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UNBOUNDED BERGMAN PROJECTIONS ON WEIGHTED
SPACES WITH RESPECT TO EXPONENTIAL WEIGHTS

JOSÉ BONET, WOLFGANG LUSKY, AND JARI TASKINEN

Abstract. There are recent results concerning the boundedness and also un-
boundedness of Bergman projections on weighted spaces of the unit disc in special
cases of rapidly decreasing weights, i.e. ”large” Bergman spaces. The aim of our
paper is to show that the cases of boundedness are largely exceptional: in general
the Bergman projections are unbounded. In addition we give a new, more func-
tional analytic proof for the known central boundedness case which also enables
us to transfer our results to harmonic Bergman spaces.

1. Introduction

In this note we study weighted Bergman spaces on the unit disc D = {z ∈
C : |z| < 1} of the complex plane. We deal with radial weights, i.e. continuous,
decreasing functions v : [0, 1[→ R+ with lim→1 v(r) = 0. Let, for 1 ≤ p < ∞,
Lpv be the Lp-space over the unit disc D for the weighted area measure dmv =
(2π)−1v(r)rdrdϕ (with respect to the polar coordinates) and put Apv = {f ∈ Lpv :
f holomorphic on D}. We consider the norms

‖f‖p,v =
(∫ 1

0

Mp
p (f, r)rv(r)dr

)1/p
=
(∫

D
|f(ζ)|pdmv(ζ)

)1/p
and ‖f‖∞,v = sup

|z|<1

|f(z)|v(|z|)

where, for 1 ≤ p <∞,

Mp(f, r) =
( 1

2π

∫ 2π

0

|f(reiϕ)|pdϕ
)1/p

and M∞(f, r) = sup
|z|=r
|f(z)|.

Finally put L∞v = {f : D → C : f Borel-measurable and ‖f‖∞,v < ∞} and H∞v =
{h ∈ L∞v : h holomorphic }. The orthogonal projection Pv : L2

v → A2
v is called

the Bergman projection. It follows from the boundedness of the point evaluation
functionals in the space Apv that Pv can be presented as an integral operator with
the Bergman reproducing kernel K(z, ·) ∈ Apv as

Pvf(z) =

∫
D
K(z, ζ)f(ζ)dmv(ζ).(1.1)

The boundedness of the Bergman projection and the related pointwise kernel esti-
mates have been the topic of intensive research, see e.g. the monographs [11], [19]
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2 JOSÉ BONET, WOLFGANG LUSKY, AND JARI TASKINEN

and the survey [18]. Here, we investigate the boundedness question for weights of

exponential type. Let α, α̃, β, β̃ > 0 and

v(r) = exp

(
− α

(1− r)β

)
and w(r) = exp

(
− α̃

(1− r)β̃

)
.(1.2)

It was shown in [6], [8] that Pw is never bounded on Lpv if v = w and p 6= 2. But

according to [5], for α̃ = 2α/p and β = 1 = β̃ the Bergman projection Pw is indeed
bounded with respect to ‖ · ‖p,v for all 1 ≤ p <∞ and if α̃ = 2α then Pw is bounded
on L∞v . This result, replacing r by r2, was extended to the cases

1 < p < ∞, α̃ = 2α/p, 0 < β = β̃ <∞ and

p = ∞, α̃ = 2α, 0 < β = β̃ <∞(1.3)

in [1], Theorems 4.4., 4.25 and the beginning of Section 4.7. We emphasize that in
the paper [14] the second and third named authors constructed concrete bounded
projection operators Lpv → Apv for a large class of weights satisfying condition (B),
which includes the weights (1.2) but also much more general rapidly decreasing
weights. (Condition (B) is used to pick up increasing sequences of powers and radii
such that the values of the weight and the power functions on these radii are related.
This leads, see e.g. Theorem 1 of [14], to a representation of the weighted sup-
norm as a vector valued, weighted `∞-norm, which is crucial for the results. More
information and examples about condition (B) can be seen in [13]) The projection
operators were presented by using r-dependent Fourier series of Lpv functions and
thus were not expressed by known kernel functions. It remains as a (slightly vaguely
formulated) open problem to study, if bounded projections for these large weight
classes can be described using some ”natural” kernel functions. Recently, in [10],
Theorem 4.1. it was shown for a large class of weights v, including those in (1.2)–
(1.3), that the Bergman projection Pv is bounded in the spaces Lp

vp/2
, 1 ≤ p < ∞,

and L∞v/2. The weights were of the form v(z) = e−ϕ(z) with certain growth conditions

for the (not necessarily radial) function ϕ.
One might expect that Pw remains bounded on Lpv provided that α̃ is large enough

but our aim is to show that the preceding cases are the only cases of boundedness
of Pw. Indeed, in Theorems 1.1 and 1.2 we show that, for β 6= β̃ or for β = β̃ and
α̃ 6= 2α/p, if 1 ≤ p <∞, and α̃ 6= 2α, if p =∞ the Bergman projection Pw is always
unbounded. In Theorem 1.3 we give a new, functional analytic and relatively short
proof that, for β = β̃ and α̃ = 2α/p the Bergman projection Pw is always bounded
on Lpv. More generally we obtain the same results if we consider w(r`) instead of
w(r) and v(r`) instead of v(r) for some ` > 0.

To prove our theorems we need to make an excursion into the corresponding
weighted spaces of harmonic functions (which will be defined in section 3). There
we recollect and extend known results concerning the weighted Lp-norms which seem
to be of independent interest. They also show that our main results of section 1
remain true for the corresponding weighted spaces of harmonic functions which we
present in the final Theorem 4.5.

In the following we denote v`(r) = v(r`) and w` = w(r`) for any ` > 0.

At first we consider the case β = β̃.
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Theorem 1.1. Let 0 < α, α̃, β <∞, and 1 ≤ p <∞. Put

v(r) = exp

(
− α

(1− r)β

)
and w(r) = exp

(
− α̃

(1− r)β

)
.

If α̃ 6= 2α/p then Pw` is unbounded on Lpv` with respect to ‖ · ‖p,v` for all ` > 0. If
α̃ 6= 2α then Pw` is unbounded on L∞v` with respect to ‖ · ‖∞,v` for all ` > 0.

In particular, Pw is unbounded on Lpv if α = α̃ and p 6= 2. Hence Theorem 1.1.

includes results of [6]. Now we turn to the case β 6= β̃.

Theorem 1.2. Let 0 < α, α̃, β, β̃ <∞ and 1 ≤ p ≤ ∞. Put

v(r) = exp

(
− α

(1− r)β

)
and w(r) = exp

(
− α̃

(1− r)β̃

)
.

If β̃ 6= β then Pw` is unbounded on Lpv` with respect to ‖ · ‖p,v` for all ` > 0.

We prove Theorems 1.1. and 1.2. in Section 2; cf. also the partially related
Proposition 19 of the interesting paper [17].

It is known that in the case α̃ = 2α/p the Bergman projection is bounded. This
was shown for β = ` = 1 in [5] and in [1] for 0 < β <∞, ` = 2. For a more general
result, see [10]. We give here a different and in a way simpler and shorter proof.

Theorem 1.3 ([5],[10]). Let 0 < α, α̃, β <∞ and 1 ≤ p <∞. Put

v(r) = exp

(
− α

(1− r)β

)
and w(r) = exp

(
− α̃

(1− r)β

)
.(1.4)

If α̃ = 2α/p then Pw` is a bounded operator Lpv` → Apv` for all ` > 0. If α̃ = 2α then
Pw` is a bounded operator L∞v` → H∞v` for all ` > 0.

In this paper we will use standard notation and terminology; see e.g. [19]. Let us
only mention that if X and Y are for example positive quantities depending on a
parameter k ∈ N, the expression X ∼= Y means that there are constants c2 ≥ c1 > 0,
independent of k, such that c1X ≤ Y ≤ c2X holds for all k.

2. Monomial estimates.

To prove Theorem 1.1. we need the following integral estimate. Similar estimates
can be found e.g. in Lemma 2.2. in [6], Lemma 1 in [7], Lemma 7 in [5], Lemma
4.28 in [1].

Lemma 2.1. Let α > 0, β > 0 and ` > 0 be fixed, and let k > 0 be arbitrary. Then
we have

d`k
− 2+β

2(β+1) exp
(
−B(α, β, `)k

β
β+1
)
≤
∫ 1

0

rk exp
(
− α

(1− r`)β
)
dr

≤ d̃`k
− 2+β

2(β+1) exp
(
−B(α, β, `)k

β
β+1
)
)(2.1)

where 0 < d` < d̃` are constants not depending on k and

B(α, β, `) = `
−β
β+1α

1
β+1
(
β

1
β+1 + β

−1
β+1
)
.(2.2)
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Proof. Lemma 1 in [7] yields the estimates

c1k
− 2+β

2(β+1) exp
(
−Bk

β
β+1
)
≤
∫ 1

0

rk exp
(
− α

(1− r)β
)
dr

≤ c2k
− 2+β

2(β+1) exp
(
−Bk

β
β+1
)
)(2.3)

where B equals B(α, β, 1) of (2.2). The substitution r` → s turns the integral in
(2.1) into

1

`

∫ 1

0

s
k
`
+ 1−`

` exp
(
− α

(1− s)β
)
ds,(2.4)

hence, expanding in the exponent(k
`

+
1− `
`

) β
β+1

=
(k
`

) β
β+1

+O(1)

for large k, the lemma follows from (2.3). �

We continue with two more lemmas.

Lemma 2.2. Let α̃ ≥ α > 0 and β > 0. Then we have

2
β
β+1 α̃

1
β+1 − (α̃− α)

1
β+1 − α

1
β+1 = 0 if α̃ = 2α,

and

2
β
β+1 α̃

1
β+1 − (α̃− α)

1
β+1 − α

1
β+1 > 0 if α̃ 6= 2α.(2.5)

Proof. Put

f(x) = 2
β
β+1x

1
β+1 − (x− α)

1
β+1 − α

1
β+1 .

Then

f ′(x) =
1

β + 1

(
2

β
β+1x−

β
β+1 − (x− α)−

β
β+1

)
.

We obtain that x = 2α is the only zero of f as well as of f ′ and 2α is the only
minimum of f . In particular f(x) > 0 for x 6= 2α which proves Lemma 2.2. �

Lemma 2.3. Let α̃ ≥ α > 0, ` > 0 and put, for k > 0,

Dk =

∫ 1

0

rk+1 exp
(
− α(1− r`)−β

)
dr

(∫ 1

0
rk+1 exp

(
− (α̃− α)(1− r`)−β

)
dr∫ 1

0
r2k+1 exp

(
− α̃(1− r`)−β

)
dr

)
.

If α 6= 2α, then there is a constant c1 > 0, independent of k such that

Dk ≥ exp
(
c1k

β
β+1

)
.(2.6)

Proof. We estimate all integrals in the definition of Dk by (2.1) in Lemma 2.1
and obtain that Dk is proportional to

k−
2+β

2(β+1) exp

((k
`

) β
β+1 (

β
1

β+1 + β
−1
β+1
)(

2
β
β+1 α̃

1
β+1 − α

1
β+1 − (α̃− α)

1
β+1

))
.(2.7)

This together with the assumptions on α and α̃ and Lemma 2.2 yield (2.6). �

Proof of Theorem 1.1. Let v(r) = exp(−α/(1− r)β) and w(r) = exp(−α̃/(1−
r)β) and fix 1 ≤ p <∞ and ` > 0.
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Consider f ∈ Lpv` with ‖f‖p,v` ≤ 1 and put

ak(r) =
1

2π

∫ 2π

0

f(reiϕ)e−ikϕdϕ, i.e. f(reiϕ) ∼
∑
k∈Z

ak(r)e
ikϕ,(2.8)

regarding
∑

k∈Z ak(r)e
ikϕ as the Fourier series of f(reiϕ) for fixed r.

We have

Pw`f(z) =
1

2π

∫ 1

0

∫ 2π

0

K(z, reiϕ)f(reiϕ)rw(r`)dϕdr,

where

K(z, ζ) =
∞∑
n=0

(zζ̄)n∫ 1

0
r2n+1w(r`)dr

.

Using the orthogonality of eikϕ and eijϕ for k 6= j and (2.8) we obtain

(Pw`f)(z) =
∞∑
k=0

zk
∫ 1

0
rk+1w(r`)ak(r)dr∫ 1

0
r2k+1w(r`)dr

.(2.9)

Consider fk(re
iϕ) = v(r`)−1/peikϕ, k = 0, 1, 2, . . .. Then fk ∈ Lpv` for all k and

‖fk‖pp,v` =
∫ 1

0
rdr = 1/2. Formula (2.8) implies ak(r) = v(r`)−1/p and aj(r) = 0 for

all j 6= k. With (2.9) and the Jensen inequality we obtain

‖Pw`fk‖p,v`

=

(∫ 1

0

rkp+1v(r`)dr

) 1
p
∫ 1

0
rk+1w(r`)ak(r)dr∫ 1

0
r2k+1w(r`)dr

≥
(∫ 1

0

rk+
1
pv(r`)

1
pdr

) ∫ 1

0
rk+1w(r`)ak(r)dr∫ 1

0
r2k+1w(r`)dr

≥
(∫ 1

0

rk+1v(r`)
1
pdr

) ∫ 1

0
rk+1w(r`)ak(r)dr∫ 1

0
r2k+1w(r`)dr

=

∫ 1

0

rk+1 exp
(
− α

p(1− r`)β
)
dr

∫ 1

0
rk+1 exp

(
− (α̃− α

p
)(1− r`)−β)

)
dr∫ 1

0
r2k+1 exp

(
− α̃(1− r`)−β

)
dr

.(2.10)

If α/p ≤ α̃ then we use Lemma 2.3. with α/p instead of α and find a constant
c1 > 0 with

‖Pwfk‖p,v` ≥ exp
(
c1k

β/(β+1)
)
.

This implies limk→∞ ‖Pw`fk‖p,v` = ∞ which shows that Pw` is unbounded on Lpv`
provided that α̃ 6= 2α/p.

Now assume α̃ < α/p. We obtain from Lemma 2.1 that∫ 1

0

rk+1 exp
(
− α

p(1− r`)β
)
≥ exp

(
−c3k

β
β+1

)
as well as ∫ 1

0

r2k+1 exp
(
− α̃

(1− r`)β
)
dr ≤ exp

(
−c4k

β
β+1

)
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for some constants c3, c4 > 0. Hence the right-hand side of (2.10) is not smaller
than

exp
(
−c5k

β
β+1

)∫ 1

(1−1/k)1/`
rk+1 exp

((α
p
− α̃

)
(1− r`)−β

)
dr

≥ exp
(
−c5k

β
β+1

)(
1− 1

k

) k+1
`
(

1−
(

1− 1

k

) 1
`
)

exp
((α

p
− α̃

)
kβ
)

≥ c6 exp
(
−c5k

β
β+1 + c7k

β − log k
)

where c5, c6 are positive constants and c7 = α/p− α̃ > 0. We used that the exponen-
tial function in the last integral is increasing and 1−(1−1/k)1/` ≥ c8/k for some con-
stant c8. But this shows again, together with (2.10), that limk→∞ ‖Pw`fk‖p,v` = ∞
and hence Pw` is unbounded in this case, too.

Finally consider p =∞. Here we take fk(re
iϕ) = v(r`)−1eikϕ. Using (2.9) and

sup
0≤r<1

rkv(r`) ≥
∫ 1

0

rk+1v(r`)dr

we again derive (2.10), i.e.

‖Pw`fk‖∞,v`

≥
∫ 1

0

rk+1 exp
(
− α

(1− r`)β
)
dr

∫ 1

0
rk+1 exp

(
− (α̃− α)(1− r`)−β

)
dr∫ 1

0
r2k+1 exp

(
− α̃(1− r`)−β

)
dr

.

Then we proceed exactly as before (with 1 instead of p) to show
limk→∞ ‖Pw`fk‖∞,v` =∞ which proves that Pw is unbounded also in this case. �

Proof of Theorem 1.2. The proof is similar to the proof of Theorem 1.1. At
first we consider 1 ≤ p < ∞. Let fk(re

iϕ) = v(r`)−1/peikϕ, k = 0, 1, 2, . . .. Then
fk ∈ Lpv` for all k and ‖fk‖pp,v` = 1/2. With (2.9) we see that

(Pw`fk)(z) =

∫ 1

0
rk+1 exp

(
α
p
(1− r`)−β − α̃(1− r`)−β̃

)
dr∫ 1

0
r2k+1 exp

(
−α̃(1− r`)−β̃

)
dr

zk.

If β > β̃ then the integral in the numerator is equal to ∞. Hence Pw` cannot be
bounded.

Now let β < β̃. With (2.10) we have

‖Pw`fk‖p,v`

≥
∫ 1

0

rk+1 exp
(
− α

p(1− r`)β
)
dr

∫ 1

0
rk+1 exp

(
α
p
(1− r`)−β − α̃(1− r`)−β̃

)
dr∫ 1

0
r2k+1 exp

(
−α̃(1− r`)−β̃

)
dr

≥
∫ 1

0

rk+1 exp
(
− α

p(1− r`)β
)
dr

∫ 1

0
rk+1 exp

(
−α̃(1− r`)−β̃

)
dr∫ 1

0
r2k+1 exp

(
−α̃(1− r`)−β̃

)
dr
.

Now we apply Lemma 2.1 to the right-hand side. This yields constants c1, c2 > 0
with

‖Pw`fk‖p,v`
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≥ c1k
c2 exp

(
−B(α, β, `))k

β
β+1 −B(α̃, β̃, `))k

β̃

β̃+1 + 2
β̃

β̃+1B(α̃, β̃, `)k
β̃

β̃+1

)
(2.11)

Since β < β̃ we obtain β/(β + 1) < β̃/(β̃ + 1), hence, the term with kβ/(β+1) in the
exponent is negligible in comparison with the two others, since we moreover have

−B(α̃, β̃, `))k
β̃

β̃+1 + 2
β̃

β̃+1B(α̃, β̃, `)k
β̃

β̃+1 ≥ c3k
β̃

β̃+1

for some positive constant c3 not depending on k. Thus, (2.11) yields
limk→∞ ‖Pw`fk‖p,v` =∞. Again, Pw` is unbounded on Lpv` .

For p =∞ the proof is similar. �

3. Banach spaces of harmonic functions with exponential weights.

At first we recall some well-known facts concerning our exponential weights. So,
again, let v`(r) = exp(−α(1− r`)−β)) for some constants α, β, ` > 0. For all n ≥ 1,
let rn ∈ [0, 1[ be the maximum point of rnv`(r). It is easily seen that the number rn
is unique, increases with n and tends to 1 as n→∞.

Proposition 3.1. Put

mn = `β2

(
β

α

) 1
β

n2+ 2
β − `β2n2, n = 0, 1, 2, . . . .

Then

rm0 = 0 and rmn =
(

1−
(α
β

) 1
β
n−

2
β

) 1
`

for n = 1, 2, . . .

and there are numbers 2 < b < K which satisfy

b ≤
(
rmn
rmn+1

)mn v`(rmn)

v`(rmn+1)
,

(
rmn+1

rmn

)mn+1 v`(rmn+1)

v`(rmn)
≤ K for all n.(3.1)

Proof. The numbers mn were computed in [2], (3.15), (3.16) and (3.30) for ` = 1.
Indeed, for ` = 1 we have

mn = β2

(
β

α

) 1
β

n2+ 2
β − β2n2 and rmn = 1−

(
α

β

) 1
β

n−
2
β .

By substitution, using maxr r
kv`(r) = maxs s

s/`v(s), we obtain Proposition 3.1 �

In this section we want to study harmonic functions on D. Put

hpv` = {f ∈ Lpv` : f harmonic on D}.
For a harmonic function f(z) =

∑∞
k=0 akz

k +
∑∞

k=1 akz̄
k we define the operators

Q0f = 0, Qnf =
n−1∑
k=0

akz
k +

n−1∑
k=1

akz̄
k, n = 1, 2, . . . and Rf =

∞∑
k=0

akz
k.

The operator R is called the Riesz projection. We have

Proposition 3.2. Let 1 < p <∞. Then there are constants c1, c2 > 0 such that

c1‖f‖p,v` ≤
( ∞∑

n=0

Mp
p

(
(Q[m(n+1)/p] −Q[mn/p])f, rmn

)
v`(rmn)(rmn+1 − rmn)

)1/p

≤ c2‖f‖p,v`
for all f ∈ hpv`.
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Here [m] is the largest integer not larger than m.

Proof. For holomorphic functions this was shown in [3], Theorem 3.1. with

In :=

∫ rmn+1

rmn

rdr =
1

2
(r2mn+1

− r2mn) =
1

2
(rmn+1 − rmn)(rmn+1 + rmn)

instead of (rmn+1 − rmn) in the statement of Proposition 3.2. Here we need that

lim sup
n→∞

In
min (In−1, In+1)

< b.

But it follows from Proposition 3.1 that this limsup is equal to 1. Now we have

1

2
(rmn+1 − rmn) ≤ In ≤ (rmn+1 − rmn)

for large enough n, which yields Proposition 3.2. for holomorphic f .
The case for harmonic functions follows from this by taking into account the

following facts. There is a universal constant dp > 0 with Mp(Rf, r) ≤ dpMp(f, r)
whenever f is harmonic, 0 ≤ r < 1 and 1 < p < ∞. Denoting by id the identity
operator and (Sf)(z) = f(z̄) for a harmonic function f , we have Mp(Sf, r) =
Mp(f, r) and (id−R)f = SRSf − f(0). �

Proposition 3.2. remains true for p = 1 and p =∞ with some modifications. To
this end put, for f(reiϕ) =

∑∞
k=−∞ akr

|k|eikϕ,

T0f =
∑
|k|≤m1

[m1]− k
[m1]

akr
|k|eikϕ

and, for n = 1, 2, . . .,

Tnf =
∑

mn−1≤|k|≤mn

k − [mn−1]

[mn]− [mn−1]
akr
|k|eikϕ +

∑
mn≤|k|≤mn+1

[mn+1]− k
[mn+1]− [mn]

akr
|k|eikϕ.

Then we have

Proposition 3.3. There are constants ck > 0 with

(i) c1 supnM∞(Tnf, rmn)v`(rmn) ≤ ‖f‖v`,∞ ≤ c2 supnM∞(Tnf, rmn)v`(rmn),

for all f ∈ h∞v` and

(ii) c3‖f‖1,v` ≤
∑∞

n=0M1(Tnf, rmn)v`(rmn)(rmn+1 − rmn) ≤ c4‖f‖1,v`
for all f ∈ h1v`.

Proof. (i): The operators Tn are uniformly bounded on h∞v` by Proposition 3.4.
of [13]. Hence the left-hand inequality of (i) is trivial. According to Proposition 5.2.
of [13] we obtain

‖f‖∞,v` ≤ c1 sup
n

sup
rmn−1≤r≤rmn+1

M∞(Tnf, r)v`(r).

For rmn ≤ r ≤ rmn+1 we have, by the maximum property of the number rmn+1 and
[13], Lemma 3.1.,

M∞(Tnf, r)v`(r) ≤ 2

(
r

rmn

)mn+1 v`(r)

v`(rmn)
M∞(Tnf, rmn)v`(rmn)
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≤ 2

(
rmn+1

rmn

)mn+1 v`(rmn+1)

v`(rmn)
M∞(Tnf, rmn)v`(rmn).

Similarly, if rmn−1 ≤ r ≤ rmn we have

M∞(Tnf, r)v`(r) ≤
(

r

rmn

)mn−1 v`(r)

v`(rmn)
M∞(Tnf, rmn)v`(rmn)

≤
(
rmn−1

rmn

)mn−1 v`(rmn−1)

v`(rmn)
M∞(Tnf, rmn)v`(rmn).

In both cases (3.1) shows the right-hand inequality of (i).

(ii): Let f ∈ h1v` . Then we have f =
∑

n Tnf where the series converges pointwise

on D and Tnf ∈ span{r|k|eikϕ : mn−1 < |k| < mn+1}. We use the following result
(see [12], Lemma 3.1.): if 0 < r < s we have

M1(Tnf, s) ≤
(s
r

)mn+1

M1(Tnf, r),

M1(Tnf, r) ≤ c1

(r
s

)mn−1

M1(Tnf, s)(3.2)

for all n, where c1 is a universal constant.
In view of Proposition 3.1. there are constants c2, c3 such that

c2(mn −mn−1) ≤ mn+1 −mn ≤ c3(mn −mn−1) for all n.(3.3)

There is a constant c4 such that for all r with rmn ≤ r ≤ rmn+1 we have

M1(Tnf, rmn)v`(rmn) ≤ c4M1(Tnf, r)v`(r).(3.4)

Indeed, we estimate

M1(Tnf, rmn)v`(rmn) ≤ c1

(rmn
r

)mn−1 v`(rmn)

v`(r)
M1(Tnf, r)v`(r)

≤ c1

(
rmn
rmn+1

)mn−1 v`(rmn)

v`(rmn+1)
M1(Tnf, r)v`(r)

= c1

(
rmn+1

rmn

)mn−mn−1
(
rmn
rmn+1

)mn v`(rmn)

v`(rmn+1)
M1(Tnf, r)v`(r)

≤ c1

(
rmn+1

rmn

)(mn+1−mn)/c2
KM1(Tnf, r)v`(r)

≤ c1K
2/c2KM1(Tnf, r)v`(r).

where we first used (3.2), then the fact that rmn−1v`(r) ≥ rmn−1
mn+1

v`(rmn+1) (since
r ≤ rmn+1 and the function t 7→ tmn−1v`(t) is decreasing for t larger than its unique
maximum rmn−1), and then, consequently, (3.3) and (3.1); finally, at the last step,
we used the inequalities (3.1) another time, multiplying the two expressions in the
middle of it with each other.

According to [9], Lemma 4.1., in view of (3.3), there is a constant c5 such that

M1(Tnf, r) ≤ c5M1(f, r) for all f, r and n.(3.5)

Put Jn = rmn+1 − rmn . Then we have

Jn ≤
2

rm1

∫ rmn+1

rmn

rdr ≤ 2

rm1

Jn for all n.
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The inequalities (3.4) and (3.5) imply with c6 = 2/rm1

∞∑
n=0

M1(Tnf, rmn)v`(rmn)Jn ≤
∞∑
n=0

c6

∫ rmn+1

rmn

M1(Tnf, rmn)v`(rmn)rdr

≤
∞∑
n=0

c4c5c6

∫ rmn+1

rmn

M1(f, r)v`(r)rdr = c4c5c6

∫ 1

0

M1(f, r)v`(r)rdr

which yields the right-hand inequality of (ii).
To show the left-hand inequality of (ii) fix 1 < ρ < b (b of (3.1)) and k0 > 0 such

that Jk/(min(Jk−1, Jk+1) < ρ for all k > k0 which is possible since the preceding
left-hand side goes to 1 as k → ∞ according to Proposition 3.1. Hence we find a
constant c7 > 0 with

Jk ≤ c7ρ
|k−n|Jn for all n and k.(3.6)

We have ∫ 1

0

M1(f, r)v`(r)rdr ≤
∞∑
n=0

∫ 1

0

M1(Tnf, r)v`(r)rdr.(3.7)

Moreover ∫ 1

0

M1(Tnf, r)v`(r)rdr ≤
∞∑
k=0

∫ rmk+1

rmk

M1(Tnf, r)v`(r)dr

≤
∑
k<n

c1

(∫ rmk+1

rmk

( r

rmn

)mn−1 v`(r)

v`(rmn)
dr

)
M1(Tnf, rmn)v`(rmn)

+
∑
k≥n

(∫ rmk+1

rmk

( r

rmn

)mn+1 v`(r)

v`(rmn)
dr

)
M1(Tnf, rmn)v`(rmn).(3.8)

Here we used (3.2).
For further estimates we use the following well-known facts ([3], Lemma 3.7.): Fix

k, n and rmk ≤ r ≤ rmk+1
. Then(

r

rmn

)mn v(r)

v(rmn)
≤
(

1

b

)n−k−1
if k < n(3.9)

and (
r

rmn

)mn+1 v(r)

v(rmn)
≤ K

(
1

b

)k−n−1
if k ≥ n.(3.10)

This implies(
r

rmn

)mn−1 v(r)

v(rmn)

=

(
rmn−1

rmn

)mn−1 v(rmn−1)

v(rmn)

(
r

rmn−1

)mn−1 v(r)

v(rmn−1)
≤ K

(
1

b

)n−k−2
for all k < n. For k < n − 1 this follows from (3.9) with n − 1 instead of n. For
k = n− 1 this follows from (3.1) and(

r

rmn−1

)mn−1 v(r)

v(rmn−1)
≤ 1.
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Moreover, (3.6) yields Jk ≤ c7ρ
n−kJn. If k ≥ n then we can apply (3.10) directly

and we have Jk ≤ c7ρ
k−nJn. Hence∑

k<n

(∫ rmk+1

rmk

( r

rmn

)mn−1 v`(r)

v`(rmn)
dr

)
+
∑
k≥n

(∫ rmk+1

rmk

( r

rmn

)mn+1 v`(r)

v`(rmn)
dr

)
≤
∑
k<n

c7Kbρ
(ρ
b

)n−k−1
Jn +

∑
k<n

c7Kρ
(ρ
b

)k−n−1
Jn ≤ c8Jn

for some constant c8 since 0 < ρ/b < 1. Hence, by (3.8),∫ 1

0

M1(Tnf, r)v`(r)dr ≤ c8JnM1(Tnf, rmn)v`(rmn).

Inserting this into (3.7) yields the left-hand inequality of (ii). �

Corollary 3.4. Let f be a harmonic function on D. Assume that

sup
n
M∞(Tnf, rmn)v`(rmn) <∞.

Then f ∈ h∞v` .

Proof. Let fs(z) = f(sz), z ∈ D, for fixed s ∈]0, 1[. Then fs ∈ h∞v` for all s.
Apply Proposition 3.3. (i) to fs and use supsM∞(fs, r) = M∞(f, r). �

The last result of this section is known (see Theorem 1 in [16] for the case 1 ≤
p < ∞ and Theorem 2.1 of [15] for p = ∞) but for the sake of completeness we
show how it also follows from the previous considerations.

Corollary 3.5. The Riesz projection R is a bounded operator hpv` → Apv` for all p
with 1 ≤ p <∞ and also a bounded operator h∞v` → H∞v` .

Proof. For 1 < p < ∞ the result follows from the fact that there are universal
constants cp > 0 such that

Mp(Rf, r) ≤ cpMp(f, r) for all f ∈ hpv` and 0 ≤ r < 1.

and from Proposition 3.2.
To prove the corollary for p = 1 and p =∞ we infer from Proposition 3.1. that

0 < inf
n

mn+1 −mn

mn −mn−1
≤ sup

n

mn+1 −mn

mn −mn−1
<∞.

We apply Lemma 3.3. of [13] and Lemma 4.1. of [9]. This yields constants cp,
p = 1,∞, such that

Mp(RTnf, r) ≤ cpMp(Tnf, r) for all f ∈ hpv` , n = 0, 1, 2, . . . , and 0 ≤ r < 1

where Tn are the operators of Proposition 3.3.. Hence Proposition 3.3. shows that
the Riesz projection is also bounded for the exponential weights in the remaining
cases p = 1,∞. �
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4. Estimates of the reproducing kernel.

We continue with a proposition, which can be conveniently proven by using the
results of Section 3. In this way we will later avoid cumbersome proofs which would
involve a direct estimation of the maximum point of the function rkv`(r). Again, let
v(r) = exp(−α/(1− r)β) and put v`(r) = v(r`) for some ` > 0.

Proposition 4.1. There are constants c1, c2 > 0 such that

c1k
− 2+β

2+2β sup
r
rkv`(r) ≤

∫ 1

0

rk+1v`(r)dr ≤ c2k
− 2+β

2+2β sup
r
rkv`(r)(4.1)

for every k ≥ 2`− 1.

Proof. Fix k ≥ 1 and at first consider ` = 1. According to Lemma 2.1 we
have

∫ 1

0
rkv(r)dr ∼=

∫ 1

0
rk+1v(r)dr ∼=

∫ 1

0
r[k]v(r)dr, and, of course, supr r

kv(r) ∼=
supr r

k+1v(r) ∼= supr r
[k]v(r). So it suffices to assume that k is an even integer. Put

f(z) = zk/2 and assume that mn ≤ k ≤ mn+1. Then ‖f‖22,v =
∫ 1

0
rk+1v(r)dr and

M2
2

(
(Q[mn+1/2] −Q[mn/2])f, rmn

)
= rkmn .

In view of Proposition 3.1. there are constants d1, d2 > 0 such that

d1n
2+2/β ≤ k ≤ d2n

2+2/β.(4.2)

Moreover an application of Taylor’s theorem reveals that

d3n
−1−2/β ≤ rmn+1 − rmn ≤ d4n

−1−2/β

for some constants d3, d4 > 0 which implies with (4.2)

d5k
− 2+β

2+2β ≤ rmn+1 − rmn ≤ d6k
− 2+β

2+2β .(4.3)

By Proposition 3.2. for p = 2 we have

c23

∫ 1

0

rk+1v(r)dr ≤ rkmnv(rmn)(rmn+1 − rmn) ≤ c24

∫ 1

0

rk+1v(r)dr

so that (4.3) implies ∫ 1

0

rk+1v(r)dr ∼= rkmnv(rmn)k−
2+β
2+2β .

We clearly have, by the choice (maximum property) of the number rk,

rkmnv(rmn) ≤ rkkv(rk).(4.4)

Conversely,

rkkv(rk)

rkmnv(rmn)
=

(
rmn
rk

)mn+1−k ( rk
rmn

)mn+1 v(rk)

v(rmn)
≤ r

mn+1

k v(rk)

r
mn+1
mn v(rmn)

≤
(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
< K.

Here we used, consequently, the fact that rk ≥ rmn , the choice of the number rmn+1

and (3.1). Thus

rkkv(rk) ≤ Krkmnv(rmn).(4.5)

The inequalities (4.4) and (4.5) together with the preceding prove the proposition
for ` = 1. The general case follows by the same substitution as in (2.4). �
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Lemma 4.2. We have
∞∑
k=0

tk∫ 1

0
r2k+1v`(r)dr

<∞ for every t ∈]0, 1[.

Proof. By Lemma 2.1, there are constants c, c1 > 0 such that∫ 1

0
r2k+1v`(r)dr ≥ c1 exp(−ckβ/(β+1)). This implies for all k

tk∫ 1

0
r2k+1v`(r)dr

≤ exp
(
−k
(

log(1/t)− ck−
1

β+1

))
.

For suitable k0 we obtain

log(1/t)− ck−
1

β+1 ≥ log(1/t)

2
if k ≥ k0.

Hence the series in the statement of the lemma converges. �

Now we turn to the proof of Theorem 1.3. Let w(r) = exp
(
−α̃/(1− r)β

)
for

given constants α̃ > 0 and β > 0 and put w`(r) = w(r`) for a fixed ` > 0. We study
the reproducing kernel

K`(z, ζ) =
∞∑
n=0

(zζ̄)n∫ 1

0
r2n+1w`(r)dr

.(4.6)

For the Bergman projection Pw` we obtain

Pw`f(z) =
1

2π

∫ 1

0

∫ 2π

0

K`(z, re
iϕ)f(reiϕ)rw`(r)dϕdr.

We use the following special case of a more general result in [5], Lemma 4.

Lemma 4.3. Assume that

sup
z∈D

∫ 1

0

∫ 2π

0

|K`(z, re
iϕ)| exp

(
− α̃

2

( 1

(1− r`)β
+

1

(1− |z|`)β
))
dϕrdr <∞.(4.7)

Then Pw` : Lp
w
p/2
`

→ Ap
w
p/2
`

is bounded for 1 ≤ p <∞. Moreover, Pw` : L∞
w

1/2
`

→ H∞
w

1/2
`

is bounded.

Notice that, if α̃ = 2α/p for some α > 0 then w
p/2
` (r) = exp(−α/(1− r`)β).

Lemma 4.4. Let

H(teiϕ) =
1∫ 1

0
rw`(r)dr

+
∞∑
k=1

(
tk∫ 1

0
r2k+1w`(r)dr

)(
eikϕ + e−ikϕ

)
.

Then there is a constant c > 0 such that∫ 2π

0

|H(teiϕ)|dϕ ≤ c
∞∑
k=0

(
1

k + 1

)(
tk∫ 1

0
r2k+1w`(r)dr

)
whenever 0 ≤ t < 1,

Proof. Put

ak =
1∫ 1

0
r2k+1w`(r)dr

, k = 0, 1, 2, . . . ,
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and a−1 = 0. Then ak ≤ ak+1 for all k. We have

H(reiϕ) =
∞∑
k=0

(ak − ak−1)
∞∑
j=k

tj(eijϕ + e−ijϕ).

Indeed, in view of Lemma 4.2., the preceding series converges absolutely whenever
0 ≤ t < 1, and we have

∞∑
k=0

(ak − ak−1)
∞∑
j=k

tj(eijϕ + e−ijϕ)

=
∞∑
j=0

j∑
k=0

(ak − ak−1)tj(eijϕ + e−ijϕ) =
∞∑
j=0

ajt
j(eijϕ + e−ijϕ).

Put fk(te
iϕ) =

∑∞
j=k t

j(eijϕ + e−ijϕ). Then, for any s > t we have

M1(fk, t) ≤ c1

(
t

s

)k
M1(fk, s)

where c1 is a universal constant ([12], Lemma 3.1.). Put

dk(e
iϕ) =

k−1∑
j=0

eijϕ +
k−1∑
j=1

e−ijϕ.

Then dk is the Dirichlet kernel and we obtain∫ 2π

0

|dk(eiϕ)|dϕ ≤ c2 log(k + 2)

for some constant c2 independent of k. Let

ps(e
iϕ) =

∞∑
k=0

skeikϕ +
∞∑
k=1

ske−ikϕ

so that ps is the Poisson kernel which implies∫ 2π

0

|ps(eiϕ)|dϕ = 2π for every s ∈ [0, 1[.

Hence fk(se
iϕ) = ps(e

iϕ)− (dk ∗ ps)(eiϕ) which implies, for 0 ≤ t < s < 1,

M1(fk, t) ≤ c2

(
t

s

)k
M1(ps − (dk ∗ ps), s) ≤ c3

(
t

s

)k
(1 + log(k + 2))

≤ c4

(
t

s

)k
log(k + 2)

for some universal constants c3, c4. Since s was arbitrary with t < s < 1 we obtain

M1(fk, t) ≤ c4t
k log(k + 2) for all k.

Hence ∫ 2π

0

|H(teiϕ)|dϕ ≤ c4

∞∑
k=0

(ak − ak−1)tk log(k + 2)

= c4

∞∑
k=0

akt
k(log(k + 2)− log(k + 1)) ≤ c

∞∑
k=0

(
1

k + 1

)
akt

k
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for some universal constant c. �

Proof of Theorem 1.3. We show (4.7) of Lemma 4.3. To this end put

K̃`(se
iψ, reiϕ)

=
1∫ 1

0
rw`(r)dr

+
∞∑
k=1

(
sktk∫ 1

0
r2k+1w`(r)dr)

)(
eik(ψ−ϕ) + e−ik(ψ−ϕ)

)
.(4.8)

Hence we obtain with the Riesz projection R,

K`(se
iψ, reiϕ) = RK̃`(se

iψ, reiϕ) = RH(rsei(ψ−ϕ))

where H is the function of Lemma 4.4. The function gs(re
iθ) = H(rseiθ) is an

element of h1
w

1/2
`

since 0 ≤ s < 1. Hence we obtain, in view of Corollary 3.5. and

Lemma 4.4.,∫ 1

0

∫ 2π

0

|K`(se
iψ, reiϕ)|dϕw1/2

` (r)rdr =

∫ 1

0

∫ 2π

0

|RH(rsei(ψ−ϕ))|dϕw1/2
` (r)rdr

≤ c1

∫ 1

0

∫ 2π

0

|H(rseiθ)|dθw1/2
` (r)rdr ≤ c2

∞∑
k=0

(∫ 1

0
rk+1w

1/2
` (r)dr∫ 1

0
r2k+1w`(r)dr

)
sk

k + 1

where c1, c2 are universal constants. Proposition 4.1 yields∫ 1

0
rk+1w

1/2
` (r)dr∫ 1

0
r2k+1w`(r)dr

≤ c3
supr r

k+1w
1/2
` (r)

supr r
2k+1w`(r)

≤ c4
supr r

kw
1/2
` (r)

supr r
2kw`(r)

for some constants c3, c4. Hence we arrive at∫ 1

0

∫ 2π

0

|K`(se
iψ, reiϕ)|w1/2

` (r)rdϕdr ≤ c5

∞∑
k=0

(
1

k + 1

)
supr r

kw
1/2
` (r)

supr r
2kw`(r)

sk(4.9)

for some constant c5.
Now put

g(seiψ) =
∞∑
k=0

(
1

k + 1

)
supr r

kw
1/2
` (r)

supr r
2kw`(r)

skeikψ.

Then we easily see that

M∞(g, s) =
∞∑
k=0

(
1

k + 1

)
supr r

kw
1/2
` (r)

supr r
2kw`(r)

sk.

So, (4.9) implies that

sup
s

∫ 1

0

∫ 2π

0

|K`(se
iψ, reiϕ)|v`(r)rdϕdr w1/2

` (s) ≤ ‖g‖∞,w1/2
`

(4.10)

In order to show that ‖g‖∞,w1/2
`

is bounded we apply Corollary 3.4. We have

M∞(Tng, rmn) ≤
[mn+1]∑

k=[mn−1]

γk

(
1

k + 1

)
supr r

kw
1/2
` (r)

supr r
2kw`(r)

rkmn(4.11)

for some γk ∈ [0, 1]. Here

mn = `β2
(2β

α̃

) 1
β
n2+ 2

β − `β2n2, hence mn+1 −mn−1 ≤ c6n
1+ 2

β ≤ c7mn−1,
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where c6, c7 are universal constants. Thus, (4.11) together with v`(r) ≤ w`(r)
1/2, see

(1.4), and (rkw
1/2
` (r))2 = r2kw`(r) yield

M∞(Tng, rmn)v`(rmn) ≤ c6 sup
mn−1≤k≤mn+1

(
mn−1

k + 1

)
supr r

kw
1/2
` (r)

supr r
2kw`(r)

rkmnw
1/2
` (rmn)

≤ c6
supr r

kw
1/2
` (r) sups s

kw
1/2
` (s)

supr r
2kw`(r)

≤ c6.

So Corollary 3.4. shows that ‖g‖∞,w1/2
`

< ∞. Finally, (4.10) shows that (4.7) is

satisfied. �

We conclude the article with an extension of the results of Section 1 to weighted
spaces of harmonic functions.

Theorem 4.5. Let

v`(r) = exp
(
− α

(1− r`)β
)

and w`(r) = exp
(

(− α̃

(1− r`)β̃
)

for some α, α̃, β, β̃, ` > 0. Let P̃w` : L2
w`
→ h2w` be the orthogonal projection. Then

P̃w` is a bounded operator Lpv` → hpv` if and only if β = β̃ and α̃ = 2α/p in the case

1 ≤ p <∞, and β = β̃ and α̃ = 2α in the case p =∞.

Proof. We have with (4.8)

P̃w`(z) =
1

2π

∫ 1

0

∫ 2π

0

K̃`(z, re
iϕ)f(reiϕ)rw`(r)dϕdr.

Hence, in view of (4.6), RP̃w` = Pw` and SPw`Sf = (id−R)P̃w`f + (Pw`f)(0) where
(Sf)(z) = f(z̄). Since the Riesz projection and S are bounded we can easily transfer
the results of Theorems 1.1., 1.3. and 1.2. to the space of harmonic functions. �

Acknowledgement. The authors are thankful to the referee for his/her com-
ments and for the suggested references [15], [16] and [17].
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