minimum SoC of 0.15. Of course, the solution that minimises

fuel consumption leads to the minimum SoC when the vehicle reaches the des-300

tiny and can be potentially recharged. On the opposite side, CD|CS leads to

a substantial fuel increase despite fulfilling with the SoC constraint. It is clear

that CD|CS depletes the battery too early providing noticeable fuel savings in
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Figure 7: Frequency of fuel consumption for simulations of 50 driving cycle using different

EMS

the first part of the cycle (until second 600) approximately but an excessive

penalty in the last phase of the cycle. Regarding MCP + ECMS, it can be305

observed how the filtering due to driving cycle averaging leads to a smooth es-

timated driving cycle with too low dynamics, and this fact leads to a noticeable

deviation from the optimal results despite it still improves the results compared

to the CD|CS strategy, which at some point shows that despite being vague, the

average driving cycle provides some description of the actual driving cycle. Fi-310

nally, the proposed strategy leads to the nearest results to the optimal solution

due to the better description of the driving cycle offered by the Markov based

driving cycle estimator.

As a summary, figure 9 shows the Pareto front obtained by several driving

cycles applying constant µ with a priori knowledge of the cycle, and the rest of315

EMS considered. Provided the same SoC at the end of driving cycle, the fuel

consumption in CD — CS , ACP+ECMS and MCP+ECMS is 52%, 35% and
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Figure 8: Evolution of experimental results in the considered driving cycle with four EMSs

11% higher than the optimal.

In 10, the engine operating points are presented overlapping the efficiency

map for the entire trip using four strategies. The black dots in figure represent320

the engine operating points in each scenario. The patches mark the boundary

of operating points for each scenario. Clearly, in the case of optimal strategy

the engine operates largely in the high efficiency zone. In MCP + ECMS the

patch area is smaller in comparison with CD− CS and ACP + ECMS

7. Conclusion and outlook325

In a real driving mission the uncertainty in speed profiles lead to suboptimal

energy management strategy in the pHEV. A new method based on the online

speed prediction and adaptive ECMS is proposed to optimise the EMS while

keeping the battery SoC close the target. The objective is to minimise the fuel

consumption while staying close to the desired terminal SoC for a real driving330

mission. The developed method uses Markov based driving cycle prediction

method to adapt the equivalent factor based on the current SoC and the vehicle
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Figure 9: Experimental Validation, the gray line is the Pareto frontier, while blue, green, red

and black dots represents results obtained with four EMSs

position. The method is validated using a simulation and an experiment based

case study on two real driving missions. The experiments were conducted on an

engine test bench with the help of vehicle model (Matlab/Simulink) in dSPACE335

environment. The developed method is compared with the three state-of-the-art

methods: The ECMS (offline approach), Adaptive ECMS (online approach) and

the Charge depleting strategy (online approach). The results from the developed

online method show significant improvement in the fuel consumption as com-

pared to the Adaptive ECMS and the Charge depleting strategy. As compared340

to the offline method, where the driving mission is known in advance the fuel

consumption is 11% higher in the developed method which is an improvement

if compared with the other two real-time applicable strategies.

The developed method is a step towards an optimal online control of the com-

plex HEV energy management strategy. It allows taking into account driving345

cycle characteristics depending on vehicle position and update the EF accord-

ingly. The proposed method can be extended to other HEV architectures and in

future can be tested on the real vehicle which is commuting regularly between

two destinations.
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Figure 10: Engine operating points overlapping the engine efficiency maps for four methods

during experimental campaign
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