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ABSTRACT: Cardiovascular diseases are the main cause of death in the world, according to the World Health Organi- 
zation. Among them, ischemic heart disease is at the top, followed by a stroke. Several studies have revealed that atrial 
fibrillation (AF), which is the most common cardiac arrhythmia, increases up to five fold the overall risk of stroke. As 
AF can be asymptomatic, approximately 20% of the AF cases remain undiagnosed. AF can be detected by analyzing 
electrocardiography records. Many studies have been conducted to develop automatic methods for AF detection. This 
paper reviews some of the most relevant methods, classified into three groups: analysis of heart rate variability, analysis 
of the atrial activity, and hybrid methods. Their benefits and limitations are analyzed and compared, and our beliefs about 
where AF automatic detection research could be addressed are presented to improve its effectiveness and performance. 
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I. INTRODUCTION 

For more than 15 years, cardiovascular diseases 
have been the leading cause of death in the world.1 
At least 75% of these deaths happen in developing 
countries. Cardiovascular diseases represent an eco- 
nomic burden that can reduce the gross domestic 
product (GDP) up to 6.77%. 2 Atrial fibrillation (AF) 
is the most common cardiac arrhythmia affecting be- 
tween 1% and 2% of world population. 3 It increases 
the risk of serious diseases, such as stroke, heart fail- 
ure, renal disease, or sudden death. A study by Wolf 
et al. 4 revealed that AF increases five times the inci- 
dence of stroke, which is the third cause of death in 
the world according to the World Health Organiza- 
tion (WHO). 5 

AF is caused by problems in the synchronization 
of atrial activity due to abnormal electrical impulses 
that cause irregular contractions. As a result, blood 
remains in the heart, which increases the risk of clot- 
ting or stroke. Studies reveal that 20% of the AF 
cases remain undiagnosed. 6 This condition is more 
common in the elderly. During AF episodes, the P 

wave cannot be detected or is replaced by irregular 
fibrillatory waves (F waves) and heart rate tends to 
vary. 

AF can be classified in five categories: first di- 
agnosed AF, paroxysmal AF, persistent AF, long- 
standing persistent AF, and permanent AF. In first 
diagnosed AF, it appears for the first time with- 
out cardiopulmonary disease. After diagnosis, if the 
events are random and self-terminating without the 
use of medications, it is classified as a paroxysmal 
AF. When events last longer than seven days, in- 
cluding the use of cardioversion either by drugs or 
by direct current, it is classified as persistent AF. 
When the arrhythmia lasts more than one year, a 
rhythm control strategy is required and it becomes 
a long-standing persistent AF. Finally, when the 
episodes do not stop, even when applying cardiover- 
sion, the treatment focuses on controling the heart 
rhythm, and it is classified as permanent AF. When 
none of the aforementioned methods seem to work, 
an alternative is the ablation procedure. It is per- 
formed by destroying or scarring tissues, where the 
irregular electrical impulses are coming from, to 



 

 

restore the normal rhythm. For most of the cases, 
ablation works; however, there is a risk of recurrent 
AF. Several studies have shown that there is a strong 
relationship between the difference in left and right 
atrial electrical activity and the recurrence of AF. 7–9 
Early detection of AF is important to ensure 
timely management of the condition and avoid the 
recurrence of the arrhythmia as much as possible. 
However, early detection may require continuous 
electrocardiography (ECG) monitoring for up to 30 
months. 10 Therefore, the most effective way to de- 
tect AF is using long-term portable cardiac monitor- 
ing devices. 11 With these devices, people continue 
with their normal activities while ECG signals are 
recorded. The resultant signals are affected by noise 
and artifacts, such as baseline wandering, motion 
artifacts, and interference from other biopotentials. 
Most of the works on the analysis of ECG records 
for AF detection are based on heart rate variability. 
However, the most relevant information in atrial ar- 
rhythmias is contained in the P wave, which regis- 
ters the depolarization of the right and left atria. P- 
wave analysis is more challenging because of the P 
wave’s low amplitude compared to the QRS com- 
plex. Therefore, the detection of AF is a challeng- 
ing task. The AF episodes can be short (6–7 min), 
appear randomly, and the implementation of algo- 
rithms for real-time signal analysis is still challeng- 
ing. 12 

The development of algorithms for AF detection 
has been fostered by PhysioNet and the Comput- 
ers in Cardiology conference through challenges. 
In 2021, the Predicting Paroxysmal Atrial Fibril- 
lation/Flutter challenge was launched aimed to the 
development of a fully automated method to pre- 
dict the onset of paroxysmal atrial fibrillation/flutter, 
based on the ECG prior to the event. Later, in 
2014 the spontaneous termination of the AF chal- 
lenge was launched aimed to predict if (or when) an 
episode of AF will end spontaneously. In 2017, they 
proposed a challenge for AF classification from a 
short single-lead ECG recording from 30 to 60 s in 
length. One of the most recent is the classification of 
the 12-lead ECGs challenge launched in 2020 to de- 
velop new machine-learning approaches for creating 
accurate and automatic detection of cardiac arrhyth- 

mias. These challenges are incentives to perform re- 
search in this area with hundreds of algorithms pub- 
licly available and published papers as outcomes. 

The purpose of this paper is to offer an overview 
of the methods for automatic AF detection. AF de- 
tection methods have been classified in three groups 
according to the features considered: heart rate vari- 
ability, atrial activity, and hybrid methods. Heart rate 
variability is measured using features like standard 
deviation of RR intervals, root square of the mean 
of the difference between successive RR, succes- 
sive RR pairs with greater difference than 50 ms 
(NN50), statistical measures based on the disper- 
sion of the variability of the intervals, slope analy- 
sis, density histogram, Shannon entropy, among oth- 
ers. Typically, machine-learning techniques are used 
with these features for detection and classification. 
On the other hand, atrial activity approaches aim 
to note the absence of P waves or the presence of 
fibrillation waves. As P waves have different fre- 
quency components than fibrillation waves, spectral 
decomposition can be used. Some common tech- 
niques for atrial activity analysis include spectral de- 
composition, correlation with a P-wave model, and 
analysis of measures such as duration, amplitude, 
shape, and statistical features. Hybrid methods per- 
form both RR interval analysis and atrial activity 
analysis, which make them more robust. Usually, a 
QRS detector is used to measure RR intervals vari- 
ation, and then, R peaks are used as a fiducial point 
to detect P waves. 

The paper is organized as follows: Section 2 dis- 
cusses the acquisition and analysis of ECG signals; 
Section 3 reviews some of the most common AF de- 
tection methods in each group, heart rate variability 
analysis, atrial activity analysis, and hybrid meth- 
ods; and Section 4 concludes the paper. 

 

II. ECG SIGNAL ACQUISITION AND 
ANALYSIS 

Electrocardiography is a diagnostic test that records 
the electrical activity of the heart using electrodes 
placed on the skin. It is a noninvasive and painless 
technique. There are several types of devices that al- 
low ECG signal recording in clinical environments 



 

 

at rest, during exercise, and long-term monitoring in 
daily life. 

Standard ECG records the biopotentials from 12 
leads, including precordial and limb leads. Signals 
are detected using electrodes on the surface of the 

forearms, thorax, and on the left ankle for reference. 
It can take between 1 and 5 min to obtain the results. 

When irregularities occur sporadically, standard 
ECG may not detect the event during the evalu- 
ation; there are other alternatives for those cases. 
The Holter monitor is a portable device capable of 
recording continuous ECG signals from 24 to 48 h; 
although currently, there are devices that can record 
up to seven days. Generally, three precordial leads 
are used to perform the test. Holter monitors use a 
battery and can be carried in a pocket, belt, or on a 
strap fastened to the shoulder. The patient can per- 
form normal activities while the device is recording, 
but electrodes should not be wet, or their conductiv- 
ity may be affected. It is possible to take notes of 
activities to establish relations when the symptoms 
appear. 

When the events appear sporadically, the special- 
ist can suggest an event monitor. It can be used for 
more time than a Holter, up to one or two months, 
but it only records electrical activity for a few min- 
utes when the symptoms appear. Some event moni- 
tors can automatically detect anomalies in the heart 
rate that cause them to turn on and start recording. 
In the simplest, the patient can push a button to start 
recording when feeling the symptoms. The records 
can be sent by a mobile device to the doctor to be 
evaluated. 13 

The implantable loop recorder is a single-lead de- 
vice designed to record continuous ECG signals for 
more time than a standard ECG or Holter element. It 
is required when the patient is suffering unexplained 
and recurrent events of palpitation or syncope. The 
device is implanted by surgery in a subcutaneous 
pocket in the chest. It is a simple surgery, and the 
device can last for a maximum of three years. 14 

In 2016, Apple Inc. launched the first ECG mon- 
itor free of wires or patches. It is a chest strap that 
allows continuous monitoring of ECG and measures 
heart rate variability, stress level, and breathing rate. 
It can record more than 20 million of data per day 

and send it to a mobile device. Currently, the Apple 
watch includes two electrodes that acquire a signal 
similar to a Lead I ECG. It can detect irregular heart- 
beats that may be associated with AF. 15,16 

Under the same framework of technological in- 
novations, Alivecor Inc. introduced Kardia mobile. 
This device allows obtaining ECG monitoring us- 
ing two electrodes to measure bipolar leads from 
the right and left forearms. It works with either iOS 
or Android devices for visualization and other func- 
tions. It is also possible to find a watch version 
of this device named the Kardia band. It has been 
shown that the algorithms that work with the Kardia 
band can accurately differentiate AF from normal 
sinus rhythm. 17 

 

III. ATRIAL FIBRILLATION DETECTION BASED 
ON HEART RATE VARIABILITY 

RR intervals exhibit an irregularly irregular behav- 
ior during AF episodes, because the heart’s activ- 
ity is completely arrhythmic. RR variability can 
be quantified using mathematical, statistical, and 
digital signal-processing approaches. Examples of 
these methods include turning point ratio, Shan- 
non entropy, density histogram, Poincare map, hid- 
den Markov models, and waveshape analysis.18 Ad- 
ditionally, statistical measures are frequently used; 
these include standard deviation, root mean square, 
and the mean of the RR intervals. 19–24 

The purpose of the turning point ratio is to test 
the time series’ randomness, comparing the value of 
each RR with the neighbors. The Shannon entropy 
offers a measure of uncertainty of the source infor- 
mation. It is high when data show high dispersion. A 
normal sinus ECG is expected to have a lower value 
for Shannon entropy than an AF ECG. A density his- 
togram is used to show every class’ distribution for 
a normal sinus ECG and AF ECG. A Poincare map 
expresses every RR interval, depending on the pre- 
vious one to quantify RR variability. Some works 
propose modifications on the existing techniques to 
improve the feature extraction, 12,25,26 while others 
only measure the duration of RR and RT intervals 
and focus on the application of artificial intelligence 
techniques. 27,27–32 
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A. Turning Point Ratio 
The turning point test allows one to know if a series 
of random variables is independent. It is also used to 

must be segmented in several bins, and the probabil- 
ity distribution can be estimated as follows: 

Nbin(i) 

test for randomness, such as in the case of AF. For p(i) = (4) Tbin 
instance, a data set with periodic behavior has less 
turning points than a random data set. 

The number of turning points expected in a series 
where Nbin(i) represents the number of beats at ith 
bin and Tbin is the total number of beats in the signal. 

of duration n can be expressed as follows: 

2n − 4 
3 

and its respective variance as 

16n − 29 
90 

 
 

(1) 
 
 

(2) 

The Shannon entropy is one of the most used 
techniques to quantify RR variability. 20,34–38 It has 
also been widely used in other fields, such as ther- 
modynamics, communications, and information the- 
ory. However, there are some limitations that should 
be considered. Shannon entropy depends on the 
probabilistic model to characterize the information. 
It may vary depending of the length of bins, for in- 

As n grows, the number of turning points should 
be between n(2n/3, 8n/45), with a level of signif- 
icance of 5%. If the null hypothesis states that the 
series is random, it can be rejected if the number 
of turning points lies outside of the range (2n/3 
1.96 8n/45). 

In 2016, Dash et al. used the turning points ra- 
tio with the root mean square of successive RR dif- 
ferences and Shannon entropy to characterize AF, 
achieving results in specificity and sensitivity of 
94.4 and 95.1%, respectively, for the MIT-BIH AF 
database. 20 In 2019, Bashar et al. 33 used the same 
approach and a support vector machine for classifi- 
cation. 

 
B. Shannon Entropy 

The Shannon entropy measures the uncertainty of 
a data set. It can be considered as a measure of 
the amount of information contained in a signal. 
The most likely events are those that provide the 
least information; therefore, Shannon entropy will 
tend to 0, and on the contrary, for the less probable 
events, Shannon’s entropy will be around the maxi- 
mum value of 1. 

Shannon entropy can be estimated as follows: 
k 

E(x) = − p(i) log2(p(i)) (3) 
i=1 

where p(i) represents the probability distribution of 
each data point in the set. In AF, the ECG signal 

stance, for a sequence “1212121212,” if the proba- 
bilistic model considers individual numbers as inde- 
pendent, Shannon entropy will be 1, but if the se- 
quence is taken every two characters as “12 12 12 
12 12,” the entropy will be 0; so if the bins are very 
large, the estimation of entropy may become low. 

 
C. Density Histogram 

This technique has been used to distinguish between 
normal sinus rhythm and AF, using either a variation 
coefficient or a threshold from the density histogram 
of RR intervals and RR, which is the difference 
between two successive RR intervals. The ECG time 
series is segmented into blocks with a specific num- 
ber of beats, which must be part of a specific class to 
build the histogram. Some of the authors who have 
used this method to detect AF are: Huang et al. 39 
and Yaghouby et al., 40 among others. Figures 1 and 
2 show a typical density histogram for normal si- 
nus rhythm and AF, respectively. The signals are 
from the MIT-BIH atrial fibrillation database from 
the Physionet record 06453m, and the MIT-BIH nor- 
mal sinus rhythm record 17052m. It is possible to 
see that the histogram of AF is wider than in nor- 
mal sinus rhythm, where the maximum frequency is 
related to the heart beat. 

 
D. Poincare Map and Scatter Plots 

Poincare map has been used to quantify the variabil- 
ity of RR intervals for several purposes. 22,34,38,41,42 It 



 

 

 

 
FIG. 1: A density histogram for normal sinus rhythm taken from the MIT-BIH normal sinus rhythm database, record 
17052m 

 

FIG. 2: A AF density histogram taken from the MIT-BIH atrial fibrillation database from Physionet, record 06453m 
 

is built by expressing every RR interval in the func- 
tion of the previous one. The Poincare map offers a 
visual inspection of the dispersion between the inter- 
vals. Typical statistical measures, such as standard 
deviation, mean, or root-mean square can character- 
ize the variation of RR intervals. In the case of AF, it 

is expected that the Poincare plot takes an irregularly 
irregular shape; whereas in a normal sinus rhythm, 
it shows a pattern. 

Lian et al. 43 and Sarkat et al. 44 used scatter plots 
of RR intervals versus changes in RR intervals. AF 
is characterized by a high dispersion in the plot. 



 
 

 

  

E. Hidden Markov Models 

A hidden Markov model is a statistical model with 
known output but unobservable states. The goal of 
the method is to determine the unknown parameters 
based on the known ones. Every state has a likeli- 
hood distribution influencing the output sequence. 
In this way, the output sequence generated by a 
hidden Markov model yields information about the 
states. Figure 3 presents the classical architecture 
of a hidden Markov model, where xn represents 
the hidden state, Y n the observable output for ev- 
ery state, respectively, wn the probability of tran- 
sition between the states, and zn the probability of 
the output. The probability to observe the sequence 
Y = Y 0, Y 1, ..., Y l is given by 

P (Y ) = P (Y |X)P (X) (5) 
X 

 

A hidden Markov model can be used to charac- 
terize RR intervals, modeling the RR sequence as 

a three-state Markov process (short, regular, and 
long). Based on the transitions between states, the 
heart rate is characterized as regular by the likeli- 
hood of transition from an estate R to itself. It is 
expected to occur when the RR intervals present 
the same length. Previous works have used this 
method. 45,46 

 
F. Spectral Analysis 

Spectral analysis allows the detection of compo- 
nents related to the QRS complex, T wave, P wave, 
and noise separately even in cases when they are 
overlapped or shifted in time. Heart rate variabil- 
ity is associated with frequency components of the 
ECG signal; for this reason, spectral analysis pro- 
vides useful information when there are changes 
in the cardiac rhythm generated by AF.47 Most 
these works are based on the Fourier transform and 
the power spectral density. Mei et al. 48 extracted 
features related to heart rate variability, such as 

 

 
FIG. 3: Hidden Markov model classical architecture 
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standard deviation, mean, Poincare plot, among 
others. These descriptors were combined with the 
Welch power spectrum density calculated with the 
fast Fourier transform (FFT) around every beat de- 
tected. These features were used as inputs for the 
classifiers: support vector machines and bagged 
trees. 48 Zhao et al. 49 introduced a new spectro-tem- 
poral analysis method by assuming the time-varying 
Fourier coefficients of the signal have Gaussian 
process priors. After computing a two-dimensional 
(2D) matrix with the spectro-temporal information 
of the signals, a densely connected convolutional 
network was used for the classification into four 
groups: AF, non-AF normal rhythms, non-AF ab- 
normal rhythms, and noisy segments.49 

 
G. Wavelet Transform 

or pathological (AF). Andersen et al. implemented 
wavelet decomposition to segment the signal and ex- 
tract features such as entropy and peak-to-average 
power ratio of each of the coefficients (details and 
approximation); the classification was done by a 
support vector machine. 52 

 
H. Other Methods 

1. Pattern Similarities 

Marsili et al. 12 implemented a methodology for AF 
detection suitable for wearable tele-Holter devices. 
After applying the QRS complex detector proposed 
by Gutie´rrez et al., 26 RR interval irregularity is 
quantified applying the method proposed by Petre- 
nas et al., 53 which measures the similarity between 
RR intervals in a window of length l, as follows: 

AF is characterized by the variability of the heart 
rate. In normal conditions, the QRS complex tends 

2 
M [n] = 

l(l − 1) 

 
(7) 

to be regular with a dominant peak in the range of 0– 
20 Hz. During AF episodes, this behavior can vary, 

l−2 

× 
l−1 

H(|rm(n − j)− rm(n − k)|− γ) 
introducing new components in the spectrum related 
to the variability of the RR intervals. This variability 
in the ECG spectrum has been quantified mainly by 
applying the wavelet transform. 

The wavelet transform provides a time-frequency 
representation using coefficients for displacement 
and scaling of a base function (mother wavelet). For 
a space in R2, the set of basic functions is defined as 
follows: 

ψm,n(x) = 2−m/2ψ(2−mx − n) (6) 

where m, n represent scaling and displacement, re- 
spectively. The discrete wavelet transform can be 
obtained by applying the pyramid algorithm, which 
uses filtering and decimation to obtain two output 
signals with half of the original signal’s length. A 

 

j=0 k=j+1 

where H represents the heaviside step function, rm 
is the output of the median filter, and γ is the sim- 
ilarity threshold. The pattern similarity is obtained 
by averaging the forward-backward filtered version 
of M and rt. 

 
2. Symbolic Dynamics 

It was first proposed by Zhou et al.,35 and has been 
used in other works. 12 The method builds a set of 
symbols to encode the heart rate and then the irregu- 
larity of the symbols is quantified using the Shannon 
entropy. The mapping function to encode the heart 
rate series into the symbolic series used by Marsili 
et al. 12 is as follows: 

f
63 if hr[n] ≥ 315 

mation coefficients. 
Duverney et al. 50 and Yuan et al. 51 used the 

wavelet transform to find the beginning and the end 
of episodes with high heart rate variability that can 
be related to AF. The fractal analysis was used to 
classify these high variability periods into normal 

where represents the floor operator.12 The com- 
plexity of the symbolic series is quantified by the 
combination of a series of words. The words can be 
composed either by eight symbols35 or by two suc- 
cessive symbols12 to reduce memory space, which 
allows the implementation in an embedded device. 

high pass filter allows obtaining the detail coeffi- 
cients, and a low pass filter generates the approxi- 

sy[n] = lhr[n]/5J  other cases (8) 



 
 

 

n−1 n 

→
  

→
 
S 
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3. Multiparametric RRI Feature 

Islam et al. introduced a new multiparametric fea- 
ture based on the heaviside step function to char- 
acterize RR interval irregularity. 25 This is to avoid 

output signals are shifted. 55 The time-varying co- 
herence function by nonparametric time-frequency 
spectra is defined as follows: 

4 |Sxy(t, f )| 
the use of the Shannon entropy due to the required 
length in the data set. 53 The irregularity of a param- 

|γ(t, f )| = 
|Sxx (t, f )||Syy (t, f ) 2 

eter γ can be estimated as follows:  |Syx(t, f)|  
|Syy(t, f )||Sxx(t, f )| 

(10) 

h(γ) = 
 2     

H(|r(j)−r(k)|−γ) (9) where Sxy(t, f ) and Syx(t, f ) represent the time- 
n(n − 1) 

j=1 k=j+1 

There is an optimal value of γ in the literature. 25 
The multiparametric method is proposed using sev- 
eral values for γ = [γ1, γ2, ..., γm] to obtain multi- 
ples values for h forming a RR irregularities features 

frequency cross spectrum, and Sxx(t, f ) and 
Syy(t, f ) represent the auto spectra of the signals x 
and y, respectively. The time-varying transfer func- 
tion in terms of time-frequency spectra for a linear 
time-varying system is defined as follows: 

Sxy(t, f) 
vector h = [h1, h2, ..., hm]. The final choice of γ is 
obtained by a support vector machine. 

Hx y(t, f ) = 
xx (t, f ) 

(11)
 

 
4. AFD Algorithm 

Linker54 proposed a five-step algorithm for AF de- 
tection based only on the RR intervals variability, 
when the algorithm detects a QRS complex, calcu- 

where Hx→y(t, f ) is the time-varying transfer func- 
tion from the input x to the output y, in the same 
way the time-varying transfer function from y as in- 
put and x as output is as follows: 

Syx(t, f) 
lates the RR duration, and converts it to heart rate. 
Several beats are stored to form a segment. Then, 

Hy x(t, f ) = 
yy (t, f ) 

(12)
 

the mean and linear trend are subtracted from the 
values of the segment. The median of the absolute 
value of the previous step is calculated to measure 
the variability. Then it is compared to the previous, 
current, and following segments, and finally, the me- 
dian value is returned. It was found that in a normal 
sinus rhythm, the mean heart rate has a linear rela- 
tionship with the AFD algorithm’s output in a nor- 
mal sinus rhythm. 54 

 
5. Time-Varying Coherence Function 

Lee et al. 55 introduced a time-varying coherence 
function that combined with Shannon entropy, pro- 
vides high accuracy for AF detection. The time- 
varying coherence function is calculated by the mul- 
tiplication of two time-varying transfer functions. 
The first one is obtained using two adjacent data seg- 
ments with one as the input signal and the other as 
the output, and for the second one, the input and 

Therefore, by multiplying the two transfer func- 
tions, the time-varying magnitude is obtained, as 
follows: 

|γ(t, f )| = |Hx→y(t, f )Hy→x(t, f )| (13) 

Since it is expected to find a high coherence value 
(close to 1) for a normal sinus rhythm, and lower 
values for AF segments, this parameter can be used 
for classification. 

 
6. Bimodal Classification 

Kruger et al. 56 developed a method for automatic 
detection of AF for a single-lead ECG device. The 
algorithm picks 6 s from a 20 s ECG record. Time- 
frequency domain analysis is performed to charac- 
terize the variability of RR intervals. Classification 
is performed by a bimodal scattering clusterization, 
where the classes are perfectly distinguishable using 
a hyperbolic function. 56 

2 

| 

× 



 

 

  

7. Orderings of Conjugate Symmetric 
Complex Hadamard Transform 

Annavarapu and Kora57 segmented the signal 
around each R peak using different ordering of the 
conjugate symmetric complex Hadamard transform. 
Several orderings were used: natural order, Paley or- 
der, sequence order, and CalSal order. The classifi- 
cation was done using a Levenberg Marquardt Neu- 
ral Network. 57 

 
IV. ATRIAL FIBRILLATION DETECTION BASED 

ON ATRIAL ACTIVITY 
CHARACTERIZATION 

It is well known that AF is mainly characterized by 
heart rate variability and loss of coordination be- 
tween atrial and ventricular activity. All cardiac ar- 
rhythmias exhibit RR variability, either with regu- 
lar or irregular behavior. However, a remarkable fact 
in atrial arrhythmias is the change in atrial activity, 
more specifically, the lack of P waves or the pres- 
ence of F waves. F waves can have different shape, 
amplitude, and duration in every patient, and the P 
wave can be superimposed by the QRS complex. As 
a result, atrial activity characterization for AF detec- 
tion can be challenging. 58 The methods for AF de- 
tection based on the analysis of atrial activity can fo- 
cus on either the detection of the absence of P waves, 
or the detection of F waves. 59 

dard of the P wave. Statistical measurements, such 
as the root mean square of the P wave voltages, give 
a measure of the variability in P-wave shape, show- 
ing lower values for patients with AF. Blind source 
separation can be used to extract the P wave using 
multiscale analysis. As the P wave can be retained 
over several resolution scales, other techniques are 
usually required to improve the detection and char- 
acterization. Previous works have shown that the 
best performance in P-wave detection is achieved by 
combining time and frequency domain techniques. 

 
1. Correlation 

Correlation allows one to measure the degree of sim- 
ilarity between two signals. It can be used to match 
a template with a signal. The mathematical proce- 
dure consists of shifting one signal over the other 
and calculating the summation of the product of the 
two signals, as follows: 

M −1 

y(x) = f (m)g(x + m) (14) 
m=0 

where M represents the length of one of the signals. 
It is expected to have a maximum when the signal 
matches with the model. The correlation coefficient 
can be used to know if there is a relationship be- 
tween the signals and can be estimated as follows: 

 
A. P-Wave Detection Methods 

ρ =  Sxy  
SxSy 

(15) 

These methods aim to detect and characterize P 
waves. Ladavich and Ghoraani60 extracted morpho- 
logical and statistical features of ECG signals from 
a training set. These features were used as the in- 
put for an expectation-maximization algorithm to 
create a Gaussian mixture model. The model was 
used to detect the lack of P waves, and hence, AF.60 
Other approaches for P-wave detection are corre- 
lation with a model P wave, blind source separa- 
tion, statistical measurements, among others. Corre- 
lation is based on the detection of the P wave using 
a known template of the wave in normal conditions. 
The template is chosen either manually from a lo- 
cal P wave in the signal or using a universal stan- 

where Sx and Sy are the standard deviation of the 
signals x and y, respectively, and Sxy is the co- 
variance between them. The correlation has been 
widely used in ECG processing to detect P waves 
using a wave template and establishing a thresh- 
old. Last et al. 61 extracted a template from the ECG 
records and then applied correlation to match P, 
QRS, and T waves. Dotsinsky et al. 62 generated a 
synthesized sinusoidal P-wave template and applied 
a modified convolution for P-wave detection. 

 
2. P-Wave Duration 

P-wave duration is an important criteria in AF di- 
agnosis, since it shows if there are irregularities in 



 
 

 

atrial conduction. Despite the fact that atrial depolar- 
ization presents the first detectable change in ECG 
records, it is not easy to detect the onset and offset 
of the P wave, and it may change based on the lead. 
The challenge lies on establishing a criteria for the 
onset and offset of the wave, which allows one to 
classify the signal as a normal sinus rhythm or AF. 

The New York Heart Association established 110 
ms as the duration of a normal P wave. Longer val- 
ues may be due to an atrial arrhythmia. However, 
this value is not reliable to detect patients at risk of 
AF, since only 38% of the patients with an intra- 
atrial conduction defect have longer P waves. 63 An- 
drikopoulos et al. use a simple criteria that searches 
the first point that crosses the baseline with positive 
slope, and the next one with a negative slope for the 
onset and offset, respectively. 64 

In 2000, Mehta et al. 65 introduced a new concept 
to measure the P-wave prolongation named the P ter- 
minal force. It is calculated as the product between 
the duration of the terminal part of the P wave (neg- 
ative part) in lead V1 and its depth in millimeters, as 
shown in Fig. 4. If the terminal part of the P wave 
is positive, then the whole window must be consid- 
ered. 65 P-wave terminal force is frequently used to 
detect left atrial abnormality. Similarly, Passman et 
al. showed that a prolongation in the PR interval du- 

ration from lead V1 is a risk factor of AF after coro- 
nary artery bypass grafting. 66 

To estimate the P-wave duration, onset and off- 
set should be calculated as accurately as possible. 
Several algorithms have been developed to perform 
this search. Sasikala and WahidaBanu67 used the 
wavelet transform to implement a search algorithm 
to detect the onset and offset of the P wave. After the 
detection of the QRS complex, the P peak is detected 
as the highest peak within a window of 200 ms be- 
fore the onset of the QRS complex, to the onset of 
the QRS complex. P waves are presented as a mod- 
ulus maxima pair with opposite signs, as is shown 
in Fig. 5. The onset is chosen as the point at the left 
of the zero-crossing, where the amplitude decreases 
5% from the maximum module. In the same way, 
the offset is chosen as the point at the right of the 
zero-crossing, where the amplitude decreases 5% of 
the modulus minimum. 67 

 
3. Blind Source Separation 

Blind source separation is a well-known method to 
separate sources that are mixed into a signal. The 
method is based on the assumption that the sources 
are independent and there are at least as many obser- 
vations as independent sources. Being x(t), the vec- 
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FIG. 4: Negative part, and depth of the P wave to calculate the terminal force 
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FIG. 5: Maximum, minimum, and zero-crossings from a window of the ECG 
 

tor containing the observations, and s(t), the vector 
of the independent sources, these can be related as 
follows: 

x(t) = As(t) (16) 

The problem lies in how to obtain A and s(t) 
from the observations x(t). Two approaches have 
been proposed to solve this: principal component 
analysis (PCA) and independent component analy- 
sis (ICA). ICA is preffered because the PCA success 
depends on the orthogonality of the mixing matrix; 
whereas, ICA does not have that condition. Several 
works have shown the usefulness of blind source 
separation in ECG signal processing, taking into ac- 
count that ventricular and atrial activity come from 
independent sources and do not have a Gaussian dis- 
tribution. 68,69 

In 2004, Rietal et al. 70 used blind source sepa- 
ration and ICA to extract atrial activity from real 
ECG records to analyze AF. After the application 
of blind source separation, kurtosis-based reorder- 
ing and spectral analysis were performed on the sep- 
arated sources to detect the source containing the 
atrial activity and classify it as AF or a normal sinus 
rhythm. 70 One year later, Castells et al. 69,70 intro- 
duced a modification of the blind source separation 
by the application of the spatio-temporal operation, 

which allows the exploitation of the temporal infor- 
mation found out in previous works.69,70 Signals are 
classified as AF or noise based on the location of the 
main peak in the spectrum of the separated source. 71 

 
B. F Wave Detection Methods 

During AF episodes, atrial activity is uncoordinated 
and faster than usual. As a result, P waves can be 
replaced in the ECG records by multiple waves that 
vary in shape and duration, called F waves. Meth- 
ods based on the detection of F waves exploit this 
information using spectral analysis to detect high- 
frequency components related to abnormal atrial ac- 
tivity. 

Atrial flutter (AFL) is another atrial arrhythmia 
that can have a similar behavior in the ECG signal. 
However, in atrial flutter, F waves present a partic- 
ular sawtooth shape with a higher frequency than in 
AF. 72 Therefore, spectral analysis can be useful for 
detecting F waves and distinguishing AF from AFL, 
even in the presence of noise. 

In the early 1990s, methods based on atrial ac- 
tivity’s characterization were focused on delimiting 
the P wave in the time domain. However, in the case 
of F waves, it is challenging because of their irregu- 
lar behavior. Therefore, spectral analyses have been 
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useful for this task. In 1995 Hiraki et al. 73 concluded 
that frequency domain analysis is as useful as time 
domain analysis to detect paroxysmal AF. They ana- 
lyzed the ratio of the power spectrum area (Ar20) in 
the interval 0–20 Hz to 20–100 Hz, and the magni- 
tude ratio at 30 Hz (%Mag30). They found that Ar20 
was significantly higher and %Mag30 was signifi- 
cantly lower in patients with paroxysmal AF, reach- 
ing a predictive accuracy of 83 and 73% with Ar20 
and %Mag30, respectively. 

After applying a template-matching algorithm to 
suppress QRS-T components, Bollman et al. 74 ap- 
plied Fourier transform over the remaining signal 
to analyze the fibrillatory baseline. They found a 
dominant component at 5.1  0.7 Hz. This peak 
was strongly correlated with the duration of the AF 
episode. Shorter AF with a duration of < 15 min 
had a lower frequency dominant component at 4.8 

0.6 Hz; whereas, longer episodes had a dominant 
component at 5.3 0.7 Hz. Longer episodes show 
dominant components at 5.8 0.5 Hz. 74 The same 
relationship was found by Kanuru et al. They ob- 
served lower spectral components for AF episodes 
of < 5 min and higher spectral components for AF 
episodes of > 5 min. 75 

In 2015, Ródenas et al. 76 computed the wavelet 
entropy over the TQ segments to suppress F waves 
during AF episodes using a single lead. Signals were 
classified as normal sinus rhythm and atrial fibrilla- 
tion using a threshold. 76 One year later, Garc´ıa et 
al. 77 used a similar approach. They extracted the 
relative wavelet energy over the stationary wavelet 
transform of the TQ segments. 77 

 

V. AF DETECTION USING HYBRID METHODS 

Hybrid methods offer a robust solution for AF detec- 
tion since they exploit information from both atrial 
and ventricular activity. If only ventricular activity 
(i.e., heart rate variability) is considered, then it is 
possible to get false negatives since this feature is 
common among all the arrhythmias. On the other 
hand, atrial activity analysis can be challenging due 
to the P wave’s low amplitude. Therefore, methods 
that combine information from both atrial and ven- 
tricular activity can offer a more accurate detection 

because they can overcome the limitations of using 
only one feature. 

Hybrid approaches can be divided into two 
groups: (i) classical methods that use signal process- 
ing for feature extraction and statistical or machine- 
learning techniques for classification and (ii) deep 
learning approaches. 

 

A. Methods That Use Signal Processing for 
Feature Extraction 

Two of the most relevant works in hybrid ap- 
proaches are those by Couceiro45 and Babaeiza- 
deh. 46 Couceiro calculated features related to the P- 
wave presence, heart rate variability, and atrial ac- 
tivity. 45 The P wave was detected with the correla- 
tion of the signal with a P wave model. Heart rate 
variability was computed using a three-state Markov 
process, where every RR interval was characterized 
as small, regular, or long based on the probability of 
transition from state R to itself, since this transition 
is more likely to occur when the RR intervals have 
the same length. Finally, atrial activity was char- 
acterized using wavelet analysis. 45 One year later, 
Babaeizadeh et al. 46 developed a real-time method- 
ology based on a hidden Markov model to charac- 
terize heart rate variability. The Markov model used 
a transition probability matrix, which represents the 
probability of R-R interval transition from one state 
to another. A fixed threshold was settled to detect 
AF. To improve the method, they also analyzed PR 
interval duration and the similarity between the mor- 
phology of two consecutive P waves. PR interval du- 
ration was characterized by the deviation from the 
average. For AF episodes, the PR interval duration 
can be nonmeasurable if there is no P wave, or very 
large, in the presence of F waves. P wave similarities 
were measured by the coincidence of two consecu- 
tive P waves, and it is expected to be low during AF. 
A decision tree was used for classification. 

In 2012, Stridh and Rosenqvist78 proposed a 
methodology for AF detection using one lead ECG 
from a home monitor. The method was developed in 
five steps. First, beat detection and classification is 
performed using cross correlation to separate beats 
with different morphology in several classes. In the 



 

 

second step, an analysis of RR intervals is performed 
using the median and the standard deviation. In the 
third step, the P wave is detected by waveform char- 
acterization. Spectral analysis is developed to find a 
model of the P wave and verify the similarity with 
the rest of the P waves. For the fourth step, qual- 
ity control is achieved by analyzing the number of 
beats with similar morphology. Finally, the rhythms 
are sorted as a low priority for normal sinus rhythm, 
high priority for signals with abnormal beats, and 
the third group contains unreliable rhythms. 

Recently, Pürerfellner et al. showed that the use 
of P-wave information together with heart rate vari- 
ability substantially reduces inaccurate detection of 
AF episodes. 79 The proposed algorithm uses the 
Lorenz plot of the difference between RR intervals. 
Based on this, an AF evidence score is computed 
every 2 min and compared to a threshold. In the 
improved version, a P-wave evidence score is cal- 
culated and subtracted from the AF evidence score 
of the difference between RR intervals before com- 
paring the threshold. The P-wave evidence score is 
computed by averaging 600 ms of baseline ECG be- 
fore R waves for four consecutive beats. Morpho- 
logical features are extracted and used to calculate 
the score, and finally, the P-wave evidence score is 
used as evidence against AF’s presence. 

In 2017, Bruun et al. 80 computed the root mean 
square of successive differences of the RR intervals, 
Shannon entropy, and sample entropy to quantify the 
heart rate variability. The atrial activity was evalu- 
ated by extracting the log-energy entropy and peak- 
to-average band power from the detail coefficients 
of the discrete wavelet transform. Classification is 
performed by a bagged tree. 80 

A different approach was developed by Asgari et 
al. 81 Instead of detecting R and P waves, they used 
the stationary wavelet transform to characterize the 
ECG signal. They measured power spectral density 
and log-energy entropy and used a support vector 
machine for classification.81 

 
B. Deep Learning Methods 

Deep learning has seen a rise during the last years. 
The availability of faster hardware and highly opti- 

mized open source libraries allow creating deeper 
neural networks to solve a wide range of prob- 
lems. 82 AF detection has not been the exception, 
and convolutional neural networks (CNN) have been 
used on ECG records to classify normal sinus 
rhythm and other arrhythmias. The main advantage 
of using deep learning methods in AF detection lies 
in the volume of data that can be processed in a short 
time with high accuracy. Deep learning methods can 
be used to perform both feature extraction and clas- 
sification stages, due to their ability to model com- 
plex systems when properly designed and trained. 

The approaches that use deep learning methods 
for AF detection typically perform some preprocess- 
ing and basic feature extraction on the ECG sig- 
nal and then use deep learning networks to com- 
plete the characterization and perform the classifi- 
cation. Yuan et al. 51 use autoencoder neural net- 
works to detect AF. The signal was previously fil- 
tered, the R waves were detected for signal segmen- 
tation, and some features related to the P waves were 
extracted. 51 

In 2018, He et al. 83 calculated the continuous 
wavelet transform of the P-QRS-T segment to char- 
acterize atrial and ventricular components. A 2D 
CNN was then used to extract features and perform 
the classification.83 Similarly, Xia et al. 84 defined a 
bidimensional matrix using the short-term Fourier 
transform and the stationary wavelet transform of 
the ECG signal. This matrix was used as the input 
for a 2D CNN, which extracts features and classifies 
the signals. 84 

Among the most recent approaches, Shi et al. 85 
proposed a loop-locked framework integrating AF 
diagnosis, label query, and model fine-tuning. The 
model is pretrained on a multiple-input deep neu- 
ral network using labeled samples from an original 
training set. The model can be used in practical ap- 
plication for AF detection when new data are col- 
lected to form a candidate set. The learning stage 
is increased continuously using the most informa- 
tive samples from the candidate set. 85 Yildirim et 
al. 86 used deep neural networks to detect cardiac ar- 
rhythmia on more than 10,000 patients. The model 
works on each lead of the 12 leads in ECG records. 
The model included learning and sequence learning 



 
 

 

tasks. After the representation of learning layers, the 
sequence learning stage involved a long short-term 
memory unit. 86 

 
VI. DISCUSSION 

Table 1 summarizes the works considered in this re- 
view, and Table 2 contains the acronyms of the da- 
tabases for each of them. For each work, specificity 

 
TABLE 1: Performance of the AF detection methods 
considered in this review 

Dataset Method Refs. SP (%) SE (%) 
MIT-BIH AF RR variability 20 95.1 94.4 

  18 89 96 
  19 89.4 89.4 
  22 93.4 94.1 
  23 — 89 
  25 96.90 99.17 
  12 96.05 97.33 
  27 98.11 98.22 
  28 98.44 95.81 
  43 96.4 98.9 
  44 — 94.7 
  45 96.09 93.8 
  52 96.20 96.81 
  53 98.3 97.1 
  54 98.2 98 
  55 90.4 94.7 
  34 99.33 99.65 
  32 96.95 98.98 
  35 98.44 97.37 
  36 — — 
  37 97.54 97.41 
  39 98.1 96.1 
  83 98.91 99.41 
 Atrial activity 60 91.66 98.09 

 77 94.53 91.21 
 76 94.19 96.47 

 Hybrid 84 98.24 98.34 
 46 95.50 92 
 51 99.03 96.55 
 81 97.10 97 
 80 99.19 96.51 
 79 90 96 

MIT-BI AR RR variability 40 98.91 99.11 
  56 86 100 
  57 98.7 99.97 
 Atrial activity 67 — 99.89 

TABLE 1: Continued 
 

Dataset Method Refs. SP (%) SE (%) 
CCC RR variability 42 92.9 91.4 

  48 98.5 74.3 
  49 — — 

PWAF Atrial activity 87 85 83 
  88 76 91 
  73 84 65 
 Hybrid 17 84 93 

 89 65 70 
AFPD RR variability 38 93.10 96.30 

MIMIC  33 99.65 99.88 
PASC Atrial activity 90 76 70 

PWIAF  64 75 88 
AHA  91 — 95.6 
PACB  63 70 66 

  92 — — 
  93 79 69 
  94 — — 

 
TABLE 2: Database acronyms 

 

Acronym Database name 
SP Specificity 
SE Sensitivity 

MIT-BIH AF MITBIH Atrial fibrillation 
MIT-BIH AR MIT-BIH Arrhythmia 

CCC Computing in cardiology challenge 
AFPDB Atrial fibrillation prediction database 
PWAF Patients with history of Atrial fibrillation 
PASC Patient after successful cardioversion 

PWIAF Patient with idiopatic atrial fibrillation 
PACB Patient after coronary bypass 

 

(SP) and sensitivity (SE) are shown to evaluate the 
methods’ performance. 

In general, methods that use only atrial activity 
show lower sensitivity and specificity than meth- 
ods based on heart rate variability and hybrid ap- 
proaches. The reason may be that the detection and 
characterization of P waves is challenging due to 
their low energy. Some authors reported the inability 
of algorithms to detect the P wave because the wave 
shape varies from a patient to another. However, as 
the P wave contains information on atrial contrac- 
tion, it is important to differentiate AF from other ar- 
rhythmias. Atrial activity characterization methods 
can be useful for AF detection. However, their per- 
formance is highly dependant on the signal-to-noise 



 

 

ratio of the ECG records. Therefore, signal quality 
metrics should be considered in the detection algo- 
rithms as medical long-term ECG recordings are of- 
ten characterized by a substantial variation in the 
level of noise. 59 

Regarding the methods based only on heart rate 
variability, they can generate many false alarms, be- 
cause this feature is presented in most of the ar- 
rhythmias. For instance, AF can be misclassified 
as atrial flutter, ventricular premature beats, or as 
bigeminy and trigeminy. 59 Heart rate variability in 
AF is known to be not wholly unpredictable, as there 
is a nonzero correlation between the observed and 
the predicted R-R interval at different correlation 
lags. 59,95 This predictability is weak and its physi- 
ological causes are not clear. 96 Therefore, heart rate 
variability cannot be used by itself to detect AF. 
However, when properly characterized, it can im- 
prove the performance of an AF detection system. 

Previous studies have shown that including infor- 
mation about atrial activity in an algorithm based 
on heart rate variability improves the performance 
of AF detection. 79 Hybrid approaches that com- 
bine information from atrial activity and heart rate 
variability offer improved prediction performance 
of machine-learning models compared to algorithms 
that use only one of these features. 97 

As AF can be confound with atrial flutter, it is 
important to explore new features that allow one to 
distinguish these two conditions. Table 3 shows a 
set of features of AF, atrial flutter, and normal si- 
nus rhythm. Some of them have been used previ- 
ously. 71,98–100 Atrial activity in AF is characterized 
by a narrowband spectrum with fundamental fre- 
quency between 3.5–9 Hz with higher spectral con- 
centration around the main frequency peak and not 
harmonics and bandwidth of 2 Hz. In the case of 
atrial flutter, the spectrum contains harmonics with 
decreasing amplitude due to the reentry rhythm. One 
interesting feature to exploit is the atrio-ventricular 
coupling, since it is evident in normal sinus rhythm 
and in atrial flutter, and it is not present in AF. An- 
other feature that is present in AF and atrial flutter is 
overlapping between atrial and ventricular activity, 
and it can be characterized with spectral analysis. 

Finally, it is well known that the big challenge in 
AF detection relies on asymptomatic AF. It is es- 
timated that there is at least one-third of the popu- 
lation undiagnosed. Therefore, it is essential to im- 
prove the sensitivity of the current methods. One 
alternative is using implantable cardiac monitors. 
However, these devices are recommended only for 
patients with frequent symptoms considered at risk. 
Paroxysmal AF is characterized by random and 

 
TABLE 3: Main differences and resemblances among AF, AFL, and a normal sinus rhythm 

 

 Normal Rhythm Atrial 
Fibrillation Atrial Flutter 

RR Interval Regular Same as 
P-wave Irregular Regular/Irregular Integer muliple 

of the atrial cycle length 
Atrio-ventricular coupling Coupled Uncoupled Coupled 
Overlapping of atrial and 

ventricular Not overlapped Overlapped Overlapped 

Atrial signal pulse Continuous Continuous 
Atrial period 500 ms–1 s 120 ms–200 ms 220 ms–300 ms 

Regularity of atrial waveform Regular Irregular Regular 
Fundamental freq. of the atrial 

component Typ. 1.2 Hz Typ. 6 Hz Typ. 4 Hz 

Harmonics Yes, firstly increasing, 
then decreasing No Yes, with decreasing amplitude 

Bandwidth 20 Hz 10 Hz 20 Hz 
Bandwidth of fundamental peak Delta 1–3 Hz Delta 



 
 

 

self-termination events. Thus, the most suitable al- 
ternative is the use of portable devices. When the 
ECG records are acquired during normal daily activ- 
ities outside a clinical environment, the low signal- 
to-noise ratio imposes more requirements for signal 
preprocessing and the performance of the methods 
may be reduced. Additionally, portable devices can 
record up to three leads per patient, and robust and 
accurate P-wave detection often requires a higher 
number of leads (up to 12 leads). Therefore, it is im- 
portant to develop new methods or improve current 
methods for AF detection with the following char- 
acteristics: 

high temporal resolution to detect short 
episodes of AF 

• use of up to three leads 

• long-term monitoring 

robust algorithms to deal with a low signal-to- 
noise ratio. 

AF has a high incidence in stroke, even short 
episodes can be related to it, and reduces the qual- 
ity of life (QoL) of the patients. 101 Therefore, the 
search for an optimal solution for detecting patients 
at risk of AF is fundamental to start treatment op- 
portunely and improve their QoL. 
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