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Abstract

In recent years, deep learning has fundamentally changed the landscapes of
a number of areas in artificial intelligence, including computer vision, natu-
ral language processing, robotics, and game theory. In particular, the strik-
ing success of deep learning in a large variety of natural language processing
(NLP) applications, including automatic speech recognition (ASR), machine
translation (MT), and text-to-speech (TTS), has resulted in major accuracy
improvements, thus widening the applicability of these technologies in real-life
settings.

At this point, it is clear that ASR and MT technologies can be utilized to
produce cost-effective, high-quality multilingual subtitles of video contents of
different kinds. This is particularly true in the case of transcription and trans-
lation of video lectures and other kinds of educational materials, in which the
audio recording conditions are usually favorable for the ASR task, and there is
a grammatically well-formed speech. However, although state-of-the-art neu-
ral approaches to TTS have shown to drastically improve the naturalness and
quality of synthetic speech over conventional concatenative and parametric
systems, it is still unclear whether this technology is already mature enough
to improve accessibility and engagement in online learning, and particularly in
the context of higher education. Furthermore, advanced topics in TTS such as
cross-lingual voice cloning, incremental TTS or zero-shot speaker adaptation
remain an open challenge in the field.

This thesis is about enhancing the performance and widening the applicability
of modern neural TTS technologies in real-life settings, both in offline and
streaming conditions, in the context of improving accessibility and engagement
in online learning. Thus, particular emphasis is placed on speaker adaptation
and cross-lingual voice cloning, as the input text corresponds to a translated
utterance in this context.
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Resumen

En los últimos años, el aprendizaje profundo ha cambiado significativamente el
panorama en diversas áreas del campo de la inteligencia artificial, entre las que
se incluyen la visión por computador, el procesamiento del lenguaje natural,
robótica o teoría de juegos. En particular, el sorprendente éxito del aprendizaje
profundo en múltiples aplicaciones del campo del procesamiento del lenguaje
natural tales como el reconocimiento automático del habla (ASR), la traduc-
ción automática (MT) o la síntesis de voz (TTS), ha supuesto una mejora
drástica en la precisión de estos sistemas, extendiendo así su implantación a
un mayor rango de aplicaciones en la vida real.

En este momento, es evidente que las tecnologías de reconocimiento automático
del habla y traducción automática pueden ser empleadas para producir, de
forma efectiva, subtítulos multilingües de alta calidad de contenidos audiovi-
suales. Esto es particularmente cierto en el contexto de los vídeos educativos,
donde las condiciones acústicas son normalmente favorables para los sistemas
de ASR y el discurso está gramaticalmente bien formado. Sin embargo, en el
caso de TTS, aunque los sistemas basados en redes neuronales han demostrado
ser capaces de sintetizar voz de un realismo y calidad sin precedentes, todavía
debe comprobarse si esta tecnología está lo suficientemente madura como para
mejorar la accesibilidad y la participación en el aprendizaje en línea. Además,
existen diversas tareas en el campo de la síntesis de voz que todavía supo-
nen un reto, como la clonación de voz inter-lingüe, la síntesis incremental o la
adaptación zero-shot a nuevos locutores.

Esta tesis aborda la mejora de las prestaciones de los sistemas actuales de
síntesis de voz basados en redes neuronales, así como la extensión de su apli-
cación en diversos escenarios, en el contexto de mejorar la accesibilidad en el
aprendizaje en línea. En este sentido, este trabajo presta especial atención
a la adaptación a nuevos locutores y a la clonación de voz inter-lingüe, ya
que los textos a sintetizar se corresponden, en este caso, a traducciones de
intervenciones originalmente en otro idioma.
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Resum

Durant aquests darrers anys, l’aprenentatge profund ha canviat significativa-
ment el panorama en diverses àrees del camp de la intel·ligència artificial,
entre les quals s’inclouen la visió per computador, el processament del llen-
guatge natural, robòtica o la teoria de jocs. En particular, el sorprenent èxit
de l’aprenentatge profund en múltiples aplicacions del camp del processament
del llenguatge natural, com ara el reconeixement automàtic de la parla (ASR),
la traducció automàtica (MT) o la síntesi de veu (TTS), ha suposat una mil-
lora dràstica en la precisió i qualitat d’aquests sistemes, estenent així la seva
implantació a un ventall més ampli a la vida real.

En aquest moment, és evident que les tecnologies de reconeixement automàtic
de la parla i traducció automàtica poden ser emprades per a produir, de forma
efectiva, subtítols multilingües d’alta qualitat de continguts audiovisuals. Això
és particularment cert en el context dels vídeos educatius, on les condicions
acústiques són normalment favorables per als sistemes d’ASR i el discurs està
gramaticalment ben format. No obstant això, al cas de TTS, encara que els
sistemes basats en xarxes neuronals han demostrat ser capaços de sintetitzar
veu d’un realisme i qualitat sense precedents, encara s’ha de comprovar si
aquesta tecnologia és ja prou madura com per millorar l’accessibilitat i la
participació en l’aprenentatge en línia. A més, hi ha diverses tasques al camp
de la síntesi de veu que encara suposen un repte, com ara la clonació de veu
inter-lingüe, la síntesi incremental o l’adaptació zero-shot a nous locutors.

Aquesta tesi aborda la millora de les prestacions dels sistemes actuals de síntesi
de veu basats en xarxes neuronals, així com l’extensió de la seva aplicació en
diversos escenaris, en el context de millorar l’accessibilitat en l’aprenentatge
en línia. En aquest sentit, aquest treball presta especial atenció a l’adaptació
a nous locutors i a la clonació de veu interlingüe, ja que els textos a sintetitzar
es corresponen, en aquest cas, a traduccions d’intervencions originalment en
un altre idioma.
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Chapter 1

Introduction

1.1 Framework and motivation

This work is framed in the context of a series of EU and Spanish Govern-
ment funded research and innovation projects related to the development and
application of state-of-the-art speech and language technologies into different
kind of online learning environments (OER repositories, MOOC platforms,
etc). However, it is worth noting that the research work developed in this
thesis is not part of any of these projects, which are just introduced in what
follows to provide the chronological context preceding this work for a better
understanding of the scientific and technological goals pursued in this thesis.

The first of these projects was the European Union’s FP7 transLectures project
(2011-2014). The transLectures project aimed to apply state-of-the-art auto-
matic speech recognition (ASR) and machine translation (MT) technologies
for transcribing and translating educational resources with best accuracy, and
developing a platform for the seamless integration of such technologies into
large video-lecture repositories. The goal was to break the language barrier for
the consumption of online educational materials of all kinds (video-lectures,
MOOCs, OER, etc) by providing accurate-enough automatic subtitles in dif-
ferent languages.

After transLectures ended in 2014, other research projects with similar goals
followed: EU’s CIP European Multiple MOOC Aggregator (EMMA, 2014-
2016), MINECO’s Multilingual Open Resources for Education (MORE, 2016-
2018), EU’s Horizon 2020 Cross Modal, Cross Cultural, Cross Lingual, Cross
Domain and Cross Site Global OER Network (X5GON, 2017-2020), Multi-
lingual subtitling of classrooms and plenary sessions (Multisub, 2019-2021)

1



Chapter 1. Introduction

supported by the Spanish Ministry of Science and Innovation, and finally EX-
PERT (2022) supported by the Erasmus+ Education programme. There has
been therefore an ongoing line of research around improving these technologies
for more than 10 years, not only in terms of using more powerful machine
learning architectures and algorithms but also in terms of their applicability
and adaptation to particular use cases and applications.

The results achieved in transLectures and EMMA were very successful, and it
was clear after 2016 that ASR and MT technologies could be used to produce
accurate enough multilingual subtitles of video lecture materials. In fact, since
2014 these technologies are being used in UPV[Media] (Universitat Politèc-
nica de València’s institutional video lecture repository) to generate automatic
multilingual subtitles of the digital content generated by UPV lecturers. With
these technologies at hand, one could think of additional steps in order to gen-
erate automatic comprehensive translations of these materials (i.e. as if they
were initially conceived in the target language). To that end, the next natural
step would be to integrate state-of-the-art text-to-speech (TTS) technologies
into the existing speech translation (ASR + MT) pipeline, that is, to build au-
tomatic speech-to-speech (S2S) translation systems, which is the central aim
of this work. The complete S2S translation pipeline (ASR + MT + TTS) will
enable the automatic dubbing of educational resources by generating translated
synthetic audio tracks of these materials. In this context, the TTS component
should not only generate realistic speech in the target language in a prede-
fined set of voices, but ideally keep the original lecturer voice characteristics
even when he/she does not speak the target language (this is referred to as
cross-lingual voice cloning).

There are a number of benefits introduced by enabling content dubbing with
respect to subtitling. First, students do not need to split their attention be-
tween what is seen on the screen (presentation slides, blackboard annotations,
etc.) and the subtitle text. Second, visually impaired people can also bene-
fit from the translated content. Finally, in some cultures or countries there
is a mainstream preference on dubbing over subtitling for the consumption
of audiovisual materials [Zar00]. Other areas for which TTS tools have pro-
vided support include second language learning [God19], reading difficulties
[Cam+20] and virtual humans [Chi+20].

In the recent years, deep learning based TTS has drastically improved the
quality and naturalness of synthesized speech. In particular, the neural end-
to-end approach to TTS has shown not only to be able to generate realistic
and high quality synthetic speech [She+18], but has also significantly simplified
the training pipeline and, thus, the expert knowledge (particularly regarding

2



1.2 Scientific and technological goals

signal processing) required to build TTS systems. However, neural TTS is a
very recent technology that is only slowly being adopted in commercial systems
as of 2018, when this thesis is conceived, where concatenative and parametric
systems are still widely used due to their better robustness and efficiency.
This is due on the one hand to the high computational requirements of neural
TTS systems and, on the other hand, to some instability issues presented by
encoder-decoder attention-based models. Both aspects will be addressed in
detail along this thesis.

1.2 Scientific and technological goals

This section describes the scientific and technological goals pursued in this
work.

1. Adapt neural end-to-end TTS architectures to multilingual and multi-
speaker settings, particularly focusing on cross-lingual voice cloning, and
assess the application of this technology for the automatic dubbing of
Open Educational Resources (OER) in the context of higher education.

2. Improve robustness, efficiency and controllability of neural TTS models,
focusing on its applicability in real-life production-ready environments.

3. Devise optimum ways of including a neural TTS component into a simul-
taneous speech-to-text translation pipeline, finding an optimum balance
between response times and resulting speech naturalness.

4. Enable zero-shot TTS adaptation to unseen speakers in the context of
speech-to-speech translation.

5. Integrate developed technologies into the UPV[Media] automatic tran-
scription and translation production pipeline.

All in all, the main purpose of this thesis is to enhance the performance and
widen the applicability of modern neural TTS systems in real-life settings, both
in offline and streaming conditions.

3



Chapter 1. Introduction

1.3 Document structure

This document is structured in seven sequential chapters that cover the differ-
ent topics and scientific and technological goals proposed in this thesis. First,
Chapter 2 gives some preliminary concepts and background knowledge on the
research fields covered by this thesis. The first goal concerning the adaptation
of neural end-to-end TTS models to multilingual and multi-speaker settings is
addressed in Chapter 3, where special emphasis is placed on cross-lingual voice
cloning. The assessment of this technology and its application into the field
of online learning in higher education is addressed in Chapter 4. Chapter 5
addresses the aspects of robustness, efficiency and cotrollability in neural TTS
systems, which relates with the second goal. The third goal is addressed in
Chapter 6, which discusses the adaptation of ASR, MT and TTS technolo-
gies to streaming conditions in the form of a simultaneous speech-to-speech
(S2S) pipeline, focusing on the incremental TTS component. Last, Chapter 7
addresses the zero-shot adaptation of TTS models to unseen speakers in the
context of speech-to-speech translation for online teaching, corresponding to
the fourth goal. The integration of these technologies into UPV[Media] au-
tomatic translation pipeline, corresponding with the last goal considered in
this thesis, is also addressed in Chapter 7. Finally, Chapter 8 gives a brief
summary of the work described along the previous chapters, highlighting the
scientific publications that endorse the scientific impact of the contributions of
this thesis, as well as some concluding remarks and future work.

Although this work is made in collaboration with other members of the Ma-
chine Learning and Language Processing (MLLP) group from UPV, the the-
oretical framework, developments, experimentation and evaluations presented
along this thesis have been carried out primarily (and in most cases exclu-
sively) by the author of this work except when mentioned otherwise. When
applicable, individual contributions are listed at the end of each chapter for
the work done in collaboration with others.

The experienced reader can skip the preliminary concepts given in Chapter 2,
with maybe the exception of Section 2.7 introducing the neural end-to-end
approach to TTS. A sequential reading of the seven chapters of this document is
encouraged if the reader wants to learn about the whole work. However, specific
chapters can be read attending to the particular interests on the different
aspects of neural TTS models addressed within this thesis.

4



Chapter 2

Preliminaries

In this chapter, some general concepts and terminology closely related to the
machine learning models and algorithms used throughout this work is intro-
duced. The intention is not to dig into the details, but instead present a brief
introduction for each of the different concepts presented below.

The Machine Learning and Pattern Recognition fields are introduced in Sec-
tion 2.1. Section 2.2 introduces the attention mechanism in the context of
Sequence-to-Sequence problems. The most relevant aspects of the transformer
architecture are briefly introduced in Section 2.3. Section 2.4 introduces gen-
erative adversarial networks. Then, Sections 2.5, 2.6 and 2.7 introduce, re-
spectively, the ASR, MT and TTS natural language processing tasks. Finally,
Section 2.8 introduces the Speech-to-Speech Translation task both under offline
and online (streaming) conditions.

2.1 Machine Learning

Machine Learning is a branch of the wider Artifical Intelligence (AI) field. It
focuses on the development of computer systems or applications that are able
to learn from data or past experience to solve a particular task [Mur22].

Attending to the nature of the output variables, machine learning problems
are mainly encompassed in two different types:

• Classification: Classification tasks aim to predict a label or set of la-
bels representing a category y ∈ {1, ..., C} (discrete variables or labels).
In the research community, this has been historically known as pattern
recognition, which refers to the task of finding regularities in data by using
machine learning algorithms.

5



Chapter 2. Preliminaries

• Regression: Regression tasks deal with the estimation of numerical val-
ues y ∈ R (continuous variables). A simple example would be to predict
the price of a house given its size and the distance to the city centre.

Machine learning algorithms can also be divided attending to the nature of the
data used for training the underlying models into three main paradigms:

• Supervised learning: In supervised learning, models learn from a col-
lection of N input-output pairs D = {(xi, yi)}Ni=1 known as training set.
Formally, we intend to learn a probability distribution over the output
variable conditioned on the input data, p(y|x).

• Unsupervised learning: In unsupervised learning, models try to learn
patterns from unlabeled data. In contrast to supervised learning, it in-
tends to learn the prior distribution p(x) of the data.

• Reinforcement learning: In reinforcement learning, models (also called
agents) are trained to make a sequence of decisions (actions) in an uncer-
tain, potentially complex environment. It differs from supervised learning
in not needing a collection of input-output pairs to correct sub-optimal
actions. Instead, the agent should learn an optimal policy that maxi-
mizes a reward function that accumulates from occasional rewards (or
punishment) in response to the actions that it takes.

ASR and MT are classification tasks, since the output is a discrete variable
(text sentence), while TTS is addressed as a regression task. All three are reg-
ularly addressed under the supervised learning paradigm, where large amounts
of manually labeled data (i.e. transcribed speech for ASR and TTS, bilingual
sentence pairs for MT) are used to train the machine learning models involved.

A machine learning model learns from data by (iteratively) adjusting its pa-
rameters θ to optimize an objective function that provides an objective measure
of the performance of the model. By convention, objective functions are de-
fined so that lower is better, and thus these are sometimes called loss functions.
In regression tasks, a common training criterion is to minimize either the mean
absolute error (MAE or `1):

L(θ) =
1

N

N∑
i=1

|yi − ŷi| (2.1)

6



2.2 Sequence-to-Sequence with Attention Mechanism

or the mean squared error (MSE or `2):

L(θ) =
1

N

N∑
i=1

(yi − ŷi)2 (2.2)

between predicted ŷ and ground truth y values, where ŷi = pθ(xi).

In contrast, in classification tasks it is common to minimize the negative log
likelihood of the model’s predictions (i.e. perform a maximum likelihood es-
timation), which is equivalent to minimizing the binary cross entropy of the
model:

L(θ) = − 1

N

N∑
i=1

yi log ŷi (2.3)

where y and ŷ represent ground truth and predicted discrete probability dis-
tributions over the possible classes.

In the last ten years, deep learning models based on artificial neural networks
(ANN) have been shown to outperform classical machine learning methods in
a wide variety of tasks. In what follows, it is assumed the reader is already
familiar with basic deep learning concepts and architectures such as convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs). The
reader is refered to [Mur22, Chapters 13, 14 and 15] for more details.

2.2 Sequence-to-Sequence with Attention Mechanism

In machine learning, sequential data problems where both the input and output
are variable-length sequences are known as Sequence-to-Sequence (Seq2Seq)
problems. For example, in neural end-to-end approaches to ASR, MT or TTS
these are tackled as Seq2Seq problems in which the input corresponds to a
sequence of acustic features (ASR) or words (MT, TTS) and the output is a
sequence of words (ASR, MT) or acoustic features (TTS).

To address Seq2Seq tasks, Encoder-Decoder models [SVL14] were originally
proposed in the context of MT to map variable-length inputs and outputs
using recurrent long short-term memory (LSTM) neural networks [HS97]. As
illustrated in Figure 2.1, the encoder part of the model processes the input
and maps it into a fixed length latent representation. Ideally, this encoded
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representation holds all the input information needed to perform the task at
hand (e.g. the translation). In the case of MT, the decoder model, starting
from this encoded representation, generates the output sentence word by word.
In this context, the decoder model can be seen as a language model conditioned
on the encoded representation.

Formally, the encoder processes an input sequence x = [x1, ...,xn] of N ele-
ments and returns state representations z = [z1, ..., zn], called encoder hidden
states or encoder outputs. The decoder takes zn and generates the output
sequence y = [y1, ...,yT ] left-to-right, as follows:

yt = dec(yt−11 , zn) (2.4)

Figure 2.1: Encoder-Decoder architecture.

There is though a primary drawback to this architecture: it has very limited
memory. A single vector of fixed dimensionality (zn) is used to hold all the
relevant input information (which can be a sequence of dozens of words from
a very large vocabulary). This issue is believed to be more of a problem when
decoding particularly long sequences.

To overcome this issue, the attention mechanism was introduced for Seq2Seq
models in 2015 [Bah+15]. The idea behind the attention mechanism is to
replace the fixed context vector (zn) with a context vector ct computed dy-
namically at each decoding step as:

ct =
N∑
i=1

αt,izi (2.5)
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where αt are the weights assigned to each encoder hidden state at step t, with
the most relevant vectors being attributed the highest weights. These are
computed using the softmax function to make them differentiable as follows:

αt,i =
exp(et,i)∑N
k=1 exp(et,k)

(2.6)

ensuring that 0 ≤ αt,i ≤ 1 for all i and that
∑N

i=1 αt,i = 1, where et,i is
an attention score (also known as energy value) computed according to some
scoring function. The scoring function provides a measure of how relevant the
encoder hidden state zi is at decoding step t. In recurrent Seq2Seq models, it
is common to compute this score using the previous decoder hidden state, as
et,i = a(ht−1, zi) for all i, where a(·) is an attention scoring function that can
be implemented by a feed-forward network.

From a more general perspective, the attention mechanism can be seen as a soft
dictionary look-up, in which we compare a query q ∈ Rdq to each key ki ∈ Rdk
in a collection of N key-value pairs (k1,v1), ..., (kn,vn), and then retrieve the
corresponding value vi ∈ Rdv . However, instead of retrieving a single value
vi we retrieve a convex combination of the values. Figure 2.2 shows a general
overview of the attention mechanism.

Figure 2.2: Attention mechanism overview adapted from [Zha+21].

The two more relevant options for a(·) are the additive [Bah+15] and the
scaled dot-product [LPM15] scoring functions. The additive scoring function
computes attention scores as follows:

9
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a(q,k) = wT
v tanh(Wqq + Wkk) ∈ R (2.7)

where wv ∈ Rh, Wq ∈ Rh×q and Wk ∈ Rh×k are learnable parameters of the
model. Differently, the scaled dot-product scoring function requires that both
q and k have the same dimension d, and it computes attention scores as:

a(q,k) =
qTk√
d
∈ R (2.8)

2.3 Transformer

Transformers are a type of encoder-decoder model that have revolutionized the
field of natural language processing (NLP) over the last few years, becoming
the state-of-the-art in many NLP tasks such as language modeling, ASR, MT or
TTS. Transformers are also being widely adopted in other fields thanks to their
highly parallelizable architecture and their astonishing performance in many
conditional sequence modeling tasks. In this work, a particular adaptation of
transformers for the TTS task is introduced in Chapter 7.

The transformer architecture [Vas+17], depicted in Figure 2.3, follows an
encoder-decoder structure but does not rely on recurrent nor convolutional
layers in order to generate an output. Instead, it relies on the novel self-
attention mechanism and positional encodings to allow the model to look into
other positions of the sequence when processing a particular input. In addi-
tion, the transformer extends the regular attention mechanism with multiple
attention heads for improved performance. This is known as multi-head atten-
tion. While these three concepts are briefly introduced in what follows, the
reader is referred to [Mur22, Sec. 15.5] for further details.

Self-attention

In Section 2.2 it was shown how the decoder can attend to the input sequence
in order to capture contextual embeddings of each input. In self-attention,
the encoder attends to itself to compute context aware encodings of the same
length as the input sequence, where each input is allowed to pay attention to
all the positions of the input sequence.

10
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Figure 2.3: The original transformer architecture adapted from [Vas+17].

Formally, given an input sequence x = [x1, ...,xn] where xi ∈ Rd, self-attention
computes an output sequence using xi as the query, and [x1, ...,xn] both as
keys and values.

Multi-head attention

The basic idea behind the multi-head attention mechanism is to enable cap-
turing different notions of similarity, such as capturing dependencies of various
ranges (e.g. shorter-range vs. longer-range). To that end, multi-head at-
tention allows the attention mechanism to jointly use different representation
subspaces of queries, keys and values.
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Given a query q ∈ Rdq , a key k ∈ Rdk and a value v ∈ Rdv , each attention
head hi is computed as:

hi = f(W
(q)
i q,W

(k)
i k,W

(v)
i v) (2.9)

where W
(∗)
i are learnable parameters and f is the attention pooling (e.g. ad-

ditive or scaled dot-product attention). The multi-head attention output (h)
is a linear transformation via learnable parameters W0 of the concatenation
of the n heads:

h = W0

h1

...
hn

 (2.10)

Positional encodings

The performance of vanilla self-attention can be suboptimal since attention
is permutation invariant, and hence ignores the input sequence ordering. In
the transformer architecture, position embeddings are used to give the order
context to the non-recurrent multi-head attention architecture. In [Vas+17],
it is proposed to add an absolute positional encoding based on the sine and
cosine functions to the input sequences, which are computed as:

pi,2j = sin

(
i

C2j/d

)
, pi,2j+1 = cos

(
i

C2j/d

)
(2.11)

where C corresponds to a fixed maximum sequence length (e.g. 10000), i is
the position, j is the embedding dimension index and d is the total number
of dimensions. The advantage of this representation is two-fold. First, unlike
learnable position embeddings, it can be computed for arbitrary length inputs
up to C. Second, it allows the model to attend relative positions effortlessly,
since for any fixed offset k, pi+k can be represented as a linear function of pi
[Vas+17].
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2.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are an approach to generative mod-
eling using deep learning methods, designed by Ian Goodfellow et. al in 2014
[Goo+14].

Figure 2.4: Generative Adversarial Network training scheme.

GANs rely on the idea that a generative model is good if it is difficult to
distinguish real samples from fake (generated) samples. Thus, GANs consist
of two competing networks: a generator G and a discriminator D. Both models
play an adversarial game where the generator tries to fool the discriminator
by generating samples that are close to the real distribution of the training
data. These samples are accepted or rejected by the discriminator (a binary
classifier) as real/fake and, in this process, the generator incrementally updates
to improve itself to generate fake samples that are increasingly more realistic.
At the same time, the discriminator is trained in a supervised way to learn
how to differentiate between real and fake (generated) samples. The training
scheme of a GAN is depicted in Figure 2.4.

In the original work, cross-entropy is used as the loss function for the discrim-
inator. Thus, the generator is trained to minimize the following loss:

L(G) = − logD(G(z)) (2.12)

where z is either a source of randomness (e.g. a normal distribution z ∼
N (0, 1)) for unconditional modeling or a conditioning input for conditional
modeling. At the same time, the discriminator is trained to minimize the
following loss:

L(D) = − logD(x)− log(1−D(G(z))) (2.13)
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where x is a real training sample. Thus, G and D are playing a minimax game
with the following comprehensive objective function:

max
D

min
G
{Ex[logD(x)] + Ez[log(1−D(G(z)))]} (2.14)

In the recent years, GANs have played an important role in building efficient
high-quality neural vocoders for the TTS task, which are extensively used along
this work (Chapters 5, 6 and 7).

2.5 Automatic Speech Recognition

Automatic Speech Recognition (ASR) refers to the task of transcribing spo-
ken words (speech) into written text (speech-to-text). Formally, ASR can
be viewed as a classification problem in which an observed acoustic sequence
x = [x1,x2, ...,xT ] is mapped into a word string y = [y1, y2, ..., yN ], where yi
are words belonging to a vocabulary Y. In the statistical approach to ASR,
given a sequence of acoustic observations x our aim is to find the most probable
word sequence ŷ by maximizing the posterior probability p(y|x):

ŷ = arg max
y∈Y∗

p(y|x) = arg max
y∈Y∗

p(x|y)p(y)

p(x)
= arg max

y∈Y∗
p(x|y)p(y) (2.15)

where p(y) is modelled by a language model (LM) and p(x|y) is modelled by an
acoustic model. The statistical language model p(y) estimates the probability
for any given sequence of words y.

Traditionally, n-gram based models [KN95] have been widely used in language
modeling, not only for ASR but also for many other tasks involving language
processing. Nowadays, neural LMs based on recurrent or transformer archi-
tectures have become the state-of-the-art in language modeling due to their
improved performance over n-gram LMs [Mik+11; Baq+20].

The acoustic model p(x|y) estimates the likelihood that the sequence of acous-
tic observations x has been generated by a sequence of words y. HMMs have
been traditionally used to model p(x|y) [Lee88; Lee90], where state observa-
tion probabilities are frequently modelled using either Gaussian mixture models
(GMM) or discriminative DNN models. Until deep learning techniques were
applied, GMM-HMM had been the dominant framework for speech recognition.
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In the recent years, HMM-free end-to-end ASR systems have been exten-
sively investigated [GJ14; Cha+16; CPS16; Pra+19]. Differently from hybrid
models, end-to-end models attempt to directly model p(y|x). In particular,
transformer-based end-to-end ASR architectures have achieved state-of-the-
art performance [Mia+20; Wan+20; Gul+20] in many tasks, outperforming
strong hybrid baseline systems [VA21].

2.6 Machine Translation

Machine Translation (MT) refers to the problem of automatically translating
a source sentence x into a target sequence y:

x = x1, x2, ..., xI xi ∈ X

y = y1, y2, ..., yJ yj ∈ Y

where xi and yj are words from the source and target sentences, and X and Y
are the source and target vocabularies, respectively.

In the statistical approach for MT (SMT), this problem is tackled by finding
the most probable target word sequence ŷ given the source word sequence x:

ŷ = arg max
y∈Y∗

p(y|x) = arg max
y∈Y∗

p(x|y)p(y) (2.16)

where p(y|x) (the probability of y being the translation of x) has been decom-
posed into a translation model p(x|y) and a target language model p(y). The
translation model is trained on parallel text data (a collection of sentences and
their corresponding translation), and is responsible for modeling the correla-
tion between source and target sentences. On the other hand, the language
model is trained on monolingual text data in the target language and models
the well-formedness of the candidate translation y.

In the recent years, neural approaches for MT (NMT) based on encoder-
decoder architectures have been proposed with very successful results, out-
performing traditional SMT models and becoming the state-of-the-art in MT.
NMT models [KB13; SVL14] directly calculate p(y|x) as:

p(y|x) =
J∏
j=1

p(yj|yj−11 , x) (2.17)
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and the most likely translation (Eq. 2.16) is usually obtained either by greedy
or beam search decoding algorithms based on the left-to-right factorization of
NMT models. Again, transformer-based NMT architectures have become the
state-of-the-art also in machine translation [Vas+17], outperforming CNN and
RNN architectures [Wu+16].

2.7 Text-To-Speech

Text-to-speech, or speech synthesis, refers to the artificial production of hu-
man speech. The goal is to render symbolic linguistic representations (like text
or phonetic transcriptions) into a speech waveform, resembling human speech.
Thus, the input is a sequence of discrete values y corresponding to the text
or phonetic sequence, and the output x is a sequence of continuous acous-
tic feature values. In neural based approaches, x = [x1,x2, ...,xT ] is usually
the log-mel spectrogram, which is an intermediate lossy representation of the
speech waveform. It can be formalized as the modeling of the posterior prob-
ability distribution p(x|y) of the spectrogram x given the linguistic features
y = [y1, y2, ..., yN ].

Until the last few years, the two main approaches dominating the TTS field
were concatenative speech synthesis (CSS) and statistical parametric speech
synthesis (SPSS). The CSS approach produces the target speech waveform by
concatenating pieces of speech (called units) that are stored in a database
[HB96]. Units are carefully selected by a unit selection algorithm. Although
CSS can produce high quality and intelligible synthetic speech, it requires of a
huge recording database in order to cover all possible combinations of speech
units and speakers.

As an alternative to the CSS approach, SPSS generates speech using statistical
models instead of relying on pre-recorded segments. SPSS systems are usually
composed of three main components: a text analysis module, a parameter pre-
diction module or acoustic model, and a vocoder module. Similarly to ASR
systems, SPSS systems are trained on a collection of <text,audio> pairs. Nev-
ertheless, TTS recordings are usually performed in professional studio settings
to assure the best audio quality and proper acoustic conditions (e.g. avoiding
background noises, reverberations, etc).

In the early 2010s, some works first introduced DNNs into the SPSS paradigm
by replacing the different HMM components with a corresponding DNN [ZSS13;
Fan+14]. However, the main advances in speech synthesis naturalness and
quality came in the late 2010s with the introduction of end-to-end autore-
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gressive neural acoustic and vocoder models. WaveNet [Oor+16], Tacotron
1/2 [Wan+17; She+18] or Deep Voice 3 [Pin+18] are some of the pioneering
end-to-end TTS models that rapidly gained popularity in the TTS research
community. These models not only reached unprecedented levels of synthetic
speech naturalness, but also simplified the training pipeline by directly tak-
ing character or phoneme sequences as inputs and mel spectrograms for the
acoustic features.

These pioneer works towards end-to-end neural TTS followed a two-stage ap-
proach. In a first stage (text-to-spectrogram), an acoustic model generates
an intermediate acoustic representation (log-mel spectrograms) from the in-
put text. Then, in a second stage (spectrogram-to-wave), the final waveform
is reconstructed conditioned on the predicted acoustic features by means of
a separate vocoder model [She+18; Oor+16] or algorithm [Wan+17; GL83].
This two-stage approach has become the predominant paradigm in neural TTS.
Figure 2.5 shows a generic two-stage neural TTS architecture comprised of an
attention-based encoder-decoder acoustic model and a neural vocoder.

Figure 2.5: A generic two-stage neural TTS architecture comprising an attention-based
encoder-decoder model and a neural vocoder.
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2.7.1 Text-to-spectrogram

Pioneering works in end-to-end neural TTS systems were based on encoder-
decoder architectures with attention [Wan+17; She+18; Pin+18]. In these,
the encoder maps a sequence of input character or phoneme embeddings x =
[x1,x2, ...,xN ] into a series of annotations or intermediate high-dimensional
representations z = [z1, z2, ..., zN ]. Each annotation zi contains information
about its corresponding input token xi with respect to its neighboring tokens
xj for all j 6= i. Then, an autoregressive decoder iteratively outputs the
spectrogram frames y = [y1,y2, ...,yT ], where an attention mechanism is used
to condition yt on the most relevant encoder hidden states z at step t.

The acoustic model is trained on a collection of D = {(xi,wi)}Ni=1 <text,audio>
pairs to minimize either the `1 or `2 loss between the predicted ŷ and ground
truth y spectrograms extracted from the audio waveformsw. A teacher forcing
algorithm is used for training the autoregressive model [Mur22, Sec. 15.2.4],
where the ground truth spectrogram frame yt−1 is used to condition the de-
coder output at step t. This introduces a mismatch between training and
inference conditions known as exposure bias [Liu+20; Ran+16] that will be
tackled in more detail in Chapter 5.

2.7.2 Spectrogram-to-wave

In two-stage neural TTS pipelines, neural vocoder models are used to recon-
struct the audio waveform given the predicted acoustic features. Differently
from the text-to-spectrogram task, vocoder models are trained on a collection
of untranscribed audios D = {wi}Ni=1 from which intermediate spectrogram
representations can be directly obtained.

The autoregressive WaveNet [Oor+16] was the first neural audio generative
model that was able to produce realistic speech with unprecedented levels of
naturalness and audio quality. The WaveNet architecture (see Figure 2.6) is
based on stacks of causal, dilated convolutional layers capable of achieving a
wide receptive field. A dilated convolution skips input values with a certain
step so that the filter is applied over an area larger than its length. The joint
probability of a waveform wi is here factorized as a product of conditional
probabilities as follows:

p(wi) =
T∏
t=1

p(wi,t|wi,1, ..., wi,t−1) (2.18)
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The conditional distribution p(wi|yi), where yi is the spectrogram representa-
tion of wi can thus be modelled as:

p(wi|yi) =
T∏
t=1

p(wi,t|wi,1, ..., wi,t−1,yi) (2.19)

Nonetheless, WaveNet inference speed is remarkably slow due to its autore-
gressive nature. Digital speech signals tend to be sequences of extended length
(usually 16K or more values per second), which brings in complications of
computation and memory costs.

Figure 2.6: WaveNet architecture from [Oor+16].

Over the past 5 years, a lot of attention has been put on building faster and
lighter neural vocoder architectures of comparable quality. Parallel WaveNet
[Oor+18], FFTNet [Jin+18], WaveRNN [Kal+18], WaveGlow [PVC19] or LPC-
Net [VS19] are some of the first attempts to match WaveNet audio quality
while bringing faster inference speeds. More recently, GAN-based vocoders
made breakthrough improvements over autoregressive models in terms of in-
ference speed and computation costs. MelGAN [Kum+19], Parallel WaveGAN
[YSK20] or HiFi-GAN [KKB20] are some of the GAN-based models that have
gained great popularity over the last few years.
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2.7.3 Evaluation metrics

Evaluation of machine learning progress is generally driven by widely accepted,
objective (well-defined) metrics that can be automatically computed by com-
paring system output and ground truth on a set of data samples not used
for system training (test set). Being able to compute objective metrics in a
fully automatic way is seen as a key factor to speed up progress, since not
only can researchers thus compare their achievements easily and objectively,
but also production of new, improved systems is accelerated by simply run-
ning a fully-automated training and testing loop. A good example of this
is the WER metric, which has successfully driven the ASR field for decades
[Hun90]. Analogously, the BLEU accuracy measure [Pap+02a] and the WER-
inspired Translation Edit Rate (TER) metric [Sno+06] have played a similar
role in MT. Needless to say, most important of all for objective metrics is to
be highly-correlated with human judgement.

In contrast to ASR and MT, no objective metrics have gained wide accep-
tance in TTS and, indeed, most recent work is assessed only by means of
subjective evaluations [Oor+16; She+18; Ren+19; Pin+18]. Generally speak-
ing, (listening-type) subjective evaluations boil down to human participants
listening to (real and synthetic) speech utterances and giving their feedback
on the speech quality, either globally or in terms of individual factors. More
precisely, the ITU-T Recommendation P.85 [ITU94] is at the basis of most
testing methods used for evaluating the subjective quality of synthetic speech.
In it, the recommended testing method consists in asking subjects to express
their opinion using one or more five-point opinion (Likert) scales. In addition
to the overall quality scale, other scales can be considered for measuring lis-
tening effort, voice pleasantness, etc. However, by far the preferred way to test
and compare current TTS systems is in terms of overall naturalness only, and
on the basis of a mean opinion score (MOS) with a 95% confidence interval
[She+18; Ren+19; Pin+18].

This way, subjective listening tests adopting either the MUltiple Stimuli with
Hidden Reference and Anchor (MUSHRA) methodology or mean opinion score
(MOS) ratings have become the de facto standard to assess and compare the
quality of TTS systems (particularly in terms of speech naturalness). However,
when directly comparing two alternative methods, A/B testing is also widely
used in the field.

Even though there are no generally-accepted metrics to evaluate TTS quality,
a number of objective metrics from general audio processing are available to
measure the quality of the synthetic speech. These become particularly useful
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in the context of the isolated vocoding task, as it avoids the one-to-many
mapping problem present in the more general TTS task.

Mel Cepstral Distortion (MCD)

Mel cepstral distortion (MCD) [Kub93] is a measure of how different two se-
quences of mel cepstra are:

MCDK =
1

T

T∑
t=1

√√√√ K∑
k=1

(mtk − m̂tk)2 (2.20)

where mtk and m̂tk are the k-th mel frequency cepstral coefficient (MFCC) of
the t-th frame from the reference and predicted audio, respectively. The MCD
is the sum of the squared differences over the first K MFCCs, skipping k = 0
(overall energy).

To measure the MCD between sequences of different length, dynamic time
warping (DTW) [Mül07] can be used to compute the minimum MCD obtain-
able by efficiently considering all possible monotone alignments between the
two sequences (MCD-DTW).

Perceptual Evaluation of Speech Quality (PESQ)

The Perceptual Evaluation of Speech Quality (PESQ) [Rix+01] is a computa-
tional model proposed to approximate human perception of audio quality which
allows to predict the results of MOS evaluation. The PESQ, standardized as
Recommendation ITU-T P.862 in 2001, is one of the most widely used mea-
sures for audio quality assessment. However, it was specifically developed for
measuring distortions introduced by speech compression algorithms (codecs),
thus compromising its performance in other domains (e.g. TTS).

F0 root mean square error (F0 RMSE)

The F0 root mean square error (F0 RMSE) is the RMSE between the original
pitch contours and the reconstructed F0 values.
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2.8 Speech-To-Speech Translation

Speech-To-Speech Translation (S2ST or just S2S) has been one of the most
challenging tasks in the field of natural language processing for many years
[Lav+97; Wah13]. At this time, however, we are closer than ever to seeing
accurate S2S systems thanks to the steady progress in deep learning for speech
and language processing tasks, particularly ASR, MT and TTS. Indeed, al-
though holistic, end-to-end systems are also being tried with good results,
the more traditional cascade systems pipelining ASR, MT and TTS compo-
nents, are now achieving impressive state-of-the-art results [Jia+19; Spe+19].
The cascaded approach allows for training strong independent ASR and MT
systems, for which the abundancy of training data is clearly superior to that
available for end-to-end systems.

Fueled by its immense applicability in real-life settings, research in simultane-
ous S2S is certainly gaining momentum. In this regard, there are at least three
main research challenges of great importance to build effective simultaneous
cascade systems. First of all, the ASR component has to work under a strict
streaming regime; that is, subject to the constraint that output must be deliv-
ered in nearly real time, only within a short delay or latency after the incoming
audio stream. Then, as with its predecessor, the MT component has to deliver
its output almost immediately, in a simultaneous fashion, even if no “complete”
input sentence is available for translation. Finally, the TTS component is faced
with the same constraint: speech synthesis has to start from just a prefix of
the “complete” input sentence. All in all, these constraints make conventional
(offline) sentence-level ASR, MT and TTS systems impractical for simultane-
ous S2S [Sud+20]. Instead, they have to be replaced by well-fitted systems for
streaming ASR, simultaneous MT and incremental TTS.

2.8.1 Streaming ASR

State-of-the-art ASR systems are based on the hybrid approach [YD14]. Bidi-
rectional LSTM (BLSTM) networks have shown to deliver highly competi-
tive results for acoustic modeling in a wide range of ASR tasks [GS05; CL15;
CH16; ZSN16]. Likewise, transformer models have recently become the pre-
ferred choice for language modeling [Iri+19; Baq+20], though unidirectional
LSTM recurrent neural networks are also widely used [Joz+16].

However, when we move from the offline (batch) to the streaming (online)
setup, it is necessary to take into account a number of constraints imposed by
the streaming scenario to efficiently manage DNNs. As expected in an offline
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setup, the BLSTM architecture observes the complete acoustic sequence to
estimate the likelihood for each frame in this sequence. However, this is not
feasible in a streaming scenario under tight real-time constraints. In brief, we
move from a sentence-based to a chunk-based training strategy, in which the
input signal is processed by a sliding window over the audio stream [Jor+19;
Jor+20]. The acoustic score of each audio frame is computed within the lim-
ited past and future contexts imposed by the sliding window. On the other
hand, decoder hypotheses are also scored using a language model whose com-
putational cost is kept under control by pruning and variance regularization
techniques [Shi+14].

2.8.2 Simultaneous MT

In the S2S pipeline, the MT component is responsible of translating the source
text, previously predicted by the ASR system, into the target (translated)
text. Standard state-of-the-art transformer-based MT architectures [Vas+17;
Bar+20] require the entire source sentence to be available before generating
its corresponding translation. In the context of a streaming speech translation
(ST) pipeline, the input is not a full semantic unit but a possibly infinite stream
of words that are made available in a timely manner. Thus, two problems
arise. First, there is the need of splitting the continuous stream of words
produced by the ASR system into sentence-like units. MT systems are trained
using sentence-aligned corpus, commonly no longer than 100-150 words, so
the unbounded text stream needs to be split into (hopefully semantically self-
contained) sentence-like chunks to be better translated. Secondly, the MT
model needs to be adapted so that it can start translating from prefix-based
input without the need of the complete sentence to become available.

The first problem can be solved by including a segmentation system that carries
out the sentence-like splitting [Ira+20b]. The goal of this segmenter is to split
the continuous stream of words generated by the upstream ASR system into
non-overlapping chunks that maximize the accuracy of the downstream MT
system. Once the segmenter emits an end-of-segment event, the MT encoder
and decoder are reset to make a fresh start of the translation process.

To overcome the prefix-based translation, a number of simultaneous MT sys-
tems have been proposed with successful results [Ma+18; Ari+19; Elb+20;
Zhe+20]. They are characterized by a translation policy that dictates, at each
point, whether enough context is available, or if we must wait for additional
input words to be available. These policies can be either fixed [Ma+18], if
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they used a set of simple deterministic rules, or adaptative [Ari+19] if they
also depend on the specific input words which are available.

2.8.3 Incremental TTS

Conventional TTS systems generate the synthetic speech corresponding to a
text input comprising a full sentence or semantically self-contained unit. How-
ever, similarly to the case of streaming ASR and simultaneous MT, the TTS
component of the simultaneous S2S pipeline should work until tight response-
time constraints. Thus, the TTS should start the synthesis process from prefix-
based input without the need of the complete translated sentence to become
available. In this way, incremental TTS refers to the task of generating ut-
terances in small linguistic units for the sake of real-time and low-latency
applications [Ma+20].
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Chapter 3

Cross-lingual Voice Cloning
with Tacotron 2

3.1 Introduction

The first goal of this thesis is to adapt state-of-the-art end-to-end neural TTS
architectures to multilingual and multi-speaker settings, paying particular at-
tention to cross-lingual voice cloning. Cross-lingual voice cloning refers to pro-
ducing synthetic speech for unseen speaker-language pairs (e.g. synthesizing
English speech in the voice of a Spanish speaker), and remains a challenging
task not as well-covered in TTS research. This aspect is very relevant for the
application of TTS technologies into UPV[Media], where most of its contents
are recorded in a single language, and then multilingual subtitles are automat-
ically (or semi-automatically) produced by means of ASR and MT systems. In
a final step, cross-lingual voice cloning can be used to enable automatic speech
dubbing of UPV[Media] contents while preserving the original lecturer voice
characteristics.

From all pioneering works in end-to-end neural TTS, Google’s Tacotron 2
[She+18] is unquestionably the one that has gained most attention from the
TTS research community. When paired with autoregressive neural vocoders
such as WaveNet or WaveRNN [Oor+16; Kal+18], it has been shown to be
able to rival human-recorded speech in terms of naturalness and audio quality.
However, Tacotron 2 is not directly suitable for cross-lingual voice cloning, as
its architecture is designed for building monolingual single-speaker systems.

This chapter addresses the adaptation of Tacotron 2 to support multiple speak-
ers and languages, and to enable cross-lingual voice cloning for unseen speaker-
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language pairs. This work has been conducted in parallel to Google’s own
extension to Tacotron 2 [Zha+19c] for this same purpose. Thus, although
the proposed extension to the original architecture has much in common with
[Zha+19c], it is considered an important contribution of this thesis.

3.2 Tacotron 2

Tacotron 2 follows the two-stage approach introduced in Section 2.7. It presents
an autoregressive attention-based encoder-decoder text-to-spectrogram net-
work that directly maps character or phoneme embedding sequences to mel-
scale spectrograms. In a second stage, a WaveNet vocoder is used to generate
the final waveform conditioned on the mel spectrogram features. Figure 3.1
illustrates the overall architecture of Tacotron 2.

The encoder maps the input character or phoneme embedding sequence x =
[x1,x2, ...,xN ] into a series of annotations or intermediate representations h =
[h1,h2, ...,hN ] known as encoder hidden states. Each hidden state hi contains
information about its corresponding input token xi with respect to its neigh-
boring tokens xj for all j 6= i. It is comprised of a stack of 3 1-D convolutional
layers with 5× 1 filters (i.e. each filter spans 5 characters), followed by batch
normalization [IS15] and ReLU activations. The output of the last convolu-
tional layer, which can be seen as character n-grams, is passed into a single
bidirectional LSTM (BLSTM or BiLSTM) layer [SP97; HS97] containing 256
units per direction to generate the hidden states h1:N . By feeding n-gram-like
representations to the BLSTM, Tacotron 2 is able to better capture longer-term
context from the input sequence.

The encoder hidden states are consumed by an attention network which, at
each decoding step t, computes a fixed-length context vector ct conditioned
on the full encoded sequence h1:N and the current attention network state.
Similarly to attention-based MT models, the attention network learns to focus
on the most relevant subset of h1:N to predict yt. To that end, Tacotron 2
extends the additive attention mechanism [Bah+15] by using cumulative atten-
tion weights from previous decoder timesteps to encourage the model to move
forward consistently through the input sequence. This attention mechanism
is known as location-sensitive attention [Cho+15], and it will be described in
more detail hereinafter.

An autoregressive LSTM decoder, helped by the attention network, predicts
the output mel spectrogram ŷpre = [ŷpre1 , ŷpre2 , ..., ŷpreT ] one frame at a time
(the term pre is used here to indicate ŷ predictions before the Post-Net). Dur-

26



3.2 Tacotron 2

Figure 3.1: Tacotron 2 architecture.

ing training, the previous step ground truth frame yt−1 is used to compute
ŷpret (this is known as teacher forcing training). However, yt−1 is first passed
through a small Pre-Net comprising two feed forward layers with high dropout
rates. This Pre-Net acts as an information bottleneck in the teacher forcing
setting. As consecutive spectrogram frames are highly correlated, this bottle-
neck is essential for learning attention, as it encourages the decoder to make
use of the information coming from the input sequence (through ct). Other-
wise, the powerful LSTM decoder would learn to compute ŷpret based solely on
yt−1 and disregard ct. The Pre-Net output and the attention context ct are
concatenated and passed through a stack of 2 LSTM layers. Then, the LSTM
output and ct are concatenated and linearly projected to the mel spectrogram
dimension. At the same time, the LSTM output and ct are also concatenated
and linearly projected down to a scalar followed by a sigmoid activation to
predict the probability π̂t that the output sequence has completed (stop to-
ken). Finally, the predicted spectrogram frames ŷpre1:T are refined by means of
a 5-layer convolutional Post-Net that predicts a residual to add to the pre-
dicted frames to enhance the spectrogram reconstruction quality. The model
is trained to minimize the summed `2 loss from before and after the Post-Net
between predicted ŷ and ground truth y spectrograms.
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Formally, let x and y be the input phoneme embedding and the output mel
spectrogram frame sequences, respectively:

x = [x1,x2, ...,xN ],xi ∈ Rdx

y = [y1,y2, ...,yT ],yi ∈ Rdy

where dx and dy are the embedding and the spectrogram dimensions, respec-
tively. The encoder, described above, computes the annotations h by passing
x through a series of convolutional and recurrent layers:

h = enc(x) = [h1,h2, ...,hN ],hi ∈ Rdh (3.1)

The output mel spectrogram sequence ŷpre (before the Post-Net) is predicted
sequentially in an autoregressive manner, as follows:

ŷpret = dec(yt−1, st−1, ct) (training) (3.2)

ŷpret = dec(ŷpret−1, st−1, ct) (inference) (3.3)

where st−1 is the RNN decoder hidden state after step t − 1, and ct is the
attention context vector at step t. The latter is computed as the weighted sum
of the encoder hidden states as follows:

ct =
N∑
j=1

αt,jhj (3.4)

where α are the alignments or attention weights. Figure 3.2 illustrates com-
puted α values for a given training sample.

The softmax function is used to compute the attention weights:

αt,j =
exp(et,j)∑N
k=1 exp(et,k)

(3.5)
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Figure 3.2: Location-sensitive attention weights (α) for a random training sample.

where et,j is a score usually referred to as energy, and it can be interpreted as
how relevant is hj to predict ŷt. The location-sensitive attention mechanism
used in Tacotron 2 computes et,j as:

et,j = a(st−1, α̃t−1,hj) (3.6)

which is most similar to the hybrid attention mechanism proposed in [Cho+15],
but cumulative alignments (α̃t−1) are used instead of previous alignments
(αt−1) to compute the attention scores:

α̃t−1 =
t−1∑
i=1

αi (3.7)

a(st−1, α̃t−1,hj) = wT
a tanh(Wast−1 + Vahj + Uaft,j) (3.8)

where wa, Wa, Va and Ua are learnable parameters and ft,j ∈ Rdf are location
features computed by convolving cumulative alignments α̃t−1 with a matrix
F ∈ Rdf×r:

ft = F ∗ α̃t−1 (3.9)
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The process of computing location features ft by convolving α̃t−1 is illustrated
in Figure 3.3. Tacotron 2 uses 32 1-D convolution filters of length 31 to compute
ft.

Figure 3.3: Computation of location features ft by 5 15x1 convolution filters.

The model is trained to minimize the `2 loss between predicted and ground
truth spectrogram frames both before and after the Post-Net (Lmel). Addi-
tionally, a binary cross-entropy loss is used for stop token prediction (Lstop).
Finally, a L2-regularization loss is included to prevent overfitting:

Lmel =
1

2N

N∑
n=1

(yn − ŷpren )2 +
1

2N

N∑
n=1

(yn − ŷpostn )2 (3.10)

Lstop = − 1

N

N∑
n=1

πn log π̂n (3.11)

L = Lmel + Lstop + λ
W∑
j=1

w2
j (3.12)

where πn are binary stop values indicating if the output sequence is completed
(i.e. 1 for padded values) or not, wj are the trainable weights of the network
and λ is the L2 regularization weight.
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3.3 Extending Tacotron 2 with cross-lingual voice cloning
capabilities

In multilingual and multi-speaker scenarios such as UPV[Media], in which the
considered set of lecturers or speakers S speak one or more languages ` ⊆ L,
one can collect a training dataset D = {(`i, si,xi,wi)}Ni=1; `i ∈ L, si ∈ S where
(x,w) are (text,audio) speech recordings pairs. However, Tacotron 2 is not able
to handle multiple speakers and languages. In such context, these two aspects
are essential not only to make the most out of the training data available, but
also to enable cross-lingual voice cloning capabilities.

To that end, a multilingual multi-speaker extension to Tacotron 2 is proposed.
To help the model transfer voices across languages, it is important to provide
the network with speaker and language information at points in which most of
the modeling power (i.e. network weights) is shared among them. Thus, the
main challenge when introducing language and speaker information involves
disentangling language attributes from speaker identities.

First, inspired in Deep Voice 2 [Ari+17], low dimensional trainable speaker
embeddings are introduced to condition the spectrogram generation on the
speaker identity. To our knowledge, Deep Voice 2 is the first work introducing
trainable speaker embeddings to generate different voices from a single neu-
ral TTS model. However, it presents a more traditional pipeline comprising
separate duration, frequency and vocal models in which the embeddings are at-
tached independently to each of these components. For Tacotron 2, we opted
to broadcast-concatenate speaker embeddings to the encoder hidden states
so that the encoder layers can learn speaker-agnostic representations of the
phoneme sequences, which we find helps generalization.

To account for the multiple languages, language-specific phoneme embeddings
are used. This means for example that a phoneme æ uses a different embedding
depending on the input language: æen, æes, etc. We find this choice effective
provided that the different languages are well covered by a number of speakers.

As mentioned in the introduction to this chapter, these modifications are in
line with the cross-lingual voice cloning architecture proposed in [Zha+19c],
which is published shortly afterwards the prosecution of this work. The main
differences with respect to the proposed architecture are the following. First,
equivalent grapheme/phoneme embeddings are shared across languages, where
small language embeddings are also incorporated to the input. Also, an ad-
versarially trained speaker classifier is introduced to further help the model
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disentangle speakers from languages when only one training speaker is avail-
able for some of the languages.

3.4 Overcoming the exposure bias and attention failures

Despite the fact that Tacotron 2 undoubtedly produces synthetic speech with
unprecedented levels of naturalness, some of its architectural designs lead to
different instability conditions that, in some cases, prevent it from being used
in production environments where there is small tolerance to errors. This is
particularly notable when the considered dataset presents some challenging
conditions (e.g. variability of acoustic conditions, multiple speakers, scarce
training data, etc).

Most of these errors at inference time are produced when the attention mech-
anism is not able to correctly follow a monotonic-like path along the input
sequence, causing undesired outputs containing skipped phonemes, repetitions
or mumbling speech [ZLD18; He+19]. In some extreme cases, the attention col-
lapses and the generated output contains nothing but unintelligible gibberish.
Figure 3.4 illustrates some of the aforementioned cases.

Figure 3.4: Attention failures causing phoneme repetitions (left) or unintelligible output
(right).

Such robustness issues are strongly related to the following Tacotron 2 ar-
chitectural designs. On the one hand, the teacher forcing training procedure
introduces a discrepancy between training and inference conditions. During
training, at timestep t the decoder is fed with previous step ground truth
spectrogram frame yt−1, while the predicted frame ŷpret−1 is used at inference
time. This results in an unpredictable performance for out-of-domain test
data [Liu+20]. Scheduled sampling [Ben+15] brings an alternative training
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scheme to overcome this problem. However, the use of scheduled sampling en-
tails some negative effects caused by the misalignment between recorded and
predicted speech [Liu+20], introducing artifacts and lowering generated speech
quality in the resulting models. After the execution of this work, some methods
have been proposed to address this issue, which include using a teacher-student
training framework [Liu+20] or a forward-backward decoding regularization
method [Zhe+19].

On the other hand, although the location-sensitive attention (LSA) mechanism
proposed in Tacotron 2 encourages the attention to move forward along the
input sequence, it does not explicitly introduce any constraints to exploit the
monotonic nature of the TTS task. Humans read out text sequentially, focusing
only on a local subset of characters at a given time. This is referred to as
the locality property of the TTS task. LSA alignment weights at step t (αt)
could potentially focus equally (i.e. assign the same weight) all encoder hidden
states, which may lead to an attention collapse. To address these issues and
prevent the attention mechanism to repeat or skip phonemes or collapse, some
alternative attention mechanisms have been proposed.

Forward attention [ZLD18] encourages monotonicity and completeness implic-
itly by reweighing the alignments by previous ones using forward variables.
Particularly, alignment weights at step t are computed as:

α̂t,j =
exp(et,j)∑N
k=1 exp(et,k)

(3.13)

ᾱt,j = (αt−1,j + αt−1,j−1) · α̂t,j (3.14)

αt,j =
ᾱt,j∑N
k=1 ᾱt,k

(3.15)

where α̂t are the regular softmax normalized energy scores before forward
reweighting, and ᾱt are the reweighted forward attention weights. The final
attention weights for step t (αt) are given by normalizing ᾱt values to sum 1.
This mechanism has been proven to improve convergence speed and inference
robustness, drastically reducing the number of attention failures compared to
LSA.

However, forward attention does still suffer from occasional attention errors
such as skips or repetitions. A similar yet better performing mechanism is
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the stepwise monotonic attention (SMA) proposed in [He+19], which builds
upon monotonic attention and restricts the hard-aligned position at each step
to move at most one step, ensuring all hidden states will be covered during
the decoding process. At each timestep t, the probability of moving one step
forward or stay unmoved is sampled from a Bernoulli distribution with proba-
bility pt,j = σ(et,j) (where σ is the sigmoid activation function). The alignment
weights are therefore calculated as:

αt,j = αt−1,j−1(1− pt,j−1) + αt−1,jpt,j (3.16)

The stepwise monotonic attention mechanism provides a highly stable infer-
ence process, greatly improving Tacotron 2 and other attention-based models
robustness at inference time. Consequently, the original location-sensitive at-
tention is replaced by the stepwise monotonic attention as the proposed atten-
tion mechanism for the extended Tacotron 2 model.

3.5 Improving stop token prediction

Another frequent instability issue at inference time experienced with Tacotron
2 is that in some cases the model is not able to correctly predict the stop
token. This results, in exceptional cases, in an infinite loop that produces
unintelligible mumbling after predicting the given utterance.

To improve the robustness of the stop token prediction we replace the binary
cross-entropy loss with an `2 loss, where instead of predicting binary 1 and
0 values for padded and non-padded sequences, the stop token is encoded as
a real number starting at 0.0 and reaching 1.0 at the end of the sequence
[Lat+19]. Then, two fixed threshold values are adjusted empirically to control
generation stop. We use a soft-threshold (e.g. 0.9) so that, after a safe number
of additional steps (e.g. 20), the inference autoregressive loop is stopped. We
also define a hard-threshold (e.g. 0.98) so that, when reached, the generation
is forced to stop immediately.
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3.6 Proposed model and general training procedure

The modifications to the original Tacotron 2 architecture described in Sections
3.3 and 3.4 were introduced into a well-known open-source Tacotron 2 Ten-
sorFlow implementation [Mam18]. In short, we introduce trainable speaker
embeddings and language-specific phoneme embeddings to account for the dif-
ferent speakers and languages. The stepwise monotonic attention is used in
favor of location-sensitive attention, which brings improved convergence speed
and inference robustness. We also use the improved stop token prediction
detailed in Section 3.5. Finally, the more efficient WaveRNN [Kal+18] neural
vocoder is used to generate the final waveform from the predicted spectrograms.
It brings an inference speedup of near 10× over WaveNet while producing high
fidelity audio of comparable quality [Kal+18]. The resulting multilingual and
multi-speaker Tacotron 2 architecture is depicted in Figure 3.5.

Figure 3.5: Proposed cross-lingual voice cloning extension to Tacotron 2.

The general training procedure is as follows. First, the text-to-spectrogram
network is trained on the collection of recorded samples. Then, the model is
run in teacher forcing mode to predict the ground-truth aligned (GTA) spec-

35



Chapter 3. Cross-lingual Voice Cloning with Tacotron 2

trograms ŷ (i.e. the ground truth frame yt−1 is used to predict ŷt) from the
training data. This is to ensure that each predicted frame exactly aligns with
its corresponding waveform samples. Finally, the WaveRNN vocoder is trained
on the GTA spectrograms to predict the final waveform samples. As predicted
spectrograms ŷ tend to be oversmoothed and less detailed than y, training the
vocoder on GTA predictions reduces the gap between training and inference
conditions of the vocoder model resulting in improved audio quality.

3.7 Conclusions

In this chapter we have addressed the adaptation of end-to-end neural TTS
architectures to multilingual and multi-speaker settings, focusing on the cross-
lingual voice cloning task, which corresponds to the first goal raised in this
thesis. This included an extensive review of the state-of-the-art in neural TTS
and a comprehensive experimentation with the Tacotron 2 architecture.

By including trainable speaker embeddings and language-specific phoneme
embeddings, Tacotron 2 can be trained on multilingual and multi-speaker
datasets, also allowing for voice transfering across languages. During the ex-
perimentation with Tacotron 2, a number of instability conditions at inference
time mainly related to the teacher forcing training paradigm were identified.
In particular, we have addressed the attention and stop token prediction fail-
ures as a result of the poor generalization of the model to inference conditions
(exposure bias).

The evaluation of the proposed extension to Tacotron 2 is addressed next in
Chapter 4, where 47 UPV lecturers assess different aspects of the resulting
cross-lingual voice cloning model trained on a multilingual and multi-speaker
dataset.
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Chapter 4

Cross-lingual Voice Cloning for
UPV[Media]

4.1 Introduction

As mentioned earlier, state-of-the-art ASR and MT technologies are used since
2014 to produce cost-effective multilingual subtitles of publishable quality
at the UPV[Media] platform. With the objective of enriching UPV[Media]
video lectures and learning pills with automatically voice-cloned (dubbed or
voiceover) versions in Spanish, Catalan and English (the main teaching lan-
guages in UPV), a TTS component with cross-lingual voice cloning capabilities
can be added to the existing ASR + MT pipeline. In this process, target sub-
titles (translations) can be post-edited if convenient. In this work, the focus
is put on the TTS step, for which it is assumed (reviewed) translations to be
available in each target language of interest.

The objective of this chapter is to assess the performance of the cross-lingual
voice cloning model proposed in Chapter 3, and also whether this technology
can contribute improving accessibility and engagement in online learning, par-
ticularly in the context of higher education. To that end, a call for participation
is made to the UPV’s academic staff under the Docència en Xarxa (DeX) plan
to collect clean lecturer speech data during the academic courses 2016–17 and
2017–18. The collected data is used to train the extended Tacotron 2 model
proposed in Section 3.6, which is subjectively evaluated by 47 UPV lecturers.

The rest of this chapter is organized as follows. First, the UPV[Media] platform
(UPV’s main repository of educational videos) is presented in Section 4.2.
Then, the above mentioned DeX call for participation and the collected TTS
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dataset are described in detail in Section 4.3. The training process of the
proposed cross-lingual voice cloning system on the DeX-TTS dataset is detailed
in Section 4.4. Section 4.5 covers the subjective assessment of this technology
by 47 UPV lecturers. Finally, some concluding remarks are given in Section 4.6.

4.2 The UPV[Media] platform

In a broad sense, UPV[Media] is a professional UPV service for the creation,
storage, management and open dissemination of educational videos [Tur+09;
Med20]. Launched in 2007, it was initially designed for UPV lecturers to
produce high-quality short video recordings at dedicated UPV studios, with
the aim of supporting blended learning through prerecorded “knowledge pills”.
These recordings, usually referred to as poliMedias, have also served as the main
back-end video service for the UPV to provide MOOCs [UPV20b], especially
as an edX member since 2014 [UPV20a]. In this respect, it is worth noting
that UPV has become one of the most renowned MOOC providers in Spanish,
with more than 85 MOOCs and 290 editions already completed, more than
2.3 million enrollments, and two of the 100 most popular online courses of all
time [Cla20] as of June 2020. Apart from poliMedias, UPV [Media] has been
expanded to include homemade videos produced by students and lecturers
themselves, known as poliTubes, which are uploaded to it in much the same
way as in YouTube. Finally, since joining the Opencast consortium in 2011,
UPV has deployed lecture capture technology to 84 locations from which more
than 600 hours per year are being recorded and added to UPV[Media] for their
distribution to students only through a Sakai LMS [Tur+14; Ope20].

Although UPV[Media] comprises diverse kinds of educational videos, this ex-
ploratory work focuses only on poliMedias due to their predominance and sim-
plicity in terms of duration, speakers and audio quality. As indicated above,
they are produced at dedicated UPV studios which, in brief, are just low-cost
video production (4x4 meter) rooms equipped with a white backdrop, video
camera, capture station, pocket microphone, lighting and AV equipment in-
cluding a video mixer and an audio noise gate (Figure 4.1). After choosing
day and time of an appointment by an online booking system, the lecturer
comes to a poliMedia studio with slides and delivers her/his presentation in
front of the video camera, which is captured and synchronously embedded in
real-time at the bottom-right corner of the computer’s video output. Then,
after metadata annotation, review and approval by the lecturer, the resulting
poliMedia is uploaded to UPV[Media] (see example in Figure 4.2).
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Figure 4.1: [UPV] Media studio for the recording of poliMedias.

Figure 4.2: A poliMedia with automatic subtitles.
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Supported by the UPV’s Docència en Xarxa stimulus plan for online teaching,
the number of poliMedias uploaded to UPV[Media] has been steadily increas-
ing since 2007, up to 44096 videos and a total of 10601 recording hours in June
2020. As with face-to-face teaching sessions, the vast majority of poliMedias
are produced in Spanish though, as shown in Table 4.1, they are also produced,
to a much lesser extent, in Catalan (also known as Valencian in the Valencian
Community) and English. In this regard, the UPV approved an ambitious plan
to promote multilingual teaching for the period 2020–2023 in which Catalan
and English are specifically identified as top priorities for support [BOU20, pp
120–144]. On the one hand, Catalan is an official yet minority language in
the Valencian Community, and thus its protection is seen not only as an ap-
preciation of cultural diversity, but also an obligation to reduce discrimination
on the grounds of language at the UPV. The case of English, on the other
hand, is totally different. Increasing its use as a teaching language is clearly
needed to strengthen the UPV’s internationalization and competitiveness. It
goes without saying that, for this plan to succeed, it is good to have accurate
and cost-effective means to fully convert basic (monolingual) poliMedias into
trilingual learning objects.

Table 4.1: Number of poliMedia videos and hours in Spanish, Catalan and English.

Videos Hours
Language No. % No. %

Spanish 38172 87 9451 89
Catalan 1333 3 232 2
English 4591 10 918 7

Total 44096 100 10601 100

Table 4.2 shows the number of lecturers producing poliMedias in each of the
seven possible combinations of Spanish (es), Catalan (ca) and English (en):
three of them monolingual (es, ca, en), three bilingual (es-ca, es-en, ca-en) and
the trilingual case es-ca-en. It is worth noting that, for the figures in Table 4.2,
only original recordings are considered, which in general are produced in a
single language. Also, note that the percentages of monolingual, bilingual
and trilingual lecturers are 91.9, 7.6 and 0.5, respectively. This means that
a great majority of lecturers are producing poliMedias in a single language,
Spanish in most cases, to support their face-to-face teaching sessions. Also
worth noting is the fact that the number of lecturers producing poliMedias in
English (872) is roughly 4 times that of poliMedias in Catalan (212), yet both
languages account for a similar percentage of the total academic offer [BOU20,
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pp 120–144]. This is because all Catalan-speaking learners are highly proficient
in Spanish, and thus poliMedias in Spanish are also often used to support
blended learning for Catalan-language groups. Needless to say, promoting
multilingualism (in the UPV) means that all supported languages must be
treated equally with regard to available resources.

Table 4.2: poliMedia lecturers for Spanish (es), Catalan (ca), English (en), bilingual com-
binations (es-ca, es-en, ca-en) and the trilingual case es-ca-en.

Monolingual Bilingual Trilingual
es ca en es-ca es-en ca-en es-ca-en Total

No. 2126 152 656 43 199 2 15 3193
% 66.6 4.8 20.5 1.3 6.2 0.1 0.5 100.0
Total (%) 91.9 7.6 0.5 100.0

The UPV[Media] repository is a good example of how OER repositories are
evolving in terms of size and complexity, especially at the linguistic level. This
is why, (the poliMedia part of) it was chosen as a case study in the EU projects
discussed in the introduction. By the second half of transLectures (2013-
2014), poliMedia-adapted ASR/MT systems were already integrated into the
UPV[Media] production workflow to enrich all poliMedias with raw multilin-
gual subtitles. At that time, however, it was felt that post-editing raw subtitles
was still needed in many cases, and thus a user-friendly tool for reviewing was
also integrated into the production workflow [Val+15b; Sil+13a; Pér+15b;
Val+15a]. Being part of this workflow, subtitle post-editing was supported by
the DeX stimulus plan, allowing each poliMedia to be reviewed not only by
its author, but also by non-authors (e.g. users), with the author’s approval
prior to publication. Although this post-editing approach worked (and still
works) well, poliMedias have been more and more published with no subtitle
post-editing at all due to the increasing accuracy of new ASR/MT systems.
Indeed, we have now reached the point at which raw subtitles are often good
enough for direct publication.

4.3 The Docència en Xarxa multilingual TTS dataset

A call for participation was made to the UPV’s academic staff under the DeX
plan to collect clean lecturer speech data during the academic courses 2016–17
and 2017–18, which was answered by a total of 98 participants. Participants
were all Spanish/Catalan-native speakers, 50 years old on average (with a stan-
dard deviation of 6) and equally distributed by gender. To this end, a number
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of sentences in Spanish, Catalan and English were first drawn from various
sources (mainly newspapers, MOOCs and Wikipedia) and then reviewed for
readability. Similarly to poliMedias, speech recordings were made under the
same acoustic conditions at poliMedia studios, during two 90-minute sessions
per participant. Participants were asked to record a minimum of 300 ran-
domly drawn sentences in either one or two languages (with a minimum of 150
in each). In reality though, they were encouraged to record as many sentences
as possible within the time available, not only in their mother tongue (typically
Spanish or Catalan), but also in the other two languages under consideration,
even if low-proficient (which is often the case in English); indeed, they were
allowed to skip sentences when unsure about their correct pronunciation. As
shown in Table 4.3, the net effect of this encouragement was more participants
contributing in multiple languages rather than just one, which is different from
what happens with poliMedias themselves (see Table 4.2), though good for our
purposes.

Table 4.3: Participants contributing to clean speech data collection in Spanish (es), Catalan
(ca), English (en), bilingual combinations (es-ca, es-en, ca-en) and the trilingual case.

Monolingual Bilingual Trilingual
es ca en es-ca es-en ca-en es-ca-en Total

Participants 36 1 4 16 22 3 16 98
Total 41 41 16 98

Table 4.4 shows the number of sentences and duration in hours collected in our
DeX–TTS dataset of clean lecturer speech data. In total, it comprises 59 hours
of clean speech data from 47K sentences uttered by 98 participants. Looking
at it row by row, it can be seen that Spanish, Catalan and English account
for around 61%, 15% and 24% of the data (both in terms of sentences and
recorded speech), respectively. By columns, we can observe that most of the
data comes from multilingual acquisitions, either bilingual (42%) or trilingual
(23%), meaning that only some 35% of the data corresponds to monolingual
participants.

On the one hand, TTS technology does not require vast amounts of manually
transcribed speech data, as ASR does, but simply a relatively small corpus of
clean speech. Indeed, this corpus is similar in size to those commonly used in
TTS research (cf. [She+18] and [Ren+19]). On the other hand, being produced
at the UPV by its academic staff, the DeX-TTS dataset is an optimal resource
to explore how a UPV lecturer’s speech can be best cloned, not only in her/his
mother tongue, but also in other languages she/he might not even speak. In
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Table 4.4: Number of sentences and duration in hours of the clean speech data collected
in Spanish (es), Catalan (ca), English (en), bilingual combinations and the trilingual case.

Monolingual Bilingual Trilingual
es ca en es-ca es-en ca-en es-ca-en Total (%)

No. of es 14.6 - - 4.1 6.7 - 3.5 28.9 (61)
sentences ca - 0.3 - 2.7 - 0.5 3.8 7.3 (15)
(×1000) en - - 1.0 - 5.5 0.6 4.0 11.1 (24)
Total (%) 15.9 (34) 20.1 (42) 11.3 (24) 47.3 (100)

Duration es 19.2 - - 5.4 8.0 - 3.7 36.3 (62)
in hours ca - 0.4 - 3.4 - 0.6 4.1 8.5 (14)

en - - 1.3 - 6.9 0.7 5.1 14.0 (24)
Total (%) 20.9 (36) 25.0 (42) 12.9 (22) 58.8 (100)

this regard, the DeX-TTS corpus can be considered a good example of linguistic
diversity at a higher education institution, where the dominant official language
(Spanish) coexists with a minority yet official language (Catalan) and English.
As a result, the DeX-TTS dataset is rich in Spanish speech data but not so
rich in Catalan and (non-native) English speech.

4.4 Model training

This section details the training process of the cross-lingual voice cloning TTS
system proposed in Chapter 3 on the DeX-TTS dataset. The DeX-TTS dataset
contains speech recordings accompanied by its corresponding transcriptions
covering English, Spanish and Catalan from 98 UPV lecturers.

In order to optimize DeX-TTS recordings for speech synthesis, some basic
digital signal processing (DSP) operations were applied to the audio recordings.
First, dynamic range compression was applied in order to uniform loudness of
louder and quieter fragments by mapping the natural dynamic range of the
audio signals to a smaller range. Then, high-pass filters were used to reduce low
frequency noises. Leading and trailing silence was removed from all recordings.
Audio samples were downsampled to 22kHz, and 100-bin log magnitude mel-
scale spectrograms were extracted with Hann windowing, 50ms window length,
12.5ms hop size and 1024 point Fourier transform. The spectrograms were
normalized to lay within the [−4.0, 4.0] range.
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Regarding text preprocessing, texts were applied basic cleaning operations
(removing special characters) and lowercasing for all three languages. Then,
phoneme sequences were extracted from the normalized texts using the well-
known open source speech synthesizer tool eSpeak NG [DD], which includes a
predefined set of grapheme-to-phoneme (G2P) conversion rules for many lan-
guages (including English, Spanish and Catalan). The use of phoneme instead
of grapheme sequences as inputs to the acoustic model has probably a negligi-
ble effect in the case of Spanish or Catalan, where there is almost a one-to-one
mapping between phonemes and graphemes. However, in the case of English,
the spelling of a word does not directly correspond to its pronunciation, and the
use of G2P tools help relieve the TTS model from learning complex phonetic
rules (particularly regarding vowels) from the training corpora.

When not mentioned otherwise, default Tacotron 2 hyperparameters were used
for training the DeX-TTS cross-lingual voice cloning models. These are sum-
marized in Table 4.5. Trainable 64-dim speaker embeddings were broadcast-
concatenated to the text encoder outputs to condition spectrogram prediction
on the speaker identity. The stepwise monotonic attention was used in favor
of the location-sensitive attention mechanism. Similarly to [Wan+17], a re-
duction factor r = 2 was used (that is, predicting 2 frames per decoding step)
to reduce GPU memory footprint and aid attention convergence. The Adam
optimizer [KB15] with learning rate decay, starting at 0.001 for 100K steps and
decaying to 5 × 10−5 over 100K additional steps was used. The models were
trained on a single-GPU machine for a total of 250K steps with a batch size of
32. The `1 loss was used instead of `2 loss as `1 presents improved robustness
to outliers and tends to create less blurry spectrograms.

Finally, an autoregressive WaveRNN neural vocoder model was trained on
the DeX-TTS recordings. A well-known open source implementation of the
WaveRNN neural vocoder [McC18] was used for this purpose, which presents
a slightly modified architecture with respect to the original work. A raw 10-bit
model was trained on the ground truth aligned (GTA) log-magnitude mel-scale
spectrograms (i.e. the predicted spectrograms ŷ from a trained acoustic model
under teacher forcing settings) with a batch size of 64 and a learning rate of
0.0001 over 800K steps.
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Table 4.5: Cross-lingual voice cloning Tacotron 2 hyperparameters for DeX-TTS.

Common Training mode Teacher forcing
Batch size 32
Reduction factor 2
Initial learning rate 0.001
Final learning rate 5× 10−5

Spectrogram loss `1
Stop token loss `2
Optimizer Adam(0.9, 0.999, 1× 10−6)
LSTM zone-out prob 0.1

Audio processing Sampling rate (Hz) 22050
Pre-emphasis 0.98
Windowing Hanning
Window size 1024
Hop size 256
Mel channels 100
Mel frequency upper bound 8000
Mel frequency lower bound 0

Inputs Phoneme embedding dim 512
Speaker embedding dim 64

Encoder Conv kernel 5× 1
Conv dim [512, 512, 512]
Conv layers dropout prob 0.5
Bi-LSTM dim 256× 2

Attention Type Stepwise monotonic attention
Attention dim 128

Decoder Pre-Net dims [256, 128]
Pre-Net dropout prob [0.5, 0.5]
LSTM dim [1024, 1024]
Post-Net conv kernel 5× 1
Post-Net conv dim [512, 512, 512, 512, 100]
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4.5 Evaluation

To assess the DeX-TTS cross-lingual voice cloning system described in previous
sections, a call for participation was made to the 98 lecturers contributing to
the DeX-TTS dataset (Section 4.3), which was answered by nearly half of them
(47). The evaluation procedure was designed around a test set of 8820 speech
samples synthesized by the trained TTS system described in Section 4.4. They
correspond to 98 lecturers, times 3 languages per lecturer, times 30 sentences
for each lecturer-language pair, with sentences randomly picked from poliMedia
subtitles not used for training. Note that many test samples were produced
by cross-lingual voice cloning since nearly half (42%) of all lecturer-language
pairs were not covered by training data in the DeX-TTS dataset (see Table
4.3). With this test set at hand, participants were asked to register at a
web platform for them to proceed with the evaluation from a user home page
(Figure 4.3).

Figure 4.3: Home page of the evaluation platform.

As shown in Figure 4.3, the evaluation procedure consisted of four parts:
1.Naturalness, 2. Speaker similarity, 3.Real or synthetic and 4. Survey. It was
suggested to start with parts one and two, then optionally move to part three,
and finally answer the survey in part four. With the help of a brief progress
indicator in each part, participants were allowed to stop and resume the proce-
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dure as they wished. In what follows, procedural details and evaluation results
are provided for each part separately.

4.5.1 Naturalness

Naturalness refers to overall speech quality, that is, the main criterion by
which current TTS systems are tested and compared. Using a five-point (star)
opinion scale, participants were asked to rate the naturalness of a minimum
of 50 samples randomly drawn from the test set (Figure 4.4). For validation
purposes, truly natural (human) speech recordings were also included as control
samples among synthetic ones, at random with a ratio of one human recording
per six evaluated samples.

Figure 4.4: Naturalness evaluation interface.

Table 4.6 shows, for each language, the naturalness MOS with 95% confidence
intervals for both synthetic and control samples, as well as the number of eval-
uated samples. The seen and unseen columns refer to synthetic samples from
lecturer-language pairs used and not used, respectively, for model training.

From the results in Table 4.6, it can be observed that the naturalness MOS
on the synthetic speech produced by the TTS model is in general fairly good
though, as expected, not as good as human speech. In particular, the natural-
ness of synthetic Spanish and Catalan was judged to be at the very same high
rate of 4.1, slightly but significantly below that of human Spanish (4.5) and
Catalan (4.8). Similarly, the naturalness of synthetic English was rated at 3.6,
again slightly but significantly below that of human speech (4.3). These com-
paratively lower rates for (synthetic and human) English are certainly due to
the non-nativeness nature of the English recordings in the DeX-TTS dataset,
from which we get, not surprisingly, a (realistic) non-native bias for English. In

47



Chapter 4. Cross-lingual Voice Cloning for UPV[Media]

Table 4.6: Naturalness MOS with 95% confidence intervals per language, including cross-
lingual cloning (synthetic samples from lecturer-language pairs unseen in training).

Naturalness MOS
- (Synthetic samples) - Control Evaluated

Language Seen Unseen Total samples samples
Spanish 4.1± 0.1 3.9± 0.3 4.1± 0.1 4.5± 0.2 533
Catalan 4.2± 0.1 4.0± 0.1 4.1± 0.1 4.8± 0.1 551
English 3.6± 0.2 3.6± 0.1 3.6± 0.1 4.3± 0.2 594

any case, summarizing, a main conclusion from Table 4.6 is that the proposed
cross-lingual voice cloning system produces highly natural synthetic speech,
not far from human speech. Moreover, by comparing the seen and unseen
rates for each language, we see that, in general, synthetic speech naturalness
does not depend significantly on which specific lecturer-language pairs were
covered in the training data. In other words, the system has effectively learned
to transfer (clone) lecturer voices from source languages (e.g. mother tongue)
to target languages they might not even speak.

4.5.2 Speaker similarity

Although naturalness is without question the main criterion to judge synthetic
speech goodness, it falls short in measuring how similar original (human) and
cloned (synthetic) voices actually are. This is particularly relevant for cross-
lingual voice cloning since, as pointed out above, it seems that the system
is capable of cloning voice for unseen lecturer-language pairs almost as well
as for seen ones. Needless to say, as this is a feature only available to the
most advanced TTS systems, it deserves empirical confirmation. To this end,
the second part of the evaluation procedure consisted in rating, on a five-
star opinion scale, the speaker similarity between test and training samples.
Broadly speaking, speaker similarity is an ill-defined similarity measure de-
pending on diverse perceptual speaker features such as rate, tone, texture or
intonation. Each pair of test and training samples was picked at random from
the same speaker, but not necessarily from the same language. Participants
were asked to do this for a minimum of 25 test samples. Table 4.7 shows the
speaker similarity MOS with 95% confidence intervals for the seen and unseen
lecturer-language pairs separately, and the number of evaluated samples.

From the results in Table 4.7, we can confirm that cross-lingual voice cloning
works almost as well as conventional voice cloning from seen lecturer-language
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Table 4.7: Speaker similarity MOS with 95% confidence intervals per language, for test
samples produced from seen and unseen lecturer-language pairs of training data.

Speaker similarity MOS Evaluated
Language Seen Unseen samples
Spanish 4.2± 0.1 4.0± 0.5 324
Catalan 4.1± 0.2 4.0± 0.2 284
English 3.7± 0.2 3.4± 0.2 299

pairs. Although minor (not significant) yet consistent MOS differences show
a slight preference for cloned voice in the seen case, to us this is rather a
confirmation that current TTS technology can be safely used for cross-lingual
machine dubbing.

4.5.3 Real or synthetic

As an extra check to validate MOS results on naturalness and speaker similar-
ity, participants were also invited to optionally run a sort of Turing test to try
to guess whether a given speech sample is real (human) or synthetic. This was
done in the third part of the evaluation procedure, from speech samples picked
at random with a ratio of two synthetic samples per each real one. Table 4.8
shows the resulting confusion matrix for each language and overall.

Table 4.8: Confusion matrices on the real or synthetic test for each language and overall.

Actual Guessed condition Total
Language condition Real Synthetic samples

Spanish
Real 79% 21% 48

Synthetic 48% 52% 73

Catalan
Real 72% 28% 29

Synthetic 41% 59% 61

English
Real 66% 34% 32

Synthetic 32% 68% 69

Overall
Real 73% 27% 109

Synthetic 40% 60% 203

Although the number of evaluated samples is modest, we see that the par-
ticipants misclassified 48%, 41%, 32% and 40% of the synthetic samples in,
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respectively, Spanish, Catalan, English and overall. Note that the results for
Spanish are particularly good since the participants were roughly as accurate
as simply deciding at random (for synthetic samples). The results for Catalan
and English are also good, though not as good as those for Spanish, particu-
larly in English. This is most likely due to a comparatively lower number of
training samples in Catalan and English, and also to the heterogeneity of the
English training data. All in all, these results again confirm that the quality
of the speech synthesized by this system is really close to human speech.

4.5.4 Questionnaire and comments

The fourth and final part of the evaluation procedure consisted of just two Yes
or No control questions on the acceptance of TTS technology, each accompa-
nied by a box for free-text comments and suggestions. Table 4.9 shows these
two control questions and the Yes or No votes received.

Table 4.9: Final questions and answers on the acceptance of TTS technology.

Questions: Yes No
Do you think that the shown automatic dubbing
technology can be useful to improve accessibility
and engagement in online educational materials?

47 0

Would you accept your educational materials to be
automatically dubbed in different languages using
this technology?

46 1

As shown in Table 4.9, all participants think that machine dubbing is useful
to improve accessibility and engagement in online educational materials. Also,
almost all of them would accept their educational materials to be automatically
dubbed in different languages using this technology.

Apart from the Yes or No feedback, each question originated many comments
by participants. On the one hand, we received sixteen comments to the first
question: four of them pointed out that there is still room for improvement
in pronunciation, nine others were just very positive feedback on the speech
synthesis quality and, finally, three comments suggested extending this work
to full machine translation of poliMedias including slides. On the other hand,
thirteen comments were made to the second question: seven of them were to
encourage us to deploy TTS technology into production without delay, while
the six other comments just requested that lecturers be allowed to review and
approve their machine-dubbed materials prior publication. Summarizing, the
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general view of this study is that TTS technology is not only mature enough
for its application at the UPV, but also needed as soon as possible.

4.6 Conclusions

In this chapter, the synthetic speech naturalness and speaker similarity of the
cross-lingual voice cloning system proposed in Chapter 3 has been assessed by
47 UPV lecturers with very positive outcomes, where synthetic samples have
been confused in many cases with human-recorded speech (see Table 4.8).
All 47 UPV lecturers participating in the subjective evaluation of this system
conclude that the shown automatic voice cloning technology can be useful
to improve accessibility and engagement in online learning. We would like to
thank the effort made by UPV lecturers and staff participating in the Docència
en Xarxa calls and in the assessment of this technology. The work presented
in Chapters 3 and 4 has led to one of the main scientific publications derived
from this thesis ([Pér+21]).

Nevertheless, autoregressive models inherently suffer from slow inference speeds,
particularly in the audio generation task, as speech waveforms contain tens of
thousands of samples per second of audio (usually 16000 or more). This can
become an important obstacle when it comes to deploying these models in
production-ready settings. Also, it is difficult to have control over different
aspects of the speech such as the voice speed or the intonation, which can be
useful for certain applications. Both efficiency and controllability of neural
TTS models are addressed next in Chapter 5.

The following work was done in collaboration with others:

• The collection of the DeX-TTS dataset introduced in Section 4.3 was
organized and led by Santiago Piqueras and Alejandro Pérez.

• The following international journal article, which was derived from this
work, was prepared in collaboration with other members of the MLLP
and the UPV Media Services (ASIC):

– Pérez-González-de-Martos, A., Díaz-Munío, G. G., Giménez, A.,
Silvestre-Cerdà, J. A., Sanchis, A., Civera, J., Jiménez, M., Turró,
C. & Juan, A. (2021). Towards cross-lingual voice cloning in higher
education. Engineering Applications of Artificial Intelligence, 105,
104413.
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Chapter 5

Robust, Efficient and
Controllable Neural

Text-To-Speech

5.1 Introduction

Pioneering works on end-to-end neural TTS were based on encoder-decoder
architectures that, helped by an attention mechanism, learn to map a char-
acter or phoneme input sequence into an intermediate acoustic representation
(e.g. mel-scale spectrograms). Thus, the speech generation is generally split
in two stages: a text-to-spectrogram stage which generates the acoustic fea-
tures from the input text (acoustic model) and a spectrogram-to-wave stage,
in which a vocoder (usually a separate neural-based model) reconstructs the
final waveform conditioned on the predicted acoustic features.

However, as discussed in Section 3.4, attention-based acoustic models can
present different stability issues at inference time [Liu+20; He+19; Zhe+19;
Bat+20]. These can be attributed to the poor generalization of the attention
mechanisms to inference conditions as a result of the exposure bias (train-
test discrepancy) caused by the teacher forcing training strategy [Liu+20]. To
overcome such issues, alternative attention mechanisms that exploit the mono-
tonic nature of the TTS task have been proposed with different success [ZLD18;
He+19; Bat+20].

Furthermore, although autoregressive TTS acoustic models such as Tacotron 2
can produce highly realistic and natural speech, the decoding process is hardly
parallelizable and results in slow inference speeds. This also applies to au-
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toregressive neural vocoders such as WaveNet or WaveRNN, with inference
speeds around 100× and 10× RTF on GPU respectively [Gov+19]. In addi-
tion, although some works leverage unsupervised learning to control ill-defined
aspects such as the speaking style [Wan+18c; Hsu+19], it is not straightfor-
ward to directly control general attributes of the speech such as the speaking
rate or prosody (pitch contour, pauses) in the autoregressive generation.

In this chapter, the focus is put on improving robustness, efficiency and con-
trollability of modern state-of-the-art neural TTS technologies to its large-scale
use in production-ready environments.

5.2 Non-autoregressive TTS with explicit duration modeling

Replacing the attention mechanism

The attention mechanism is a core component of autoregressive end-to-end
neural TTS models, as it allows to learn a mapping (soft alignments) be-
tween input and output sequences [She+18; Pin+18; Li+19]. However, it leads
to an unpredictable performance at inference time [Liu+20; He+19; Zhe+19;
Bat+20]. Recent works replace the attention mechanism used in end-to-end
neural TTS systems by explicitly predicting phoneme durations, more similar
to the alignment model in traditional parametric systems [Ren+19; Yu+20;
Eli+20; Łań20]. In this approach, ground truth alignments (phoneme du-
rations) need to be provided by an external model (e.g. an autoregressive
attention-based TTS model or a forced-aligner tool). Then, encoder hid-
den states are expanded accordingly to match the length of the target mel-
spectrogram, thus avoiding the issues usually affecting attention-based models
(repetitions, skips or collapse).

Formally, let h = [h1,h2, ...,hN ] be the encoded input sequence, where N
is the length of the input sequence. Let d = [d1, d2, ..., dN ], di ∈ Z be the
target phoneme durations extracted from an external model or aligner tool,
where

∑N
i=1 di = T and T is the length of the output mel-spectrogram se-

quence. The encoded sequence h is expanded according to d to match the
mel-spectrogram length, where hi is repeated di times. For example, let
h = [h1,h2,h3,h4] and d = [2, 2, 3, 1], then the expanded sequence hexp be-
comes hexp = [h1,h1,h2,h2,h3,h3,h3,h4]. During training, target durations
are used to expand the encoded sequence h, and a phoneme duration predictor
module is trained along with the feature prediction network to minimize `1 or
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`2 loss between the predicted and target durations. Figure 5.1 illustrates the
hidden state expansion procedure.

Figure 5.1: Explicit phoneme duration modeling with duration predictor and state expan-
sion (dashed lines correspond to training-only connections).

Explicit duration modeling not only avoids the stability issues arising in attention-
based models, but also allows for fine-grained control over speaking rate (voice
speed). A simple hyperparameter α can be used to control the voice speed at
inference time, proportionally adjusting predicted phoneme durations before
the state expansion operation (e.g. d = αd).

Microsoft’s FastSpeech [Ren+19] paved the way for explicit duration modeling
in modern neural TTS architectures. In their work, a stack of Feed-Forward
Transformer (FFT) blocks (consisting of self-attention and a 1D convolution)
are used both for the encoder and decoder modules, allowing for parallel mel-
spectrogram generation and thus speeding up the inference process. The clear
advantages of explicit duration modeling spread quickly to alternative neural
architectures, such as DurIAN [Yu+20], Parallel Tacotron [Eli+20] or Fast-
Pitch [Łań20] among others.
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Pitch and energy prediction

Text-to-speech is a large-scale inverse process: a highly compressed input
source (text) is decompressed into audio (or acoustic features). This is similar
to other machine learning generative tasks such as image generation (e.g. given
the word cat, generate an image of a cat). In such tasks, the one-to-many map-
ping problem arises (e.g. there are potentially infinite possible ways of saying
hello). Under these conditions, training machine learning models using reg-
ular training objectives (such as minimizing `1 or `2 loss between predicted
and target samples) usually lead to unacceptable or suboptimal solutions (e.g.
blurry images in the case of images, flat prosody in the case of speech). This is
particularly noticeable in non-autoregressive TTS models, as the teacher forc-
ing training procedure helps alleviating this problem in autoregressive TTS
models.

To reduce the information gap (i.e. the input just contains partial information
to predict the target) and alleviate the one-to-many mapping problem in non-
autoregressive TTS, additional variability information of the speech utterance
can be provided. In particular, frame-wise pitch (F0) and energy values can be
extracted from the original utterances and be provided as additional condition-
ing inputs [Ari+17; Ren+21; Łań20]. Both pitch and energy can be utilized in
a similar manner as phoneme durations are predicted and used during training
and inference processes. However, differently from the state expansion carried
out to account for phoneme durations, pitch and energy information can be
effectively included in the encoded sequence h1:N by means of pitch and energy
embeddings.

Again, the explicit modeling of pitch and energy does not only alleviate the
one-to-many mapping problem in non-autoregressive TTS, but also allow for
fine-grained control of these attributes. For example, to control expressiveness,
one could manually increase or decrease predicted pitch and energy variance
at inference time.

There are alternative ways to model pitch prediction. In FastSpeech 2 [Ren+21],
the continuous wavelet transform (CWT) is used to decompose the continuous
pitch series into a pitch spectrogram [Sun+13], and this is taken as the training
target for the pitch predictor. Pitch and energy values for each frame are dis-
cretized to 256 possible values and encoded into a sequence of one-hot vectors.
On the contrary, in FastPitch [Łań20] frame-wise F0 values are standardized to
mean of 0 and standard deviation of 1 and averaged over every input symbol
using the extracted durations d. Here, the normalized symbol-averaged pitch
values are directly taken as targets.
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Figure 5.2: Pitch contour (F0) of a random LJSpeech utterance.

5.3 GAN-based neural vocoders

Autoregressive generative vocoder models such as WaveNet or WaveRNN have
shown much superior performance when compared to traditional parametric
vocoders [Oor+16; Kal+18]. However, speech waveforms contain tens of thou-
sands of samples per second of audio (usually 16000 or more), thus making
non-parallelizable autoregressive models suffer from slow inference speeds.

In the recent years, a lot of effort has been put on producing lighter and more
efficient neural vocoder models of comparable quality. Some of the first relevant
works along these lines are the LPCNet [VS19], Parallel WaveNet [Oor+18] or
WaveGlow [PVC19] vocoders.

More recently, a whole new family of GAN-based vocoder models have been
proposed with great success. GANs are generative models that are com-
posed of two separate neural networks: a generator (G) and a discriminator
(D) [Goo+14]. The generator G learns a distribution of realistic waveforms
by trying to deceive the discriminator (or discriminators) D to recognize the
generator samples as real. Parallel WaveGAN [YSK20], MelGAN [Kum+19],
Multi-band MelGAN [Yan+20a] or HiFi-GAN [KKB20] are some of the most
popular and best performing GAN-based vocoder models.

In particular, the recently published HiFi-GAN vocoder has gained popularity
as it has been shown to produce both efficient and high-fidelity speech syn-
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thesis, outperforming other vocoders such as WaveGlow or MelGAN in terms
of perceived audio quality (MOS) [KKB20]. In its larger version (V1), HiFi-
GAN synthesizes human-quality speech audio at speed of 3.7MHz on a single
NVIDIA V100 GPU (e.g. 0.006 RTF at 22kHz sampling rate) [KKB20].

HiFi-GAN generator is a fully convolutional network that predicts the final
audio waveform conditioned on mel-spectrogram inputs. The mel-spectrogram
frames are upsampled by means of a stack of 1-D transposed convolutions to
match the temporal resolution of raw waveforms. Each transposed convolution
is followed by a multi-receptive field fusion (MRF) module, which observes
patterns of various lengths in parallel and returns the sum of outputs from
multiple residual blocks with different kernel sizes and dilation rates.

For the adversarial training framework, HiFi-GAN uses two different discrim-
inators: multi-scale (MSD) and multi-period (MPD) discriminators. This is
similar to the work in [Biń+20]. The MSD is taken from MelGAN [Kum+19],
and comprises a mixture of sub-discriminators operating on different raw audio
input scales. The MPD is again a mixture of sub-discriminators each handling
a portion of periodic signals of input audio. In addition to the adversarial loss,
HiFi-GAN uses a mel-spectrogram reconstruction loss as the `1 distance be-
tween mel-spectrograms of synthetic and ground truth waveforms to improve
the stability and efficiency of the adversarial training process.

5.4 The Blizzard Challenge 2021

The following section is devoted to summarize our participation in the Bliz-
zard Challenge 2021, an international TTS challenge organized annually since
2005 with the purpose of better understanding and comparing different TTS
technologies applied to the same provided training dataset. The proposed
system [PSJ21] follows the two-stage predominant paradigm in neural TTS,
and it is composed of a novel non-autoregressive acoustic model with explicit
duration modeling and a HiFi-GAN neural vocoder.

5.4.1 Introduction

The Blizzard Challenge, organized annually since 2005, has the purpose of
better understanding and comparing different TTS technologies applied to the
same provided training dataset. Since its inception, renowned IT companies
and institutions involved in TTS research have been participating in the differ-
ent editions. In the 2021 edition, the task SH1 consisted of building a Spanish
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system from about 5 hours of studio-quality recordings from a native female
speaker. The organization allowed to further include up to a total of 100 hours
of speech recordings from other sources for training the TTS models.

The proposed system is composed of a non-autoregressive neural acoustic
model with explicit duration modeling and a GAN-based neural vocoder. The
acoustic model was initially developed from ForwardTacotron1, to which we
introduced several modifications based on different recently published works,
which will be detailed in Section 5.4.4. The acoustic model takes the phoneme
sequence as inputs and generates an intermediate speech representation (mel-
spectrogram), which can be seen as a lossy compressed version of the audio
signal. Then, the vocoder model is responsible of reconstructing the final
speech waveform conditioned on the mel-spectrograms. For the vocoder model,
a public implementation of HiFi-GAN [SJF20] was used, which is capable of
producing high speech audio quality significantly faster than real-time both on
GPU and CPU.

The rest of this section is organized as follows. First, the data processing and
the different tools used for this purpose are detailed in Section 5.4.2. Then, the
proposed forced-aligner autoencoder model used to extract phoneme durations
is presented in Section 5.4.3. The acoustic TTS model architecture is described
in detail in Section 5.4.4. Section 5.4.5 introduces the GAN-based vocoder
model used. Finally, the results of the subjective evaluation test are given in
detail and discussed in Section 5.4.6.

5.4.2 Data processing

In the 2021 edition, the organization provided participants with about 5 hours
of studio-quality recordings (after triming leading and trailing silence) from
a native Spanish female speaker and their corresponding transcriptions. The
audio samples were provided in 48kHz, PCM 16-bit format. Table 5.1 describes
in detail the dataset released for the Blizzard Challenge 2021. As mentioned
above, the total duration of the recordings was computed after triming leading
and trailing silence from all samples.

Table 5.1: Blizzard Challenge 2021 dataset.

Set Samples Number of words Duration
SH1 4920 50.0 K 5.2 h
SS1 10 154 96 s

1https://github.com/as-ideas/ForwardTacotron
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The text preprocessing procedure was carried out as follows: first, the text
transcriptions were normalized (lowercasing, removed special characters, etc.),
and then phoneme sequences were extracted from the normalized texts using
the well-known open-source speech synthesizer tool eSpeak NG2.

Regarding the audio processing, all the audio recordings were resampled to
22kHz and leading and trailing silence was removed. Then, 100 bin log mag-
nitude Mel-scale spectrograms with Hann windowing, 50ms window length,
12.5ms hop size and 1024 point Fourier transform were extracted from the au-
dio samples. The spectrograms were finally min-max normalized to lay within
the [0.0, 4.0] range.

Last, phoneme durations were extracted by training a separated forced-aligner
autoencoder model on the same dataset. This model is described next in
Section 5.4.3.

5.4.3 Forced-aligner autoencoder model

Similarly to other non-attentive TTS models with explicit duration modeling
[Ren+19; Yu+20; Łań20; She+20; Ren+21], the proposed TTS acoustic model
requires of pre-existing phoneme durations (in frames) which are learnt during
training. To extract phoneme durations, a monotonic phoneme to frame align-
ment must be extracted from a separated model. Usually, this is achieved by
training a separated attention-based TTS model on the same data (Tacotron,
Transformer TTS [Li+19], etc.) or by using an external forced alignment tool
with pre-trained models like the Montreal Forced Aligner [McA+17]. The
former has been found to provide slightly more convenient alignments as the
aligner model is trained on the same TTS regression task as the acoustic model,
as opposed to a pure classification task.

Nevertheless, under suboptimal conditions (inaccurate transcriptions, noisy
recordings, small datasets, etc.) the training convergence of attention-based
TTS models is not guaranteed, particularly when the attention mechanism
does not constrain the alignments to be monotonic [He+19; Bat+20]. Also, the
training of the attention-based model becomes computationally more expensive
than training the final TTS acoustic model.

For these reasons, and inspired by Axel Springer Ideas Engineering’s Deep-
ForcedAligner3, a forced-aligner autoencoder model is proposed. It makes use
of an auxiliar connectionist temporal classification (CTC) loss [Gra+06] to find

2http://espeak.sourceforge.net
3https://github.com/as-ideas/DeepForcedAligner
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the alignments between the spectrogram frames and the phoneme sequences.
This model is trained on the same speech data as the TTS model. Also, the
autoencoder framework is able to refine the CTC (or pure speech recogni-
tion) alignments and make them more suitable for the TTS task. Last but
not least, it provides enhanced robustness and significantly faster convergence
than attention-based TTS models.

Figure 5.3 depicts the proposed forced-aligner model. It is composed of two in-
terconnected modules following an autoencoder framework, which are trained
end-to-end with the help of an auxiliar CTC loss. The speech-to-text (STT)
encoder module is a simple speech recognition model. The input spectrogram
frames are passed through a stack of 5 1-D convolutional layers, followed by
batch normalization and ReLU activations. The output of the last convo-
lution layer is then processed by a single-layer bidirectional LSTM, followed
by a final linear projection layer with softmax activations. An auxiliar CTC
loss computed over the ground-truth phoneme sequences is used on the soft-
max outputs to help the convergence of the STT module. Then, a simple
TTS module plays the decoder role of the autoencoder framework. This mod-
ule takes the STT softmax outputs (phoneme class probabilities) as inputs,
and aims to reconstruct the original spectrogram frames. It is composed of 2
bidirectional LSTM layers followed by a linear projection to the spectrogram
dimension. The mean absolute error (MAE) between the ground-truth and
the generated spectrograms is backpropagated through the entire autoencoder
model helping refining the STT alignments for the TTS task.

Figure 5.3: Forced-aligner autoencoder architecture overview.
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To extract phoneme durations, the decoder (TTS) module is discarded, and the
speech-to-text encoder is solely used to calculate phoneme posteriors. Then,
Dijkstra’s algorithm can be used to find the most likely monotonic path through
the sequence of phoneme probabilities.

5.4.4 Acoustic model

The proposed acoustic model was initially based on ForwardTacotron4, an
open-source non-autoregressive variant of Tacotron [Wan+17] inspired on par-
allel TTS models like FastSpeech [Ren+19] or DurIAN [Yu+20]. The orig-
inal ForwardTacotron architecture was composed of two Pre-Net bottleneck
layers, a CBHG encoder [Wan+17], a variance duration predictor similar to
[Ren+19], a 2-layer BiLSTM decoder and a convolutional residual Post-Net as
in [She+18]. However, following more recent works, several modifications are
introduced to this original architecture. The final architecture is depicted in
Figure 5.4, and the introduced modifications are described in detail in what
follows.

Figure 5.4: Proposed TTS acoustic model architecture for the Blizzard Challenge 2021.
Dashed lines are training-only connections.

First, the encoder module is replaced with the simplified architecture proposed
in Tacotron 2 [She+18] shown at the bottom of Figure 5.4. The encoder mod-
ule consists of learned 512-dimensional phoneme embeddings that are passed
through a stack of three 1-D convolutional layers, followed by batch normal-
ization and ReLU activations. The output of the last convolutional layer is

4https://github.com/as-ideas/ForwardTacotron
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processed by a single bidirectional LSTM layer to generate the encoder hidden
states. These states are later expanded attending to phoneme durations and
consumed by a decoder to generate the spectrogram frames.

Second, the vanilla upsampling through repetition (also known as length regu-
lator module) is replaced in favor of the Gaussian upsampling approach recently
proposed in [She+20], which has been shown to improve speech naturalness. In
the Gaussian upsampling, encoder hidden states h = [h1, ...,hN ] are expanded
into the upsampled sequence u = [u1, ...,uT ] as follows:

ci =
di
2

+
i−1∑
j=1

dj (5.1)

wt,i =
N (t; ci, σ

2
i )∑N

j=1N (t; cj, σ2
j )

(5.2)

ut =
N∑
j=1

wt,ihi (5.3)

where d ∈ ZN are phoneme-level integer duration values (in frames), and the
range σ ∈ RN is a learnable parameter of the model.

In addition, after the upsampling, Transformer-style sinusoidal positional em-
beddings of a frame position with respect to the current phoneme are added
[Eli+20]. Also, the recurrent layer of the variance predictor module is discarded
as we empirically found improved robustness on phoneme duration predictions,
in line with [Ren+19].

Finally, the convolutional residual Post-Net is removed as we found it not to
bring any noticeable improvements on the spectrogram reconstruction task
when using a bidirectional LSTM decoder.

It is also worth mentioning we did not include explicit modeling of pitch and
energy in this case, as we found no improvements in terms of naturalness nor
audio quality. We believe the high quality recordings of the training data, pro-
duced in a controlled professional-setting environment, made it unnecessary to
further leverage the one-to-many mapping problem to improve resulting audio
quality, particularly when the vocoder is fine-tuned on the GTA spectrograms.
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Table 5.2: Subjective evaluation parts.

Part (Section) Aspect Metric
Part 1 and 2 Speaker similarity MOS (1-5)
Part 3 and 4 Naturalness MOS (1-5)
Part 5 (Sharvard) Intelligibility WER %
Part 6 (SUS) Intelligibility WER %

The text-to-spectrogram models are trained using a combination of the `1
loss and the structural similarity index measure (SSIM) [Wan+04] between
the predicted and the target spectrograms, and Hubber loss for logarithmic
duration prediction [VD20].

5.4.5 Vocoder model

The official public HiFi-GAN implementation5 is used for reconstructing the
audio waveform conditioned on the generated spectrograms. We choose the
HiFi-GAN V1 (hu = 512), which is the larger HiFi-GAN model proposed in the
original paper and brings the better audio quality compared to the reduced V2
and V3 models [SJF20]. It was trained only on the audio recordings provided
by the organization. The training procedure comprises two steps. Initially, the
vocoder model is trained on the extracted ground-truth spectrograms for 500K
steps. Then, after the acoustic model is trained, ground-truth aligned (GTA)
spectrograms are generated for the training dataset and the HiFi-GAN model is
fine-tuned on the acoustic model outputs for an additional 100K steps, which
helps reducing the artifacts induced by the mismatch between the vocoder
training and inference conditions and brings slightly better audio quality for
the TTS task.

5.4.6 Subjective results

A total of 12 participating teams submitted their generated test samples to
be evaluated in the subjective listening test. Table 5.2 describes the different
aspects considered for the subjective evaluation test. Our system was assigned
the letter J, while R corresponds to the original audio recordings.

The listeners participating in the subjective test could be divided into three
different groups:

5https://github.com/jik876/hifi-gan
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• SP: Paid participants (native speakers of Spanish)

• SE: Volunteer speech experts (self-identified as such)

• SR: Rest of volunteers

Naturalness

In the speech naturalness test (parts 3 and 4), listeners listened to one sample
and chose a score which represented how natural or unnatural the sentence
sounded on a scale of 1 (completely unnatural) to 5 (completely natural).

Figure 5.5: Blizzard 2021 naturalness MOS for all participants (all listeners).

The boxplot evaluation results of all systems on speech naturalness from all
listeners is showed in Figure 5.5. In this case, Microsoft’s system (F) performed
clearly better than other systems. It is though worth noting their system was
trained using an additional non-public dataset comprising 80 hours of high
quality Spanish recordings [Liu+21]. Our system was scored with a natural-
ness MOS of 3.61 in terms of speech naturalness, while the real recordings were

65



Chapter 5. Robust, Efficient and Controllable Neural Text-To-Speech

scored with 4.21. As can be seen in Figure 5.5, our system performance is com-
parable to that of systems K (Samsung Research China), G (CPQD-Unicamp)
and I (IOA-ThinkIT), only outperformed by system F (Microsoft). Among
these, systems F, G and I included external data for training the acoustic and
vocoder models. This is a very positive result, especially considering both the
acoustic and vocoder models were trained with a limited amount of data (∼5
hours) compared to what is common in two-stage neural TTS pipelines (20
hours or more) [IJ17; VYM17].

Speaker similarity

In the speaker similarity test (parts 1 and 2), listeners could play 2 reference
samples of the original speaker and one synthetic sample. They chose a re-
sponse that represented how similar the synthetic voice sounded to the voice in
the reference samples on a scale from 1 (sounds like a totally different person)
to 5 (sounds like exactly the same person).

Figure 5.6: Speaker similarity scores for all participants (all listeners).
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The boxplot evaluation results of all systems on speaker similarity from all
listeners is showed in Figure 5.6. System F, K and I performed better than
other systems. Despite the fact that our system (J) was only trained with the
data provided by the Blizzard Challenge 2021 organizers, it was scored with a
speaker similarity MOS of 3.29 compared to 4.07 from the original recordings
(R).

Intelligibility test

Finally, an intelligibility test was carried out in parts 5 and 6. The goal of
this test was just to determine whether or not the synthetic speech was under-
standable. Listeners heard one utterance in each part and typed in what they
heard. Listeners were allowed to listen to each sentence only once. The sen-
tences were specially designed to test the intelligibility of the synthetic speech:
the sentences and the reference natural recordings for part 5 came from the
Sharvard corpus, and the SUS test samples for part 6 were kindly provided by
TALP-UPC and Aholab-EHU research laboratories.

Figure 5.7: Intelligibility Word Error Rates (WER) for the Sharvard intelligibility test.

Figure 5.7 shows the Word Error Rates (WER) of all teams for the Sharvard
intelligibility test, where our system achieved the lowest transcription error
(3.0%). This result emphasizes the good performance of the proposed system
regarding word pronunciation even though it was trained with a limited amount
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Figure 5.8: Intelligibility Word Error Rates (WER) for the SUS intelligibility test.

of speech data. Figure 5.8 shows the WER for the SUS intelligibility test, where
the performance is similar to the best performing systems.

5.5 Conclusions

This chapter has addressed robustness, efficiency and controllability in modern
neural TTS models. The limitations of attentive autoregressive acoustic models
introduced in Sections 3.4 and 5.2, particularly regarding these three aspects,
can be overcome by explicitly modeling phoneme durations as discussed in
Section 5.2. Also, explicit modeling of pitch (F0) and energy have shown not
only to alleviate the one-to-many mapping problem in non-autoregressive TTS
models, but also to allow for controllability of those aspects at inference time.

Section 5.3 introduced the more efficient family of GAN-based vocoders, sig-
nificantly outperforming autoregressive vocoders in terms of inference speed
while generating synthetic speech of comparable (when not better) quality.

Finally, the performance of these models has been assessed by participating in
the 2021 edition of the Blizzard Challenge, a renowned international challenge
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aiming to better understand and compare different TTS technologies. The
proposed novel non-autoregressive TTS model with explicit duration modeling
achieved excellent results in the subjective evaluation tests, only outperformed
by one participating team in terms of speech naturalness.
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Chapter 6

Simultaneous Speech-To-Speech
Translation

6.1 Introduction

The preceding chapters addressed, on the one hand, the cross-lingual voice
cloning task using modern neural TTS architectures and, on the other hand,
enhancing robustness, efficiency and controllability of those models. In this
chapter, the more ambitious task of building an automatic simultaneous (also
referred to as real-time) Speech-To-Speech translation pipeline is explored,
which aligns with the third goal pursued in this thesis.

The proposed cascaded simultaneous S2S system is composed of a streaming
ASR, a simultaneous MT and an incremental TTS components. In order to
assess the performance of the proposed system, experiments are carried out on
the Europarl-ST v1.1 corpus [Ira+20a], a multilingual spoken language trans-
lation dataset built from the European Parliament debates archive covering 9
different official European languages. However, for brevity and to ease the sub-
jective evaluation process only English and Spanish languages are considered
(both directions: English to Spanish and Spanish to English translations).
Nonetheless, the results achieved for this specific language pair can be eas-
ily extended to other European languages. In this context, general purpose
streaming ASR and simultaneous MT systems covering English and Spanish
are developed to satisfy the leading part of the S2S pipeline (i.e. simultaneous
speech translation). Yet, the focus is set on the incremental TTS component.
The primary goal concerns the development and assessment of an efficient in-
cremental TTS model with cross-lingual voice cloning capabilities as the last
component of the cascaded simultaneous S2S pipeline. The TTS system is
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trained jointly on the Europarl-ST English and Spanish subsets with the ob-
jective of cloning English speakers voices into Spanish and viceversa, so that
the translated speech retains the original speaker voice characteristics.

To summarize, the rest of this chapter is organized as follows. First, the
Europarl-ST corpus and the English and Spanish subsets used for training
the TTS component are described in Section 6.2. Then, the streaming ASR,
simultaneous MT and incremental TTS components of the S2S pipeline are
described and individually evaluated in Sections 6.3, 6.4 and 6.5, respectively.
The latency introduced by the different components and the overall latency of
the S2S system is evaluated in Section 6.6. Finally, some conclusions are given
in Section 6.7.

6.2 The Europarl-ST dataset

Europarl-ST [Ira+20a] is a multilingual spoken language translation dataset
built from the European Parliament debates archive in the period between
2008 and 2012. In its more recent version (v1.1), it contains paired <audio,
transcription, translation> samples covering 9 different official European lan-
guages. The transcription in the original source language of the Members of
the European Parliament (MEP) or invited speakers interventions and their
corresponding translations are available for different source-target language
pairs.

English and Spanish test subsets will be used to assess the performance of the
streaming ASR and simultaneous MT components of the S2S system in the
Europarl-ST task. To train TTS models, English and Spanish train, dev and
test subsets Europarl-ST are jointly considered. The train-noisy subsets of
this dataset are discarded. The resulting number of hours, words and speakers
per language are given in Table 6.1.

Table 6.1: English and Spanish Europarl-ST subsets considered to train TTS models.

Source language Hours Words Speakers

English 72.5 723K 282
Spanish 27.5 276K 85

Total 100.0 1M 367

However, EP recordings present some challenging conditions for the purposes
of building TTS systems out of this data. These contain noisy, spontaneous
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speech and present other undesired characteristics such as reverberations, leaked
room noise and deficient recording settings. In addition, the available tran-
scriptions are not 100% verbatim and often miss hesitations, word repetitions
and other disfluencies that are present in the speech track.

6.3 Streaming ASR

In order to adapt the acoustic model to the streaming setup, the one-pass
decoder approach presented in [Jor+19; Jor+20] is followed. General-purpose
English and Spanish streaming ASR systems are trained on a collection of
thousands of speech transcribed hours from public and private datasets accord-
ing to the recipe described in [Baq+20] using the transLectures-UPV toolkit
(TLK) [del+14] and TensorFlow.

The performance of the ASR systems is evaluated in terms of Word Error Rate
(WER) on the Europarl-ST English and Spanish test sets. Table 6.2 provides
WER figures in percentage for online and streaming ASR systems, showing
only a small degradation as a result of the limited speech context available
to the latter. The competitive performance shown by the ASR component
enables applying MT to the ASR output with minimum error propagation.

Table 6.2: ASR results in terms of WER [%] on the English and Spanish Europarl-ST test
sets.

WER (%)
System English Spanish

Offline 12.7 9.8
Streaming 13.4 10.7

6.4 Simultaneous Machine Translation

First, the continuous stream of words generated by the upstream ASR system
is split into non-overlapping chunks that maximize the accuracy of the down-
stream MT system following the segmentation system proposed in [Ira+20b],
which uses a sliding window over the ASR output to carry out the segmenta-
tion.

Then, due to its simplicy and effectiveness, the fixed wait-k policy [Ma+18] is
followed. This policy waits for k words to be processed in the source text be-
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fore starting the translation process. Then, every word processed in the source
text generates a word in the target text. Additionally, the effective multi-k ap-
proach [Elb+20] is used to train systems that seamlessly may switch between
different k at inference time, by sampling a random value for k for each training
batch. This approach has been shown to obtain competitive results compared
with the latest adaptative policies. An additional advantage of choosing a
fixed policy is that the latency between words is fixed and consistent. In con-
trast, it has been observed that adaptative policies sometimes have spurious,
longer than usual delays when translating between some input words. This
fact greatly hinders the naturalness of the downstream TTS system, and be-
comes also an important reason for our preference for a fixed policy over an
adaptative one.

As with the ASR component, general-purpose English→ Spanish and Spanish
→ English simultaneous MT systems were trained on millions of sentence pairs
from OPUS parallel public datasets [Tie12] under abovementioned settings.
The translation quality of the developed simultaneous MT systems is compared
to that of the corresponding offline systems on the Europarl-ST corpus in terms
of BLEU [Pap+02b]. Table 6.3 reports comparative BLEU [Pap+02b] scores
on the Europarl-ST corpus between the conventional offline system and a range
of simultaneous wait-k MT systems as a function of k.

Table 6.3: BLEU scores of the offline and simultaneous wait-kMT systems on the Europarl-
ST test sets.

System k English-Spanish Spanish-English

Offline - 47.4 41.3

Wait-k

1 32.2 31.0
2 37.8 33.9
4 42.6 35.1
8 44.1 36.0
32 44.3 36.1
100 44.3 36.2

As shown in Table 6.3, there is a relevant gap in performance between the offline
and simultaneous MT systems, which decreases as the value of k increases. As
can be seen, values of k higher than 8 bring negligible quality improvements.
The BLEU difference between both systems when the simultaneous wait-k
system works in offline mode (k = 100) is due to the use of an unidirectional
encoder instead of a bidirectional one.
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In streaming settings, translation quality and response-time should be bal-
anced. For lower response-time setups, such as k=2 and k=4, the incurred
gap ranges from 5 to 9 BLEU points. All in all, the BLEU scores achieved by
simultaneous MT systems (' 34-43) indicate that the quality of these systems
is accurate enough for a TTS component downstream.

6.5 Incremental Multilingual Text-To-Speech

The streaming context also requires TTS models to work loosely below real-
time in terms of computation time. Thus, efficiency of both acoustic and
vocoder models becomes a crucial aspect for neural-based architectures. For
the acoustic model, a non-autoregressive model most similar to that described
in Section 5.4.4 is devised. The Multi-band MelGAN [Yan+20a] is used as the
vocoder model of the TTS component, which brings significant inference speed
improvements over similar full-band vocoders while keeping comparable syn-
thesis audio quality. In this work, the incremental prefix-to-prefix framework
proposed in [Ma+20] is followed with minor modifications.

6.5.1 Adapted prefix-to-prefix framework

When considering the tight response time constraints of a simultaneous S2S
pipeline, it is unpractical to wait until the translated sentence is completed
to start the synthesis process. This would incur in significant delays for the
speech synthesis, particularly for long utterances. Inspired on the prefix-to-
prefix framework adopted for simultaneous MT [Ma+18], [Ma+20] proposes an
adaptation for the incremental TTS task. Under this framework adapted to
our particular case, the spectrogram and waveform are incrementally generated
as:

yt = Φ(x≤g(t), y<t) (6.1)
wt = Ψ(y≤h(t), w<t) (6.2)

where x, y and w represent the input text, the speech spectrogram and the
audio waveform, respectively; and g(t) and h(t) are monotonic functions that
define the number of words in Eq. 6.1 or frames in Eq. 6.2, being conditioned
on when generating the outputs for the tth word.

For the spectrogram generation g(t), lookahead-k policy proposed in [Ma+20]
is followed:
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g(t) = min(t+ k, |x|). (6.3)

A maximum history context size δy is introduced to limit the computational
complexity of the incremental text-to-spectrogram inference process. Thus,
Eq. 6.1 becomes:

yt = Φ(x
g(t)
t−δy , y

t−1
t−δy). (6.4)

In the waveform generation step, just a small trailing context from the previous
chunk is included as an additional conditioning context for the next step. In
particular, we set h(t) = t and define a maximum history context size δw
corresponding to the number of trailing frames from word t− 1 that is used as
additional history context. The use of future context for the vocoding step is
discarded.

6.5.2 Model architecture

The TTS component follows the predominant two-stage paradigm of modern
neural TTS architectures. The acoustic model proposed for this task is a non-
autoregressive model most similar to that described in Section 5.4.4. Speaker
and language embeddings are introduced to account for the multiple speak-
ers and languages considered in the dataset. Input texts are converted into
IPA (International Phonetic Alphabet) phoneme sequences, where equivalent
phonemes are shared across languages. The language embedding helps disam-
biguate phoneme pronunciations between different languages.

In addition, an adversarial speaker classifier is used to discourage encoder
hidden states from containing speaker information [Zha+19c]. The speaker
classifier is trained to classify each encoder hidden state into its corresponding
speaker ID for a given utterance. Then, a gradient reversal layer [Gan+16] is
used to push the encoder to generate speaker-agnostic representations. This
layer does nothing during the forward propagation but inverts the sign of the
gradients flowing from the speaker classifier during the backpropagation. The
overall model architecture is depicted in Figure 6.1.

The acoustic model is trained to minimize a combination of the `1 distance
and the structural similarity index measure (SSIM) between the predicted and
the target spectrograms. Additionally, the Hubber loss is used for logarithmic
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Figure 6.1: Proposed multilingual multi-speaker TTS model architecture. Dashed lines are
training-only connections.

duration prediction [VD20], and cross-entropy loss is used for training the
adversarial speaker classifier.

A Multi-band MelGAN vocoder is trained for reconstructing the audio wave-
form conditioned on the generated spectrograms, which is able to generate high
quality speech with a real-time factor of 0.03 on CPU [Yan+20a].

6.5.3 Experiments

A baseline reference full-sentence model and lookahead models with values
k ∈ {0, 1, 2} are trained on the English and Spanish Europarl-ST subsets de-
scribed in Table 6.1. For training the lookahead-k models, at each training
step the first n words of each sample are selected at random (where n ∈ N
can be a different value for different samples). Then, the lookahead context
is limited to a maximum of k subsequent words (when available). Phoneme
durations are used to determine the spectrogram frames corresponding to dif-

77



Chapter 6. Simultaneous Speech-To-Speech Translation

ferent words. This training procedure of the lookahead-k models is compliant
with the inference conditions for different values of k.

All audio recordings are resampled to 22kHz. Then, 100-bin log magnitude
mel-scale spectrograms are extracted from audio samples with Hann window-
ing, 50ms window length, 12.5ms hop size and 1024 point Fourier transform.
Phoneme durations are predicted from a separate autoregressive attention-
based Tacotron 2 model trained on the same data. All acoustic models are
trained with a batch size of 48 and an initial learning rate of 5× 10−4, which
is decayed by half every 40K steps for a total of 160K steps. The Adam opti-
mizer [KB15] is used with default parameters and gradient clipping at 1.

To reduce the harmful effects of noisy samples (i.e. containing significant back-
ground noise or inaccurate transcriptions), a dynamic loss masking approach is
devised. The purpose of this dynamic loss masking approach is to discard gra-
dients coming from samples for which the mel-spectrogram reconstruction loss
is significantly higher than a certain threshold. However, this threshold should
be adapted dynamically through the training process as the model learns to
better reconstruct target spectrograms. In this case, this threshold is com-
puted dynamically as the median plus λ times the median absolute deviation
of the `1 loss from the last 5 batches, where λ is manually adjusted empirically.
The dynamic loss masking is enabled after the first 5K training steps.

At inference time, the maximum history context size parameter δy introduced
in Section 6.5.1 is set to 6 words in all experiments. Ma et al. [Ma+20] also
define a chunk-level inference procedure so that the minimum number of words
to synthesize at each step is such that the current chunk contains at least l
phonemes (where l is a manually defined hyperparameter). This parameter l
is set to 6 both for Spanish and English. The effective values of δy and l are
∞ for the full-sentence scenario.

Regarding the vocoder, a single Multi-band MelGAN vocoder is trained on the
same data. To that end, the public Multi-band MelGAN implementation1 is
used.

1https://github.com/kan-bayashi/ParallelWaveGAN
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6.5.4 Evaluation

To evaluate the naturalness and quality of the synthetic speech, 20 particu-
larly long utterances are used as a test set (10 for each language), where each
sample corresponds to a different speaker. We evaluated the speech natural-
ness of both regular and cross-lingual samples through a 5-scale Mean Opinion
Score (MOS) subjective listening test. We also assessed the cross-lingual voice
cloning capabilities of the proposed model by analyzing the speaker similar-
ity between the synthetic and ground-truth utterances from the same speaker.
Ten native Spanish speakers with proficiency of the English language partic-
ipated in the subjective listening test. The reader is encouraged to listen to
the cross-lingual synthetic samples2.

Speech naturalness

The degradation in terms of speech naturalness caused by limiting both past
and future context for each configuration is evaluated. Tables 6.4 and 6.5
show the 5-scale naturalness MOS with 95% confidence intervals (CI) for the
different model configurations, both for English and Spanish synthesis, for
regular and cross-lingual samples respectively. Cross-lingual samples refers to
those for which the speaker-language pair is unseen during training.

A small degradation can be appreciated on the speech naturalness for the
cross-lingual synthesis (e.g. 4.0 compared to 4.2 for the full-sentence case).
Nevertheless, this gap is small and endorses the satisfactory performance of the
proposed cross-lingual approach. It can be also noted how speech naturalness
is degraded for incremental TTS configurations. This might be attributed to
two principal factors. First, the impact of limiting the context both to past and
future words. Second, the unnatural duration of pauses introduced between
consecutive chunks as a result of the proposed incremental prefix-to-prefix
approach.

2All generated cross-lingual synthetic samples will be temporarily available at
https://mllp.upv.es/interspeech21-demo/
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Table 6.4: Speech naturalness MOS of regular samples with 95% CI.

Regular English Spanish

k=0 3.03 ± 0.22 2.67 ± 0.23
k=1 3.17 ± 0.22 3.44 ± 0.21
k=2 3.33 ± 0.22 3.44 ± 0.24

Full-sentence 4.15 ± 0.20 4.17 ± 0.19

Table 6.5: Speech naturalness MOS of cross-lingual samples with 95% CI.

Cross-lingual English Spanish

k=0 2.85 ± 0.22 2.26 ± 0.22
k=1 3.23 ± 0.20 2.77 ± 0.23
k=2 3.18 ± 0.20 2.97 ± 0.21

Full-sentence 4.04 ± 0.19 3.99 ± 0.20

Speaker similarity

In the speaker similarity test, participants are asked to rate from 1 to 5 how
close the speaker voice of cross-lingual synthetic samples in the target language
sounds compared to ground truth recordings of the same speaker in the source
language. Table 6.6 shows 5-scale speaker similarity MOS with 95% CI. This
evaluation is limited to the full-sentence scenario as the incremental settings
should have no impact regarding voice cloning capabilities.

Table 6.6: Speaker similarity MOS with 95% CI of cross-lingual samples compared with a
reference utterance.

Model English Spanish

Full-sentence 3.84 ± 0.22 3.67 ± 0.21

The encouraging results shown in Table 6.6 regarding speaker similarity assess
the cross-lingual voice cloning capabilities of the TTS component.
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6.6 S2S latency evaluation

The accumulated latency of the resulting simultaneous English � Spanish S2S
systems is measured similarly as in [Li+20; Ira+20b]. Accumulative chunk-
level latencies are defined at five successive points in the S2S pipeline, as the
time elapsed between the last word of a chunk being spoken and:

1) the consolidated hypothesis for that chunk is provided by the ASR system;

2) the segmenter defines that chunk on the ASR consolidated hypothesis;

3) the MT system translates the chunk defined by the segmenter;

4) the TTS finishes synthesizing the translated chunk;

5) the synthesized audio playback is finished.

The latter (5) is closely related to the Ear-Voice Span (EVS) metric commonly
used in simultaneous interpretation (i.e. the time lag between the speaker
and the interpreter, usually measured in seconds). All five latency figures are
reported in Table 6.7 for both translation directions. Latency tests were run
on a single-GPU machine equipped with a NVIDIA GeForce GTX 2080 Ti.

Table 6.7: Accumulative latency mean and standard deviation in seconds for the successive
points in the S2S pipeline.

Model English-Spanish Spanish-English

1) ASR 2.7 ± 1.5 1.8 ± 1.2
2) Segmenter 3.5 ± 1.8 2.8 ± 1.3
3) MT (k = 4) 5.2 ± 2.4 4.3 ± 2.0
4) TTS

k = 0 5.6 ± 2.5 4.6 ± 2.0
k = 1 5.8 ± 2.6 4.8 ± 2.2
k = 2 6.0 ± 2.7 5.1 ± 2.3

5) Playback
k = 0 8.1 ± 1.7 6.4 ± 1.6
k = 1 8.7 ± 1.7 7.1 ± 1.7
k = 2 9.1 ± 1.7 7.6 ± 1.7

The latency added by the segmentation is mostly explained by the consolida-
tion of the ASR output, that also depends on the long-range dependencies of
the neural language models behind. The wait-k (k = 4) policy of MT and the
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lookahead-k policy of TTS define the corresponding latencies introduced by
these components of the pipeline.

The playback delay is explained by the impossibility to recover from the de-
lays introduced in previous chunks when the synthesized speech in the target
language is longer or equal to the original speech in the source language. This
could be addressed by explicitly controlling the speaking rate of the synthetic
speech. The EVS latency of our S2S system configuration ranges approxi-
mately from 7 to 9 seconds. This is an acceptable range, not far from that of
human interpreters, which varies between 3 to 6 seconds [Led78]. Nevertheless,
the S2S pipeline components can be tuned for a different trade-off between re-
sponse time and translation performance, depending on the application needs.

6.7 Conclusions

In this chapter we presented a novel cascaded simultaneous S2S system built
from state-of-the-art streaming ASR, simultaneous MT, and incremental TTS
components. The emphasis has been put on the incremental TTS component,
designed according to the latest developments in the field as an end-to-end deep
learning architecture including a number of refinements for fast, incremental
multilingual and multi-speaker TTS.

The assessment of the proposed system has been conducted on a realistic simul-
taneous machine interpretation task for European Parliament debates, from the
newly introduced Europarl-ST dataset [Ira+20a]. This choice posed additional
challenges, such as training TTS models out of speech data presenting unfavor-
able conditions (reverberation, room noise, spontaneous speech, non-verbatim
transcripts, etc). Each individual component has been first assessed in terms
of quality, using appropriate, conventional criteria in each case, and then the
full S2S pipeline has been evaluated in terms of latency on a single, standard
GPU-enabled PC. Although quality and speed are mutually conflicting objec-
tives, and thus different trade-offs between them can be chosen, we showed
that results close to state-of-the-art quality can be achieved by the proposed
S2S system running on a standard PC with an ear-voice span latency roughly
doubling that of human interpreters (3–6 secs).

The figures presented for the streaming ASR and simultaneous MT, as well as
the subjective speech naturalness MOS achieved by the proposed TTS models
makes us very optimistic about the utilization of these technologies in real-life
applications. As future work, individual components in the S2S pipeline can be
improved by incorporating long-span dependency neural models that naturally
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take advantage of a streaming scenario to improve system accuracy. Also, the
speaking rate of the TTS component can be adjusted dynamically according to
the accumulated delay at a given time to recover from the successively added
delays in the playback. Finally, language models can be used to predict the
future context as an alternative to the lookahead-k policy.

The following work was done in collaboration with others:

• The implementation of the streaming ASR models, as well as the system
training and evaluation was carried out by Adrià Giménez and Javier
Jorge.

• The simultaneous MT systems were trained and evaluated by Javier
Iranzo.

• The following international conference article, which was derived from
this work, was prepared in collaboration with other members of the
MLLP:

– Pérez-González-de-Martos, A., Iranzo-Sánchez, J., Pastor, A. G.,
Jorge, J., Silvestre-Cerdà, J. A., Civera, J., Sanchis, A. & Juan,
A. (2021). Towards Simultaneous Machine Interpretation. Proc. In-
terspeech 2021, 2277-2281.
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Chapter 7

Zero-Shot Speaker Adaptation

7.1 Introduction

Text-to-speech models are generally built to produce synthetic speech in a
predefined set of voices, corresponding to those speakers contributing with
their speech recordings to the training dataset. Adapting existing models to
arbitrary new speakers using a small amount of data (speaker adaptation)
remains a challenge in the field.

An effective approach is to fine-tune all or part of the model (e.g. only decoder
weights) on the available data from the target speaker. This is usually referred
to as few-shot learning or few-shot adaptation, and can provide very satis-
factory results given just a few minutes of speech data is available [Che+19;
Kon+19]. However, this approach requires, on the one hand, of transcripts to
be available and, on the other hand, to go through a time-consuming training
process which requires of a proper GPU-enabled infrastructure.

For some applications, the fine-tuning approach becomes unfeasible for a num-
ber of reasons: there is not enough adaptation data (e.g. just a few seconds
of speech), transcripts are not available, the source and target languages are
different, there are tight response-time constraints (e.g. simultaneous S2S), or
the computational requirements are too high. Under such constraints, an al-
ternative approach is to build TTS systems capable of mimicking or adapting
the voice characteristics to that from a given reference utterance, usually com-
prising no more than a few seconds of speech. This approach is known as zero-
shot learning or, more specifically, zero-shot speaker adaptation. Usually, an
auxiliary pre-trained speaker encoder network is leveraged to extract speaker
characteristics (i.e. speaker embeddings) from the audio recordings, which
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are then used to condition the TTS model on the speaker identity [DBM17;
Jia+18; Coo+20; Cas+21].

In this chapter, zero-shot speaker adaptation of TTS models in the context of
an S2S pipeline is addressed. The main objective is to develop TTS models
with cross-lingual mimicking capabilities, that is, models capable of producing
speech from unseen speakers in a target language given a reduced number
of reference utterances in the source language, usually comprising no more
than just a few seconds of speech, are provided. This aligns with the fourth
goal raised in this thesis. As in Chapter 4, UPV[Media] is used as a case
study and, in particular, the speech-to-speech translation of UPV[Media] online
learning materials from Spanish/Catalan into English for unseen speakers. The
proposed zero-shot speaker adaptive models are assessed in terms of speech
naturalness and speaker similarity compared to ground truth utterances from
the DeX-TTS dataset introduced in Section 4.3.

The rest of this chapter is organized as follows. First, the transfer learning ap-
proach to zero-shot speaker adaptation is introduced in Section 7.2. Section 7.3
introduces the LibriTTS dataset used for training the zero-shot speaker adap-
tive English TTS models. Section 7.4 describes the proposed acoustic model ar-
chitecture. Section 7.5 introduces a novel generative adversarial acoustic model
discriminator (GAN) architecture that allows for the prediction of more realis-
tic spectrograms, alleviating the oversmoothing problem commonly present in
the spectrogram generation task. Then, Section 7.6 details the training pro-
cedure of the proposed models (baseline and GAN) on the LibriTTS dataset.
The subjective evaluation of the resulting zero-shot multi-speaker models is
addressed in Section 7.7, where both the baseline and GAN approaches are
compared in terms of speech naturalness and speaker similarity between refer-
ence and synthetic utterances. The integration of the resulting zero-shot TTS
systems into the UPV[Media] automatic transcription and translation pipeline
is addressed in Section 7.8. Finally, some concluding remarks are given in
Section 7.9.

7.2 Speaker conditioning via transfer learning

The usual approach to zero-shot speaker adaptation is to leverage an auxiliary
pre-trained speaker encoder network to generate a fixed-dimensional embed-
ding vector for each utterance [Jia+18; Cas+21]. This embedding should sum-
marize the unique attributes in the voice characteristics of a speaker. To obtain
best generalization performance, the speaker encoder network is trained on a
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speaker classification or verification task using a large and diverse independent
dataset comprising thousands of speakers. Then, the TTS network is trained
under a transfer learning configuration, where the pre-trained speaker encoder
model (whose parameters are frozen) is used to extract speaker embeddings
from reference recordings.

Transfer learning is crucial to achieve good performance in the zero-shot adap-
tation task. By separating the training of the speaker encoder and the TTS
models, the requirements for multi-speaker TTS training data are significantly
reduced. On the one hand, the speaker encoder does not require of high quality
clean speech or transcripts for training, and thus can be trained on a wider
variety of speech datasets such as VoxCeleb [CNZ18] or LibriSpeech [Pan+15]
accounting for thousands of speakers. On the other hand, though not as im-
portant, it avoids the requirement for speaker labels on the TTS training data.

In this work, the speaker encoder network follows the LSTM architecture from
[Wan+18a]. It comprises a stack of 3 LSTM layers of 768 units followed by
a linear projection layer to the embedding dimension (256). Different than
the original work, the model is optimized to minimize the recently proposed
Angular Prototypical loss [Chu+20] as in [Cas+21].

7.3 The LibriTTS multi-speaker English corpus

As it was just outlined, generalization is crucial for achieving good performance
in the zero-shot adaptation task. So far, it has been discussed how the speaker
encoder should be trained on a large and diverse dataset comprising speech
recordings from thousands of different speakers for best performance [Jia+18].
However, generalization is no less important when it comes to the TTS task.
In this regard, the TTS model should also be trained on a large (yet smaller,
due to data availability constraints) variety of speakers for best performance.

To that end, the LibriTTS multi-speaker English corpus [Zen+19] is considered
for training the TTS models. The LibriTTS corpus is derived from the origi-
nal materials (MP3 audio files from the LibriVox project [Lib] and texts from
Project Gutenberg1) of the LibriSpeech corpus and is distributed under the
same non-restrictive license. The main differences with respect to the original
LibriSpeech corpus, which was originally conceived for the ASR task, are the
following: the audio files are at 24kHz sampling rate; the speech is split at sen-

1https://www.gutenberg.org/
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tence breaks; both original and normalized texts are included; and utterances
with significant background noise are excluded.

Table 7.1 summarizes the different data subsets of the LibriTTS corpus. It
comprises a total of 2, 456 different speakers accounting for 585.8 hours of
human-read speech recordings. LibriTTS is, so far, the largest multi-speaker
English TTS open-sourced corpus available, and thus a very appropiate choice
for the task of zero-shot speaker adaptation.

Table 7.1: Data subsets in LibriTTS

Subset Hours Female speakers Male speakers Total speakers

dev-clean 9.0 20 20 40
test-clean 8.6 19 20 39
dev-other 6.4 16 17 33
test-other 6.7 17 16 33
train-clean-100 53.8 123 124 247
train-clean-360 191.3 430 474 904
train-other-500 310.1 560 600 1,160

Total 585.8 1,185 1,271 2,456

However, the LibriTTS corpus poses a challenge when it comes to train high-
quality natural sounding TTS models due, mainly, to the heterogeneous audio
acquisition (acoustic) conditions of the speech recordings. This variability,
which is not explained by text, speaker embeddings, pitch or energy inputs, can
result in oversmoothing issues on the spectrogram generation task, particularly
(but not only) regarding higher frequencies. When paired with neural vocoders,
oversmoothed spectrograms tend to produce more noisy and metallic synthetic
speech, directly affecting the perceived speech quality.

7.4 Proposed zero-shot multi-speaker architecture

According to the latest developments in the field, the proposed system uses a
stack of Conformer blocks [Gul+20] both as the encoder and decoder modules.
Conformer is a Transformer [Vas+17] variant integrating both convolutional
and Transformer components. A Conformer block is composed of four modules
stacked together: a feed-forward module, a self-attention module, a convolution
module, and a second feed-forward module. However, this original architecture
is modified following the recommendations from [Liu+21]. First, the Swish

88



7.4 Proposed zero-shot multi-speaker architecture

activation function is replaced with ReLU for better generalization, particularly
on long sentences. Second, the depthwise convolution is placed before the
self-attention module for faster convergency. Finally, the linear layers in feed-
forward modules are replaced by convolution layers. Figure 7.1 shows the
improved Conformer block.

Figure 7.1: Modified Conformer block as in [Liu+21].

LibriTTS and similarly large multi-speaker datasets coming from heteroge-
neous sources usually present very different recording/acoustic conditions among
speakers (microphone and recording settings, room reverberations, etc). Al-
though this certainly helps generalization in classification tasks such as ASR,
it poses additional challenges for building good performing TTS models. In
the transfer learning configuration, the speaker encoder is built to be robust
against different acoustic conditions, where it is common to perform data aug-
mentation by adding different types of noises (e.g. background music, rever-
berations, Gaussian noise, etc.) to the original utterances. Thus, ideally, the
resulting speaker embeddings should not account for the acoustic environment
information. Without explicit modeling of the acoustic conditions, the TTS is
forced to jointly model speaker and acoustic information, which can result in
suboptimal performance.
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To model variability in acoustic conditions, a Variational Auto-Encoder [KW14]
(VAE) reference encoder similar to [Zha+19b] is introduced, which constructs
a relationship between unobserved continuous random latent variables z and
observed dataset x. The VAE encodes a reference audio into a fixed-length
short vector (reference embedding) of latent representation by introducing a
recognition model qφ(z|x) as an approximation to the intractable posterior
pθ(z|x). The reader is referred to [Zha+19b] for further details. This ref-
erence embedding is broadcast-concatenated to the encoder hidden states to
condition the spectrogram reconstruction on latent representations z extracted
from the reference audio. However, different from similar works on unsuper-
vised style modeling in TTS [Wan+18c; Zha+19b], we propose to limit the
reference encoder input to a reduced fixed-length random segment from each
training utterance (e.g. 1 second) to prevent it from modeling other long-term
speech attributes such as speaking style or prosody. During inference, a fixed
reference embedding obtained empirically (e.g. feeding a high quality clean
recording to the reference encoder) is used.

Figure 7.2 depicts the overall model architecture. The Conformer encoder
and decoder modules consist of 6 Conformer blocks with attention dimension
384 and a kernel size of 1536 for convolutional feed-forward modules. The
speaker encoder network follows the configuration described in Section 7.2.
The variance adaptor modules (duration, pitch and energy predictors) follow
the convolutional architecture in [Ren+21] with 3, 5 and 2 layers, respectively.
The pitch prediction is done similarly as in [Łań20], where frame-wise F0 values
are first converted to the logarithmic domain and averaged over every input
symbol using phoneme durations. Then, predicted (or ground truth) phoneme-
level pitch values are projected to the encoder hidden states (h) dimensionality
by means of a 1-D convolution and added to h.

7.5 Least Squares Generative Adversarial Networks for TTS
acoustic modeling

Even though the introduced VAE framework can help better modeling acoustic
information of speech recordings, preliminary results show predicted spectro-
grams still suffer from oversmoothing, as the comparatively large LibriTTS
dataset size hinders the acoustic model from predicting fine-grained spec-
trogram details using regular `1 or `2 reconstruction losses. This results in
unpleasant noisy and metallic synthetic speech as a consequence of the sig-
nificant mismatch between vocoding training and inference conditions. Al-
though the fine-tuning of the vocoder on the ground truth aligned (GTA)
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Figure 7.2: Conformer (baseline) zero-shot TTS model based on Conformer Encoder/De-
coder blocks (dashed lines correspond to training-only connections).

predicted spectrograms has been shown to reduce this gap and improve audio
quality [She+18; KKB20], non-autoregressive acoustic models cannot leverage
teacher forcing to predict GTA features. This results in a larger mismatch
between predicted (GTA) and ground truth training set spectrograms, partic-
ularly on large datasets such as LibriTTS as a consequence of the improved
generalization, hindering the fine-tuning process.

In the recent years, generative adversarial networks (GANs) [Goo+14] have
shown powerful performance in a wide variety of generative tasks, particularly
in the image domain [Wan+18b; Zha+19a]. GAN-based models have also
been successfully adopted in the speech domain, especially in neural vocoder
models to improve inference speed with respect to their autoregressive coun-
terparts [YSK20; Kum+19; KKB20]. However, although there have been some
prelimiary works on applying GANs for the spectrogram reconstruction task,
this is not yet a widely adopted approach for improving TTS acoustic modeling.
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The authors in [SHP19] propose using GANs to train a separate spectrogram
enhancer model that reconstructs fine-grained details from oversmoothed pre-
dicted spectrograms. A GAN-based end-to-end TTS approach is proposed
in [Biń+20] with relative success, yet showing worse performance in terms
of speech naturalness and audio quality than regular two-stage autoregressive
models. More recently, the authors in [Yan+21] showed slight improvements
on speech naturalness over a baseline FastSpeech2 [Ren+21] non-autoregressive
model by adding a joint conditional and unconditional (JCU) adversarial loss
[Zha+19a] similar to [Yan+20b], where the JCU discriminator is conditioned
on speaker embeddings.

In this work, following [Yan+21], we propose to introduce a spectrogram dis-
criminator to enable adversarial training of the zero-shot multi-speaker Con-
former model described in Section 7.4. However, we propose a novel sim-
plified unconditional discriminator architecture capable of producing artifact-
free realistic spectrograms using a regular frame-wise least-squares adversarial
loss [Mao+17]. The discriminator comprises 2 convolutional layers with 256
5 × 1 filters (i.e. each filter spans 5 frames), followed by batch normaliza-
tion [IS15] and ReLU activations. The output of the last convolutional layer is
passed into a single bi-directional LSTM layer containing 128 units per direc-
tion. Finally, LSTM outputs are linearly projected down to a scalar predicting
the frame-wise least-squares score values.

In Least Squares Generative Adversarial Networks (LSGANs), the generator
(G) and discriminator (D) are generally optimized to minimize the following
losses:

LD(G,D) =
N∑
n=1

1

2
(D(yn)− r)2 +

1

2
(D(G(zn))− f)2 (7.1)

LGadv
(G,D) =

N∑
n=1

(D(G(zn))− r)2 (7.2)

where in this context yn and zn denote, respectively, the target spectrogram
and the generator inputs (text, pitch, energy, etc.) corresponding to sample n;
and r and f are the labels for the real and fake data, which are commonly set
to 1.0 and 0.0.

Figure 7.3 shows the log-scale mel spectrogram of the same LibriTTS test
utterance predicted by the baseline and the LSGAN model compared to ground
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truth. As it can be seen, the adversarially trained model is able to predict
more sharpen and realistic spectrograms that are richer in details compared to
the baseline model, particularly regarding higher frequencies. This results in
overall better audio quality of final audio waveforms, as a consequence of the
reduced gap between training and inference conditions of the neural vocoding
step.

7.6 Experiments

This section describes the zero-shot speaker adaptive models trained for the
speech-to-speech translation of UPV[Media] online learning materials into En-
glish. Both the baseline zero-shot TTS model described in Section 7.4 and
the extended LSGAN model described in Section 7.5 are trained on the full
LibriTTS multi-speaker dataset, comprising a total of 585 hours of read speech
recordings from more than 2400 different speakers.

The training procedure is as follows. First, leading and trailing silence from
all LibriTTS audio recordings is removed. Then, audios are downsampled to
16kHz for acoustic model training, while 24kHz audios are used for training
a vocoder model that generates 24kHz audio conditioned on the predicted
16kHz spectrograms. This design choice is similar to [Liu+21], where the
vocoder generates 48kHz audio from 16kHz spectrograms, which can better
trade off training efficiency, modeling stability and voice quality. Then, 80-bin
log magnitude Mel-scale spectrograms with Hann windowing, 50ms window
length, 12.5ms hop size and 1024 point Fourier transform are extracted from
the 16kHz audio samples. Phoneme sequences are extracted from normalized
text transcriptions using the eSpeak NG2 tool. Frame-wise pitch (F0) values
are estimated using the WORLD [MYO16] vocoder toolkit [MKK09]. To ex-
tract phoneme durations, the forced-aligner autoencoder model described in
Chapter 5 (Section 5.4.3) is trained on the same LibriTTS task.

A pre-trained speaker encoder model trained on a speaker classification task
including LibriTTS, VCTK [VYM17], VoxCeleb [CNZ18] and CommonVoice
[Ard+19] datasets is leveraged for computing speaker embeddings from recorded
utterances [Cas+21]3. The reference encoder follows the same architecture as
[Wan+18c], consisting of six 2-D convolutional layers with consecutive filter
sizes of 32, 32, 64, 64, 128 and 128 followed by batch normalization and ReLU
activations. Then, the output of the last convolutional layer is fed into a GRU

2http://espeak.sourceforge.net
3https://github.com/Edresson/SC-GlowTTS

93

http://espeak.sourceforge.net
https://github.com/Edresson/SC-GlowTTS


Chapter 7. Zero-Shot Speaker Adaptation

(a) Conformer (baseline)

(b) Conformer LSGAN

(c) Ground truth

Figure 7.3: Log-scale mel spectrogram of the same LibriTTS test utterance predicted with
and without adversarial training compared to ground truth.
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layer with a hidden size of 128 units. The last hidden state of the GRU, which
denotes some 128-dim embedding of the reference audio, is then passed through
two separate 32-dim fully connected layers with linear activation to generate
the mean and standard deviation of latent variables.

The baseline model is optimized to minimize a combination of the `1 loss and
the SSIM (Structural SIMilarity index measure) [Wan+04] between reference
and predicted spectrograms. Additionally, auxiliar `1 losses are used also for
the duration, pitch and energy variance prediction modules between reference
and predicted values. An auxiliar `1 loss between standard deviation values of
target and predicted pitch contours (F0 values) is used to encourage the pitch
predictor produce less flattened prosody as the result of training on a huge
variety of speakers. Finally, a Kullback-Leibler (KL) divergence regularization
term is included to account for the VAE framework as in [Zha+19b].

The GAN model extends the baseline model including the adversarial LSGAN
discriminator loss described in Section 7.5 after 500K steps with weight λadv =
0.1 for 500K additional steps. The discriminator learning rate is set to 0.0001.

A 24kHz 4-band UnivNet vocoder [Jan+21; Yan+20a] is trained on the Lib-
riTTS recordings to reconstruct the final waveforms conditioned on the 16kHz
predicted spectrograms. UnivNet is a recent GAN-based vocoder that has been
shown to produce high quality speech of comparable quality to best performing
GAN vocoders (HiFi-GAN) while bringing improved inference speed (∼ 1.5×).
The model is trained with a batch size of 64 distributed along 4 GPUs for 1M
steps.

7.7 Evaluation

To evaluate the performance of the proposed zero-shot multi-speaker systems
in cross-lingual settings, a subjective evaluation is carried out to assess different
aspects of the resulting synthetic speech. To that end, a number of recordings
from the DeX-TTS dataset introduced in Section 4.3 is used as a test set.
Since models are trained on the LibriTTS dataset, all test samples correspond
to unseen speakers. A total of 20 (10 female and 10 male) speakers from DeX-
TTS having recorded samples both in English and either Spanish or Catalan
are chosen at random. For each of them, a total of 10 recorded utterances
in the source language (either Spanish or Catalan) are randomly selected and
used to compute speaker embeddings, accounting for 58 seconds of speech
in average per speaker. Additionally, 10 English utterances per speaker are
chosen at random among the DeX-TTS recordings, accounting for a total of
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200 ground truth samples. Finally, the text corresponding to the selected
ground truth utterances is used to generate the synthetic test samples from
each model. For completeness, 50 random ground truth recordings from the
LibriTTS test-clean set are also included in the naturalness test as a native
reference, as DeX-TTS recordings are performed by Spanish/Catalan speakers
with different proficiency levels of the English language.

A total of 10 participants with high proficiency of the English language partic-
ipated in the subjective listening tests. The subjective evaluation consisted in
evaluating, on the one hand, the resulting speech naturalness of the synthetic
and ground truth utterances and, on the other hand, the speaker similarity be-
tween human (ground truth) and synthetic recordings from the same speaker in
five-point (star) opinion scales. Additionally, an ABX preference test between
baseline and LSGAN models is performed.

For naturalness evaluation, participants listened to synthetic and ground truth
utterances at random, accompanied by their corresponding texts, and rated
speech naturalness from 1 to 5. Table 7.2 shows the naturalness MOS with
95% confidence intervals for both synthetic and control samples, as well as the
number of evaluated samples for each case.

Table 7.2: Naturalness MOS with 95% confidence intervals.

Naturalness MOS Evaluated
Conformer (baseline) 2.8± 0.06 1291
Conformer LSGAN 4.1± 0.05 1261
Ground truth (DeX-TTS) 4.9± 0.04 387
Ground truth (LibriTTS) 4.9± 0.05 306

As can be seen in Table 7.2, the LSGAN model clearly outperforms the baseline
Conformer model in terms of speech naturalness. However, we believe the
prosody modeling performance of both models (i.e. intensity, vocal pitch,
rhythm) is very similar, while the audio quality obtained by the LSGAN model
is significantly better due to its ability to reduce the gap between vocoder train
and inference conditions.

Another important aspect of the zero-shot multi-speaker models is their ability
to mimick or produce speech in the voice of any (unseen) speaker given a short
reference audio (usually comprising no more than a few seconds). In order to
assess this particular aspect, speaker similarity between original recordings
and synthetic samples from the same speaker is evaluated. Speaker similarity
is an ill-defined similarity measure depending on diverse perceptual speaker
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features such as rate, tone, texture or intonation. In the speaker similarity test,
participants listen both to an original recording and a synthetic utterance from
the same speaker and rate the speaker similarity in a five-point opinion scale.
Table 7.3 shows the speaker similarity MOS with 95% confidence intervals
for both baseline and LSGAN utterances, as well as the number of evaluated
samples.

Table 7.3: Speaker similarity MOS with 95% confidence intervals.

Speaker similarity MOS Evaluated
Conformer (baseline) 2.3± 0.06 997
Conformer LSGAN 3.0± 0.06 1008

Although the LSGAN model obtained significantly better results in terms of
cross-lingual voice cloning capabilities when compared to the baseline model,
the performance obtained by both models still leaves room for improvement.

Finally, in the ABX preference test participants were shown 200 pairs of syn-
thetic samples, corresponding to the same utterance synthesized by each model,
and were asked for their overall preference among the two. Table 7.4 shows
the ABX preference test results. As it could be expected from the natural-
ness results previously shown in Table 7.2, there is a strong preference for the
LSGAN synthetic utterances over the baseline ones.

Table 7.4: ABX preference test results.

ABX (%)
Conformer (baseline) No preference Conformer LSGAN

5.1 23.4 71.5

7.8 Integration into UPV[Media] transcription and
translation pipeline

As it has been previously mentioned, UPV[Media] makes use of state-of-the-art
ASR and MT systems to generate automatic multilingual subtitles of its online
educational resources in different languages (see Section 4.2 for more details).
The transLectures-UPV Platform (TLP) is used for this purpose [Sil+13b;
Pér+15a]. TLP is an open source set of software tools that allows for the in-
tegration of automated and assisted transcription and translation technologies
into media repositories. In brief, all UPV[Media] contents are automatically
ingested into the TLP platform, which is responsible for generating accurate
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multilingual subtitles by means of pretrained ASR and MT systems [del+14;
Baq+22]. It also provides a web interface for post-editing the automatic tran-
scriptions and translations.

To enable the speech-to-speech translation of UPV[Media] contents into En-
glish, the zero-shot Conformer LSGAN model described in previous sections is
integrated into the existing TLP ASR+MT pipeline. This allows for the gen-
eration of separate (synthetic) audio tracks for all contents including English
subtitles (either automatic or reviewed). Users can then select the alternate
audio tracks when convinient.

Figure 7.4 depicts the full speech-to-speech translation pipeline. To enhance
the performance of the zero-shot TTS model in this context, music, rever-
berations, ambient sounds and other non-speech events are removed from the
original audio tracks before extracting speaker embeddings, which brings im-
proved performance both in terms of resulting synthetic speech and speaker
adaptation quality. To that end, the open-source speech enhancement library
Asteroid [Par+20] is used along with an existing pretrained speech enhance-
ment model4. In this process, the residual audio resulting of substracting the
recovered clean speech from the original audio (music, ambient sounds, etc.)
is mixed with the synthesized speech for better user experience.

Figure 7.4: TLP speech-to-speech translation pipeline.

4https://huggingface.co/JorisCos/DPRNNTasNet-ks2_Libri1Mix_enhsingle_16k
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7.9 Conclusions

In this chapter we have addressed the zero-shot adaptation of TTS models to
new (unseen) speakers in cross-lingual settings. We have shown how an speaker
encoder network trained on a speaker classification task can be leveraged to
extract speaker information from reference utterances in a transfer learning
configuration. We have proposed a zero-shot TTS model architecture based
on Conformer blocks and the VAE framework, capable of achieving remarkably
good performance both in terms of resulting speech naturalness and speaker
similarity. Additionally, we have proposed a novel spectrogram discriminator
architecture that has been proven to be very successful, allowing for the gener-
ation of fine-grained realistic spectrograms, and alleviating the oversmoothing
issues commonly present in the spectrogram reconstruction task. This resulted
in improved overall audio quality and higher naturalness MOS with respect to
the baseline model.

The subjective evaluation results endorse the satisfactory performance of the
proposed zero-shot model configuration. The Conformer LSGAN model de-
scribed in this chapter has been successfully integrated in the UPV[Media]
production environment, allowing for the speech-to-speech translation (pro-
vided of existing good performing ASR and MT systems) of online teaching
materials into English while keeping reasonably similar speaker voice charac-
teristics.
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Chapter 8

Conclusions and future work

8.1 Scientific and technological achievements

In this section, we discuss the achievement of the scientific and technological
goals formulated in Section 1.2. The underlying goal of this thesis has been to
enhance the performance and widen the applicability of modern neural TTS
systems in real-life settings, both in offline and streaming conditions, in the
context of the speech-to-speech translation task.

The first scientific goal of this thesis has been covered in Chapter 3, where
state-of-the-art neural TTS architectures have been adapted to multilingual
and multi-speaker settings, paying particular attention to cross-lingual voice
cloning capabilities. In Chapter 4, the performance of the proposed system
has been assessed in the context of its applicability in online learning, where
47 UPV lecturers endorsed the application of this technology for video lecture
dubbing.

In regards with the second goal, in Chapter 5 we have proposed a novel non-
attentive neural TTS architecture for improved inference robustness, efficiency
and controllability. This model has been assessed by participating in the Bliz-
zard Challenge 2021, where it achieved very satisfactory results in terms of
speech naturalness and intelligibility, only outperformed by one out of 12 par-
ticipating teams.

As for the third goal, in Chapter 6 we have assessed the performance of an
incremental TTS system with cross-lingual voice cloning capabilities in the
context of a simultaneous S2S cascaded system, where we analyzed the degra-
dation caused by limiting both past and future context in terms of speech
naturalness.
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The fourth goal regarding the zero-shot adaptation of neural TTS models to
new speakers has been addressed in Chapter 7. We have shown how a speaker
encoder trained on a speaker classification task can be leveraged in a transfer
learning configuration to condition the TTS model on the extracted speaker
information from reference utterances. We have proposed a GAN model us-
ing a novel spectrogram discriminator architecture that has been proven to
signficantly outperform a strong Conformer-based baseline in terms of speech
naturalness and audio quality.

Finally, the last goal pursued in this thesis has been achieved with the success-
ful integration of the resulting zero-shot models introduced in Chapter 7 into
UPV[Media]’s production pipeline to enable the speech-to-speech translation
of video lecture materials into English.

8.2 Publications

Most of the work of this thesis has directly yielded articles in international
workshops, conferences and journals. In this section we enumerate these con-
tributions to the scientific community, highlighting their relationship with the
chapters of this thesis.

The modifications proposed to the original Tacotron 2 architecture to enable
cross-lingual voice cloning capabilities along with its assessment in a higher
education environment presented in Chapters 3 and 4 resulted in a publication
in an international journal:

• Pérez-González-de-Martos, A., Díaz-Munío, G. G., Giménez, A., Silvestre-
Cerdà, J. A., Sanchis, A., Civera, J., Jiménez, M., Turró, C. & Juan, A.
(2021). Towards cross-lingual voice cloning in higher education. Engi-
neering Applications of Artificial Intelligence, 105, 104413.

The robust, efficient and controllable TTS system proposed in Chapter 5 par-
ticipated in the Blizzard Challenge 2021, achieving excellent results in terms
of speech naturalness and intelligibility:

• Pérez-González-de-Martos, A., Sanchis, A., & Juan, A. (2021). VRAIN-
UPV MLLP’s system for the Blizzard Challenge 2021. arXiv preprint
arXiv:2110.15792.

The cascaded approach to simultaneous S2S based on state-of-the-art stream-
ing ASR, simultaneous MT and incremental TTS components presented in
Chapter 6 resulted in a publication in an international conference:
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• Pérez-González-de-Martos, A., Iranzo-Sánchez, J., Pastor, A. G., Jorge,
J., Silvestre-Cerdà, J. A., Civera, J., Sanchis, A. & Juan, A. (2021).
Towards Simultaneous Machine Interpretation. Proc. Interspeech 2021,
2277-2281.

Finally, needless to say that other publications not direcly related with the
main topic of this thesis have been produced in collaboration:

• Baquero-Arnal, P.; Jorge, J.; Giménez, A.; Iranzo-Sánchez, J.; Pérez,
A.; Garcés Díaz-Munío, G.V.; Silvestre-Cerdà, J.A.; Civera, J.; San-
chis, A.; Juan, A. (2022). MLLP-VRAIN Spanish ASR Systems for the
Albayzín-RTVE 2020 Speech-to-Text Challenge: Extension. Applied Sci-
ences. 2022, 12, 804.

• Garcés Díaz-Munío, Gonçal V; Silvestre-Cerdà, Joan Albert ; Jorge,
Javier; Giménez, Adrià; Iranzo-Sánchez, Javier; Baquero-Arnal, Pau;
Roselló, Nahuel; Pérez-González-de-Martos, Alejandro; Civera, Jorge;
Sanchis, Albert; Juan, Alfons. (2021). Europarl-ASR: A Large Corpus
of Parliamentary Debates for Streaming ASR Benchmarking and Speech
Data Filtering/Verbatimization. Proc. Interspeech 2021, pp. 3695–3699,
Brno (Czech Republic), 2021.

• Jorge, Javier; Giménez, Adrià; Baquero-Arnal, Pau; Iranzo Sánchez,
Javier; Pérez-González-de-Martos, Alejandro; Garcés Díaz-Munío, Gonçal
V; Silvestre Cerdà, Joan Albert; Civera, Jorge; Sanchis, Albert; Juan,
Alfons. (2021). MLLP-VRAIN Spanish ASR Systems for the Albayzin-
RTVE 2020 Speech-To-Text Challenge. Proc. of IberSPEECH 2021, pp.
118–122, Valladolid (Spain), 2021.

• Piqueras, Santiago; Pérez-González-de-Martos, Alejandro; Turró Ribalta,
Carlos; Jiménez, Manuel; Sanchis, Albert; Civera, Jorge; Juan, Alfons.
(2021). Hacia la traducción integral de vídeo charlas educativas. In Proc.
of In-Red 2017 - III Congreso Nacional de Innovación Educativa y Do-
cencia en Red, Valencia (Spain), 2017.

• Pérez González de Martos, A., Silvestre Cerdà, J. A., Rihtar, M., Juan
Císcar, A., & Civera Saiz, J. (2014, November). Using automatic speech
transcriptions in lecture recommendation systems. In Conference Pro-
ceedings iberSPEECH 2014: VIII Jornadas en Tecnologías del Habla and
IV SLTech Workshop (pp. 149-158). Universidad de Las Palmas de Gran
Canaria.
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• J. D. Valor Miró, R. N. Spencer, A. Pérez González de Martos, G. Garcés
Díaz-Munío, C. Turró, J. Civera, and A. Juan. Evaluating intelligent in-
terfaces for post-editing automatic transcriptions of online video lectures.
Open Learning: The Journal of Open, Distance and e-Learning, vol. 29,
iss. 1, pp. 72-85, 2014.

• J. D. Valor Miró, R. N. Spencer, A. Pérez González de Martos, G. Garcés
Díaz-Munío, C. Turró, J. Civera, and A. Juan. Evaluación del proceso de
revisión de transcripciones automáticas para vídeos poliMedia. In Proc. of
I Jornadas de Innovación Educativa y Docencia en Red (IN-RED 2014),
Valencia (Spain), 2014.

• J.A. Silvestre-Cerdà, A. Pérez-González-de-Martos, C. Turró. A System
Architecture to Support Cost-Effective Transcription and Translation of
Large Video Lecture Repositories. IEEE SMC 2013 Conference, October
2013, Manchester (England).

8.3 Future work

This work was focused on enhancing and adapting neural TTS technologies
to the context of speech-to-speech translation, both in offline and streaming
(real-time) settings. Some open research topics in the TTS field such as cross-
lingual voice cloning, incremental TTS or zero-shot speaker adaptation have
been addressed with relative success. However, these still remain a challenge
in the field and future improvements are to be expected in the next years by
using more powerful models and algorithms.

As future work, we intend to keep improving the performance of neural TTS
models both in terms of naturalness and efficiency, focusing on their applica-
bility in online teaching and education with the main objective of improving
the accessibility and engagement both in live and offline environments. We
will also explore the application of these technologies in the media industry
(e.g. voiceover or automatic dubbing), where automatic speech recognition
and machine translation are already rapidly becoming standardized tools to
help professional translators in the subtitling process.
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