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Abstract

The computation of likelihood ratios (LR) to measure the weight of forensic glass

evidence with LA-ICP-MS data directly in the feature space without computing

any kind of score as an intermediate step is a complex problem. A probabilistic

two-level modeling of the within-source and between-source variability of the

glass samples is needed in order to compare the elemental profiles measured from

glass recovered from a suspect or a crime scene and compared to glass samples

of a known source of origin. Calibration of the likelihood ratios generated using

previously reported models is essential to the realistic reporting of the value of

the glass evidence comparisons.

We propose models that outperform previously proposed feature-based LR

models, in particular by improving the calibration of the computed LRs. We

assume that the within-source variability is heavy-tailed, in order to incorporate

uncertainty when the available data is scarce, as it typically happens in forensic

glass comparison. Moreover, we address the complexity of the between-source

∗Corresponding author
Email address: daniel.ramos@uam.es (Daniel Ramos)
URL: http://audias.ii.uam.es (Daniel Ramos)

1Equal contribution.

Preprint submitted to Journal of LATEX Templates August 30, 2021



variability by the use of probabilistic machine learning algorithms, namely a

variational autoencoder and a warped Gaussian mixture. Our results show

that the overall performance of the likelihood ratios generated by our model

is superior to classical approaches, and that this improvement is due to a

dramatic improvement in the calibration despite some loss in discriminating

power. Moreover, the robustness of the calibration of our proposal is remarkable.

Keywords: Likelihood ratio, forensic glass comparison, LA-ICP-MS, variational

autoencoder, warped Gaussian mixture, heavy-tailed

1. Introduction

The aim of a comparison between items within the forensic context is to

obtain information about the linkage between a suspect and a crime event by

the use of scientific procedures to analyze and evaluate the evidence. In this

context, a fact finder (e.g., a judge or a jury) must make the final decision on5

this issue, but the responsibility of the examination of the physical evidence

and subsequent interpretation of the data generated falls on a forensic examiner.

As an example, if the forensic case is a hit-and-run car accident, the glass in

the clothes of the victim can be compared to the glass that originated from the

windshield of a car suspected as involved in the accident.10

A likelihood ratio (LR) approach has been proposed as the logical way of

evaluating forensic evidence [1, 2, 3, 4, 5]. The LR is the ratio of the probability

of the evidence given each of two mutually exclusive propositions in the case.

According to [6, 7], a validation process is recommended prior to the use of a

LR model in casework. In this work, we will follow this recommendation, and15

we measure performance with a proper scoring rule (in our case, by the use

of the so-called likelihood ratio cost Cllr)[8], that can be further analyzed as

the additive contribution of the discriminating power and the calibration of LR

values. The former measures the ability of the compared features (elemental

profiles) to distinguish between cases where both sets of features belong to20

the same source, and cases where they belong to different sources. The latter
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measures how reliable are the conclusions that a decision maker can make with

those LR values [9, 10].

The incorporation of good analytical data derived from laser ablation in-

ductively coupled plasma mass spectrometry (LA-ICP-MS) analyses have en-25

abled the use of statistical tools for the comparison and objective evaluation

of glass evidence. Score-based LR approaches have been specially successful

[11, 12, 13, 14, 15, 16]. A score is firstly computed from the features [17], and a

calibration step can transform it in a LR based on the size and composition of a

background population of glass samples. The score-based approaches typically30

present good calibration properties despite the scarcity of the training data

[18, 19]. These score-based LR methods have been successfully applied in many

other forensic disciplines [20, 21, 22, 23, 24, 25, 15, 14].

One problem of score-based LR models relies upon the need of several

databases. The probabilsitic model to transform the score into a LR requires35

a database to be trained. Moreover, it has been shown in [16] that the score

computation process must take into account the typicality of the features,

otherwise important information may be lost. As a matter of an example, scores

based only on a distance between the features are shown to be inadequate. The

reality of operational forensic laboratories is that most background databases are40

relatively small in size ranging from 200-500 distinct glass samples representing

the local population of glass sources relevant to the particular jurisdiction or

population of sources. Data scarcity not only impacts the performance of models,

but also the evaluation protocol. Typically, the available data must be split into

training, validation, and test datasets. If the data are scarce, that split will yield45

too small datasets, unable to guarantee generalization to other datasets. Notice

that here we split the data into training, validation, and testing datasets as it is

typically done in chemometrics, pattern recognition and machine learning [26];

instead of two sets of training and forensic validation as in previous work in

forensic science [6]. This is a matter of terminology2. Cross-validation techniques50

2In forensic science, the training and validation datasets are referred to as training or
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[26] help on the optimal usage of data, but its intensive use might lead to an

unrealistic match between data splits, leading to overoptimistic results. The need

of more databases to train the models, as it happens in score-based approaches,

exacerbates the problem. These data requirements also appear when using

principal component analysis (PCA) [27] or other dimensionality reduction55

techniques.

Another option to score-based LR computation is the use of so-called feature-

based models [1, 17, 13], which directly assigns probabilities to the features

and not to a pre-computed score. Unfortunately, to date there has not been

feature-based LR models that present reasonable calibration for the problem60

of forensic glass comparison using LA-ICP-MS features. Therefore, research in

these models is relevant and important.

Moreover, there is additional interest to conduct research in feature-based

LR computation: if good calibration is obtained with LA-ICP-MS features

using some probabilistic models, these models could be potentially usable in65

other forensic problems and features beyond glass comparison. In this sense,

probabilistic machine learning may offer powerful algorithms to help with this

objective [28].

Despite the potential advantages of feature-based models, their complexity

with respect to score-based LR methods is significantly higher. The problem of70

higher dimension increases the need of additional data. Moreover, the feature

space is fairly complex, requiring models with a high number of free parameters,

and even though non-parametric approaches. All these alternatives are known

to be also highly sensitive to the lack of data, which aggravates the data scarcity

problem. As a consequence, previously proposed feature-based models present75

bad calibration in high dimensions [17, 29], leading to unreliable models that

cannot be used in practice for LA-ICP-MS features. In this sense, other authors

development dataset; and the testing dataset is referred to as the validation dataset [6]. As

this might create confusion to readers more used to the chemometrics field, we decided to stick

to the more accepted machine learning terminology.

4



have advocated to compute the weight of the evidence with alternatives to the

likelihood ratio with good results, as it is proposed in [30], but we believe that

research must still be conducted to reliably compute feature-based likelihood80

ratios.

In this work, we propose the use of two feature-based models that dramatically

improve the performance of likelihood ratios as compared to previous feature-

based approaches. This performance boost is mainly based on the improvement

on the calibration. Our proposal is based on the classical two-level model85

presented in [17], with two main important differences. First, the within-source

variability of the features is not modeled by a multivariate Gaussian, but by a

Student’s t-distribution. This allows the incorporation of uncertainty in the model

by the selection of the number of degrees of freedom of the Student’s t-distribution.

Second, the between-source variability is modeled by two different probabilistic90

machine learning approaches: On the one hand, a variational autoencoder [31];

and on the other hand, a warped Gaussian mixture [32]. These approaches enable

flexible densities, and direct Monte Carlo sampling to numerically approximate

likelihood ratio. Our results show that the proposed solution outperforms the

baseline model and is better calibrated. Furthermore, we will use relevant95

LA-ICP-MS databases from the Florida International University, and from the

German Federal Police (Bundeskriminalamt) as background population.

This article is organized as follows. First, the likelihood ratio framework is

described in Section 2. Next, Section 3 describes the LR models proposed in

this work, including the baseline used. The experimental section is described in100

Section 4. Finally, conclusions are drawn in Section 5.

2. The likelihood ratio framework in forensic science

In this work, we follow the likelihood ratio framework, which has been

proposed as a logical way of evaluating the evidence in a forensic case [5]. In

forensic glass comparison using LA-ICP-MS, the evidence are the glass samples105

to be compared. For instance, in a hit-and-run car accident, one of the samples
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would be recovered from the crime scene or from the clothes of a victim, and the

other sample would be known to originate from the windshield of a suspect car.

Some feature vectors are measured from each of the samples. From the crime-

scene sample, we obtain a total of n1 replicates, namely Y1 =
(
y
(1)
1 , · · · ,y(n1)

1

)
,110

where each measurement is denoted as y
(i)
1 =

(
y
(i)
1,1, · · · , y

(i)
1,D

)T
. For LA-ICP-

MS, the dimension of the feature vectors is D = 17. Analogously, for the

suspected sample, some feature vectors are measured, for a total of n2 replicates,

namely Y2 =
(
y
(1)
2 , · · · ,y(n2)

2

)
, where each measurement is denoted as y

(i)
2 =(

y
(i)
2,1, · · · , y

(i)
2,D

)T
.115

Both sets of vectors Y1 and Y2 are the feature-based representation of the

evidence. Within the likelihood ratio framework, we evaluate these features in

the context of two competing propositions or hypotheses. Let H be the so-called

proposition variable, that represents what is the true proposition that happens

in the case (also known as the ground-truth proposition, or the true label). This120

is a categorical variable with alphabet {hss, hds}, with possible values as follows:

• hss is the so-called prosecution proposition, or in our case, the same-source

proposition, because a prosecutor typically contributes to relate the suspect

to the crime. For simplicity, we will define hss as follows: The crime-scene

sample and the suspect samples come from the same source.125

• hds is the so-called defense proposition, or in our case, the different-source

proposition, because the defense typically contributes to demonstrate that

the suspect is unrelated to the crime. For simplicity, hds will be: The

crime-scene sample and the suspect samples come from different sources.

Other definitions of the propositions are possible. In particular, we defined130

the propositions for a so-called common-source scenario, but a definition of the

propositions for a specific-source scenario would also be possible. See [33] for a

discussion on this issue.

To compute the LR, the forensic scientist should have a so-called background

database, equivalent to the pooling of the training and validation databases if we135
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use the typical terminology in pattern recognition and machine learning (as we

do in this work). This background database contains glass features of many other

glass objects (sources). We will assume that those sources are representative of

the population from which the findings in the case are drawn. This means that

if that background database was drawn from a population, the forensic findings140

were also drawn from the same population.

For the sake of simplicity, we will assume that the number of replicates of

each object in the background database is the same, namely nb. Let m be the

number of objects in the dataset. Then, Xi =
(
x
(1)
i , · · · ,x(nb)

i

)
will be the

matrix with all the replicated measurements from object i in the background145

database, with x
(j)
i =

(
x
(j)
i,1 , · · · , x

(j)
i,D

)T
. Thus, X = (X1, · · · ,Xm) will be the

complete background dataset of features. Note that we have organized the

notation in a way in which it is implicitly assumed that the true labels of each

object (source) in the background database are known. Finally, we organize the

whole set of data observations as D = (Y1,Y2,X).150

The LR framework is summarized with the odds-form of the Bayes theorem:

P (H = hss| D)

P (H = hds| D)
=
P (D|H = hss)

P (D|H = hds)
× P (H = hss)

P (H = hds)
, (1)

Thus, the posterior probabilities P (H = h| D) with h ∈ {hss, hds} are used

to make decisions. The prior probabilities P (H = h), with h ∈ {hss, hds},

summarize all the knowledge about the propositions in the case before the

analysis of the evidence has been conducted. This might include information155

such as police investigative reports, witnesses, past criminal records of the

suspect, other evidence (e.g., a recorded conversation, a psychological report),

and so on. The prior probabilities are not the province of the forensic examiner.

These prior probabilities are updated by the evidence evaluation, the province

of the forensic examiner. The factor that transforms the prior odds into the160
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posterior odds is the likelihood ratio (LR):

LR =
P (D|H = hss)

P (D|H = hds)
, (2)

If we simplify notation H = hss into hss inside probabilities, we have:

LR =
P (D|hss)
P (D|hds)

=
P (Y1,Y2|hss,X)

P (Y1,Y2|hds,X)
, (3)

because P (X|hss) = P (X|hds), i.e., the background data are independent of

the relationship between the crime-scene sample and the suspect sample.

Thus, in this work, we will explore models to compute the LR as in Eq. 3.165

3. Likelihood Ratio models

In this section, we describe the models that will be used to compute a feature-

based LR. We start with the description of the classical Bayesian inference

approach to compute likelihood ratios in forensic science with continuous data.

We then present our baseline system, widely known and proposed in [17]. Finally,170

our two proposed methods are presented.

3.1. Classical Bayesian model for LR computation

The classical Bayesian model for trace evidence evaluation, firstly applied

in univariate glass data in [1] and extended to multivariate glass data in [17],

considers the following general expression for the LR:175

P (Y1,Y2|hss,X)
P (Y1,Y2|hds,X)

=
∫
P (Y1|θ)P (Y2|θ)P ( θ|X)dθ∫

P (Y1|θ)P ( θ|X)dθ
∫
P (Y2|θ)P ( θ|X)dθ

, (4)

where θ are the parameters of the selected model. We clearly identify the

following elements:

• Likelihood P (y| θ).

• Parameter distribution P (θ|X).
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This model is not necessarily fully-Bayesian, because sometimes θ contains180

an incomplete set of the total number of parameters in the model, and the rest of

parameters are assigned using point-estimate approaches (e.g., maximum likeli-

hood). In that sense, P (θ|X) is not precisely a posterior parameter distribution,

but some density assigned to the parameters by some optimization method (e.g.,

maximum likelihood). That is why we will call it parameter distribution and185

not parameter posterior as typically happens in Bayesian statistics literature.

Moreover, in particular, to date and to our knowledge, the classical models only

consider that θ is the mean vector µ of each glass object feature distribution,

whereas the between-source and within-source covariance matrices are assigned

with maximum likelihood, as in the cited earliest works [1, 17].190

All the models presented in this work (baseline model and proposed models)

are based on this classical model. The main difference between them relies upon

the selection of the likelihood, the selection of the parameter distribution, and

the computation of the integrals in Equation 4 (analytically or by Monte-Carlo

sampling).195

3.2. Baseline model: ALK model

The model ALK (after Aitken and Lucy with Kernels) was proposed in [17],

and follows the model in Equation 4, considering the following:

• Likelihood P (y|µ) ∼ N
(
y|µ, Σ̂w

)
, where Σ̂w, the within-source variabil-

ity covariance matrix, is computed by maximum likelihood.200

• Parameter distribution P
(
µ|X, kΣ̂b

)
, a non-parametric kernel density

function (KDF) with Gaussian kernels having covariance kΣ̂b, where Σ̂b

is obtained by maximum likelihood.

The maximum-likelihood statistics involved in this computation are:

• Per-object mean on the background set:

ˆ̄xi =
1

nb

nb∑
j=1

x
(j)
i (5)
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• Total mean of the background set:

ˆ̄x =
1

m

m∑
i=1

ˆ̄xi (6)

• Within-object covariance matrix:

Σ̂w =
1

mnb −m

m∑
i=1

nb∑
j=1

(
x
(j)
i − ˆ̄xi

)(
x
(j)
i − ˆ̄xi

)T
(7)

• Between-object covariance matrix:

Σ̂b =
1

m− 1

m∑
i=1

(
ˆ̄xi − ˆ̄x

) (
ˆ̄xi − ˆ̄x

)T − Σ̂w

nb
(8)

Also, the so-called kernel smoothing parameter was computed as in [34]:205

k =

(
4

2D + 1

) 1
D+4

m−
1

D+4 (9)

This model assumes that the features of objects are represented by their

mean vectors. Thus, the glass samples replicated from one object are generated

according to a Gaussian distribution centered in the object mean vector xi, that

is computed from the background set as ˆ̄xi. Then, the distribution of object

means is represented by the parameter distribution, which is modeled according210

to a KDF.

The main advantage of this model is that it has a closed-form solution (see

[17]). The main disadvantage is that it does not consider much of the uncertainty

in the parameters, since it is not fully-Bayesian and assigns maximum-likelihood

statistics to several important parameters. Therefore, it is expected that the215

model will be poorly calibrated. Moreover, in our preliminary experiments it

has been observed that, when used with LA-ICP-MS data, the model will often

output infinite and zero LR values, which is and indication of overstatement in

the weight of the evidence. Thus, to preserve Cromwell’s rule, stating that no

value of 0 or 1 must be assigned to any probability [35], we will limit the LR220

values to lay in the range between the maximum and minimum floating-point

precision in the computed where the model is used. This way, we avoid numerical
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and computational pitfalls on the baseline results. Strategies to limit the value

of the LR are not new, and have also been previously proposed in [19, 18, 36].

3.3. Proposed LR models225

In this section, we briefly propose two alternate models that aim at better

incorporating the uncertainty in the glass comparison problem. It is worth noting

that in these models we use a multivariate Student’s-t distribution to incorporate

uncertainty in the Bayesian model, instead of using it for a hypothesis test like

in [17].230

3.3.1. HW model: Heavy-tailed with Warped Gaussian mixtures

This model assumes the following:

• Likelihood P (y|µ) ∼ T
(
y|µ, Σ̂w, ν

)
. Here, T denotes a multivariate

Student’s t-distribution with within-source variability scale matrix Σ̂w and

degrees of freedom ν. Here, Σ̂w is computed with maximum likelihood235

in the same way as in Section 3.2, and ν is heuristically obtained from a

validation set3.

• Parameter distribution P (µ|X,W), the predictive distribution of a warped

Gaussian mixture [32] representing the distribution of the mean vectors

of the glass features. The Warped Gaussian Mixture is a fully Bayesian240

generative model where an infinite Gaussian Mixture model [37] is warped

using a Gaussian Process Latent Variable Model [38]. Inference in this

model relies on a Hamiltonian within Gibbs Markov Chain Monte Carlo

sampler. In this way, the warped Gaussian mixture can adapt to complex

parameter distributions while incorporating the uncertainty in µ. Details245

3As mentioned before, here we use the term validation dataset to refer to the dataset used

for model selection, in contrast to the forensic validation dataset typical in forensic science,

whose analogous in machine learning would be the testing dataset. The reasons of this change

in the terminology have been explained before.
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about this model can be found in [32], with indications of a MatlabTM

code with an implementation of the model.

As there is no closed-form of the integrals in Equation 4 with the warped

Gaussian mixture as the parameter distribution, we compute the LR by Monte

Carlo sampling using the following expression:250

P (Y1,Y2|hss,X)

P (Y1,Y2|hds,X)
=

1
M

∑M
i=1 P (Y1|µi)P (Y2|µi)[

1
M

∑M
i=1 P (Y1|µi)

] [
1
M

∑M
i=1 P (Y2|µi)

] (10)

where M mean vectors are sampled from the model:

µi ∼ P (µi|X,W) . (11)

3.3.2. HVAE model: Heavy-tailed with Variational Autoencoder

This model is fairly similar to the HW model, but replacing the warped

Gaussian mixture with a variational autoencoder, which also allows sampling

from the parameter distribution. In particular:

• Likelihood P (y|µ) ∼ T
(
y|µ, Σ̂w, ν

)
. Here, T denotes a multivariate255

Student’s t-distribution with within-source variability scale matrix Σ̂w and

degrees of freedom ν. Here, Σ̂w is computed with maximum likelihood

in the same way as in Section 3.2, and ν is heuristically obtained from a

validation set.

• Parameter distribution P (µ|X, ψ), a variational autoencoder [31], repre-260

senting the mean vectors of the glass objects. The variational autoencoder

has generative parameters ψ that parameterize a Gaussian likelihood

modeling both the mean and the variance (aleatoric uncertainty) of our

observations. The generative parameters ψ are learned following the pro-

cedure described by [31], i.e. by using amortized inference and stochastic265

variational inference and using a pathwise gradient estimator. To sample

from the variational autoencoder we construct a Markov Chain using the

encoder and decoder to form the transition operator, see e.g. [39].
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Again, the model uses Equation 10 to approximate the LR by Monte-Carlo

using samples from the Markov Chain generated using the variational autoen-270

coder.

4. Experiments

4.1. Databases

Here we describe the two databases used in this work, that together allow

a realistic experimental set-up. The databases contain vectors of glass elemen-275

tal compositions coming from LA-ICP-MS analysis derived from quantitative

analysis using a standard LA-ICP-MS method (ASTM E2927-16e1). Two LA-

ICP-MS glass databases were used in this study: the Bundeskriminalamt (BKA)

casework database (385 glass objects) and the Florida International University

(FIU) vehicle database (420 glass objects). The LA-ICP-MS analytical technique280

implies that each measurement generates D = 17 chemical isotopes found in the

glass, which each forms a feature vector. Each of the values of each element

of the vector represents a number associated with that particular isotope. Al-

though each measurement generates a single vector, several measurements can

be performed in the same object, leading to so-called replicates, or replicated285

measurements in one single object. The meaning of the numbers in the vectors

are chemically relevant, but irrelevant for the purpose of statistical forensic

evaluation, and, of course, data transformation or dimensionality reduction

techniques are welcome if convenient. What matters is that all vectors will tend

to present high mean separation if they come from different sources, and that290

the within-source variability will be low enough with respect to between-source

variability to be able to reach an important discriminating power. Moreover,

the LA-ICP-MS technique is quite robust, and a low database shift is expected

between different LA-ICP-MS databases, even from different laboratories. These

hypothesis have been supported by past studies [18, 40, 41].295

The available databases are described as follows:
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• BKA (background database). This database from the German Federal

Police (Bundeskriminalamt) contains features from float glass in windows

analyzed in real forensic cases. The database contains 385 different sources

(glass objects). For each source, a total of 6 replicated measurements were300

taken. The database includes several different types of glass relevant in

forensic practice: float glass, container glass, pre-float window glass, etc.

The BKA typically analyzes the following 18 elements: 7Li, 23Na, 25Mg,

27Al, 39K, 42Ca, 49Ti, 55Mn, 57Fe, 85Rb, 88Sr, 90Zr, 137Ba, 139La, 140Ce,

146Nd, 178Hf, and 208Pb. However, 23Na was omitted in this study since305

it is not included in the element menu suggested in the United States

standard, ASTM E2927 [41]. LA-ICP-MS analysis was followed by signal

processing using the GlitterTM software (MacQuarie University, Australia).

The LA-ICP-MS instrumental parameters were set following the relevant

literature [42, 43, 41].310

• FIU (testing database). This database from the Florida International

University considers measurements from car windshields. The database

consists of 210 windshields from vehicles at the M & M Service and

Salvage Yard in Ruckersville, Virginia. Each windshield consists of inner

and outer panes, joint together with some fixing technique. The dataset315

includes vehicles from 26 different automotive manufacturers, and they

were produced between the years 2004 and 2017. LA-ICP-MS was used

to analyze all objects and the 17 isotopes listed in ASTM E2927 were

quantified using GlitterTM , with the Float Glass Standard 2 (FGS 2) used

as the calibrator [44]. The analysis was conducted using a ns-213 nm320

Nd: YAG laser (ESI New Wave Research, Portland, OR, USA) coupled

to a quadrupole ELAN DRC II (Perkin Elmer LAS, Shelton, CT, USA),

with the following parameters: 100% laser energy (' 0.65 mJ), 10 Hz,

90 µm spot size, and 60-second dwell. For the purposes of the statistical

evaluation, the glass in the inner and in the outer pane can be considered325

as different objects (because they behave differently from the chemical
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point of view), and therefore we can account for a total number of 420

objects (sources). However, it is expected that some similarities will be

found between inner and outer panes of each windshield, even though are

supposed to be different glass objects. Thus, the testing FIU database has330

been divided into two different subsets, namely 210 inner panes and 210

outer panes of the considered windshields. Both subsets will be used in an

isolated way in the experimental protocol, and the LR values from each of

the subsets will be pooled to generate the final testing results. For each

of the 420 objects (sources), a total of 15 replicated measurements were335

taken.

For the purposes of model comparison and benchmarking typical in pattern

recognition and machine learning, we will consistently use the BKA database for

training and validation and the FIU database for testing. This is because the

BKA database, from realistic forensic cases, is more adequate to represent a real340

population than the FIU database, created in laboratory conditions. This allows

the comparison with other works in the literature, where the same experimental

set-up has been used, such as [18].

Moreover, in order to isolate data variability issues related to the number of

replicates, we will divide the training (BKA) and testing (FIU) sets into groups345

of nr = 3 replicates for every single object. Thus, the BKA databases will have 5

of these nr-replicate groups, and the BKA testing database will have 2 of these

nr-replicate groups. This situation of equalizing the number of replicates to

compare is realistic, as many forensic laboratories use standardized numbers for

nr in casework comparisons. This can be evidenced from standards for glass350

comparison using LA-ICP-MS features (see e.g. [41]).

4.2. Forensic relevance of databases

A legitimate question is whether the databases presented in this work are

representing a realistic and relevant population. We aim at addressing this issue

here.355
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The authors have previously shown [45, 46, 40] that there are observable

differences in the LRs calculated based on the background database used for

the LR calculation. The differences observed are based on 1) the size of the

background database and 2) the composition of the background database. Ac-

cording to this previous work, the differences calculated are small with models360

with BKA data and with FIU data. Therefore, the main conclusion is that the

differences in the type of the data in these two databases are not particularly

relevant for LA-ICP-MS features when they are used as population samples.

According to this previous observations, the relevant population in casework

is typically defined locally, i.e., from German cases, in the case of the BKA and365

from US vehicles, in the case of the FIU. Therefore, the population depends on

what type of case. What we have found, however, is that any differences found in

the LLR calculation will be affected by the size of the database, not necessarily

the geographic origin of the glass given that glass is a global commodity and

especially, vehicle glass moves around the world freely.370

In casework, the recommendation is to use a local relevant background

database in the laboratory that serves as a sample of that population. For

example, a locally collected database in the US should be used for US cases and

a locally collected database in Australia should be used for Australia-originated

casework, etc. There are now 6-7 locally produced databases in The Netherlands,375

Germany (two available), the US (two available), Singapore and Australia. Those

laboratories that have access to a local database are recommended to use it.

What we have found, however, is that the size of the database plays a more

important role in the Log-LR calculation than where it was generated [45, 46, 40].

According to this discussion, we can define database selection in a typical380

forensic case. The most likely type of glass forensic case in the US is a hit-and-run

accident where the broken windshield is involved in the glass collected from the

crime event. The windshield glass transfers to both any victim of a hit-and-run

and, we have found also to any driver or passenger in the vehicle. These types

of transfers often answer the forensic questions of activity along with source385

comparisons. While other types of vehicle glass (rear window and side windows)
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also can break, of course, they are less likely to break and, would provide similar

information, were they to make up the background database samples, we have

found.

4.3. Data pre-processing390

LA-ICP-MS data present a very different behavior for each of the dimensions

of the feature vector, since each of them represents the concentrations of different

chemical elements. Moreover, the data presents some outliers. Therefore, to

facilitate the modeling, we have normalized the data using a two-step process.

First, each of the marginal histograms of the logarithm of each variable has395

been normalized to their interquartile distance, and their median has been

subtracted. This will transform all the marginal distributions of the variables

ideally to zero-median and one interquartile distance. Then, a standard sigmoid

has been applied to each of the variables, to reduce the influence of the outliers.

As a result, the data to be used in these experiments will consist of so-called400

normalized feature vectors, which in previous experiments have demonstrated to

be much more adequate to the proposed models. A possible drawback of this

normalization strategy is that the rarity of the features can be reduced, which

might result on a discrimination loss, but it is expected to favor a calibration

improvement. As the main problem of feature-based approaches is the calibration,405

we decided to follow this normalization procedure as a proof-of-concept that

the calibration can be dramatically improved at the feature level. Moreover, in

our previous experiments, other normalization schemes seemed to yield worse

calibration results precisely due to the outliers. The exploration of those effects

in the normalization of glass features is one of our future avenues to improve410

feature-based models.

The normalization process of the training split of the BKA database has

been performed via a leave-one-object-out cross-validation procedure. Then, the

statistics on the raw, unnormalized training BKA data (interquartile distance

and median) are used to normalize the validation BKA data and the test FIU415

data. Thus, the data usage is honest and does not contaminate results, as all
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vectors are normalized with a dataset that does not contain themselves.

For the sake of illustration, Figures 1 and 2 show two examples of two-

dimensional scatter plots, each of them considering two of the 17 variables in the

LA-ICP-MS feature vector. A bidimensional kernel density fitting [34] has been420

represented for more clarity. Also, plots for the LA-ICP-MS data in the FIU

database and the BKA database before and after the proposed normalization

are performed. It can be seen that the normalization process is fit for purpose,

as the features are normalized to zero median and one interquartile distance,

and because the effect of the outliers is reduced.425

More generally, Figures 3 and 4 show the correlation diagrams of the BKA

and FIU databases before and after the normalization process. It can be seen

that the normalization process sets the range of values in more sensible and

similar ranges across variables, and that the outliers are severely reduced. Finally,

the correlations of the variables are in some cases very clearly kept after the430

normalization process.

4.4. Comparison protocol

In our problem, we measure performance empirically by repeating comparisons

of Y1 and Y2 features from the FIU database, whereas the model is trained

on the background BKA database X described before. For each comparison,435

a LR is computed as in Equation 4. In that sense, sets Y1 and Y2 will be

assumed to represent respectively the crime-scene and suspect glass samples in

each comparison. Thus, each comparison can be viewed as a simulated forensic

case.

The experimental protocol involves the splitting of all the data into training,440

validation, and test sets. The training set consists of the first 300 glass objects

extracted from the BKA database, whereas the rest of 85 glass objects of the

BKA database are used for validation. Training data have been used to train

model parameters, and validation data are used for model selection described

below. The testing FIU database has been used to measure the performance445

of models. This protocol resembles the one used in previous work with these
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(a) (b)

(c) (d)

Figure 1: Bidimensional scatter plots for two examples of sample variables for the BKA

database, before normalization (a and c on the left) and after normalization (b and d on the

right). A kernel density function (KDF) fitting is shown as contour lines.
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(a) (b)

(c) (d)

Figure 2: Bidimensional scatter plots for two examples of sample variables for the FIU database,

before normalization (a and c on the left) and after normalization (b and d on the right). A

kernel density function (KDF) fitting is shown as contour lines.
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(a)

(b)

Figure 3: Correlation diagram for the BKA database, before normalization (a) and after

normalization (b). The main diagonal in the diagram shows marginal histograms of each

variable. Scatter plots are then represented in the intersections of variables.
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(a)

(b)

Figure 4: Correlation diagram for the FIU database, before normalization (a) and after

normalization (b). The main diagonal in the diagram shows marginal histograms of each

variable. Scatter plots are then represented in the intersections of variables.
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databases, see [18]. Following the methodology described in [6, 7], the BKA

database would be the development set, used to train and select the best model;

and the FIU database would be the forensic validation database, used to decide

whether the method is suitable to be used in casework according to criteria.450

Recall that we used here the terminology training, validation and testing for it

is more widely known from machine learning, but the analogy with development

database and forensic validation databases as in [6, 7] is clear as described above.

We measure performance by comparing simulated crime-scene glass features

and suspected glass features for which we know if hss is true (both features sets455

come from the same glass object), or conversely if hds is true (both features sets

come from different glass objects). Thus, the testing FIU database has been

divided into two different subsets, namely 210 inner panes and 210 outer panes

of the considered windshields. Both subsets will be treated as different testing

datasets for the purposes of simulating LR values. As each pane has a total of460

15 replicate features, the comparison protocol is as follows. For same-source

comparisons (where hss is true), the 3 first replicates are compared to the rest

of non-overlapping groups of 3 replicates in the same object, to a total of 4

same-source LR values per each of the panes. This results in 840 LR values

in the inner subset and 840 LR values in the outer subset, to a total of 1, 680465

same-source testing LR values. The different-source comparisons (for which hds

is true) are computed comparing the 3 first replicates of each pane with the rest

of 5 non-overlapping groups of 3 replicates of the rest of objects in each subset

separately (inner or outer). This leads to a total number of different-source

testing LR values of 1, 097, 250.470

The model selection experiments using the BKA validation dataset were

conducted using the same protocol as for the FIU testing database, considering

the following. First, only 6 replicates were available for BKA objects, and

therefore only 1 same-source comparison was possible for each BKA object in the

validation dataset, to a total of 85 same-source LR values for model selection. On475

the other hand, following the same protocol as the one in the FIU test database,

we obtained a total of 14280 different-source LR values for model selection.
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4.5. Performance metrics

A solution to measure the performance of LR values has been proposed

in [8] for speaker recognition and has been extended and adapted to forensic480

comparison problems [10, 6]. The main metric for performance measurement

has been dubbed log-likelihood-ratio cost (Cllr), a scalar defined as follows:

Cllr =
1

2 · nss

∑
iss

log2

(
1 +

1

LRiss

)
+

1

2 · nds

∑
jds

log2 (1 + LRjds).

The indices iss and jds respectively refer to hss and hds comparisons, and nss

and nds are respectively the total number of hss (i.e., same-source) comparisons

and hds (i.e., different-source) comparisons in the testing LR set. It is easily seen485

that Cllr is the well-known binary cross-entropy function when prior probabilities

P (H = hss) = P (H = hds) = 0.5 [21].

An important result is derived in [8], where it is proven that minimizing the

value of Cllr also encourages to obtain better decisions. This property has been

highlighted as extremely important in forensic science [9]. Moreover, in [8], the490

Pool Adjacent Violators (PAV) algorithm is used in order to decompose Cllr as

follows:

Cllr = Cmin
llr + Ccal

llr (12)

where:

• Cmin
llr represents the discrimination cost of the LR method, and it is due

to non-perfect discriminating power. Cmin
llr can be viewed as the same kind495

of measure as the well-known Area Under ROC curve (AUC) [47, 8].

• Ccal
llr represents the calibration cost of the LR values.

A detailed revision of this decomposition of cross-entropy can be found in

[21]. Moreover, a neutral value of Cllr = 1 is obtained when all the LR values

computed by the system are equal to 1, representing the performance of a useless500

LR model that does not gives any information to the trier of fact (i.e., if LR is
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1, the evidence is said to have no value). Thus, this value of Cllr = 1 represents

an ultimate performance limit, and if Cllr > 1 for a LR model, it should be

discarded as a possible model in casework.

4.6. Results505

Here we describe the model selection experiments using the BKA validation

dataset, also referred to as validation experiments. Next, we will present the test

experiments in the FIU database.

4.6.1. Training the models with BKA train database

We trained the parameter distributions of HW and HVAE models with the510

training split of the BKA database. For the warped Gaussian mixture, we

trained it by varying many of the hyperparameters of the model, as described

in [32]. We briefly describe the main ones here. The mixture was initialized

with 5 components. The step size of the leap-frog algorithm used to perform the

integrator was 0.01. A Gaussian process latent variable model was used firstly to515

initialize the model. The rest of the parameters were varied according to Table

1, see the caption for the definition of the parameters of the model, and see [32]

for further details.

As the number of hyperparameters of the VAE models was higher, we select

the best VAE models by their marginal log-likelihood with the training split of520

the BKA data, which represents the consistency of the trained models with the

training data. In Table 2 we show the configurations of the VAE selected in this

way. For all the VAE models, the aleatoric uncertainty is modeled. Details can

be found in [31].

4.6.2. Model selection results using BKA validation database525

The aim of these experiments is two-fold. On the one hand, we want to find

what model configuration performs best in the validation dataset, in order to

select it for the testing experiments. On the other hand, we want to show the

robustness of the approach to the selection of parameters.
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Model ID Mc WU LatDim τ

HW1 10000 4000 5 60

HW2 10000 4000 2 100

HW3 10000 4000 5 20

HW4 10000 4000 10 100

HW5 4000 1000 10 100

HW6 4000 1000 5 60

HW7 10000 4000 10 60

HW8 4000 1000 10 60

HW9 4000 1000 2 60

HW10 10000 4000 10 20

HW11 4000 1000 10 20

HW12 10000 4000 2 20

HW13 10000 4000 2 60

HW14 4000 1000 5 20

HW15 10000 4000 5 100

HW16 4000 1000 5 100

HW17 4000 1000 2 100

HW18 4000 1000 2 20

Table 1: Configurations of the warped Gaussian mixtures used for the HW model that

performed better than the baseline in the validation dataset (split of the BKA database).

The fields are defined as follows: Mc is the number of Monte-Carlo samples inferred from

the parameter posterior of the mixture. WU are the warm-up samples for Markov-Chain

Monte-Carlo. LatDim is the dimension of the latent space of the mixture. Finally, τ is the

number of steps used for the integrator based on Hamiltonian Monte Carlo. See [32] for details.
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Model ID Layers Neurons LatDim β L

VAE1 no Dropout 1 50 10 1 14.3

VAE2 no Dropout 2 50 2 1 12.0

VAE3 no Dropout 2 25 2 1 11.9

VAE1 Dropout 1 50 5 0.1 9.4

VAE2 Dropout 1 50 10 0.1 9.3

VAE3 Dropout 1 50 2 1 9.2

Table 2: Configurations of the VAEs used for the HVAE model that performed better than the

baseline in the validation dataset (split of the BKA database). The fields are defined as follows:

Layers is the number of hidden layers of the neural network of the autoencoder. Neurons is

the number of neurons of the hidden layers. LatDim is the dimension of the latent space. β

is a power applied to the Kullback-Leibler divergence when computing the Evidence Lower

Bound (ELBO) of the variational inference. Finally, L is the marginal likelihood of the data

for each of the models. See [31] for details.

For all the model selection experiments using the BKA validation dataset, the530

degrees of freedom of the heavy-tailed within-source distribution, namely ν, have

been varied across the following values: {1, 2, 3, 5, 10, 20, 50}. As an intuition,

the value ν = 1 means that the distribution is more “spread” in the feature

space, indicating more uncertainty about the features in the model. On the

other hand, ν ≥ 50 greatly approximates the Gaussian within-source variability,535

indicating that the model is more similar to the Gaussian, maximum likelihood

distribution, and therefore incorporating less uncertainty to the model. Thus,

finding the best value for ν can be seen as finding the best amount of uncertainty

to be considered by the model.

Figures 5 and 6 show the model selection experiments using the BKA valida-540

tion dataset with HW and HVAE models, respectively. Some observations can

be made about these models. Firstly, it can be seen that the optimal degrees

of freedom of the within-source Student’s t-distribution are around ν = 10 in

all the cases. This means that the best models (in terms of Cllr) are different

from a maximum-likelihood Gaussian within-source variability, meaning that545

incorporating uncertainty in the model improves the performance by obtaining
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better calibration. However, the incorporation of the uncertainty has an optimal

value, and if a too low ν is used, then the discriminating power is degraded.

Also, it can be seen that the baseline presents better discriminating power

than the proposed models. This may be explained as follows: as the uncertainty550

is incorporated poorly by the baseline ALK model, as long as two LA-ICP-MS

sets of features are slightly different, the ALK model distinguished between

them extremely well. However, this distinction is heavily overstated, and the

likelihood ratio for such a comparison turns out to be zero. As this happens to

almost all different-source comparisons, there will be many LRs providing very555

strong evidence (in fact, infinitely strong). This presents the risk that future

LR values will be also misleadingly strong, as there is not a guarantee that

models yielding overstating LR values will not generate a misleading, overstated

LR value in the future. On the other hand, for same-source comparisons, the

analogous situation happens, where the baseline ALK model assigns a very high560

number to the numerator of the LR, due to more concentrated distributions (i.e.,

Gaussian instead of heavy-tailed). This leads to an overstatement of the weight

of the evidence for many of the same-source comparisons. These observations

are consistent with [18] and [19], where the baseline ALK model provides these

overstated LR values, which on itself are used as scores that are further calibrated565

and limited. However, here, as described before, we compute better calibrated

LR values in a single, feature-based step.

Secondly, we observe that the model is quite robust to the selection of

parameters. We see that many models are better than the baseline in terms of

Cllr for a variety of parameter configurations and degrees of freedom ν. This570

is specially apparent for the HW model (Figure 6). This evidences that the

behavior of the model is robust to small variations of the hyperparameters of

the VAE and the warped Gaussian mixture, and also to the degrees of freedom.

Therefore, we can expect robustness in real casework.

Although the improvement on the calibration of the proposed models with575

respect to the baseline is clear, it is true that some calibration loss is presented

by the models. This is evidenced by the remaining values of Ccal
llr .
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Figure 5: Performance of the HVAE models in the validation split of the BKA database,

compared to the baseline. Only models that are better than the baseline are represented. The

VAEs are as defined in Table 2, ν are the degrees of freedom of the Student’s t-distribution for

the within-source variability, and lv indicates that the aleatoric uncertainty was learned by the

VAEs.
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HW models, BKA Validation

0 0.1 0.2 0.3 0.4

HW13  = 10 Cllr =0.054 ; minCllr = 0.024
HW9  = 10 Cllr =0.057 ; minCllr = 0.023

HW14  = 10 Cllr =0.058 ; minCllr = 0.022

HW12  = 10 Cllr =0.062 ; minCllr = 0.025
HW18  = 10 Cllr =0.062 ; minCllr = 0.024

HW2  = 10 Cllr =0.066 ; minCllr =  0.03
HW3  = 10 Cllr =0.066 ; minCllr = 0.027
HW13  = 5 Cllr =0.068 ; minCllr = 0.028

HW17  = 10 Cllr =0.068 ; minCllr = 0.028

HW9  = 5 Cllr =0.068 ; minCllr = 0.027
HW10  = 10 Cllr = 0.07 ; minCllr = 0.029
HW11  = 10 Cllr =0.071 ; minCllr =  0.03
HW18  = 5 Cllr =0.072 ; minCllr = 0.031
HW12  = 5 Cllr =0.072 ; minCllr = 0.035
HW4  = 10 Cllr =0.073 ; minCllr =  0.03

HW14  = 5 Cllr =0.074 ; minCllr = 0.027

HW9  = 3 Cllr =0.074 ; minCllr = 0.031
HW13  = 3 Cllr =0.075 ; minCllr = 0.029
HW5  = 10 Cllr =0.075 ; minCllr = 0.026
HW8  = 10 Cllr =0.076 ; minCllr = 0.029
HW1  = 10 Cllr =0.077 ; minCllr = 0.028
HW6  = 10 Cllr =0.077 ; minCllr =  0.03
HW9  = 2 Cllr =0.077 ; minCllr = 0.032

HW2  = 5 Cllr =0.078 ; minCllr = 0.036
HW18  = 3 Cllr =0.078 ; minCllr = 0.035
HW12  = 3 Cllr =0.078 ; minCllr = 0.039
HW13  = 2 Cllr =0.079 ; minCllr = 0.031
HW17  = 5 Cllr =0.079 ; minCllr = 0.036

HW3  = 5 Cllr = 0.08 ; minCllr =  0.03

HW15  = 10 Cllr = 0.08 ; minCllr = 0.025
HW9  = 1 Cllr =0.081 ; minCllr = 0.035

HW18  = 2 Cllr =0.081 ; minCllr = 0.036
HW12  = 2 Cllr =0.082 ; minCllr =  0.04
HW14  = 3 Cllr =0.082 ; minCllr = 0.029
HW13  = 1 Cllr =0.083 ; minCllr = 0.032

HW2  = 3 Cllr =0.083 ; minCllr = 0.038

HW7  = 10 Cllr =0.084 ; minCllr = 0.031
HW16  = 10 Cllr =0.084 ; minCllr = 0.032

HW10  = 5 Cllr =0.084 ; minCllr = 0.033
HW18  = 1 Cllr =0.085 ; minCllr = 0.038
HW17  = 3 Cllr =0.085 ; minCllr = 0.041
HW11  = 5 Cllr =0.085 ; minCllr = 0.034
HW12  = 1 Cllr =0.086 ; minCllr =  0.04

HW2  = 2 Cllr =0.087 ; minCllr =  0.04
HW14  = 2 Cllr =0.087 ; minCllr = 0.031

HW3  = 3 Cllr =0.087 ; minCllr = 0.031
HW5  = 5 Cllr =0.087 ; minCllr = 0.032
HW4  = 5 Cllr =0.088 ; minCllr = 0.033

HW17  = 2 Cllr =0.088 ; minCllr = 0.043

HW6  = 5 Cllr = 0.09 ; minCllr = 0.033
HW1  = 5 Cllr =0.091 ; minCllr = 0.034
HW2  = 1 Cllr =0.091 ; minCllr = 0.042
HW3  = 2 Cllr =0.092 ; minCllr = 0.032

HW17  = 1 Cllr =0.092 ; minCllr = 0.044
HW10  = 3 Cllr =0.092 ; minCllr = 0.036

HW8  = 5 Cllr =0.092 ; minCllr = 0.032

HW14  = 1 Cllr =0.093 ; minCllr = 0.033
HW11  = 3 Cllr =0.094 ; minCllr = 0.036

HW5  = 3 Cllr =0.094 ; minCllr = 0.034
HW15  = 5 Cllr =0.095 ; minCllr = 0.033

HW4  = 3 Cllr =0.095 ; minCllr = 0.035
HW3  = 1 Cllr =0.097 ; minCllr = 0.034

HW16  = 5 Cllr =0.097 ; minCllr = 0.038

HW10  = 2 Cllr =0.097 ; minCllr = 0.037
HW7  = 5 Cllr =0.097 ; minCllr = 0.032
HW6  = 3 Cllr =0.098 ; minCllr = 0.035
HW1  = 3 Cllr =0.098 ; minCllr = 0.037
HW5  = 2 Cllr =0.098 ; minCllr = 0.035

HW11  = 2 Cllr =0.099 ; minCllr = 0.038

HW4  = 2 Cllr =  0.1 ; minCllr = 0.038
HW8  = 3 Cllr =  0.1 ; minCllr = 0.038
HW6  = 2 Cllr =  0.1 ; minCllr = 0.037

HW10  = 1 Cllr =  0.1 ; minCllr = 0.039
HW1  = 2 Cllr =  0.1 ; minCllr =  0.04

HW15  = 3 Cllr =  0.1 ; minCllr = 0.036
HW5  = 1 Cllr =  0.1 ; minCllr = 0.037

HW16  = 3 Cllr =  0.1 ; minCllr = 0.039
HW7  = 3 Cllr =  0.1 ; minCllr = 0.032

HW4  = 1 Cllr = 0.11 ; minCllr = 0.041
HW11  = 1 Cllr = 0.11 ; minCllr =  0.04
HW8  = 2 Cllr = 0.11 ; minCllr = 0.041
HW6  = 1 Cllr = 0.11 ; minCllr = 0.039

HW15  = 2 Cllr = 0.11 ; minCllr = 0.038
HW1  = 1 Cllr = 0.11 ; minCllr = 0.043
HW16  = 2 Cllr = 0.11 ; minCllr =  0.04
HW4  = 20 Cllr = 0.11 ; minCllr = 0.081

HW14  = 20 Cllr = 0.11 ; minCllr = 0.085
HW5  = 20 Cllr = 0.11 ; minCllr = 0.077
HW7  = 2 Cllr = 0.11 ; minCllr = 0.036

HW8  = 1 Cllr = 0.11 ; minCllr = 0.043
HW15  = 1 Cllr = 0.11 ; minCllr = 0.041
HW16  = 1 Cllr = 0.11 ; minCllr = 0.041
HW3  = 20 Cllr = 0.11 ; minCllr = 0.085
HW9  = 20 Cllr = 0.11 ; minCllr = 0.085
HW7  = 1 Cllr = 0.11 ; minCllr = 0.039

HW18  = 20 Cllr = 0.12 ; minCllr = 0.083

HW12  = 20 Cllr = 0.12 ; minCllr = 0.091
HW17  = 20 Cllr = 0.13 ; minCllr = 0.092

HW2  = 20 Cllr = 0.13 ; minCllr = 0.092
HW1  = 20 Cllr = 0.13 ; minCllr = 0.092
HW6  = 20 Cllr = 0.14 ; minCllr =   0.1

HW16  = 20 Cllr = 0.15 ; minCllr =  0.11

HW15  = 20 Cllr = 0.21 ; minCllr = 0.097
HW13  = 20 Cllr = 0.22 ; minCllr = 0.088

HW7  = 20 Cllr = 0.26 ; minCllr = 0.086
HW11  = 20 Cllr = 0.32 ; minCllr = 0.074

HW8  = 20 Cllr = 0.33 ; minCllr = 0.093
HW10  = 20 Cllr =  0.4 ; minCllr = 0.086

BASELINE validation Cllr = 0.41 ; minCllr =0.0098

C
llr

min

C
llr
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Figure 6: Performance of the HW models in the validation split of the BKA database, compared

to the baseline. Only models that are better than the baseline are represented. The warped

Gaussian mixture models are described in Table 1, and ν are the degrees of freedom of the

Student’s t-distribution for the within-source variability.
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Following model selection experiments using the BKA validation dataset, we

selected the best-performing VAE and warped Gaussian mixture (Figures 5−6)

for the testing results using the FIU database.580

4.6.3. Test results using the FIU database as training with the BKA database

Figure 7 shows the comparative performance of the baseline model and the

best HVAE and HW models. Some observations are in order. First, it can be seen

that both HW and HVAE models dramatically outperform the baseline in terms

of the primary performance measure, namely Cllr. However, and secondly, we585

also observe some loss in the discriminating power of the HW and HVAE models

with respect to the baseline. This is possibly because the effect of incorporating

uncertainty by the Student’s t-distribution might be leading to more confusable

objects in the testing database. Therefore, we observe some trade-off within these

models: if we want to incorporate uncertainty by the use of more heavy-tailed590

distributions, the discriminating power may be affected, but the calibration will

dramatically improve. It might be the case that a more consistent model, such

as a fully-Bayesian model, would help to improve the discriminating power while

retaining the uncertainty necessary for a good calibration. This will be explored

in future work.595

As it was seen in the model selection experiments using the BKA validation

dataset, we still observe considerable values of Ccal
llr for the proposed models.

This suggest that the calibration could still be improved, for instance by the

use of score-based stages like in [15, 19, 18]. However, although we have not

considered score-based approaches in this work, it also seems evident that the600

proposed models are still far from the state-of-the-art score-based approaches for

LA-ICP-MS data (see e.g. [19, 18]). Nevertheless, these results are reported as

the experimental demonstration that it is possible to achieve a value of Cllr < 1

just with a feature-based LR model. To our knowledge, it is the first time that

this is achieved for LA-ICP-MS data.605

To gain further insight into the rationale of the proposed models, we attempt

to analyze two simultaneous effects: the influence of the use of a more complex
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Figure 7: Performance of the selected HVAE and HW models in the FIU testing database,

compared to the baseline and a heavy-tailed version of the baseline (KDF Samples).

between-source distribution for the parameter distribution; and the incorporation

of uncertainty in the within-source variability by the use of a heavy-tailed

Student’s t distribution. In order to do this, we tested a Monte-Carlo sampled610

version of the ALK model, namely KDF Samples model. Here, we have sampled

from the KDF defined by the parameter distribution of the ALK baseline (see

Section 3.2), and then we used those samples to compute Equation 4 with a

heavy-tailed within-source distribution, using ν = 10 as in the HW and HVAE

models. More specifically, the likelihood of the KDF samples model would be615

P (y|µ) ∼ T
(
y|µ, Σ̂w, ν

)
as in the HW and HVAE models, and the LR would

be computed by Monte Carlo sampling as:

P (Y1,Y2|hss,X)

P (Y1,Y2|hds,X)
=

1
M

∑M
i=1 P (Y1|µi)P (Y2|µi)[

1
M

∑M
i=1 P (Y1|µi)

] [
1
M

∑M
i=1 P (Y2|µi)

] (13)

where M mean vectors are sampled from the parameter distribution of the ALK

model (Section 3.2), as:

µi ∼ P
(
µ|X, kΣ̂b

)
. (14)

Figure 7 shows the comparative results of this model with the proposed
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HW and HVAE models in the FIU database. It is clearly seen that the KDF

Samples model has comparable performance as the HW model, and better620

than the HVAE model in terms of Cllr. This is a surprising result since we

hypothesized that a better model for the parameter distribution would help to

obtain better calibration. However, it is seen that the important contribution

of the model relies upon the use of the heavy-tailed distribution for the within-

source variability, and apparently not based upon the proposed, more complex625

parameter distributions.

A further analysis can be performed from Figure 8, that shows the histograms

of the different models proposed, as compared to the baseline. It turns out that

the baseline presents overstating LR values, that in fact, if they are not artificially

limited, would be zero in the majority of the different-source comparisons.630

However, this effect is damped by the incorporation of the uncertainty via the

Student’s t-distribution within-source variability, leading to much more sensible

LR values in the proposed models, and much better calibration. However, this

is at the cost of some loss in the discriminating power, as observed in the model

selection experiments using the BKA validation dataset. As the histograms635

suggest in Figure 8, the discriminating power of the baseline model is still much

better than for the proposed models, and therefore the gain on calibration for

the proposed models is still at the cost of a considerable loss of discriminating

power.

Some strange behavior of different-source scores needs an explanation. First,640

for Figures 8(a), (b) and (d), the density of larger different-source LR values

increases. This is not a quite typical behavior in different-source scores as

previously seen in the literature. Our explanation is that, as the tails of the

within-source variability are heavy, there is some kind of limiting effect on the

ability of the model to discriminate between two feature vectors. This might also645

apply to very similar different-source feature vectors, explaining that those pairs

could not yield very high LR values for the heavy-tailed model. Thus, the model

might be limiting the LR values for different-source scores coming from these

comparisons, leading to an increase of the density of different-source log-LRs
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when approaching the limit. This does not happen in the baseline model in650

Figure 8(a), where different-source comparisons are extremely well discriminating,

but at the cost of LR overstatement. This effect again evidences the tradeoff

between calibration and discriminating power of the proposed models.

We also see that, although Cllr < 1 for the proposed models, there is still

some calibration loss that can be evidenced in some of the histograms. For655

instance, if we consider that calibrated LR values must hold that the LR of the

LR is the LR, in Figures 8(a), (b) and (c), this is not totally observed for most

ranges. This is in accordance with the still relevant values of Ccal
llr previously

reported. Thus, although we achieved a dramatic improvement in Cllr with

respect to the baseline, further research efforts should be made to improve both660

the discriminating power and the calibration of the proposed models at the

feature level.

Finally, in Figure 9 we show the plot of the LR values obtained for the FIU

testing dataset, both before and after applying Pool Adjacent Violators (PAV)

over the same set of LR values. This plot can be interpreted as follows: the665

black dashed line is the x = y line, indicating perfect calibration. The red solid

line indicates the PAV transformation to the LR values, when the same LR

values are used to train PAV. If the red line is equal to the black dashed line,

the calibration is perfect. A larger deviation from the x = y by the red line

indicates worse calibration. It can be seen that the calibration of the baseline670

model strongly deviates from the x = y line, indicating very bad calibration.

On the other hand, the red solid line is much closer to the x = y line for the

proposed models, indicating a significant calibration improvement. However, the

calibration of the proposed models is still far from perfect, as the red solid line

is still far from the x = y black dashed line. This is coherent with our previous675

observations.
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(a) (b)

(c) (d)

Figure 8: Histograms of the best HVAE (a) and HW (b) models selected in validation, compared

to the ALK baseline (c) and a heavy-tailed version of the baseline named KDF Samples (d).

Log-LRs are computed with natural logarithms.

5. Conclusions

We have proposed several models for feature-level forensic glass comparison,

namely HW and HVAE. These models clearly outperform classical feature-based

models as presented in [17] in terms of Cllr, a popular performance measure680

that takes into account both discriminating power and calibration [8, 6, 7, 21].

Remarkably, our proposal dramatically improves the calibration of the likelihood

ratios obtained, at the cost of a considerable loss in the discriminating power.

Moreover, although the proposed models are complex in terms of the number

of parameters needed, the robustness is demonstrably acceptable. The models685

present a value of Cllr < 1, and therefore they could be adopted for use in a

forensic comparison case.
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(a) (b)

(c) (d)

Figure 9: PAV plots of the best HVAE (a) and HW (b) models, compared to the ALK

baseline (c) and the heavy-tailed version of the baseline named KDF Samples (d). Log-LRs

are computed with natural logarithms.

However, it seems reasonable that a forensic laboratory or practitioner will

always want to use the best model available, and currently the proposed models

are outperformed by score-based approaches such as [18, 19]. Therefore, it seems690

unreasonable to use our proposal instead of those score-based approaches. On the

other hand, Cllr < 1 is an evaluation criterion with a theoretical basis, but the

validation of a model for forensic practice must consider many other validation

criteria as defined by the forensic laboratory or practitioner [6, 7]. The value of

this contribution relies upon models presenting Cllr < 1 for this task with only a695

feature-based approach, but more research must be conducted in order to make
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these models more reliable, more discriminating, and therefore, more amenable

for use in forensic practice.

To our knowledge, this is the first proposal of a feature-based likelihood ratio

model for LA-ICP-MS-based glass comparison that presents Cllr < 1 without700

the use of a further score-based calibration step. In this sense, we believe that

this work will help with the use of probabilistic models for LA-ICP-MS data

directly in the feature space. Also, we believe that our conclusions will shed

some light in the rationale of comparison models in complex feature spaces, that

may enable further applications in other areas of forensic science.705

The main conclusion of our work is that there is a strong need for probabilistic

models to efficiently incorporate uncertainty. Our observations are in accordance

with the idea that, if the models do not consider the uncertainty, the likelihood

ratios computed in the feature space become unstable, yielding unreasonable

strength of evidence. The main harmful effect of overstated evidence is that710

sometimes it will support the incorrect proposition, a situation to be avoided in

critical applications such as forensic science. However, by the use of a heavy-

tailed distribution for the within-source variability of the glass features, we force

this uncertainty to be considered by the model, dramatically improving the

calibration and preventing evidence over-statement.715

We cannot forget the loss of discrimination that is observed in the proposed

models in a tradeoff with good calibration. This issue may be related to the

fact that the uncertainty is incorporated in a forced way, directly affecting only

one of the levels of the model (the within-source variability) and only one of its

parameters (the mean vectors). This suggests the use of fully-Bayesian models720

in order to incorporate all the uncertainty present in the whole set of model

parameters, not only in some of them, an idea that will drive our future research.

Another important observation is that the consistent modeling of the pa-

rameter distribution remains an issue. We have tested two complex and flexible

models in order to achieve this goal, but they did not improve over the baseline,725

kernel density model. Moreover, we believe that the inadequate definition of

the parameter distribution may affect the influence of the incorporation of the
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uncertainty by the heavy-tailed distribution. All this could be accommodated

with extensions of the proposed models, such as fully-Bayesian versions of a

variational autoencoder. This idea will be further explored in future work.730
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