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Abstract
More than 10 years of research related to the development of efficient GPU routines for the sparse matrix-vector product
(SpMV) have led to several realizations, each with its own strengths and weaknesses. In this work, we review some of the
most relevant efforts on the subject, evaluate a few prominent routines that are publicly available using more than 3000
matrices from different applications, and apply machine learning techniques to anticipate which SpMV realization will
perform best for each sparse matrix on a given parallel platform. Our numerical experiments confirm the methods offer
such varied behaviors depending on the matrix structure that the identification of general rules to select the optimal
method for a given matrix becomes extremely difficult, though some useful strategies (heuristics) can be defined. Using a
machine learning approach, we show that it is possible to obtain unexpensive classifiers that predict the best method for
a given sparse matrix with over 80% accuracy, demonstrating that this approach can deliver important reductions in both
execution time and energy consumption.
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1. Introduction

The sparse matrix-vector product (SpMV) is one of the

most distinctive examples of sparse linear algebra opera-

tions. Among other reasons, its parallel performance is

considered to be representative for that of almost every

relevant sparse kernel, and the challenges that its paralle-

lization presents are common to many other sparse matrix

computations. Moreover, the SpMV is the most important

building block in several sparse numerical methods, such as

Krylov subspace methods for the solution of systems of

linear equations (Davis, 2006).

With the disruptive evolution of the computational

power offered by graphics processing units (GPUs), and

their adoption by the high performance computing (HPC)

community, it is crucial to design algorithms that make the

most of these devices. This has motivated considerable

research on developing efficient GPU routines for the

SpMV in the last decade. Nowadays, there exist several

routines that follow different strategies. Unfortunately,

many of these realizations render extremely high perfor-

mance for some particular sparse matrices but considerably

lower for others. The main reason is that the specific pat-

tern of nonzeros in the sparse matrix has a strong impact on

the sequence of memory accesses, and therefore the

relation between the matrix characteristics and the perfor-

mance of sparse computational methods is not as straight-

forward as in the dense case. In consequence, anticipating

which routine will work best for a certain sparse matrix is a

research topic on its own, especially in massively parallel

devices, where different nonzero patterns can imply radi-

cally different speeds and attainable parallelism.

This yet increasing plethora of SpMV routines and

sparse storage formats motivates the periodic revision of

the state-of-the-art, and the experimental evaluation of the

available methods. However, this type of evaluation in

general occurs when a new algorithm and/or sparse storage

format is introduced, and it is often performed using a small

collection of sparse matrices, against a small set of third-

party routines. Furthermore, the experimental evaluation is
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2 Depto. de Informática de Sistemas y Computadores, Universitat
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usually conducted from the point of view of the execution

time exclusively, without considering other costs such as

the energy consumption. In this sense, the current concern

about the energy consumption of data centers makes it

important to take into account the energy efficiency of the

software. In Anzt et al. (2017), the authors make a relevant

effort in this line, though that work is not dedicated exclu-

sively to the SpMV.

In addition to providing a comprehensive evaluation for

the characterization of the performance of each SpMV var-

iant, it is also interesting to explore mechanisms that allow

to automatically select the best SpMV realization for the

execution of each matrix on a given platform. Some efforts

in this line include Yeom et al. (2016), where the authors

use a machine learning model to select the best precondi-

tioner–solver pair in the context of iterative methods for the

solution of sparse linear systems. Also, in Dufrechou et al.

(2019) we evaluate black-box machine learning classifiers

to select the best GPU triangular linear system solver.

Considering these reasons, in this paper we review the

state-of-the-art in SpMV implementations for GPUs, and

experimentally evaluate the most important routines pub-

licly available using a very large collection of matrices

from different source applications. In addition, we study

the application of machine learning techniques to select the

best method according to the matrix characteristics. Partic-

ularly, we study and compare different methods taking into

account the runtime or the energy consumption as selection

criteria. The empirical evaluation of our proposal provides

strong evidence that it is possible to obtain classifications

with almost 90% of accuracy. These results constitute a

significant step toward the automatic selection of the best

(massively-)parallel routine for any given sparse matrix,

which can lead to important runtime and energy consump-

tion savings for many scientific applications.

The rest of the paper is structured as follows. In Section

2 we review the main aspects of the GPU implementations

of the SpMV kernel, offering a brief review of related work

in this field. Section 3 presents the methodology followed

in our study of the automatic method selection, detailing

the matrix features selected for the machine learning tech-

niques. Later, in Section 4, we describe our experimental

evaluation and highlight the most important results.

Finally, Section 5 offers several concluding remarks and

summarizes a few lines of future work.

2. Efficient Realizations of SpMV for GPUs

Given a sparse m� n matrix A and a dense vector x with n

components, the SpMV computes the result vector y, of size

m, so that yi ¼
Pn

j¼1aijxj, i ¼ 1; 2; . . . ;m, where xj, yi are

the j-th and i-th components of x; y, respectively, and aij

denotes the ði; jÞ entry of the matrix A. These products can

be computed in any order (or in parallel), taking proper care

of race conditions that can occur when accumulating partial

results to the solution y. A high level realization of this

operation, using the Compressed Sparse Rows (CSR) stor-

age format (Barrett et al., 1994), is presented in Algorithm 1.

A relevant challenge on GPUs, from the performance

point of view, is that the memory-bound nature of the

SpMV causes the computational units to spend most of

the time waiting for data. Additionally, the distribution of

the work among the computational units is a major issue in

this sort of massively parallel architectures. In this sense,

two strategies have been explored: The first one, and per-

haps the most straightforward, is to assign different rows of

the sparse matrix (or columns depending on the chosen

sparse storage format) to different computational units.

This strategy has the advantage of being rather simple

while effectively avoiding the race conditions that can ori-

ginate when several computational units accumulate their

partial results to the same entry of the output vector. How-

ever, as the number of nonzeros of distinct rows can vary

significantly, this first option can also lead to major load

imbalance problems. This problem is addressed by an alter-

native family of methods that distribute the workload (tied

to the nonzero entries of the matrix) more evenly between

computational units. This is done at the expense of intro-

ducing more complex synchronization and communication

mechanisms between computational units.

2.1. State-of-the-art

In Anzt et al. (2017), the authors made a comprehensive

analysis of the performance of sparse kernels on GPUs,

discussing the challenges and strategies to reduce commu-

nications in the context of sparse computations. The

authors of that work state that, even if a 100% efficient

memory access can be achieved, a theoretical SpMV kernel

will only be able to reach about 2.4% of the peak perfor-

mance of a K40 GPU. Despite this fact, the relevance of

SpMV as a building block for a myriad of numerical meth-

ods, and the unstoppable spread of GPUs as components of

HPC platforms, have motivated a tremendous amount of

work on the subject.

Algorithm 1. Serial computation of sparse matrix-vector
multiplication (SpMV) with the sparse matrix A stored in the
CSR format. The vector val stores the nonzero values of A by
rows; row_ptr contains the indexes that specify the first element of
each row in vector val; and col_idx contains the column index of
each element in the original matrix. The nonzero elements within
each row are ordered by column index.

1 Input: row ptr, col idx, val, x
2 Output: y

y = 0
for i = 1 to m do

for j = row ptr[i] to row ptr[i + 1] − 1 do
y[i] = y[i] + val[j] · x[col idx[j]]

end for
end for
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In the early years of GPUs as general-purpose proces-

sors, the works by Bell and Garland (2008, 2009) were two

of the most relevant contributions regarding the use of this

type of accelerators to tackle sparse operations. They intro-

duced two variants of the SpMV for the plain CSR format

(scalar and vector) as well as implementations for the

COO, DIA and ELL formats (Chow et al., 1995), and a

hybrid format (HYB) that splits the sparse matrix in two

partitions, storing the most regular one (in the sense of

number of nonzeros per row) in ELL format and the other

in COO.

The distribution of the workload among computational

units, in both the scalar and vector implementations, is static

and row-based. In the scalar routine, each thread of the GPU

deals with one row, sequentially computing the products that

correspond to that row. This distribution of the workload has

a negative impact on the coalescing of memory accesses of

the GPU and turns the sequential computation of the longest

row into a lower bound for the execution time. The vector

variant addresses these two problems by assigning a warp of

threads to the computation of each row. We offer more

details about this routine later on.

In their experimental analysis, the HYB sparse storage

format was the fastest implementation for the majority of

the tested matrices. The CSR-vector variant follows

closely, showing an excellent performance on matrices

with a large average number of nonzeros per row. In con-

trast, the scalar routine was not competitive in general

with the previous realizations, and only delivers accepta-

ble performance for matrices with few nonzero coeffi-

cients per row.

A number of works followed these efforts, introducing

domain-specific sparse formats and expanding the ecosys-

tem of routines for the implementation of SpMV in GPUs.

Many of these efforts propose strategies to store the sparse

matrix A that aim to reduce the transfers between the cores

and the main memory, leverage the caches and low latency

memories of the different devices, and take advantage of

the structure for some sparse matrices. The results of these

works have led to many successful sparse storage formats,

such as BCSR, HYB, ELLPACK, ELLPACK-R, BELL-

PACK, SELL-P, CSR5, Cocktail, BCOO, BRO, AMB, or

Jad. However, the CSR storage format is ubiquitous for

representing sparse matrix, and the use of more efficient

formats in specific domains frequently implies the conver-

sion from CSR to the new representation. As the overhead

related to this transformation sometimes undermines the

performance gain in the SpMV routine, considerable

research has been devoted to improve the performance of

SpMV for the CSR format. The previous survey does not

nearly include all the methods that have been proposed over

the years. Therefore, in the remainder of this section we

highlight some fairly recent works whose source-code or

executable routines are publicly available on the web.

2.1.1. CSR-vector. In the original version of this method,

presented in Bell and Garland (2009), each matrix row is

processed by a CUDA warp of 32 threads. The routine was

released later as part of CUSP library and, on more recent

versions, a vector is defined as a group of 2, 4, 8, 16, or 32

adjacent threads that are in charge of processing a row.

Using modular arithmetic, each thread obtains its vector-

id and vector-lane-id, which determines which row and

element of that row the thread will process. Once those

indexes are obtained, each thread fetches the coefficients

and indexes from the sparse matrix, multiplies the coeffi-

cients by the appropriate entries of the input vector, and

accumulates the result into a register. If the row has more

elements than the vector size, the threads that correspond to

that vector advance vector_size positions on the row and

repeat the process. Afterward, the accumulated products

are offloaded to shared memory and reduced. Offloading

the results to shared memory could be avoided by using

warp-shuffle operations, but the latest implementation of

the routine found on the library’s GitHub page1 (v 0.5.1)

employs the shared memory to perform this reduction.

The routine is developed as a template, which allows it to

define the size of the vector dynamically when calling the

routine. It is important to note that the performance of this

routine can be sensitive to the vector size and the variations

in the row length. Although a vector size close to 32 exploits

parallelism and coalesced access for long rows, it leaves

many threads idle for short ones, while vector sizes close

to 2 are efficient if many small rows lie together in the

matrix, but imply considerable serial work on long rows.

A logical choice of vector size is the average row length

(number of nonzeros divided by row matrix size, or

nnz=m), and we follow this criteria later on in this work.

2.1.2. bhSparse. Liu and Vinter (2015) developed a SpMV

routine that performs speculative segmented sums on the

GPU, delivering possibly incorrect results. The partial

sums are later re-arranged on the CPU to produce the cor-

rect output vector.

In this method, the distribution of the workload is

nonzero-based, decomposing the nonzero entries of the

input matrix into equally sized tiles that will be managed

by a certain number of threads. In a first stage, a binary-

search is performed to obtain the range of rows spanned by

the tile, and a descriptor of the tile is computed using the

information in the row-pointers vector. The tile is marked

as dirty if it contains empty rows. After this process is

completed, the nonzero coefficients are multiplied by the

input vector, storing the result in scratch-pad memory. A

segmented sum is then performed and the values that cor-

respond to the sum of a row are stored in consecutive

positions of the output vector. As there can be empty rows

(a dirty tile), the positions in which these partial sums are

stored may be incorrect. In this case, a CPU procedure is

then launched to correct the output vector layout in the

positions that correspond to dirty tiles. To communicate

the output values and the information to correct the wrong

speculative results between the CPU and the GPU, the
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authors use the GPU Shared Virtual Memory space (or

Unified Memory, as it is known in CUDA).

2.1.3. CSR-Adaptive. This procedure, proposed by Great-

house and Daga (2014), handles sets of rows with few

nonzeros per row by a special algorithm called CSR-

Stream, while rows with many nonzeros per row are pro-

cessed by the CSR-Vector algorithm. In the CSR-Stream

stream algorithm, each thread block processes one of the

sets. The threads operating on one block first make a coa-

lesced load of the nonzeros of the corresponding set to the

shared memory, with each thread loading one nonzero mul-

tiplied by the corresponding entry of the input vector. In a

second stage, each thread reduces one of the rows in the set

sequentially (as in CSR-Scalar algorithm).

CSR-adaptive implies a CPU pre-processing stage that

aggregates contiguous rows until the set exceeds a certain

block size. The sets are delimited by array of pointers that

point to the start and end of each set of rows in the CSR

structure.

2.1.4. Light-SpMV. This method aims to mitigate the load-

unbalancing that CSR-Vector suffers by providing a

dynamic mechanism to distribute the rows among the

vectors. As in the current implementation of CSR-Vector,

the Light-SpMV method in Liu and Schmidt (2015, 2018)

divides the warp into sections of a fixed number of lanes.

Each of these sections or vectors is in charge of computing

one row. The vector size is adjusted at launch-time

depending on the average nnz per row. The procedure is

as follows:

1. Lane 0 of each warp requests a row index to a global

data structure using an atomicAdd operation.

2. The retrieved row index is broadcast to other lanes

using warp-shuffle operations. Each vector com-

putes its corresponding row by adding the vector

index to the row index obtained by lane 0.

3. While there are still entries to be processed by the

warp, each vector loads, multiplies and reduces the

corresponding entries, similar to the previously

described CSR-Vector variant.

2.1.5. Perfect-CSR. PCSR (Gao et al., 2016) consists of two

main stages. The first stage launches as many blocks as

the number of nonzero entries divided by the block dimen-

sions (i.e., one thread per nonzero entry). Each thread will

load the corresponding nonzero, multiply it by the entry of

the input vector and store it in a temporary array in global

memory.

The second stage launches as many blocks as the number

of rows divided by the block dimensions (i.e., one thread per

row). The first step of this second stage is to assemble the

section of the CSR row-pointers array that corresponds to

that block into the shared memory. Then, each thread loads a

number of entries of the temporary array computed in the

first stage into the shared memory of each thread block.

Using both arrays, each thread reduces one row sequentially

writing the output to global memory.

The same authors later proposed an improved variant of

this procedure in Gao et al. (2017), which merges the pro-

cess in a unique kernel that avoids the unnecessary storage

and subsequent load of the temporary vector.

2.1.6. Merge-based SpMV. The main idea behind (Dalton

et al., 2015) merge-path-based SpMV is to divide the work-

load evenly among all threads, regardless of the character-

istics of the sparse matrix. This means that the performance

of this SpMV variant is intended to scale with nnz, inde-

pendently of the presence of long and short rows and other

particularities of the sparsity pattern.

Applied to SpMV, the merge-path is the set of products

between an entry of the sparse matrix and an entry of the

input vector. These products are theoretically ordered row-

wise, and can be regarded as the result of merging the row

indexes with the natural numbers from 1 to nnz. As there

are no data dependencies between these products, any sec-

tion of the merge path can be computed concurrently with

any other.

Given the start and end of its section of the merge

path, which is dictated by the thread id, each thread first

calculates the starting and ending row and nonzero that

it has to process. This is done using local binary searches,

which are restricted by the size of the section of the

merge path that the thread has to process. Once these

coordinates are obtained, the thread advances accumulat-

ing the multiplication of the nonzeros of its corresponding

rows by the elements of the input vector. Every time a

complete row is traversed, the thread stores the accumu-

lated value in the output vector and resets the accumulated

value to 0. If a row spans more than one section of the

merge path, the threads assigned to those sections store a

partial value, which is then reduced by a reduce-by-key

procedure.

2.1.7. MAGMA-Sparse SpMV. MAGMA (Anzt et al., 2014a;

Yamazaki et al., 2014) is an open-source project developed

by Innovative Computing Laboratory (ICL), at the Univer-

sity of Tennessee, Knoxville, USA, that includes a collec-

tion of state-of-the-art GPU accelerated routines for linear

algebra, designed to exploit heterogeneous CPU-GPU

architectures, providing an interface similar to that of stan-

dard libraries like LAPACK and BLAS.2

In addition to the extensive collection of dense linear

algebra kernels, MAGMA includes a package to handle

sparse computations. The package supports sparse matrix

formats such as CSR and ELLPACK, SELL-P and CSR5,

and provides a comprehensive set of iterative linear solvers,

eigensolvers, and preconditioners. MAGMA uses cuSparse

for the SpMV in CSR format (version 2.5.2 uses the row-

based implementation) while it implements its own GPU

kernels for ELLPACK, SELL-P and CSR5.
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2.2. Automatic tuning and performance models for
the SpMV in GPUs

Several authors have worked on modeling the performance

of the SpMV on hardware accelerators considering differ-

ent sparse formats, often producing automatically tuned

routines that can adjust to the characteristics of the sparse

matrix and the target GPU. For example Monakov et al.

(2010) proposed a new storage format, Sliced-ELLPACK,

and provided a mechanism to automatically select the slice

size, the thread block, and a parameter related to the reor-

dering of rows. In Choi et al. (2010), the authors derived a

performance model to automatically tune parameters such

as the block size in the blocked ELLPACK format. Later,

Yoshizawa and Takahashi (2012) enhanced Bell and Gar-

land’s vector variant by automatically selecting the vector

size, claiming a 26% overall performance improvement.

Xu et al. (2013) also approached the time modeling of the

ELLPACK SpMV, but leveraged this to analyze the per-

formance of the kernel, proposing two optimizations, one

that consisted on disabling the caching of the coefficient

matrix to leave more cache for the input vector, and the

second aimed to reduce the memory bandwidth consump-

tion using the Reverse Cuthill-McKee heuristic (Cuthill

and McKee, 1969), diminishing also the range of integers

required to store the column indexes of the matrix and

enabling the use of a smaller integer representation.

An additional field of interest is the automatic selection

between sparse matrix representation and SpMV routine. In

Guo et al. (2014), the authors tackle this problem by devel-

oping a model of the execution time of the CSR, COO,

ELL, and HYB kernels. Using this model, they later apply

dynamic programming to determine whether, for a certain

matrix, higher performance can be attained by partitioning

the matrix into several blocks of rows, each stored with a

different sparse storage layout. A similar effort is found in

Li et al. (2015), where the Probability Mass Function is

used to estimate the performance of the SpMV kernel with

the CSR, COO, ELL, and HYB matrix formats. The devel-

oped model takes the hardware characteristics into account.

However, the experimental evaluation is performed using

only one hardware platform and the experimental results

are expressed as relative values (i.e. speedups) which off-

sets the hardware effects. Later, Guo and Lee (2016) pres-

ent a similar approach in their framework for SpMV

performance on GPUs.

Elafrou et al. (2015) present a radically different strat-

egy. They start by identifying and defining several cate-

gories of problems according to their performance

bottlenecks. Later, the work offers both an heuristic method

and a machine learning classifier. Finally, specific optimi-

zations are applied.

Other interesting efforts related with this topic are the

article by Williams et al. (2007) where the authors study

some optimization techniques for the SpMV kernel over

several hardware platforms; the proposal by Erguiz et al.

(2017) with advances over the automatic selection of

different sparse triangular linear solvers on GPU; and the

work by Barreda et al. (2020) which offers a performance

modeling of the SpMV kernel via convolutional neural net-

works with ARM as the target hardware platform.

In general, the reviewed works (especially Guo and Lee,

2016; Guo et al., 2014, Li et al., 2015; ) focus on predicting

the performance of SpMV with different storage formats,

such as COO, CSR, ELL and HYB formats, to then select

the best storage layout for each matrix or adjust some algo-

rithmic parameters. In contrast, our work studies several

fine-tuned implementations for CSR (and others formats),

and the performance improvements that can be obtained by

selecting the right implementation for each matrix. A

machine learning classifier is then used to make such deci-

sion automatically, considering both execution time and

energy consumption. Additionally, our proposal is trans-

parent to the target hardware platform.

3. Automatic method selection

The purpose of this work is twofold. On the one hand, we

are interested in analyzing the performance of some of the

most relevant GPU routines for SpMV (that employ the

CSR storage format), and study which method is the best

according to the characteristics of the sparse matrices. On

the other hand, we intend to advance in the development of

a tool that can a priori estimate which SpMV realization

will deliver the best performance.

In this work, we use a supervised machine learning

technique for the task. Unlike previous efforts reviewed

in Section 2.1, we do not attempt to estimate neither the

execution time nor the energy consumption of the routines.

Instead, we train the machine learning model with a num-

ber of selected features of the sparse matrix as predictors,

and the routine that obtains the best execution time/energy

consumption as the response.

In Dufrechou et al. (2019), we evaluated different clas-

sifiers from the Classification Learner App of Matlab®

when dealing with routines for the solution of sparse trian-

gular systems. The results of that work favored the Bagged

Trees Classifier (Breiman, 1996), which offered accurate

predictions at an acceptable speed. We can expect similar

results regarding the SpMV kernel, and therefore we eval-

uate our proposal using the same classifier.

To select the features of the sparse matrices that will

serve as predictors, we consider their relation with different

parameters of the target methods, such as the number of

computational units, the size of the workload, data locality,

etc. As a starting point, we analyzed the following nine

features related with the parallel performance of the SpMV:

� Number of rows (m): In an important number of

SpMV methods, the number of rows is deeply linked

with the distribution of the workload. For example,

cusp_vect assigns one warp to each row.

� Number of columns (n): As the storage format is

CSR, the number of columns is not directly related
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with the behavior of the different variants. However,

it can be related indirectly with the consumption of

auxiliary memory or the length of rows and the data

locality.

� Aspect ratio (m=n): Short and wide matrices can

present a strong variation in row lengths which can

cause load imbalance issues among threads or warps.

Works such as Bell and Garland (2008) and Dalton

et al. (2015) have observed that the performance of

certain kernels is strongly sensitive to this factor.

� Number of nonzeros (nnz): The number of nonzeros

is a fair estimation of the amount of work to be

performed, since at least a multiplication and an

addition are necessary for each nonzero.

� Maximum number of nonzeros per row (nnzmax):

The presence of rows much longer than the average

can be an important performance problem for kernels

that organize the workload row-wise.

� Minimum number of nonzeros per row (nnzmin):

This feature does not seem determinant, but we

include it for completeness.

� Average number of nonzeros per row (nnzavg): In

kernels that organize the workload row-wise, this

feature estimates the average workload per computa-

tional unit.

� Standard deviation of nonzeros per row (nnzstd):

Together with nnzmax and nnzavg, this feature aims to

estimate the load imbalance between computational

units during the execution of the method.

� Average bandwidth (bwavg): The bandwidth of each

row is the region of the input vector that will be

processed by the rows. Therefore, the average band-

width can be related to data locality.

It is important to remark that some of these features are

more difficult to compute than others. While m, n, m=n, nnz

and nnzavg can be obtained in Oð1Þ from the matrix data

structure, computing nnzmin=max, nnzstd and bwavg have a

cost OðnÞ. Therefore, it is interesting to evaluate the per-

formance of the models trained only with the features that

are inexpensive to extract.

4. Experimental evaluation

This section describes the numerical evaluation of the

selected SpMV routines for the CSR format, and the experi-

ments conducted to assess the performance of the

supervised-learning classifiers on the automatic method

selection.

Additionally we include a preliminary study to evaluate

the application of our procedure when considering other

sparse matrix formats.

4.1. Hardware platform

The results were obtained in two different hardware

platforms:

� A server with an Intel(R) Core(TM) i7-4770 CPU at

3.40 GHz and 160 GiB of RAM connected to an

NVIDIAL GeForce GTX 1080Ti GPU with 11 GiB of

RAM. The operating system is CentOS Linux 7 (Core)

and the CUDA Toolkit for the GPU is version 9.2.

� A server with an Intel(R) Core(TM) i7-7700K CPU

at 4.20 GHz and 64 GiB of RAM connected to an

NVIDIAL GeForce RTX 2080Ti GPU with 11 GiB of

RAM. The operating system is Ubuntu 16.04 and the

CUDA Toolkit for the GPU is version 10.1.

It is necessary to remark that the GPUs employed in the

experiments have relatively low double-precision perfor-

mance. However, as the SpMV is a memory-bound proce-

dure, the performance restriction is diluted in this

computing context. We estimate that the relative per-

formance between the different methods will not change

drastically on a server GPU with full support for double-

precision arithmetic.

For the classification experiments, we used MATLAB
®

2018a.

4.2. Test set

The experimental evaluation was carried out using a dataset

of 3,005 matrices, where 925 are square, 1,060 have more

rows than columns, and 1,020 have more columns than

rows. All the square matrices, and 230 of the non-square

cases were taken from the subset of SuiteSparse Matrix

Collection3 matrices with at least 100,000 nonzero entries.

The remaining 1,850 matrices were generated to expand

our dataset and obtain instances with diverse aspect ratios

(data augmentation). Concretely, for each square matrix in

the original set, we generated two additional matrices: one

removing a random number of columns so the result is

short and wide, and the transpose of this matrix (which is

tall and thin). The aspect ratio (number of rows divided by

the number of columns) of the generated matrices is dis-

tributed uniformly between 0.0003 and 1.

For the energy measurements, we chose to measure only

the GPU energy consumption, as most of the evaluated

methods do their computations entirely on the GPU. We

used the CUDA NVML library to query the GPU for power

measurements. The energy results were taken as the aver-

age power obtained after 1 second of repeatedly executing

each kernel, multiplied by the runtime of the kernel mea-

sured independently. The reason is that the polling thread

that queries the power readings may impact the runtime of

the kernel and, consequently, the total energy consumption.

The runtimes of our experiments were taken as the aver-

age of 100 independent executions, recording also the stan-

dard deviation.

Additionally, we employed IEEE double-precision

floating point representation and arithmetic for all the

experiments.
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4.3. Experimental results

The first step in the empirical evaluation of our proposal is

the execution of all the selected variants of SpMV and a

preliminary assessment of results. Our initial experiment

compares the runtimes of the cuSparse CsrMV routine with

the row-based and merge-path algorithms (which we refer

to as cuS_RB and cuS_merge, respectively); the CUSP

implementation of CSR-Vector (cusp_vect); an implemen-

tation of Liu and Vinter (2015) (bhSparse) published by the

authors in their GitHub repository4; and our own imple-

mentations of Liu and Schmidt (2018) (light), Gao et al.

(2016) (pcsr), and Greathouse and Daga (2014) (adaptive),

based on codes found online.5

Figure 1 plots the runtime of the different variants

against the nnz of the matrix in the two hardware platforms.

Although it can be observed that the runtimes obtained in

the RTX2080Ti GPU are generally lower than those in the

GTX1080Ti, the results show similar tendencies. In gen-

eral, nnz appears to be a good estimator of the total work-

load and hence the runtime of the SpMV regardless of the

variant and platform of choice. Considering the individual

variants, it can be observed that bhSparse performs signif-

icantly worse that the rest of methods in the majority of

cases. Even though it is not the worst variant in all cases, it

is never the best one. For this reason we drop bhSparse

from the subsequent evaluation. Something similar occurs

with pcsr, but its runtimes are not clearly worse than those

of other variants, especially when nnz is not too large. In

addition to the general trend, the figure also shows the

presence of outliers that in many occasions take consider-

ably more runtime than the average for a certain case,

especially for light, pcsr and cuS_RB (leaving out the

bhSparse routine).

Table 1 shows the number of times each method outper-

forms the rest from the points of view of runtime, power

Figure 1. Scatter plots of the runtimes obtained for the execution of all the selected variants of the SpMV on the RTX2080Ti (top) and
the GTX1080Ti (bottom). The plots only show the results for matrices with nnz > 1; 000; 000.
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dissipation and energy consumption, in both computing

platforms. In GTX1080Ti, cusp_vect was the fastest variant

for 48% of the tested matrices, and the most energy effi-

cient for 28%. The power consumption of cusp_vect, how-

ever, is the highest for almost all the evaluated matrices.

These results are followed by cuS_merge, cuS_RB and

light, which together are the fastest for 42% of the matrices

(57% on the RTX2080Ti), and consume the least energy for

50% (58%) of the matrices. In turn, adaptive was the most

energy-efficient variant for 20% of the matrices, though it

is the fastest in only 8% of the cases. Unlike cusp_vect, its

energy efficiency originates in a generally lower power

consumption. This behavior is intensified on the

RTX2080Ti, where it is the fastest variant only in 4% of

the cases and the least power consuming in 45% of the

cases. However, that is not enough to outperform the rest

in energy consumption, being the most energy efficient for

about 10% of the matrices only.

Although cusp_vect outperforms the other variants most

of the times, it is neither the variant that took least total time

nor the one that consumed least energy. In fact, as shown in

Table 2, cuS_merge has a total runtime (to compute the

SpMV operation for all evaluated matrices) of 1.45 s while

cusp_vect took 1.76 s, and the total energy consumption for

cusp_vect, 312.92 kJ, is only exceeded by cuS_RB and pcsr.

Table 3 takes into account the optimal total time and

energy (which is the time or energy required to compute the

entire dataset if the fastest or most energy-efficient variant

is executed for each matrix) and shows the ratio between

aggregated time/energy spent by each method, and the

aggregated time/energy spent by the best one, computed as

RT ¼
X

TmethodX
Tbest

and

RE ¼
X

EmethodX
Ebest

This shows that choosing cuS_merge by default (i.e.,

always) results in only 11% (10% on the RTX2080Ti) more

time and 19% (13%) more energy than choosing the indi-

vidual (matrix-specific) best method.

The remarkable performance showed cuS_merge in

Tables 2 and 3 seems unexpected, considering that cusp_-

vect is the best variant for the majority of cases. The prin-

cipal explanation of this behavior is that cuS_merge

outperforms cusp_vect for the largest matrices. The upper

part of Table 4 shows the percentage of times each method

is the fastest for each quintile of matrices according to the

nnz value, while the lower part shows the value of RT for

the matrices in each quintile. As the general behavior of the

variants on each quintile is similar in the two platforms. we

use the results obtained in the GTX1080Ti GPU for the

following analysis.

According to Table 4, the number of times cuS_merge

is the fastest variant steadily scales with nnz, taking

cusp_vect place. As a consequence, if the first quintile is

Table 1. Number of times that each method is the best form the points of view of runtime, power, and energy consumption.

cusp_vect cuS_RB cuS_merge adaptive light pcsr

GTX1080Ti Time 1448 389 517 262 384 5
Power 1 574 331 661 271 1167
Energy 850 583 394 616 529 32

RTX2080Ti Time 1178 551 671 106 497 2
Power 66 266 5 1338 309 1021
Energy 959 604 641 294 501 6

Table 2. Time and energy spent by each variant to perform the SpMV across the entire dataset. The last column is the total time and
energy spent when executing always the best variant for each matrix.

Total cusp_vect cuS_RB cuS_merge adaptive light pcsr Optimal

GTX1080Ti
Time (sec.) 1.76 3.55 1.45 1.80 1.93 3.92 1.30
Energy (kJ) 312.92 466.46 273.72 296.21 305.21 520.67 240.03
RTX2080Ti
Time (sec.) 1.15 2.44 0.76 1.32 1.14 3.30 0.69
Energy (kJ) 236.24 389.76 179.96 252.20 220.98 517.35 158.76

Table 3. RT and RE for each of the methods.

cusp_vect cuS_RB cuS_merge adaptive light pcsr

GTX1080
RT 1.35 2.72 1.11 1.38 1.47 3.00
RE 1.29 1.92 1.19 1.22 1.26 2.15

RTX2080
RT 1.67 3.54 1.10 1.92 1.66 4.79
RE 1.49 2.46 1.13 1.59 1.39 3.26
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considered, cuS_merge is the fastest variant 42% of the

times, while cusp_vect drops to 21%. Moreover, the bot-

tom half of the table shows that, although cusp_vect is the

fastest variant on most matrices in the smaller quintiles,

cuS_merge is the variant that is closer to the optimal run-

time. This suggests that, on each quintile, cuS_merge per-

forms better than cusp_vect for the largest and most

irregular matrices.

These results confirm the remarkable scalability of the

merge-path algorithm, and suggests that the row-wise dis-

tribution of the workload of cusp_vect is not so efficient for

large matrices.

4.3.1. Automatic selection of the best variant. Although the

results presented so far show a clear dominance of the

cuS_merge implementation, they also show that, even in

scenarios where one method excels, there are matrices for

which other methods can achieve significantly higher per-

formance (and/or lower power/energy dissipation). There-

fore, we now evaluate if the previous results can be

improved by automatically executing the SpMV method

that is predicted to be the best by a Bagged Trees ensemble

classifier.

The results that follow are the product of performing

five-fold cross validation of our classifier on the set of

3,005 matrices described previously. This means that the

dataset is randomly divided into five equally sized parti-

tions, which are iteratively used as the test set (1/5) for the

model trained with the rest of the partitions (4/5). The final

accuracy result is the average of the accuracy values

obtained for each of the five test sets.

The Bagged Trees classifier consists on an ensemble of

30 decision trees, with a maximum of 2,417 non-leaf nodes.

Each tree is trained with a bootstrapped copy of the dataset,

and each split of the random forest algorithm is made con-

sidering a random subset of the predictors.

The left part of Table 5 shows the performance of the

classifier predicting the best SpMV implementation in

terms of execution time. The first row, which reports the

result of training the model with all the features, shows that

the classifier correctly chose the best method for 82% of the

matrices. Moreover, the total runtime was only 3% (1%
running the models with the RTX2080Ti dataset) higher

than optimal, and the energy overhead was of 5% (2%).

The second row shows the result of training only with the

m, n, nnz, m=n and (nnzavg) parameters. Here, both the

accuracy of the model and the resulting overhead in time

and energy are worse than a default solution that always

chooses cuS_merge. The following rows show the effect of

adding one more feature to the set in the second row. From

these results, it seems clear that the row with most nonzeros

and the variation in the length of the rows are key predic-

tors of the performance of the methods, and training with

these features improves the quality of the classifier.

Finally, the right part of Table 5 shows the performance

of the model to predict the best SpMV implementation in

Table 4. Percentage of times that each version is the fastest (top) and value of RT (bottom) for the matrices on each quintile computed
according to nnz. The runtime values correspond to the GTX1080Ti.

quintile nnz > cusp_vect cuS_RB cuS_merge adaptive light pcsr

% of best
1st 3497020 21.17 6.00 42.33 11.83 18.83 0.00
2nd 878922 33.06 9.14 25.08 4.15 28.24 0.17
3rd 329472 49.17 14.50 11.33 9.33 15.83 0.00
4th 139806 58.24 25.62 4.99 9.98 1.00 0.00
5th 0 79.37 8.99 2.33 8.32 0.00 0.67
RT

1st 3497020 1.22 2.11 1.09 1.34 1.30 2.50
2nd 878922 2.44 7.49 1.11 1.55 2.92 8.21
3rd 329472 3.70 13.99 1.23 1.37 4.49 9.02
4th 139806 1.58 5.63 1.44 1.37 2.24 5.14
5th 0 1.62 3.94 1.76 2.65 2.41 4.21

Table 5. Performance of the Bagged Trees Classifier trained with
the fastest method as response (left) and the most energy efficient
(right), and different sets of features, on the GTX1080Ti (top) and
the RTX2080Ti (bottom) GPUs.

Time as response Energy as response

Features Acc.

P
TpredP
Tbest

P
EpredP
Ebest

Acc.

P
EpredP
Ebest

P
TpredP
Tbest

GTX1080Ti

all features 82% 1.03 1.05 79% 1.03 1.06
all cheap feat. 69% 1.19 1.14 65% 1.15 1.28
add min nnz 71% 1.14 1.11 67% 1.10 1.19
add max nnz 82% 1.05 1.06 78% 1.03 1.06
add std nnz 79% 1.05 1.06 76% 1.04 1.07
add avg bw 73% 1.15 1.11 68% 1.11 1.21

RTX2080Ti

all features 89% 1.01 1.02 84% 1.03 1.04
all cheap feat. 71% 1.24 1.14 68% 1.14 1.25
add min nnz 74% 1.28 1.17 72% 1.17 1.29
add max nnz 89% 1.02 1.03 83% 1.03 1.03
add std nnz 86% 1.03 1.03 81% 1.03 1.03
add avg bw 73% 1.27 1.16 71% 1.13 1.23
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terms of energy consumption. The results suggest that

training the model with the most energy-efficient method

as the response leads to similar results. Nonetheless, for the

RTX2080Ti GPU, training the models with the fastest

method as response reaches even better energy consump-

tion results than training with the most energy efficient as

response.

4.4. Other sparse formats

Although our study is focused on delivering a comparison

between varied realizations of SpMV for the CSR format,

the same approach can be applied to assess implementa-

tions for different sparse representations. As matrices are

often stored in CSR,6 utilizing other formats implies a con-

version overhead, which hopefully is offset by the gains

obtained in the application of the SpMV kernel. Unfortu-

nately, this is not always the case, and some of these for-

mats are known to render low performance in certain

situations. In this sense, our approach can help to predict

when a change of format can be beneficial.

As mentioned in Section 2.1, the number of sparse

matrix representations proposed in the literature is consid-

erable, and for some formats there is more than one soft-

ware library providing an SpMV implementation. For this

reason, in this experiment we selected two formats that are

fairly well-known and are implemented in the MAGMA

library: ELLPACK (Bell and Garland, 2009) and SELL-P

(Anzt et al., 2014b).

The ELLPACK format (Ell) stores a sparse matrix of n

rows and a maximum of k nonzeros per row in an n� k

dense matrix, where each row i contains the nzi nonzero

elements of the corresponding row of the sparse matrix

padded with k � nzi zeros at the end. This dense matrix is

stored in column-major format so that it can be processed

more efficiently by vector processors. Although this format

has proved to outperform CSR in several cases (Bell and

Garland, 2009), it has the disadvantage of presenting a

large memory overhead on sparse matrices with an irregu-

lar pattern of nonzeros per row.

The SELL-P (SellP) is a variant of the SELL-c format

(Kreutzer et al., 2013), which aims to reduce the memory

overhead of ELLPACK by slicing the matrix into blocks of

rows of size c, which are stored independently in ELL-

PACK. The memory overhead of SELL-c is thus deter-

mined by the longest row of each block instead of the

longest row of the matrix. SELL-P introduces, as the key

enhancement, a padding of the blocks so that the length of

the rows becomes a multiple of the computational units that

will later compute the SpMV for each block. A more

detailed explanation of both the format and the SpMV ker-

nel is given in Anzt et al. (2014b).

In the following experiment we executed the double-

precision Ell and SellP kernels of MAGMA v2.5.2 on the

GTX1080Ti GPU. The runtimes and power measurements

correspond to those of the SpMV kernel, and do not include

neither the conversion overhead from CSR to ELL or

SELL-P, nor the memory transfers of matrices and vectors.

The dataset for this experiment contains 2,004 matrices, as

some kernels were unable to terminate successfully for

some matrices.

Table 6 shows the percentage of matrices for which each

implementation is the best in terms of execution time and

energy consumption, as well as the corresponding values of

RT and RE, for each quintile of the dataset divided according

to nnz. The table shows a remarkably low performance of the

Ell relative to the other kernels, which seems to improve

with the number of nonzero of the matrices. For this dataset,

this kernel was the fastest for only 5% of the matrices, and

the most energy efficient in 3%. This is reasonable since, for

small matrices, it is likely that the memory padding does not

result in a significant performance gain.

Conversely, SellP was the fastest kernel for 33% of the

matrices, and the most energy efficient for 50%. However,

it still presents higher RT than most of the other implemen-

tations, especially in the smallest matrices.

Regarding the application of the Bagged Trees classifier

to select between implementations, Table 7 shows that the

machine learning model delivers high relative performance,

for both time and energy, using only the cheap predictors

plus any of the predictors related to the row length.

5. Final remarks and future work

We have reviewed the state-of-the-art for the SpMV imple-

mentation in GPUs, and studied the application of machine

learning to select the best performing method regarding

runtime and energy consumption.

Our experimental evaluation of the selected variants,

performed using more than 3,000 matrices (1,000 square

matrices from the SuiteSparse Matrix Collection and 2,000

rectangular ones generated from the former), on two mod-

ern GPUs (a GTX1080Ti and a RTX2080Ti), shows a clear

advantage of the merge-path SpMV of Dalton et al. (2015),

both from the standpoint of execution time and energy

consumption.

Despite this clear advantage, we prove that leveraging

a machine learning model to select the best method for

each matrix can be considerably better than always choos-

ing the same variant, especially in scenarios where the

SpMV kernel has to be computed a large number of times

with the same sparse matrix (as is the case, e.g. in an

iterative solver).

We have applied the Bagged Trees classifier with cross

validation to our matrix dataset. To select the matrix fea-

tures employed as predictors in the classifier, we not only

considered their ability to separate the dataset into different

groups, but also the cost of extracting the properties from

the sparse matrix.

The empirical evaluation shows that our selection pro-

cedure is able to reach accuracy values close to 90% for

both runtime and energy consumption. Furthermore, the

computation of accuracy metrics specific to our problem

allows observing that using the predicted methods to
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compute SpMV on the entire dataset, yields similar runtime

and energy consumption to that obtained by using the best

method for each matrix. Specifically, the difference with

respect to the optimal time and energy consumption can be

as low as 1% and 2%, respectively. Additionally, we show

that several of the most expensive features (from a compu-

tational point of view) can be discarded without a signifi-

cant impact on the quality of the results.

Complementing our study of CSR SpMV realizations,

we have explored the extension of our approach to other

sparse matrix formats. The experimental results showed

that GPU-friendly formats, such as ELL or SELL-P, can

be outperformed by CSR in many cases, and that our

machine learning procedure can be useful to predict

whether it is convenient to use these formats for a given

problem.

As part of future work we identified several lines, such

as advancing in the identification of a cheap heuristic to

estimate the maximum row length, including different

hardware platforms in the experimental evaluation to study

the relation between the hardware characteristics and the

machine learning procedure, performing a more complete

Table 7. Performance of the Bagged Trees Classifier trained with
the fastest method as response (left) and the most energy efficient
(right), and different sets of features, on the GTX1080Ti GPU.

Time as response Energy as response

Features Acc.

P
TpredP
Tbest

P
EpredP
Ebest

Acc.

P
EpredP
Ebest

P
TpredP
Tbest

GTX1080Ti

all features 78% 1.02 1.07 78% 1.07 1.02
all cheap feat. 62% 1.29 1.26 64% 1.27 1.31
add min nnz 65% 1.18 1.16 65% 1.27 1.30
add max nnz 76% 1.06 1.11 77% 1.09 1.04
add std nnz 74% 1.07 1.09 74% 1.10 1.07
add avg bw 66% 1.36 1.33 66% 1.37 1.42

Table 6. RT (top) and RE (bottom) for the matrices on each quintile computed according to nnz. The runtime values correspond to the
GTX1080Ti.

nnz > cusp_vect cuS_RB cuS_merge Ell SellP adaptive light pcsr

% best in execution time

1.79eþ06 8.48 2.99 18.45 0.5 49.13 1 19.45 0
5.52eþ05 19.7 2.99 6.48 3.99 48.63 2.74 15.46 0
2.36eþ05 32.5 9.5 7.5 10.75 32.25 4.75 2.75 0
1.20eþ05 36.66 18.95 3.49 8.73 25.69 6.48 0 0

68.33 5.49 2.24 2 5.49 14.96 0 1.5

Total 33.13 7.98 7.63 5.19 32.23 5.99 7.53 0.29

RT

1.79eþ06 1.5 1.47 1.27 7.93 1.52 2 1.31 3.79
5.52eþ05 1.45 2.36 1.41 22.34 4.02 1.97 1.59 7.62
2.36eþ05 1.44 3.49 1.5 38.05 4.92 1.65 1.99 7.24
1.20eþ05 1.77 4.67 1.8 46.87 6.36 1.59 2.51 6.34

1.99 4.54 2.06 52.77 5.2 1.56 3.04 5.33

Total 1.50 1.80 1.32 12.76 2.13 1.96 1.43 4.44

% best in energy consumption

1.79eþ06 2.24 2.49 6.48 1.75 70.82 1.75 14.46 0
5.52eþ05 6.98 2.74 5.24 1.5 62.59 7.73 13.22 0.25
2.36eþ05 14.5 6.75 10 3 52.5 6.5 7 0
1.20eþ05 22.19 20.2 3.74 6.48 39.65 8.23 0.5 0

42.64 6.23 2 4.99 26.93 18.95 0 2

Total 17.71 7.58 5.49 3.49 50.05 8.28 6.98 0.40

RE

1.79eþ06 1.82 1.57 1.54 7.23 1.27 1.89 1.44 3.05
5.52eþ05 1.7 2.08 1.56 20.95 2.59 1.87 1.6 5.09
2.36eþ05 1.61 2.79 1.56 40.38 3.36 1.62 1.84 5.18
1.20eþ05 1.82 3.81 1.77 58.16 4.62 1.57 2.25 5.05

1.92 4.02 1.96 74.15 4.13 1.49 2.72 4.49
Total 1.80 1.75 1.55 11.94 1.59 1.86 1.50 3.40
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analysis of SpMV implementations for other sparse matrix

formats, and implementing a computational tool that com-

putes the best method and calls the respective routine with-

out human intervention.
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Notes

1. https://cusplibrary.github.io.

2. We note that MAGMA-sparse is being gradually

replaced by the more modern library Ginkgo, available

at https://ginkgo-project.github.io.

3. http://faculty.cse.tamu.edu/davis/suitesparse.html

(accessed in February 2020).

4. https://github.com/bhSPARSE/Benchmark_SpMV_

using_CSR.

5. https://github.com/poojahira/spmv-cuda.

6. We note that SuiteSparse also uses COO format, and in

some applications the matrix can be constructed in the

appropriate format. Moreover, for iterative solvers the

cost of the format conversion can be easily amortized by

the cost of several applications of the SpMV kernel.
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