
DEPARTMENT OF COMPUTER ENGINEERING

Evaluation, Analysis and
Adaptation of Web Prefetching

Techniques in Current Web

Thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computing

Josep Domènech i de Soria

Ph.D. advisors:

Dr. Ana Pont Sanjuán

Dr. José A. Gil Salinas

València, March 2007

To my family.
To my sweetheart.

And, of course, to you.

Acknowledgments

Firstly, I would like to acknowledge the work of Dr. Julio Sahuquillo as advisor of
this Ph.D. thesis, although his name does not appear on the cover due to the limit
on the number of advisors established by the university. His help, together with the
contribution and knowledge of Prof. Ana Pont and Dr. José A. Gil have been crucial
for the development of this work.

I would also like to thank Ana, my girlfriend, for her help to improve my English
and, therefore, the quality of the thesis; for her time and support, and for being always
by my side.

My family has been also very important to encourage me to achieve this goal.
Thank you Pepe, Silvia, Llúıs, Paloma and Sergi.

Finally, I much appreciate the good times I have shared with my former and
current colleagues, who have become good friends.

Thank you, one and all.

v

Abstract

This dissertation is focused on the study of the prefetching technique applied to the
World Wide Web. This technique lies in processing (e.g., downloading) a Web request
before the user actually makes it. By doing so, the waiting time perceived by the user
can be reduced, which is the main goal of the Web prefetching techniques.

The study of the state of the art about Web prefetching showed the heterogeneity
that exists in its performance evaluation. This heterogeneity is mainly focused on
four issues: i) there was no open framework to simulate and evaluate the already
proposed prefetching techniques; ii) no uniform selection of the performance indexes
to be maximized, or even their definition; iii) no comparative studies of prediction
algorithms taking into account the costs and benefits of web prefetching at the same
time; and iv) the evaluation of techniques under very different or few significant
workloads.

During the research work, we have contributed to homogenizing the evaluation
of prefetching performance by developing an open simulation framework that repro-
duces in detail all the aspects that impact on prefetching performance. In addition,
prefetching performance metrics have been analyzed in order to clarify their defini-
tion and detect the most meaningful from the user’s point of view. We also proposed
an evaluation methodology to consider the cost and the benefit of prefetching at the
same time. Finally, the importance of using current workloads to evaluate prefetching
techniques has been highlighted; otherwise wrong conclusions could be achieved.

The potential benefits of each web prefetching architecture were analyzed, finding
that collaborative predictors could reduce almost all the latency perceived by users.
The first step to develop a collaborative predictor is to make predictions at the server,
so this thesis is focused on an architecture with a server-located predictor.

The environment conditions that can be found in the web are also heterogeneous,
so the optimal way of conducting web prefetching may be different depending on these
conditions. We studied under which environments it is better to maximize either the
amount of prefetched objects or the size of these objects. The results showed that
when the user’s available bandwidth increases prefetching techniques should prefetch
a high amount of objects; whereas when the server processing time decreases, the
amount of prefetched bytes should be maximized.

vii

By analyzing current prefetching techniques we found that, due to the evolution of
the Web, some prefetching techniques that worked well some years ago have their per-
formance dropped on the current web. This fact is mainly caused by the high amount
of images or similar objects that are currently included in each page. These images
notably interfere on the accesses prediction. Taking into account this unwanted effect,
a novel algorithm (DDG) has been proposed and tested dealing with the characteris-
tics of the current web. The DDG algorithm distinguishes between container objects
(HTMLs) and embedded objects (e.g., images) to create the prediction model and to
make the predictions. Results showed that, given an amount of extra requests, DDG
always reduces the latency more than the other existing algorithms. In addition,
these results were achieved without increasing the order of complexity of the existing
algorithms.

viii

Resum

Aquesta tesi tracta la tècnica de prebusca aplicada a la World Wide Web. La tècnica
es fonamenta a processar (p.e. descarregar) una petició Web abans que l’usuari la
realitze perquè, d’aquesta manera, aconseguim reduir el temps d’espera percebut per
l’usuari final, objectiu últim de les tècniques de prebusca en la Web.

L’estudi de l’estat de l’art de la prebusca web va posar de manifest una gran het-
erogenëıtat en com s’avaluaven les prestacions. Hi podem destacar quatre aspectes
principals: i) no existia un entorn de desenvolupament lliure en què simular i aval-
uar les tècniques de prebusca ja propostes; ii) el conjunt d’́ındexs de prestacions a
maximitzar no era uniforme, o inclús la seua pròpia definició; iii) no n’hi havia cap
estudi comparatiu d’algoritmes de predicció que tinguera en compte els costos i els
beneficis de la prebusca de forma conjunta; i iv) l’avaluació de les tècniques propostes
es realitzava baix càrregues de treball molt distintes o poc significatives.

Durant la investigació, hem contribüıt a homogenëıtzar l’avaluació de prestacions
per mitjà del desenvolupament d’un entorn de simulació que reproduëıx detalladament
tots els aspectes que afecten les prestacions de la prebusca. A més, hem analitzat les
mètriques de prestacions utilitzades en els estudis de prebusca per a aclarir la seua
definició i detectar quines eren les més significatives des del punt de vista de l’usuari.
També hem proposat una metodologia d’avaluació que considere el cost i el benefici
de la prebusca de forma conjunta. Finalment, s’ha ressaltat la importància d’utilitzar
càrregues de treball actuals per a avaluar les prestacions de la prebusca, ja que, en
cas contrari, podŕıem obtindre conclusions incorrectes.

L’anàlisi dels beneficis potencials de cada possible arquitectura del sistema ens
va mostrar que, potencialment, els predictors col·laboratius podrien reduir quasi tota
la latència percebuda pels usuaris. El primer pas per a desenvolupar un predictor
col·laboratiu és fer les prediccions des del servidor, per la qual cosa en aquesta tesi
ens centrem en una arquitectura de prebusca en la que el predictor d’accessos està
situat en el servidor web.

D’altra banda, les condicions de l’entorn que ens podem trobar a la web són també
heterogènies, per la qual cosa la forma òptima d’utilitzar la prebusca podria ser també
distinta depenent d’este entorn. Per això, hem estudiat davall quines condicions és
millor maximitzar o el nombre d’objectes prebuscats o la grandària de tals objectes,
per a obtindre les màximes prestacions. Els resultats mostren que, quan l’ample de

ix

banda disponible per l’usuari augmenta, les tècniques de prebusca haurien de ser més
propenses a prebuscar una gran quantitat d’objectes mentres que quan es reduëıx el
temps de procés del servidor, és la quantitat de bytes prebuscats la variable que s’ha
de maximitzar.

Quan analitzem les tècniques de prebusca existents trobem que, a causa de
l’evolució que ha patit la Web, algunes de les tècniques que van funcionar bé fa uns
anys ja no obtenen les mateixes prestacions a la Web actual. Açò es deu principalment
a la gran quantitat d’imatges o objectes incrustats que s’inclouen actualment a cada
pàgina web. Aquestes imatges interfereixen notablement en la predicció d’accessos
de l’usuari. Considerant aquest efecte no desitjat, hem proposat i avaluat un nou
algoritme (DDG) que maneja aquestes caracteŕıstiques presents a la web actual. Per
a crear el model de predicció, l’algoritme DDG diferència els objectes entre con-
tenidors (HTMLs) i incrustats (p.e. imatges). Els resultats experimentals mostren
que, donat un increment de peticions prefixat, l’algoritme DDG sempre redüıex més
la latència que els algoritmes existents. A més, aquestos resultats s’han aconseguit
sense augmentar l’orde de complexitat respecte als algoritmes existents.

x

Resumen

Esta tesis trata la técnica de prebúsqueda aplicada a la World Wide Web. Esta técnica
se fundamenta en procesar (p.e. descargar) una petición Web antes de que el usuario
la realice para que, de esta forma, consigamos reducir el tiempo de espera percibido
por el usuario final, objetivo último de las técnicas de prebúsqueda en la Web.

El estudio del estado del arte de la prebúsqueda web puso de manifiesto una
gran heterogeneidad en cómo se evaluaban las prestaciones. Podemos destacar cuatro
aspectos principales: i) no exist́ıa un entorno libre de desarrollo en el que simular
y evaluar las técnicas de prebúsqueda ya propuestas; ii) el conjunto de ı́ndices de
prestaciones a maximizar no era uniforme, o incluso su propia definición; iii) no
hab́ıa ningún estudio comparativo de algoritmos de predicción que tuviera en cuenta
los costes y los beneficios de la prebúsqueda de forma conjunta; y iv) la evaluación
de las técnicas propuestas se realizaba bajo cargas de trabajo muy distintas o poco
significativas.

Durante la investigación, hemos contribuido a homogeneizar la evaluación de
prestaciones por medio del desarrollo de un entorno de simulación que reproduce
detalladamente todos los aspectos que afectan a las prestaciones de la prebúsqueda.
Además, hemos analizado las métricas de prestaciones utilizadas en los estudios de
prebúsqueda para clarificar su definición y detectar cuáles eran las más significativas
desde el punto de vista del usuario. También hemos propuesto una metodoloǵıa de
evaluación que considere el coste y el beneficio de la prebúsqueda de forma conjunta.
Por último, se ha resaltado la importancia de utilizar cargas de trabajo actuales para
evaluar las prestaciones de la prebúsqueda, ya que, en caso contrario, podŕıamos
obtener conclusiones incorrectas.

El análisis de los beneficios potenciales de cada posible arquitectura del sistema nos
mostró que, potencialmente, los predictores colaborativos podŕıan reducir casi toda
la latencia percibida por los usuarios. El primer paso para desarrollar un predictor
colaborativo es hacer las predicciones desde el servidor, por lo que en esta tesis nos
centramos en una arquitectura de prebúsqueda en la que el predictor de accesos está
situado en el servidor web.

Por otra parte, las condiciones del entorno que nos podemos encontrar en la web
son también heterogéneas, por lo que la forma óptima de utilizar la prebúsqueda
podŕıa ser también distinta dependiendo de este entorno. Por ello, hemos estudiado

xi

bajo que condiciones es mejor maximizar bien el número de objetos prebuscados,
bien el tamaño de dichos objetos, para obtener las máximas prestaciones. Los resul-
tados muestran que, cuando el ancho de banda disponible por el usuario aumenta, las
técnicas de prebúsqueda debeŕıan ser más propensas a prebuscar una gran cantidad
de objetos mientras que cuando se reduce el tiempo de proceso del servidor, es la
cantidad de bytes prebuscados la variable que se debe maximizar.

Al analizar de las técnicas de prebúsqueda existentes encontramos que, debido
a la evolución que ha sufrido la Web, algunas de las técnicas que funcionaron bien
hace unos años ya no obtienen las mismas prestaciones en la Web actual. Esto se
debe principalmente a la gran cantidad de imágenes u objetos similares que se in-
cluyen actualmente en cada página web. Estas imágenes interfieren notablemente en
la predicción de accesos del usuario. Considerando este efecto no deseado, hemos
propuesto y evaluado un nuevo algorithmo (DDG) que maneja estas caracteŕısticas
presentes en la web actual. Para crear el modelo de predicción, el algorithmo DDG
diferencia los objetos entre contenedores (HTMLs) e incrustados (p.e. imágenes).
Los resultados experimentales muestran que, dado un incremento de peticiones prefi-
jado, el algoritmo DDG siempre reduce más la latencia que los algoritmos existentes.
Además, estos resultados se han conseguido sin aumentar el orden de complejidad
respecto a los algorithmos existentes.

xii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives of the thesis . 3
1.3 Organization of the thesis . 3

2 Web Prefetching 5
2.1 Introduction . 5
2.2 Generic Web Prefetching Architecture 6

2.2.1 Generic Web Architecture . 6
2.2.2 Prediction Engine . 6
2.2.3 Prefetching Engine . 7

2.3 Web Prediction Algorithms . 8
2.3.1 Prediction from the accesses pattern 8

2.3.1.1 Markov models . 9
2.3.1.2 Web mining algorithms 14
2.3.1.3 Other algorithms . 15

2.3.2 Prediction from web content 16
2.4 Web Prefetching in Commercial Products 17
2.5 Conclusions . 17

3 Performance Evaluation 19
3.1 Introduction . 19
3.2 Experimental Framework . 20

3.2.1 Introduction . 20
3.2.2 Surrogate . 21
3.2.3 Client . 23
3.2.4 Proxy Server . 26
3.2.5 Implementation Example . 27

3.3 Performance Key Metrics . 30
3.3.1 Introduction . 30
3.3.2 Indexes Taxonomy . 31

3.3.2.1 Prediction Related Indexes 32

xiii

CONTENTS

3.3.2.2 Resource usage . 35

3.3.2.3 Latency related indexes 37

3.3.2.4 Summary . 38

3.3.3 Relation between indexes . 39

3.3.3.1 Empirical tests . 39

3.3.3.2 Analytical Relations 49

3.3.4 Key Metrics Summary . 50

3.4 Comparison Methodology . 51

3.4.1 Performance indexes . 52

3.4.2 Methodology . 52

3.5 Workload . 53

3.5.1 Old and Current Workload Differences 53

3.5.2 Evolution of Prediction Performance 55

3.5.2.1 Background . 56

3.5.2.2 Experimental Environment 56

3.5.2.3 Experimental results 58

3.5.3 Influence of the User-available Bandwidth on the Perceived La-
tency . 62

3.5.4 Workload summary . 65

3.6 Conclusions . 66

4 Theoretical Limits on Performance 67

4.1 Introduction . 67

4.2 Metrics . 68

4.3 Workload . 69

4.4 Predicting at the server . 69

4.5 Predicting at the client . 71

4.6 Predicting at the proxy . 72

4.7 Collaborative prediction . 72

4.7.1 Collaborative prediction between clients and servers 73

4.7.2 Collaborative prediction between proxy and servers 74

4.7.3 Collaborative prediction between clients and proxy 74

4.8 Conclusions . 74

5 Evaluation of Current Prefetching Algorithms 77

5.1 Introduction . 77

5.2 Background . 78

5.3 Experimental Environment . 78

5.4 Selecting Algorithm Parameters . 79

5.5 Comparison of Algorithms . 80

5.6 Analysis of the Algorithms . 88

5.7 Conclusions . 88

xiv

CONTENTS

6 The Influence of the Environment Conditions on the Design of Pre-
fetching Algorithms 91
6.1 Introduction . 91
6.2 Background . 92
6.3 Performance Indexes and Related Factors 93
6.4 Statistical Methodology . 93

6.4.1 Analysis of Variance (ANOVA) 93
6.4.2 Design of Experiments . 94

6.5 Experimental Environment . 94
6.6 Experimental Results . 95

6.6.1 Experiments Design . 95
6.6.2 Correlation Analysis . 96

6.7 Conclusions . 100

7 DDG: A Prefetching Algorithm for Current Web 103
7.1 Introduction . 103
7.2 Experimental Environment . 104
7.3 Uselessness Analysis of the Existing Algorithms 105
7.4 Double Dependency Graph Algorithm (DDG) 108

7.4.1 Description . 108
7.4.2 Selecting Parameter Values . 109

7.5 Algorithm Comparison . 112
7.6 Conclusions . 116

8 Conclusions and Future Work 119
8.1 Conclusions . 119
8.2 Summary of contributions . 120
8.3 Future Work . 121

8.3.1 Future Directions in Our Work 121
8.3.2 Future Directions in Web Prefetching 121

xv

List of Figures

2.1 Generic Web Architecture . 7

2.2 Algorithm for making the prediction model in PPM 11

2.3 Algorithm for making predictions in PPM 12

2.4 State of the graph of a first-order PPM algorithm after the accesses
HTML1, IMG1, HTML2, IMG2 by one user; and HTML1, IMG1,
HTML3, IMG2 by other user . 13

2.5 Algorithm for making the prediction model in DG 14

2.6 Algorithm for making predictions in DG 15

2.7 State of the graph of the DG algorithm with a lookahead window size
of 2 after the accesses HTML1, IMG1, HTML2, IMG2 by one user;
and HTML1, IMG1, HTML3, IMG2 by another user 16

3.1 Architecture of the simulation environment 21

3.2 Block diagram of the surrogate . 22

3.3 Block diagram of the client . 25

3.4 Requests as seen by the server, the surrogate and the client 29

3.5 Sets representing the relation between UserRequests, Predictions and
Prefetchs . 31

3.6 Prefetching metrics taxonomy . 32

3.7 Example where latency metrics behave differently when the prefetch
hits on one of the images . 38

3.8 Latency per object ratio as a function of latency per page ratio 42

3.9 Relation between precision and latency related indexes 43

3.10 Recall as a function of latency per object ratio 44

3.11 Recall as a function of latency per page ratio 45

3.12 Byte Recall as a function of latency per object ratio 46

3.13 Byte Recall as a function of latency per page ratio 47

3.14 Performance comparison between old and current workloads. Users of
1 Mbps of available bandwidth are simulated. Each point in the curves
represents a given threshold, from 0.2 to 0.7 54

xvii

LIST OF FIGURES

3.15 Performance comparison between old and current workloads. Users of
48 kbps of available bandwidth are simulated. Each point in the curves
represents a given threshold, from 0.2 to 0.7 55

3.16 Evolution of precision metrics in current workloads 60

3.17 Evolution of recall metrics in current workloads 61

3.18 Evolution of precision metrics in old workloads 63

3.19 Evolution of recall metrics in old workloads 64

3.20 Average latency per page as a function of the user available bandwidth 65

4.1 SFAR at the server as a function of the maximum idle time in a session 70

4.2 Cumulative relative frequency histogram of SFARlatency at the server
with t=1,800 seconds to web servers 71

4.3 SFAR at the client as a function of the maximum idle time in a session 72

4.4 FSR at the proxy with 95% confidence intervals depending on the
amount of clients connected to the proxy 73

5.1 Lookahead window size parameter selection in DG algorithm. Users of
1 Mbps of available bandwidth with trace A are simulated. Each point
in the curves represents a given threshold, from 0.2 (right) to 0.7 (left) 80

5.2 Selection of the maximum order of the Markov model in PPM-OB-
TH algorithm. Users of 1 Mbps of available bandwidth with trace A
are simulated. Each point in the curves represents a given threshold,
from 0.2 (right) to 0.7 (left) . 81

5.3 Performance comparison from the user’s point of view between object-
based algorithms running trace A. Each point in the curves represents
a given threshold in PPM-OB-TH and DG, and a given number of
returned hints in PPM-OB-TOP . 82

5.4 Performance comparison from the prediction point of view between
object-based algorithms running trace A 83

5.5 Byte Recall as a function of Object Traffic Increase. Users of 1 Mbps
of available bandwidth under workload A are simulated 84

5.6 Performance comparison from the user’s point of view between object-
based algorithms running trace B . 85

5.7 Performance comparison from the prediction point of view between
object-based algorithms running trace B 86

5.8 Performance comparison between page-based algorithms with 8 Mbps
users. Each point in the curves represents a given threshold in PPM-
PG-TH and a given number of returned hints in PPM-PG-TOP 87

5.9 State of the graph of the DG algorithm with a lookahead window size
of 2 after the accesses HTML1, IMG1, HTML2, IMG2 by one user;
and HTML1, IMG1, HTML3, IMG2 by other user 89

xviii

LIST OF FIGURES

5.10 State of the graph of a first-order PPM algorithm after the accesses
HTML1, IMG1, HTML2, IMG2 by one user; and HTML1, IMG1,
HTML3, IMG2 by other user . 90

7.1 Predictive metrics of DG algorithm when evaluated from the predictor
point of view and from the prefetching point of view under workload A. 106

7.2 Predictive metrics of DG algorithm when evaluated from the predictor
point of view and from the prefetching point of view under workload B. 106

7.3 Predictive metrics of PPM algorithm when evaluated from the predic-
tor point of view and from the prefetching point of view under workload
A. 107

7.4 Predictive metrics of PPM algorithm when evaluated from the predic-
tor point of view and from the prefetching point of view under workload
B. 107

7.5 Ratio of predictions that are made too late under current algorithms 108
7.6 Algorithm for making the prediction model in DDG 110
7.7 State of the graph of the DDG algorithm with a lookahead window size

of 2 after the accesses HTML1, IMG1, HTML2, IMG2 by one user; and
HTML1, IMG1, HTML3, IMG2 by other user 111

7.8 Algorithm for making predictions in DDG 112
7.9 Selection of the lookahead window size of the DDG algorithm under

the workload A . 113
7.10 Selection of the lookahead window size of the DDG algorithm under

the workload B . 113
7.11 Selection of the secondary threshold of the DDG algorithm under the

workload A . 114
7.12 Selection of the secondary threshold of the DDG algorithm under the

workload B . 114
7.13 Deciding whether to predict HTML files in the DDG algorithm under

the workload A . 115
7.14 Deciding whether to predict HTML files in the DDG algorithm under

the workload B . 116
7.15 Algorithms comparison under the workload A 117
7.16 Relative performance comparison of DDG vs DG algorithms under the

workload A. Positive values mean that DDG outperforms DG, while
negative ones would mean that DG outperforms DDG in the selected
metrics. 117

7.17 Algorithms comparison under the workload B 118
7.18 Relative performance comparison of DDG vs PPM algorithms under

the workload B. Positive values mean that DDG outperforms PPM,
while negative ones mean that PPM outperforms DDG in the selected
metrics. 118

xix

List of Tables

3.1 Function interface to implement prefetching algorithms 23
3.2 Client configuration file. Main parameters and description 24
3.3 Example of performance results . 28
3.4 Relation between the selected index name in this work and those ap-

pearing in the literature . 40
3.5 Relation between the research studies and the indexes used, grouped

by category . 41
3.6 Trace characteristics . 48
3.7 Linear correlation coefficient between precision and latency indexes . . 48
3.8 Linear correlation coefficient between recall and latency indexes 48
3.9 Trace characteristics . 54
3.10 Test and training periods used in the literature 57
3.11 Trace characteristics . 57
3.12 Summary of the evolution of the prediction performance in the analyzed

workload. Legend. I: Initial period, S: Stationary period, T: Trend,
GT: Global Trend, – –: Strong negative trend, –: Slightly negative
trend, =: Steady trend, +: Slightly positive trend 59

4.1 First seen ratio at different servers . 70
4.2 Summary of predicting limits depending on where the prediction engine

is located . 75

5.1 Trace characteristics . 79

6.1 Trace characteristics . 95
6.2 Studied factors broken down into those really analyzed and those used

to extend the conclusions to a wider range of prefetching situations . 96
6.3 Correlation coefficients and SCD value for each performed experiment.

Legend. Tr: Trace, PA: Prefetch algorithm, FR: Byte position of the
first reference. WS: Algorithm order (PPM) / Lookahead window size
(DG). TH: Threshold. PT: Server processing time. ET: Connection
Establishment time. BW: User-available bandwidth 97

xxi

LIST OF TABLES

6.4 First ANOVA table for the final design. Legend. PA stands for prefetch
algorithm, FR: refers to the byte position of the first reference. WS:
refers to algorithm order (PPM) / lookahead window size (DG). TH:
Threshold. PT: Server processing time. ET: Connection establishment
time. BW: user available bandwidth 98

6.5 Second ANOVA table for the final design. Legend. PA: Prefetch
algorithm, FR: Byte position of the first reference. WS: Algorithm
order (PPM) / Lookahead window size (DG). TH: Threshold. PT:
Server processing time. ET: Connection establishment time. BW:
User-available bandwidth . 99

6.6 Summary of the effect that each significant factor has on the average
SCD . 100

7.1 Trace characteristics . 105

xxii

Chapter 1

Introduction

The enormous spread of Internet and, consequently, the growth of the World Wide
Web due to the popularization of new applications and services, like e-business, mul-
timedia contents, e-learning, etc. have implied a dramatic increase in the number of
connected users, and, therefore, a tremendous increase in the global traffic, damag-
ing the quality of service (availability, reliability, security) and specially the latency
perceived by the users.

Internet latency depends on the number of intermediate points and on the amount
of traffic crossing them. The connection between two adjacent points is generally a ca-
ble line, but data must cross other elements such as modems, Ethernet cards, switches,
routers, etc. All these elements are obstacles that increase the latency. Each point
has a separate hardware, different cable bandwidths, and it even uses different proto-
cols. Therefore, the number of intermediate steps must be minimized and individual
bandwidth must also be enhanced in order to improve web performance. The inter-
national and global nature of Internet (Internet is a network of networks) makes it
very difficult (or sometimes really impossible) to improve system performance working
in the network hardware and in their interconnection elements. As a consequence,
it is necessary to work on web architecture and organization using and exporting
techniques already learned and widely used in computer architecture to improve web
performance.

Those techniques take advantage of the locality properties shown by accesses to
web objects. In the Web, locality of reference has three properties [Bestavros 97]:
temporal, geographical and spatial.

Temporal locality means that objects referenced recently are likely to be accessed
again in a near future. Web caching takes benefit of this property [Aggarwal 99,
Jin 00].

Geographical locality implies that objects referenced by a user are likely to be
accessed by users in the same geographic area. Replication techniques [Johnson 01,

1

CHAPTER 1. INTRODUCTION

Iyengar 02], including CDNs, profit from the geographical locality to reduce the global
traffic as well as the user-perceived latency.

Spatial locality is related to the fact that, after accessing an object, another object
located close to the first one will be probably accessed. Located near in this context
refers to objects in the same directory, in the same web server or in the same group
of servers. Web prefetching takes benefit of this property in order to predict future
accesses [Markatos 98, Fan 99]. In this thesis we focus on how this technique can be
used to reduce the user-perceived latency.

The basics of web prefetching is to preprocess a user’s request before it is actually
demanded. Therefore, the time that the user must wait for the requested document
can be reduced by hiding the request latency. Prefetching is usually transparent to the
user, that is, there is no interaction between the prefetching system and the user. For
this reason, systems speculate on the following user’s requests and thus the prediction
can fail. In such a case, web prefetching increases the resources requirements, so it
should be applied carefully.

1.1 Motivation

Despite being a technique researched for years, the commercial penetration of web
prefetching is still poor. By studying the open literature, one can observe that the
development, methodology and goal of the proposals are highly heterogeneous. We
found this heterogeneity in several areas:

• There was no open framework to develop, test, and evaluate web prefetching
techniques.

• The performance metrics and ever their definition and use differ in the studies.

• The workload used to check the proposals is old, corresponding to the first web
generation, and does not represent current web trends and user’s behavior.

• Most of the proposal evaluations do not consider the user’s point of view, fo-
cusing only on the prediction performance.

• There was no standard methodology to compare prefetching algorithms that
take into account the cost and benefit of web prefetching at the same time.

In addition, most of the proposed prediction algorithms are adaptations of algo-
rithms used in other fields of computing and do not profit from the organization of
web objects. These facts encouraged us to cover the methodological gaps found in
the literature and develop a new prefetching algorithm able to deal with the main
drawbacks of the existing ones.

2

1.2. OBJECTIVES OF THE THESIS

1.2 Objectives of the thesis

Firstly, this thesis is aimed at providing the present state of the art with a solid
framework and methodology to evaluate web prefetching techniques from the user’s
point of view. To do so, an open framework which permits the implementation of
prefetching techniques in a flexible and easy way has been developed. Moreover,
performance key metrics have been analyzed to detect the most meaningful indexes
from the user’s point of view. A comparison methodology that takes into account the
costs and benefits of prefetching has also been proposed.

The second main goal of the thesis is, once the methodological issues are clarified,
to find out how web prefetching algorithms can be improved from the user’s point of
view and propose a new one that outperforms those existing in the open literature. To
do so, the most important algorithms in the literature are analyzed from the user’s
perspective. In the detailed analysis we found that their performance in current
web can be improved by distinguishing two classes of objects: container objects and
contained objects. We take benefit of this observation in order to design the new
algorithm.

As secondary objectives, we explore the performance limits of web prefetching to
know the potential benefits of this technique and analyze how to adapt prefetching
algorithms to the environment conditions in order to achieve the best results in each
situation.

1.3 Organization of the thesis

This thesis is organized as follows:

Chapter 2 introduces web prefetching and presents the current state of the art
in this technique. A large set of prediction algorithms are surveyed as well as the
commercial products implementing web prefetching.

Chapter 3 analyzes why web prefetching techniques are rarely compared. When
they are compared, the evaluation is not done from the user’s point of view. We
found four main reasons: i) the proposed approaches are applied and tested in different
baseline systems, ii) they use workloads that are not representative of current web, iii)
different performance metrics are measured to quantify the benefits, and iv) studies
usually do not focus on the user’s perspective neither use a cost-benefit analysis. To
overcome these limitations, this chapter presents: i) a general experimental framework
which permits the implementation of prefetching techniques in a flexible and easy way,
ii) an analysis of the main performance key metrics to find the most meaningful from
the user’s point of view, iii) a cost-benefit methodology to perform fair comparisons
of prefetching algorithms, and iv) an analysis of how dependent results are on the
workloads used to show the importance of using current workloads to evaluate current
web.

3

CHAPTER 1. INTRODUCTION

Chapter 4 explores the potential limits of reducing user-perceived latencies de-
pending on where the predictions are made, and on if they are made by a single
element of the architecture or in a collaborative way.

Chapter 5 evaluates the most representative algorithms from the user’s point of
view. A detailed analysis is provided to find why performance differs among the
algorithms.

Chapter 6 performs a rigorous statistical analysis to identify those environment
conditions in which it is better to prefetch smaller objects instead of larger ones. This
permits an algorithm to adapt the prefetching depending on the server and client
environment.

Chapter 7 introduces a new prefetching algorithm that considers the characteristics
of current web sites to improve the performance achieved by web prefetching.

Finally, Chapter 8 summarizes the main contributions of this thesis and presents
some concluding remarks.

4

Chapter 2

Web Prefetching

2.1 Introduction

The goal of web prefetching is to preprocess user’s requests before the user demands
them explicitly, so reducing the user-perceived latency. The main prefetching mech-
anisms proposed in the literature are transparent to the user and, consequently, they
are necessarily speculative. As any speculative technique, prefetch predictions can
fail, i.e. downloading an object that will not be demanded later. That means that
prefetching can involve many hazards because if the prediction is not accurate, it
can pollute the cache, waste bandwidth and overload the original server. This im-
plies that prefetching must be carefully applied, by using, for example, idle times
in order to avoid performance degradation [Crovella 98]. Despite these hazards, it
has been shown that many prefetching algorithms [Bestavros 95, Padmanabhan 96,
Markatos 98, Fan 99, Chen 02] can considerably reduce the latency perceived by users.

The prefetch predictions can be performed by the server, by the proxy, or by the
client itself. Some research studies suggest to perform the predictions at the server
[Padmanabhan 96, Markatos 98] because it is visited by a high number of users and
it has enough information about how they visit the site, therefore its predictions
can be quite accurate. Some other studies suggest that proxy servers can perform
more accurate predictions because their users are much more homogeneous than in
an original server, and they can also predict cross-server links which can reach about
29% of the requests [Duchamp 99]. Finally, other authors consider that predictions
must be performed by the client browser, because it knows users’ preferences better
[Kim 03, Lau 04]. There are also some studies indicating that the different parts of
the web architecture (users, proxies and servers) must collaborate when performing
predictions [Markatos 98].

This chapter presents the current state of the art in web prefetching. It is organized
as follows: Section 2.2 presents a generic web prefetching architecture and describes
the elements and functions that compose it. Section 2.3 surveys and classifies a large

5

CHAPTER 2. WEB PREFETCHING

set of web prediction algorithms appeared in the literature. The most used algorithms
are examined in detail, since they will be used and analyzed in the following chapters.
Section 2.4 reviews the commercial products that implement any web prefetching
technique. Finally, Section 2.5 presents some concluding remarks about this study.

2.2 Generic Web Prefetching Architecture

Prefetching systems are usually based on a generic web architecture. This technique is
implemented by means of two extra elements, the prediction and prefetching engines,
that can be located in the same or different elements of the system. In this section,
we describe the elements that compose a generic web architecture and how it can be
extended and used to carry out prefetching.

2.2.1 Generic Web Architecture

There are two main elements in a generic web architecture: i) user agents, or clients,
that is, the software employed by users to access the Web, and ii) web servers, which
contain the information that users demand. The generic web architecture is an exam-
ple of the client-server paradigm, which works as follows. Human users tell the client
which page they want to retrieve by writing down a URI or by clicking a hyperlink
on a previously loaded page. Then, the client demands each object the page consists
of. Finally, the whole page is displayed to the user. Optionally, there may be more
elements between clients and servers, as Figure 2.1 shows. A proxy is usually located
near a group of clients to cache the most popular objects accessed by that group.
By doing so, the user-perceived latency and the network traffic between the proxy
and the servers can be reduced. Surrogates, also called reverse proxies, are proxies
located by the server side. They cache the most popular server responses and are
usually transparent to the clients, which access to the surrogate as if they accessed
to the web servers.

2.2.2 Prediction Engine

The prediction engine is the part of the prefetching system aimed at guessing the
following user’s accesses. This engine can be located at any part of the web architec-
ture: clients [Kim 03, Lau 04], proxies [Fan 99, Bouras 04], and servers [Schechter 98,
Palpanas 99, Lee 06, Domènech 06b], or even in a collaborative way between several
elements [Markatos 98]. To make the predictions, a high amount of algorithms that
learn from the past access patterns to predict future ones have appeared in the liter-
ature, e.g., [Sarukkai 00, Teng 05, Domènech 06b]. These patterns of user’s accesses
differ depending on the element of the architecture in which the prediction engine is
implemented because the information that each one can gather is completely differ-
ent. For instance, a predictor located at the web server can only gather transitions
between pages of the same server, but not cross-server transitions. Notice that it is

6

2.2. GENERIC WEB PREFETCHING ARCHITECTURE

Figure 2.1: Generic Web Architecture

equivalent to predict from the surrogate or from a server without surrogate, since
both gather the same requests.

The output of the prediction engine is the hint list, which is composed of a set of
URIs which are likely to be requested by the user in a near future. Nevertheless, this
list can also consist of a set of servers if only the connection is going to be prefetched.
Due to the fact that in many proposals the hint list is included in the HTTP headers
of the server response, the time taken by the predictor to provide this list should
be short enough to avoid delaying every user request and, therefore, degrade overall
performance.

The predictor must distinguish between those objects that can be prefetched (and
therefore predicted) and those that cannot. For this reason, the hint list can only
contain prefetchable URIs. According to the definition proposed in [Davison 01a],
a web resource is prefetchable if and only if it is cacheable and its retrieval is safe.
Browsers based on Mozilla [Fisher 03] consider that a resource is not prefetchable if
the URI contains a query string.

2.2.3 Prefetching Engine

The prefetching engine is aimed at preprocessing those object requests predicted by
the prediction engine. By processing the requests in advance, the user’s waiting
time when the object is actually demanded is reduced. In the literature, this pre-
processing has been mainly concentrated on the transference of requested objects

7

CHAPTER 2. WEB PREFETCHING

in advance [Padmanabhan 96, Duchamp 99, Fan 99, Ibrahim 00, Kokku 03, Wu 06]
although other approaches consider the preprocessing of a request by the server
[Schechter 98, Lee 06], or focus on the pre-establishment of connections to the server
[Cohen 02]. For this reason, the prefetching engine can be located at the client, at
the proxy, at the server, or at several elements.

In addition, to avoid the interference of prefetching with the current user’s re-
quests, the prefetching engine can take into account external factors to decide whether
to prefetch an object hinted by the prediction engine or when to prefetch it. These
external factors could be related to any part of the web architecture. For instance,
when the prefetching engine is located at the client, some commercial products wait
for the user to be idle to start the prefetching [Fisher 03, goo b]. If it is located at
the proxy, the prefetching engine could prefetch objects only when the bandwidth
availability is higher than a given threshold. The case of the predictor located at the
server, it could prefetch only when its current load permit an increase of requests.

The capability of reducing the user-perceived latency by means of web prefetching
depends on where this engine is located. In this way, the closer to the client the
prefetching engine is, the more latency is avoided. Therefore, a prefetching engine
located at the client can reduce the whole user-perceived latency. Besides, it is the
current trend as it is included in commercial products like Mozilla Firefox and Google
Web Accelerator (see Section 2.4).

2.3 Web Prediction Algorithms

The previous section has shown that a quick prediction of user’s accesses is the key
of web prefetching. This section surveys the large variety of prediction algorithms
that can be found in the literature. We have classified them into two main categories
according to the data taken into account to make the predictions.

The first category includes those algorithms that predict future accesses consid-
ering the observed pattern of past accesses. The algorithms included in the second
category make the prediction by analyzing the content of the recently visited web
pages to find links with a high probability of being clicked.

2.3.1 Prediction from the accesses pattern

Algorithms in this category lie in the statistical inference about future user’s accesses
from the past ones. The prediction of users’ accesses has usually been made by adapt-
ing prediction algorithms from other fields of computing to deal with web accesses.
For instance, the DG algorithm described in Section 2.3.1.1, lies in a predictor of
accesses to a local file system [Griffioen 94]. PPM algorithm (see Section 2.3.1.1) is
mainly used for lossless data compression [Bell 90, Curewitz 93]; besides, it has also
been used by several authors [Fan 99, Palpanas 99, Chen 03, Bouras 04] to predict
web accesses. According to the amount of research works found, this is the most
important category.

8

2.3. WEB PREDICTION ALGORITHMS

The algorithms have been classified in three subcategories depending on the sta-
tistical technique used to compute the predictions: i) those based on Markov models,
ii) those using data mining techniques and iii) other techniques. The algorithms
presented in the first subcategory are the ones that require less CPU time to make
predictions. Consequently, the algorithms based on Markov models are the main can-
didates to be implemented in a web prefetching system to achieve the best reduction
of user-perceived latency.

2.3.1.1 Markov models

A Markov model is a finite-state machine where the next state depends only on the
current state. Associated with each arc of the finite-state machine network (a directed
cyclic graph) is the probability of making the given transition [Mitchell 93]. When
applied to the prediction of user accesses, each state represents the context of the
user, i.e., their recent past accesses, and the transitions represent a user’s demand. In
this sense, the probability attached to each transition is the probability of accessing
a given object.

The main parameter of any Markov model is the order, which refers to the number
of accesses that defines each different context. Usually, the higher order the more
precision. However, an increase in the order of the model also implies an increase in
the resources needed to compute the prediction.

There exists a high amount of works that describe web prediction algorithms
based on Markov models. Basic Markov models considering the accesses sequence of
different orders are explored in the literature.

A Markov model of first order is implemented and evaluated by [Nicholson 98].
The top-10 algorithm proposed by [Markatos 98] can be considered as a Markov model
of order 0, that is, the prediction result does not depend on the context (i.e., lasts
requests). In [Sarukkai 00], the author considers first and second order Markov chains
to predict requests. The optimal results in [Fan 99] with PPM, an algorithm based on
Markov models described below, are obtained when a second order model is applied.
However, [Su 00] obtains better results when implementing the model with orders
higher than 3. Most of these studies only focus on the precision of the prediction
to determine the appropriate order of the model without taking into account how it
affects the user-perceived latency. This fact is analyzed in Chapter 5.

When Markov models of higher orders are explored, the use of techniques to reduce
the resource requirements of the implementation is needed. Therefore, some papers
explore how to deal with such a large amount of data. For instance, [Zhu 02b, Zhu 02a]
discuss a method for compressing the representation of Markov models of high order
to reduce the size of the model. With the same goal, a pruning method to reduce the
size of the prediction tree without decreasing the performance is presented in [Li 01].
A variation of a Markov model to store only long branches with frequently accessed
URLs is proposed by [Pitkow 99]. In [Chen 02, Chen 03], authors propose a PPM
variant that classifies the branches of the tree root in four classes according to the

9

CHAPTER 2. WEB PREFETCHING

popularity of the branch, so that branches with higher popularity are allowed to be
longer than the less popular ones.

Other authors take into account, in addition to the access sequence of the objects,
the referrer information provided in the HTTP protocol. In this context, four models
of first and second order considering these data are checked in [Zukerman 99]. They
found that the best algorithm to predict user’s accesses is the Markov model which
takes into account referee and access sequence information at the same time. This
algorithm is favourably compared in [Albrecht 99] against the temporal dependency
graph algorithm of [Bestavros 96], described below.

Algorithms based on Markov models have been proposed to be applied either to
each object access [Zukerman 99, Sarukkai 00, Davison 04] or to each page (i.e., to
each container object) accessed by the user [Palpanas 99, Dongshan 02, Chen 03].
In addition, two ways have been used to select which object or page will be pre-
dicted: predicting the top-n likely objects [Sarukkai 00, Dongshan 02, Davison 04]
and predicting those objects with more probability of being accessed than a given
confidence threshold [Zukerman 99, Palpanas 99, Nanopoulos 03, Chen 03]. The four
variants resulting from combining the unit of prediction (object or page) and the way
of selecting the candidates (top-n or using a threshold) are analyzed in Chapter 5.

Prediction by Partial Matching (PPM) A commonly used algorithm used
for predicting users’ accesses is the PPM (prediction by partial matching) [Fan 99,
Palpanas 99, Chen 02, Chen 03]. A similar algorithm is presented in [Dongshan 02],
although PPM is not mentioned by the authors. PPM algorithm uses Markov models
of m orders to store previous contexts. Predictions are obtained from the compari-
son of the current context with each Markov model. The algorithms for building the
prediction model and for making the predictions are shown in Figures 2.2 and 2.3,
respectively.

For illustrative purposes, we use an hypothetical example. Let’s suppose that
the algorithms are trained by two user sessions. The first one contains the following
sequence of accesses: HTML1, IMG1, HTML2, IMG2. The second session includes
the sequence: HTML1, IMG1, HTML3, IMG2. Note that IMG2 is embedded both
in HTML2 and in HTML3. We found this behavior common through the analyzed
workloads. For instance, in a news web server, different pieces of news (i.e., HTML
files) contain the same embedded images, since they are included in the site struc-
ture. Figure 2.4 shows the graph obtained when applying the PPM algorithm to the
described training. Each node represents a context, where the root node is in the
first row, the order-0 context is in the second, and the order-1 context is in the third.
The label of each node also includes the counter of times a context has appeared, so
one can obtain the confidence of a transition by dividing the counter of a node by
the counter of its parent, i.e., the node in the previous context. The arcs indicate
the possible transitions. For instance, the label of the IMG2 in order-0 context is 2
because IMG2 appeared twice in the training; once after HTML2 and another after

10

2.3. WEB PREDICTION ALGORITHMS

1: Objective: Build a PPM prediction model
2: Input:
3: S: set of users’ sessions
4: m: order of the Markov model
5: Output:
6: T: prediction model
7: for each session s ∈ S do
8: current-context[0]← root node of T
9: for j = 1 to m do

10: current context[j] ← NULL
11: end for
12: for each object i ∈ s do
13: for j = m down to 0 do
14: if current context[j] has child node C representing i then
15: increment node C occurrence count
16: current context[j + 1] ← node C
17: else
18: construct child node C representing i
19: node C occurrence count ← 1
20: current context[j + 1] ← node C
21: end if
22: current context[0] ← root node of T
23: end for
24: end for
25: end for
26: return T

Figure 2.2: Algorithm for making the prediction model in PPM

11

CHAPTER 2. WEB PREFETCHING

1: Objective: Obtain predictions of the next requests of the user
2: Input:
3: T : prediction model
4: Ri: last k user’s accesses; 0 ≤ i ≤ k ≤ order of the prediction model
5: th: threshold
6: Output:
7: P : Set of predictions
8: for j = 1 to k do
9: current context[j] ← node of depth j, representing the access sequence

Rk−j+1, · · · , Rk

10: end for
11: for j = k down to 1 do
12: for each child node C of current context[j] do
13: if (occurrence count of C) / (occurrence count of parent) >= th then
14: P ← P

⋃
{a}

15: end if
16: end for
17: end for
18: remove duplicates from P
19: return P

Figure 2.3: Algorithm for making predictions in PPM

12

2.3. WEB PREDICTION ALGORITHMS

Figure 2.4: State of the graph of a first-order PPM algorithm after the accesses
HTML1, IMG1, HTML2, IMG2 by one user; and HTML1, IMG1, HTML3, IMG2 by
other user

HTML3; IMG2 has two nodes in the order-1 context, i.e., one per each HTML on
which it depends.

Dependency graph (DG) The DG prediction algorithm constructs a dependency
graph that depicts the pattern of accesses to the objects. The graph has a node for
every object that has ever been accessed. As defined by [Griffioen 94] in file systems
prediction, and implemented by [Padmanabhan 96, Jiang 98, Nanopoulos 03] in web
prefetching, there is an arc from node A to B if and only if at some point in time a
client accessed to B within w accesses after A, where w is the lookahead window size.
The weight of the arc is the ratio of the number of accesses to B within a window
after A to the number of accesses to A itself. Figure 2.5 shows the pseudo-code for
constructing the DG prediction model. A variant of this algorithm is implemented
in [Bestavros 95, Bestavros 96, Albrecht 99], where the lookahead window is based on
the time elapsed between two accesses instead of on the amount of accesses between
them. In both cases, the prefetching aggressiveness is controlled by a cutoff threshold
parameter applied to the weight of the arcs. The algorithm for making the predictions
is illustrated in Figure 2.6

To illustrate the algorithm, let’s suppose that the algorithms are trained by the two
user sessions used to show the PPM algorithm. The first one contains the following
accesses: HTML1, IMG1, HTML2, IMG2. The second session includes the accesses:

13

CHAPTER 2. WEB PREFETCHING

HTML1, IMG1, HTML3, IMG2. Figure 2.7 shows the state of the graph of the DG
algorithm after the aforementioned training for a lookahead window of 2 accesses.
Each node in the graph represents an object, whereas the weight of each arc is the
confidence level of the transition.

1: Objective: Build a DG prediction model
2: Input:
3: S: set of users’ sessions
4: Output:
5: T: prediction model
6: for each session s ∈ S do
7: create empty lookahead window l
8: for each object i ∈ s do
9: for each object o ∈ l from the newest to the oldest do

10: increment weight of arc from o to i in T
11: end for
12: increment i access counter in T
13: if l is full then
14: remove the oldest object from l
15: end if
16: insert i in l
17: end for
18: end for
19: for each object t ∈ T do
20: for each output arc a ∈ t do
21: a confidence ← weight of arc from t to a / t access counter
22: end for
23: end for
24: return T

Figure 2.5: Algorithm for making the prediction model in DG

2.3.1.2 Web mining algorithms

Several prediction algorithms benefiting from web mining techniques have been de-
veloped. Web mining is defined in [Kargupta 04] as the application of data mining
techniques to extract knowledge from Web data, where at least one of structure (hy-
perlink) or usage (Web log) data is used in the mining process (with or without other
types of Web data). It has been found that two data mining techniques are used to
make web accesses predictions: clustering and association rules mining.

Clustering algorithms are applied in [Yang 03] to a three dimensions cube repre-
sentation of web accesses. To make the predictions, the transition probability matrix
for pages that belong to the same clusters is calculated. The prediction model used by

14

2.3. WEB PREDICTION ALGORITHMS

1: Objective: Obtain predictions of the next user’s requests
2: Input:
3: T : prediction model
4: u: last user’s access
5: th: threshold
6: Output:
7: P : Set of predictions
8: for each output arc a ∈ u in T do
9: if a confidence > th then

10: P ← P
⋃
{a}

11: end if
12: end for
13: return P

Figure 2.6: Algorithm for making predictions in DG

[Gündüz 03] takes into account data both from the accesses sequence of each session
and from the user’s thinking time of each page in the session. Then, user’s sessions
are clusterized and the prediction is made by considering the most similar session in
the cluster.

A rule-assisted prefetching strategy is developed to make predictions in [Lan 00,
Pandey 01, Mobasher 02, Pandey 02, Huang 05]. The technique presented in [Lan 00]
gives priority to recently added links over those older, whereas [Huang 05] tries first to
find a rule generated from the user that is currently accessing the web. The proposal
of [Nanopoulos 01, Nanopoulos 02, Nanopoulos 03] deals with random accesses that
could be in the pattern (i.e., access patterns), although the other user’s accesses must
be in the same order as found in the pattern. Their algorithm (WMo) also takes
into account the graph of the web site structure to allow only those patterns with
transitions included in the graph.

2.3.1.3 Other algorithms

Other approaches to web access prediction can be found in the literature. The predic-
tion engine presented in [Bonino 03b, Bonino 03a] is based on a evolutionary finite-
state machine (FSM). In this FSM, user requests are represented by transitions, but
unlike the FSM representation of Markov models, each node in their model represents
a prediction instead of a context. The algorithm is initially set up with a set of FSM
that will evolve according to genetic operators: recombination, mutation and natural
selection. Authors propose a fitness function to evaluate the goodness of each FSM
related to the main prediction metrics. This function helps the evolution of the FSMs
to achieve better performance.

The algorithm presented by [Wu 06] takes into account object characteristics not
considered in other algorithms to maximize the ratio of hit rate to bandwidth ratio.

15

CHAPTER 2. WEB PREFETCHING

Figure 2.7: State of the graph of the DG algorithm with a lookahead window size of 2
after the accesses HTML1, IMG1, HTML2, IMG2 by one user; and HTML1, IMG1,
HTML3, IMG2 by another user

This technique lies on accounting the contribution to the hit rate and to the band-
width ratio of each object, but needs extra information about the objects like access
frequency, size, lifetime, etc.

In [Angermann 02], the author explores how the prefetching should be conducted
to minimize the user-perceived latency, despite not considering the costs of the pre-
fetching. The proposed prefetching system sorts the objects with respect to their
(unconditional) probability of being requested, and then fetches sequentially all the
documents.

2.3.2 Prediction from web content

In [Khan 03], authors suggest that the prediction of user’s accessed can be improved
if the algorithm considers the organization of the webspace. Therefore, the second
subset of web prediction algorithms are those whose predictions are made from the
analysis of the content of the web pages (usually HTMLs) that the user has requested
instead of using only the sequence of accesses. As a consequence, the complexity
of these algorithms is significantly higher than the complexity of just analyzing the
references.

The first attempt to predict next user’s accesses from the HTML content was
presented in [Duchamp 99]. This work combines the analysis of the content with
usage profiles that are generated by the web servers.

16

2.4. WEB PREFETCHING IN COMMERCIAL PRODUCTS

In a more recent work, [Ibrahim 00] apply neural networks to keywords extracted
from the HTML content in order to make the predictions. Their evaluation, which is
performed from the prediction point of view, only focuses on news web servers where
key word extraction is easier.

The prefetching technique presented by [Davison 02] sorts the links found in a
HTML according to their probability of being clicked. This order is given by the
similarity of each text context of the links to the text context of the previously clicked
link. The context is composed of the words that appear near the anchor tag in the
HTML.

2.4 Web Prefetching in Commercial Products

Despite being a subject researched for years, the commercial penetration of web pre-
fetching is still poor, mainly caused by the reduced bandwidth availability and the
modification of the HTTP standard proposed by some authors. The main commer-
cial contribution to promote web prefetching as a mean for reducing user-perceived
latency has been made by the Mozilla Firefox browser and Google.

As described in [Fisher 03], the Firefox web client contains a web prefetching en-
gine that parses link HTTP headers to find prefetch hints included by the server or
proxy. When the user is idle after downloading the page, Firefox prefetches sequen-
tially all the hinted URLs found in the header. This technique requires the server to
make the predictions, but this is not common. Google Search includes support for the
prefetching technique implemented by Firefox since a prediction hint pointing to the
URL of the first result is included in some situations [goo a].

Google Web Accelerator [goo b] is a software that benefits from web prefetching
(and other techniques) to improve the user-perceived latency. It works together with
Mozilla Firefox or Microsoft Internet Explorer and implements the prefetching engine
described by [Fisher 03], as well as prefetchs other objects predicted by itself.

PeakJet 2000 and NetAccelerator implement two aggressive prefetching modes:
historic and link based. In the former, the software refreshes all the objects in the
cache accessed by the user. In the latter, all the linked documents in the current page
are downloaded. The difference between Peakjet and NetAccelerator lies in where
prefetched documents are saved, since Peakjet has its own cache and NetAccelerator
uses the browser cache.

Other commercial software implementing web prefetching techniques are Robtex
Viking Server, Mentat SkyX Accelerator and AllegroSurf, but they provide few details
on how prefetching works in their products.

2.5 Conclusions

This chapter has shown the basics of any web prefetching system and have presented
the current state of the art in the technique, both in research and in commercial areas.

17

CHAPTER 2. WEB PREFETCHING

We have described the elements that a web prefetching system adds to a generic
web architecture. The elements are the prediction engine, which guesses future user
accesses, and the prefetching engine, which takes the output of the predictor to pre-
process the requests. We have highlighted that the predictor must be fast enough to
avoid damaging the overall performance.

A large variety of prediction algorithms have appeared in the research literature,
although most studies do not focus on the user’s point of view. We found two main
groups: those that analyze the accesses sequence of the users and those that analyze
the content seen by the user. From those algorithms, the main candidates to achieve
the best performance are those that analyze the sequences of accesses by means of
Markov models, since their CPU requirements to make predictions are lower. Despite
the important research effort, we have shown that the use of web prefetching in
commercial products is still marginal.

18

Chapter 3

Performance Evaluation

3.1 Introduction

There is a large amount of research works focusing on web prefetching in the literature,
but comparative studies are rare. Different proposals cannot be easily compared
because of four main reasons: i) the proposed approaches are applied and tested in
different baseline systems, ii) they use workloads that do not represent the current
web, iii) different performance metrics are measured to quantify the benefits, and iv)
studies do not usually focus on the user’s perspective or use a cost-benefit analysis.
This fact leads to the inability to quantify in a real working environment which
proposal is better for the user.

In this chapter we show how these limitations have been overcome to provide the
appropriate framework and methodology to evaluate and compare web prefetching
algorithms from the user’s point of view. To do so, Section 3.2 presents a general
experimental framework which permits the implementation of prefetching techniques
in a flexible and easy way using real workloads.

Section 3.3 tackles the selection of the performance key metrics. To this end, we
analyze a large subset of key metrics and propose a taxonomy based on three main
categories, which permits us to identify analogies and differences among the metrics
commonly used, and to check experimentally their relation. As a consequence, we
also introduce new byte based indexes as complementary metrics.

We propose in Section 3.4 a cost-benefit methodology to perform fair comparisons
of web prefetching algorithms from the user’s point of view. This methodology takes
into account the main benefit of web prefetching, i.e., user-perceived latency reduction,
versus its main costs: increase in the network use and increase of server load.

Finally, Section 3.5 deals with the selection of the workload that will be used to
evaluate web prefetching techniques. In this section, current and old workloads are
compared, since a high amount of current research works use old traces to evaluate
prefetching algorithms. Results show that there is no reason to think that prefetching

19

CHAPTER 3. PERFORMANCE EVALUATION

studies should be conducted using old traces, since the performance of prefetching
algorithms is highly different. Hence, conclusions obtained for old workload cannot
be directly moved to the current web.

3.2 Experimental Framework

3.2.1 Introduction

Most of the prefetching research studies use different frameworks to check their
proposals, therefore the assumptions, conditions, implementations and even per-
formance metrics widely differ among them. This fact implies that performance
comparison studies cannot be fairly done. Therefore, it is difficult to distinguish
the aspects and conditions in which each technique presents better performance, or
when its use is more convenient. Some of these studies presented in the open lit-
erature analyze the theoretical bounds of performance that prefetching can reach
[Kroeger 97, Fan 99, Domènech 06h]. The different scenarios only permit to arrive
at very general conclusions like, for instance, that performance can boost until 60%
[Kroeger 97] or more [Domènech 06h].

Although the open literature presents very interesting proposals about prefetching
techniques, it has not been possible to reproduce them yet (or to propose new ones)
using similar environmental conditions in order to compare their main features, advan-
tages and disadvantages. Despite the fact that there are some simulator environments
to check cache replacement algorithms [Cárdenas 04, Cao] as well as network features
[Davison 01b, UCB], there is a lack of simulation environments which concentrate
on prefetching. This fact, together with the potential performance benefits that pre-
fetching can reach, motivates us to propose a simulation environment to check the
performance of different prefetching algorithms under similar conditions. Our envi-
ronment permits the implementation of prefetching algorithms on any part of the web
architecture (user browser, proxy or server), either individually or working together.

The simulation environment (Figure 3.1) is composed of three main parts: the
server, the client, and the proxy. We have developed a hybrid implementation which
combines both real and simulated parts in order to provide the environment flexibility
and accuracy.

The back end part has both the real web server and the surrogate server. The
server is external to our environment and the system can access to it through the
surrogate where the prefetching engine is implemented. The surrogate is implemented
on a real machine offering fully representativeness.

The front end contains the client component, which represents the user behavior
in a prefetch enabled client browser. It is possible to use real traces or a synthetic
workload generator for each set of users accessing concurrently to the same server.

The intermediate part, which is located between the clients and the surrogate
system, models one or more proxy servers. Each one can implement the prefetching
independently.

20

3.2. EXPERIMENTAL FRAMEWORK

Figure 3.1: Architecture of the simulation environment

This organization provides a useful and operative environment since it permits the
implementation of prefetching algorithms working in any part of the system (in the
browser of the client, in the original server or in the proxy, or even in a collaborative
manner) by modifying only few parts of the structure. In addition, the environment
provides the appropriate interfaces to communicate the different modules between
them in order to implement easily those prefetching algorithms in which the different
elements collaborate. On the other hand, our simulator also includes a module to
provide performance results, and the main metrics discussed in Section 3.3.

3.2.2 Surrogate

A surrogate proxy is an optional element located close to the origin server that gen-
erally acts as a cache of the most popular server responses ([Vahdat 98, Group 01]
or accelerator mode in Squid [Pearson]). Usually surrogates are not used to perform
prefetching predictions. Although it is equivalent to perform predictions from the
server or the surrogate, the latter one allows much easier and more flexible software
implementations. Therefore, we perform our implementation on the surrogate.

The surrogate hints clients about what objects should be prefetched by means of
an optional header offered by the HTTP/1.1 standard [Fielding 99] in the same way
as Mozilla (from version 1.2 on) admits [Mozilla , Fisher 03]. This implementation is
based on the one described in [Padmanabhan 96]. The list of hints that the surrogate
proxy piggybacks is generated for each response.

Figure 3.2 shows the block diagram of the proposed surrogate proxy. Each block
represents a functional unit. Some of them are implemented as functions and others
as threads, keeping separately all their functionality.

The listener block, which is the simplest one, is implemented as a thread that waits
for clients to connect its socket, acting as a concurrent TCP server that listens at a
proxy port (generally at port 80). By default, there are no restrictions on the number
of simultaneous incoming connections. The main goal of this block is to create a new
Connection to server thread.

The Connection to server block, which is the main one, handles the connections.
The connection involves a request that is transferred to the web server, which processes

21

CHAPTER 3. PERFORMANCE EVALUATION

Figure 3.2: Block diagram of the surrogate

it and starts the transference. In that moment, the module first parses the response
until the full header is received and then, asks for a prediction to the Prediction
generator block. The prediction consists of a list of hints whose content depends on
the implemented algorithm. This list will be piggybacked on the response headers, so
the client can prefetch the object if the client application considers it appropriate.

When the whole object is received, the listener calls the Update stat Info block
to notify that event as well as its headers (object size, content type, prefetch or
user request, etc). This information is used to update the contents of the statistical
database, which is used to generate predictions. The frequency at which statistics are
updated depends on the prefetching scheme; e.g., once per hour, once per day, when
the server is not too loaded, when the server finishes its response etc. As our aim
is to maintain the simulator as flexible as possible, we implemented this module as
a function which updates the information or put the fetched object into a queue for
processing them later, although using threads to implement it is also possible.

The Prediction generator block represents the task of generating predictions each
time an object is requested. This block generates the prediction list of the objects
with the highest probability to be accessed in a near future, by taking the statistical
database contents as inputs. This list depends on the prefetching algorithm and the
information gathered, which can also include external information.

Once described the modules that the surrogate implements, we describe the inter-
face it offers to accommodate new prefetching proposals. Table 3.1 shows this interface
for the different functions that the surrogate part implements. This interface permits
to model proposals which do not involve changes in the HTTP 1.1 standard, although

22

3.2. EXPERIMENTAL FRAMEWORK

Table 3.1: Function interface to implement prefetching algorithms

Function Param. Result Description

prefetchInit None None It is called when surrogate is started,
and it is used to initialize variables or
to create a thread that updates some
structure periodically. Server starts
to work when this function returns.

getHints Client IP,
Input and
output
headers

Hints list It is called when all response head-
ers are received from the server. It
returns a list of hints of those ob-
jects that will be probably requested
in the future.

updateStats Client IP,
Input and
output
headers

None It is called when all response data
have been sent to the client for up-
dating user access statistics.

it is also possible to model techniques requiring changes in the standard by modifying
the corresponding modules. For instance, implementing proposals which require the
client to inform the server about the prefeching hits in order to reach more accurate
predictions.

3.2.3 Client

The client part of the system reproduces the behavior of a set of users browsing the
WWW with a prefetching enabled web browser. The client is fed with real traces
collected by a Squid proxy. This module can be replaced either by other log format
or even by any synthetic workload generator.

In order to simulate the behavior of the client, it is important to respect the time
intervals between two successive requests. Those times are obtained from timestamp
differences observed on logs. As timestamps in logs are made at the end of the transfer
time, we need to subtract the duration field to the timestamp on logs to obtain the
start time of the transfer. For this purpose, the environment includes a simple chgtime
script.

According to the real behavior of a prefetching enabled browser like Mozilla, and
as several research studies suggest [Crovella 98, Kokku 03], the prefetching of objects
should be performed only when the user is not downloading objects. Furthermore,
those proposals suggest stopping the prefetch connection when a user request rises
during the prefetch transference. The client simulator permits to stop the prefetch
transference, if wanted, by setting the corresponding parameter (StopPrefetch) in the

23

CHAPTER 3. PERFORMANCE EVALUATION

Table 3.2: Client configuration file. Main parameters and description

Parameter Description

StopPrefetch Stopping or not the prefetch requests when a new user
request is performed

HintsOfPrefetch The moment the client includes the received hints at-
tached to the prefetched objects in the hint list: 0, when
received, 1, when prefetched object is accessed

MaxLongHintList Maximum length of the list of hints (for the client)
Bandwidth Max number of bytes a user can receive per second
EnablePrefetch Type of prefetching hints:0, no prefetch; 1, prefetch

when hints received
ConnectDelay Time (in ms) that a new connection to the server is

delayed
ServerDelay Time (in ms) that a new request to the server is delayed
Connections Max number of connections a client can do simultane-

ously to the server
http11 HTTP version (1.1 o 1.0)
ClearList It tells the simulator whether to clear the hint list when

a new user connection arrives after an idle period

configuration file. This option aborts the prefetch, so losing the connection. Table 3.2
shows the main parameters that this configuration file includes.

The client part has also the ability to introduce latency for each downloaded object
simulating the time a client waits to get an object. There are three parameters in the
simulator affecting the response time of an object: the connection time, the server
processing time and the available bandwidth.

These parameters are not enough to model closely a real network. To this end,
an external delay generator can be included in the simulator, like the ns2 proposed in
[UCB]. By using a generator it is possible to simulate scenarios having any particular
kind of clients; e.g., systems with wireless clients losing a lot of packets and/or cable
users with a high bandwidth. Analogously, it is possible to model different network
conditions on the server; e.g., congestion and packet loss.

When simulating cache clients, the simulator only stores the object references
in order to avoid the fetching of the object from the server later. Note that, for our
purposes, it is not necessary to store the content of each object. However, as explained
below, this must be considered when working in the client part of the proxy cache.

Once the hints attached to the prefetched objects are received, they must be
included into the prefetching list. The parameter shown in Table 3.2 as HintsOf-
Prefetched states the moment when they are included. There are two alternatives: i)
when received, and ii) when accessed the prefetched object.

24

3.2. EXPERIMENTAL FRAMEWORK

Figure 3.3: Block diagram of the client

Figure 3.3 shows the block diagram of the client simulator. As observed, the client
part communicates only with the Squid traces, the log file (for analyzing the results
achieved by prefetching later), and the server. The latter, depending on the modeled
system, could be replaced by one or more proxies.

There are two data stores inside the client: the Prefetch List and the Fetched
Objects. The Prefetch List contains the list of objects that the server hints the client
to prefetch. These hints have been piggybacked with the requested object by the user,
and accumulated for each burst of user requests. When there is a new user request
after an idle period, the remaining hints in the list are removed. If one does not want
to remove the hints, the corresponding variable (ClearList) in the configuration file
must be set to zero. The Fetched Objects data store keeps all the fetched objects and,
if they are prefetched, stores also the information on whether the user has accessed
them later or not. This information can be used to simulate an infinite cache in the
client, because objects in this data store were never fetched or prefetched. Of course,
this behavior can be deactivated in the simulator by means of the corresponding
parameter (EnableCache) in the configuration file.

The Read Traces block reads the users requests from a Squid log. This module
reads each access and inserts it in a different FIFO queue for every client. Each
insertion is timed according to the timestamps of the Squid log file to match the
access pattern of the original user. It works in a similar way the HTTP Blast does
[Vöckler], which is a tool that reads a trace file with URLs and submits them to a
proxy cache, but in this case it is integrated into the client simulator. This block is
implemented as an independent thread connected to the rest of the system through
FIFO queues. As it is independent, it can be easily replaced by a synthetic workload

25

CHAPTER 3. PERFORMANCE EVALUATION

generator to feed the environment with the desired number of clients and requests.
The way of managing multiple clients is by means of multiple processes (one per
client) that work independently to request objects to the server.

The Prefetch Manager block reads requests from the Read Traces queue and asks
for the object if it has not been prefetched yet (by checking the Fetched Objects data
store). In order to request files to the server, the Prefetch Manager has several User
Request threads (the connections parameter of the configuration file) created and
waiting for a new request. When the object is received, if its URL is in the Prefetch
List, it is removed. Then, that URL is inserted into the Fetched Objects data store in
order to avoid prefetching the object later.

If the Read Traces queue is empty and the prefetch parameter is set to Only
when idle, the Prefetch Manager allows the prefetching until a new user request
rises. When a request is inserted into the queue, the Prefetch Manager indicates
that the prefetched downloads must be cancelled and then the Hint List data store is
cleared. Both behaviors are configurable by using the EnablePrefetch and ClearList
parameters, respectively.

The User Requests block receives requests from the Prefetch Manager and redi-
rects them to the Requests block, reusing the socket when using the HTTP 1.1 version.
When an object is received, this block inserts the prefetching hints piggybacked with
the object into the Prefetch List data store, and the URL of the object into the
Fetched Objects data store in order to avoid the prefetching of the object later. If it
already exists, the reference of that object is removed from the Prefetch List.

The Request block is a common interface (used both by user and prefetch requests)
for communicating with the web server (or the proxy). This block handles the com-
munication sockets at low level with the possibility of reusing connections if the client
is configured to use HTTP/1.1 persistent connections [Fielding 99].

When the simulator is running, it writes a log file that gathers information about
each request to the web server as well as the client request hits to the prefetched
object cache. By analyzing the log file, the most relevant performance metrics (recall,
precision, bandwidth overhead, etc) can be obtained. To this end, we implemented
the results generator program, which obtains the following parameters: the amount of
user accessed objects, cache hits, prefetch hits, prefetched objects, objects requested
to the server, the sum of the response time of objects, total bytes transferred, precision
of prefetch and recall. Note that the process of metrics generation is done at post-
simulation time from the Log generated file.

3.2.4 Proxy Server

Prefetching in the proxy server has many advantages. First, it allows users of non-
prefetching browsers to benefit from server prefetch hints, in the same way we dis-
cussed above with respect to the surrogate. Second, it has information from more
sources (the clients and the servers), so it is the one that can make more complex
and precise predictions about how many and which objects should be prefetched. For

26

3.2. EXPERIMENTAL FRAMEWORK

example, one can decide to prefetch only those objects cached at the proxy server (as
proposed in [Fan 99]) or restrict the amount of bandwidth overhead tolerated for pre-
fetching purposes. As predictions are more accurate, prefetching uses less bandwidth
and involves fewer overloads in the server.

When the different parts of the system support prefetch, many different behaviors
can be chosen. For example, the proxy server could receive hints from the server
and, after processing them, it could start a prefetch connection to cache the selected
objects. Then, the proxy could redirect the received hints to the client. These hints
could also be removed or even updated (omitting or adding new hints) by applying its
own proxy prediction algorithm, since the proxy has a better knowledge of its users
than the server has. In addition, the proxy can observe cross-server links.

The structure of the prefetching proxy server can be seen as a combination of a
surrogate and a client. On one hand, the proxy waits for connections and performs
predictions like the surrogate; on the other hand, the proxy requests files to the server
and processes hints like the client. From this point of view, only few changes should
be performed, i) the objects must be stored, and ii) requests to the server must be
generated from client requests (instead of from log traces as done in the client part).

By having all these three parts (surrogate, client, and proxy) we are able to: i)
study, test, and evaluate any proposal already appeared in the literature and ii) create
novel test environments which inter-relate the three parts of the global system. In
addition, the proxy side can be split in more parts to check the performance of new
organizations; e.g. prefetching between proxies.

Simulations can be run by just setting up one set of clients and one server, which
is the simplest system that can be modeled. The system can become more and more
complex to represent more realistic scenarios.

To run simulations, the three parts of the modeled system can be placed in a
single computer or placed distributed among computers of the same or different LANs.
The number of clients that a computer machine can simulate depends on the CPU
requirements of the client prefetching algorithm.

3.2.5 Implementation Example

As an example of how a prefetch technique can be implemented in our environment,
we use the one proposed by [Padmanabhan 96]. We omit some implementation details
since the goal of this section is only to present the simulation environment.

This proposal takes into account a set of clients and the server. The server im-
plements a prefetching algorithm similar to the one proposed by [Griffioen 94], which
uses previous client requests to generate the prediction list piggybacked on the re-
sponse. Then, the client receives the list, and uses it when it is idle to ask the server
for the hinted objects. When a user generates a real request, the prefetch is stopped.

The behavior pattern of the users was taken from logs collected by a Squid proxy
of the Polytechnic University of Valencia. We selected those requests accessing to a
popular news web server, which was mirrored to avoid external interferences. The

27

CHAPTER 3. PERFORMANCE EVALUATION

Table 3.3: Example of performance results

Prefetch Value 0 2

User requests 30 549 30 549
Avg. latency per page (s) 2.938 2.516

Latency per page ratio N/A 0.856
Total Transfer (KB) 101 106 138 798

Traffic increase N/A 1.373
Precision N/A 17.31%

Recall N/A 8.46%

response time parameters (50ms ConnectionDelay and 150ms ServerDelay) were ob-
tained experimentally by timing connections to the real server. The others parameters
were taken according to the HTTP/1.1 standard and Mozilla implementation:

• A maximum of two connections to the server per client.

• The system only prefetches when there are no users requests in course (including
the stop of prefetch connections when the user makes a new request).

• Hints list (per client) is cleared after an idle period.

• The hints piggybacked with the prefetched objects are only processed when the
container object is accessed.

According to the interface presented with the surrogate, accommodating the se-
lected algorithm in the proposed environment is limited to the implementation of the
next three functions:

• We create a thread in the prefetchInit to update statistical information of user
requests (probability of next access for each file) every ten seconds.

• The updateStats function marks the object that is accessed as a possible suc-
cessor of previous objects accessed by the user.

• The getHints function obtains a list of those objects having a probability equal
or higher than 40% of being accessed within the next 4 accesses as suggested in
[Padmanabhan 96].

Table 3.3 illustrates the results obtained by the environment for the selected pref-
etching algorithm when non-prefetching and with two different prefetching methods.
The results were obtained considering an initial empty cache and a small trace, so
that little past information can be used for prediction. However, we want to remark
that the objective of this example is only for illustrative purposes.

28

3.2. EXPERIMENTAL FRAMEWORK

Figure 3.4 profiles a small set of requests from three points of view: the web server,
the surrogate, and the client logs. This profile shows the dynamic behavior of the
requests and it can help us to debug the prefetching algorithms implemented. URLs
are cut in the example due to their length. Some other characteristics that can be
observed are:

• The IP address of the six requests that the web server receives is the corre-
sponding to the surrogate. So the server sees all the requests as if they came
from the surrogate. Timestamps are omitted.

• The surrogate distinguishes between user and prefetch requests through the
X-moz header.

• The first column of the client is the timestamp of the request and the second
one the request type (U: user, P: prefetch).

Figure 3.4: Requests as seen by the server, the surrogate and the client

As the surrogate submits hints with the object, the size of the response that the
user receives (third column of the client log) differs from that submitted by the server
(sixth column of the server).

To summarize, the proposal offers an experimental framework for testing a wide
variety of web architecture related aspects. Among them, the main contributions of
the proposed environment reside in the following capabilities:

29

CHAPTER 3. PERFORMANCE EVALUATION

1. Quantifying how the prefetch requests can interfere in the performance of the
user requests. Even more, we can quantify both the self-interference and the
cross-interference [Kokku 03]. This fact is possible because our environment
includes the entire system.

2. Standardizing the evaluation of prefetching techniques for comparison purposes.

3. Creating novel prefetching architectures that inter-relate the three parts of the
global system. Therefore, we can implement prefetching algorithms in any point
of the system as well as check their impact on the overall system performance.

4. Classifying which of the prefetching technique offers the best performance for
each user profile under different assumptions and conditions.

In [Domènech 04a, Domènech 04b], a summary of the environment shown in this
section and its capabilities was presented.

3.3 Performance Key Metrics

3.3.1 Introduction

Among the research works found in the literature, a large set of performance key
metrics are used to evaluate web prefetching benefits. This section pursues to identify
the most meaningful indexes when studying the performance of different prefetching
techniques.

As described in Section 2.2, all prefetching related techniques start predicting or
trying to guess the next objects to which the client will access. This part of the
prefetching system is usually referred as the prediction engine. Then, the prediction
results are submitted to the prefetching engine, which decides whether to prefetch
such results or not depending on other variables; e.g., available bandwidth or server
load. In this way, prefetched objects are a subset of the predicted objects. Notice
that both the prediction engine and the prefetching engine can be found in the same
element (client, proxy or server). We define below some basic concepts that will be
used in Section 3.3.2:

• Predictions : amount of objects predicted by the prediction engine.

• Prefetchs : amount of objects prefetched by the prefetching engine.

• GoodPredictions : amount of predicted objects that are subsequently demanded
by the user.

• BadPredictions : those predictions that do not result in good predictions.

• PrefetchHits : amount of prefetched objects that are subsequently demanded by
the user.

30

3.3. PERFORMANCE KEY METRICS

Figure 3.5: Sets representing the relation between UserRequests, Predictions and
Prefetchs

• ObjectsNotUsed : amount of prefetched objects never demanded by the user.

• UserRequests : amount of objects that the user demands.

Figure 3.5 shows graphically the relations between the variables defined above. A rep-
resents an object requested by the user but neither predicted nor prefetched. B repre-
sents a GoodPrediction that has not been prefetched, while C represents a PrefetchHit,
i.e. a GoodPrediction that has been prefetched. D is an ObjectNotUsed, which is
also a BadPrediction. Finally, E represents a BadPrediction. Analogously, we can
define byte related variables (PredictionsB, PrefetchsB, and so on) by replacing the
objects with the corresponding size in bytes in their definition.

3.3.2 Indexes Taxonomy

This subsection surveys the web performance indexes appeared in the open literature
focusing on prefetch aspects. To the better understanding of the meaning of those
indexes, we classify them into three main categories (see Figure 3.6), according to the
system feature they evaluate:

• Category 1: prediction related indexes.

• Category 2: resource usage indexes.

• Category 3: end-to-end perceived latency indexes.

The first category is the main one when comparing prediction algorithms perfor-
mance. It includes those indexes which quantify both the efficiency and the efficacy
of the algorithm (e.g., precision). The second category quantifies the additional cost
that prefetching incurs (e.g., traffic increase or processor time). This cost may be-
come really high. For that reason, it must be taken into account when comparing

31

CHAPTER 3. PERFORMANCE EVALUATION

Figure 3.6: Prefetching metrics taxonomy

prefetching techniques. Therefore, those indexes are complementary measures. Fi-
nally, the third category summarizes the performance achieved by the system from
the user’s point of view. Notice that prefetching techniques must pay attention to the
cost increase because they can negatively impact on the overall system performance
(traffic increase, user-perceived latencies). Therefore, the three categories are closely
related since in order to achieve a good overall performance (Category 3), prefetching
systems must trade off the aggressiveness of the algorithm (Category 1) and the cost
increase due to prefetching (Category 2).

Different definitions for the same index can be found in the literature (e.g., pre-
cision) and this fact increases the heterogeneity of the research efforts. In order to
make this section more readable, we only include the definition that we consider more
precise and appropriate for evaluation purposes. In the cases where several names
match the same definition, we select the most appropriate index name from our point
of view. The goal of this section is not only to contribute to the understanding of the
indexes but also to discuss their usefulness, distinguishing those used for comparison
purposes in any prefetching system from those applicable to a particular prefetching
technique (i.e. specific). Specific indexes are only found in the Category 1 (Predic-
tion), as shown in Figure 3.6.

3.3.2.1 Prediction Related Indexes

This group includes those indexes aimed at quantifying the performance that the
prediction algorithm provides. Prediction performance can be measured at different
moments or in different elements of the architecture, for instance when (where) the
algorithm makes the prediction and when (where) prefetching is applied in the real
system. Thus, each index in this category has a dual index; e.g., we can refer to the
precision of the prediction algorithm and to the precision of the prefetch. Notice that
those indexes measured when the prediction list is given do not take into account sys-
tem latencies because the prediction algorithm works independently of the underlying
network and the user’s restrictions.

32

3.3. PERFORMANCE KEY METRICS

Generic Prediction Indexes

Precision (Pc) Precision measures the ratio of good predictions to the number
of predictions [Cohen 99, Albrecht 99, Rabinovich 02, Bonino 03b, Davison 04] (see
Equation 3.1). Precision, defined in this way, just evaluates the algorithm without
considering physical system restrictions; e.g., cache, network or time restrictions;
therefore, it can be seen as a theoretical index.

Some research studies refer to this index as accuracy [Loon 97, Cunha 97,
Duchamp 99, Zukerman 99, Palpanas 99, Nanopoulos 01, Dongshan 02] or hit ra-
tio [Bouras 04], while others use a probabilistic notation; e.g., Pr(hit|match) in some
models based on Markov chains like [Pitkow 99].

There are other research works that measure the impact on performance of the
precision [Loon 97, Duchamp 99]. In these cases, the number of prefetched objects
and prefetch hits are used instead of the number of predictions and good predictions
respectively (see Equation 3.2).

Pc =
GoodPredictions

Predictions
(3.1)

Pc =
PrefetchHits

Prefetchs
(3.2)

In [Ibrahim 00], they evaluate the prefetching performance through the waste ratio,
which is defined as the percentage of undesired documents that are prefetched. As
one can observe, this index is the complementary of precision.

Recall (Rc) Recall measures the percentage of user requested objects that were
previously prefetched [Albrecht 99, Cohen 99, Rabinovich 02]. Recall quantifies the
weight of the predicted (see Equation 3.3) or prefetched objects (see Equation 3.4) over
the amount of objects requested by the user. Notice that this index only deals with
the number of good predictions made but not with the total amount of predictions.

This metric is referred in some research works as usefulness [Palpanas 99,
Nanopoulos 01, Bouras 04], hit ratio [Markatos 98, Ibrahim 00] or also accuracy
[Davison 02, Davison 04]. Predictability has been employed by [Schechter 98] to refer
to the upper limit of the recall.

Rc =
GoodPredictions

UserRequests
(3.3)

Rc =
PrefetchHits

UserRequests
(3.4)

33

CHAPTER 3. PERFORMANCE EVALUATION

Applicability Applicability is defined in [Bonino 03b, Bonino 03a] as the ratio
of the number of predictions to the number of requests. In [Bonino 03b] authors
incorrectly state that this index is a synonymous of recall. Notice that this index can
be obtained from the previous ones (i.e., dividing recall by precision); therefore no
additional information is given. This is the main reason why no other work uses this
index.

Applicability =
Predictions

UserRequests
(3.5)

Precision alone or together with recall has been the most widely used index to
evaluate the goodness of prediction algorithms. The time taken between the client
request making and the response receiving consists of four main components; i.e.,
connection establishment time, request transference time, request processing time,
and response transference time. Both precision and recall are closely related to the
three first components. Therefore, we consider that a complete comparison study
about prediction algorithms should also include byte related indexes to quantify the
last component. In this sense, similarly to some web proxy caching indexes (e.g., the
byte hit ratio [Cherkasova 00]), we propose the use of byte precision and byte recall as
indexes to estimate the impact of prefetching on the time that the user wastes when
waiting for the bytes of the requested objects.

Byte Precision (PcB) Byte precision measures the percentage of predicted (or
prefetched) bytes that are subsequently requested. It can be calculated by replacing
the number of predicted objects with their size in bytes in Equation 3.1.

Remark that, like precision does, byte precision quantifies how good the predic-
tions are, but measured in bytes instead of in objects. An earlier approach to this
index is the Miss rate ratio [Bestavros 95], described below. In [Bouras 04], authors
also mentioned that different results could be obtained when using the number of
bytes instead of the number of objects.

PcB =
GoodPredictionsB

PredictionsB

(3.6)

Byte Recall (RcB) Byte recall measures the percentage of demanded bytes
that were previously predicted (or prefetched). As mentioned above, this index quan-
tifies how many accurate predictions are made, measured in transferred bytes.

This index becomes more helpful than the previously mentioned recall, when the
transmission time is an important component of the overall user-perceived latency.

RcB =
GoodPredictionsB

UserRequestsB

(3.7)

34

3.3. PERFORMANCE KEY METRICS

Specific Prediction Indexes

Request savings Request savings measures the number of times that a user
request hits in the browser cache or the requested object is being prefetched, as a
percentage of the total number of user requests [Fan 99]. Furthermore, the request
savings can be broken down into three groups depending on if they were previously
prefetched, have been partially prefetched or cached as normal objects.

Notice that when prefetching is user-initiated, the number of requests increases;
therefore, this index makes sense when prefetching is proxy or server initiated. Fan et
al. use this index in a prefetch system where the proxy pushes objects to the client.
Nevertheless, this index could also be used when a prefetching system pushes objects
from the server to the proxy or from the server to the client (with no intermediate
proxies).

Miss rate ratio Miss rate ratio is defined in [Bestavros 95] as the ratio between
the byte miss rate when the prefetch is employed to the byte miss rate when the
prefetch is not employed, where the byte miss rate for a given client is the ratio of
bytes not found in the client cache to the total number of bytes accessed by that
client.

As one can see, this index quantifies to what extent miss rate in the client cache
drops due to the prefetching system. This is a specific index since it is only applicable
to those systems storing the prefetched objects in the client’s cache.

Probability of making a prediction In [Pitkow 99], they quantify the prob-
ability that the last accesses match the pattern prediction; in such case, the prefetch
system computes the prediction outcomes. This index can be applied, for example,
to those systems based on Markov models, but cannot be applied to a large subset of
prefetching systems; e.g., the top-10 approaches [Markatos 98]; so, it is classified as
specific.

3.3.2.2 Resource usage

The benefits of prefetching are achieved at the expense of using additional resources.
This overhead, as mentioned above, must be quantified because they can negatively
impact on performance.

Although some prediction algorithms may require huge memory or processor time
(e.g., high order Markov models), it is not the current general trend, where the main
prefetching bottleneck is the network traffic. Therefore, we divide indexes in this
category into two subgroups: network level and computing level.

35

CHAPTER 3. PERFORMANCE EVALUATION

Network level

Traffic Increase (∆TrB) Traffic increase quantifies the increase of traffic (in
bytes) due to unsuccessfully prefetched documents [Markatos 98] (see Equation 3.8).
It is also called wasted bandwidth [Fan 99], extra bytes [Rabinovich 02], network traffic
[Palpanas 99, Bouras 04], and bandwidth ratio [Bestavros 95].

When using the prefetch, the network traffic usually increases due to two side
effects of the prefetch: the objects not used and the extra information interchanged.
Objects that are not used waste network bandwidth because these objects are never
requested by the user. On the other hand, the network traffic increases due to the
prefetch related information interchange, called Network overhead by [Duchamp 99]).

Several research studies fail to take into account that overhead [Markatos 98,
Nanopoulos 01, Khan 03]; therefore, their results cannot estimate prefetching costs
accurately.

∆TrB =
ObjectsNotUsedB + NetworkOverheadB + UserRequestsB

UserRequestsB

(3.8)

Extra control data per byte Extra control data per byte quantifies the extra
bytes transferred that are related to the prefetch information, averaged per each byte
requested by the user. It is the Network overhead referred in [Duchamp 99], but
quantified per requested bytes, and will be used below when relating Traffic increase
to the prediction indexes.

ExtraControIDataB =
NetworkOverheadB

UserRequestsB

(3.9)

Object traffic increase (∆Trob) Object traffic increase quantifies in which
percentage the number of documents that clients get when using prefetching increases.
This index is referred by [Nanopoulos 01] as network traffic and by [Rabinovich 02]
as extra requests.

As Equation 3.10 shows, this index estimates the ratio of the amount of prefetched
objects never used with respect to the total user’s requests. It is analogous to the
traffic increase, but it measures the overhead in number of objects.

∆Trob =
ObjectsNotUsed + UserRequests

UserRequests
(3.10)

Computing level

Server load ratio Server load ratio is defined as the ratio between the number
of requests for service when speculation is employed to the number of requests for
service when speculation is not employed [Bestavros 95].

36

3.3. PERFORMANCE KEY METRICS

Space and Time overhead In addition to the server load, some research works
discuss how the overhead impacts on performance. For instance, [Duchamp 99] dis-
cusses the memory and processor time that the prefetch could need.

Prediction time This index quantifies the time that the predictor takes to make
a prediction. It is used in [Dongshan 02] to compare different predicting algorithms.

3.3.2.3 Latency related indexes

Indexes belonging to this category include those aimed at quantifying the end-to-end
latencies; e.g., user or proxy related latencies. The main drawback of these indexes
is that they include several time components, some of them difficult to quantify.
Researchers do not usually detail which components they measure, although they
use a typical index name; i.e., latency. Several names have been used instead; for
instance, access time [Padmanabhan 96], service time [Bestavros 95] and responsive-
ness [Tao 02, Khan 03]. This situation is not the best for the research community,
due to the fact that the different proposals cannot be fairly compared among them.

Through the different research works, latencies are measured both per page and
per object. The latency per page (Lp) is calculated by comparing the time between
browser’s initiation of an HTML page GET and browser’s reception of the last byte
of the last embedded image or object for that page [Duchamp 99]. Analogously, the
latency per object (Lob) can be defined as the elapsed time since the browser requests
an object until it receives the last byte of that object. In order to illustrate the
benefits of prefetching, researchers calculate the ratio of the latency that prefetching
achieves (either per page [Loon 97, Duchamp 99, Fan 99] or per object [Kroeger 97])
to the latency with no prefetching.

Unfortunately, some proposals that use latency when measuring performance
do not specify to which latency they are referring; e.g., [Bestavros 95, Khan 03,
Bouras 04]. This fact can be misleading because both indexes do not perform in
the same way. In order to illustrate this point we present the following example: a
user requests an HTML object embedding two images (IMG1 and IMG2). As Fig-
ure 3.7 shows, the transference of the HTML file starts at t0 and ends at t5. At times
t1 and t3 the browser reads and processes the IMG tags of the embedded images.
Then it starts the transference, which end at t2 and t5 respectively. In this case, the
cumulative Lob is the sum of the time taken by the three transferences (Lob= t4-t0
+ t2-t1 + t5-t3) where the latency per page (Lp) is t5-t0. If it is assumed that IMG1
was previously prefetched, no waiting time for such object will be plotted; i.e. t1 will
match t2, in such a way that it will reduce Lob but not Lp, which will remain the
same value.

To observe this feature in a real environment for a given client it is necessary that
the object retrieving times are independent. Nevertheless, although times are not
independent, both indexes have different values, as experimental results show.

37

CHAPTER 3. PERFORMANCE EVALUATION

Figure 3.7: Example where latency metrics behave differently when the prefetch hits
on one of the images

Furthermore, the latency per object measured when an object is downloaded by
the web browser has two main components: i) the queuing time, since the browser
has a limited number of connections, and ii) the request completion time, including
the time of connection establishment (if needed) and the object transference. The
first component is often ignored [Bouras 04] and other research studies [Bestavros 95,
Kokku 03] do not specify whether the measured latency includes the queuing time.
The first component should not be ignored because prefetch hits do not compete
for a free connection so the queuing time of the remaining objects decreases and,
consequently, their latency. Note that all the stated relations between both latency
related indexes are valid for any web latency reduction technique and not only for
prefetching. In this sense, the definitions of these indexes can be adapted to include
any web technique aimed at reducing the final user-perceived latency. The latency
per page (or per object) ratio can be defined, in a wider way, as the ratio between
the latency per page (or per object) when a latency reduction technique is used to
the latency per page (or per object) when that technique is not used.

3.3.2.4 Summary: synonymous and experimental index category used

Through the proposed taxonomy, we have discussed the large variety of index names
(synonymous) used to refer to the same metric. This heterogeneity can be observed
through web performance studies appeared in the literature, a fact that adds extra
difficulty to obtain a general view of the subject. Table 3.4 offers a scheme of the
current situation. In addition, we also have found that the same index name has been
used when measuring different variables (e.g., accuracy appears both for precision
and for recall). As one can observe, the widest heterogeneity is present in the first
category due to the wide range of prediction algorithms appeared in the literature

38

3.3. PERFORMANCE KEY METRICS

and due to its importance in the prefetching systems, which are the main focus of
this work.

Table 3.5 classifies a representative subset of research works that can be found in
the open literature and shows the categories of indexes that are used in such works.
As discussed above, a complete research work should include indexes belonging to the
three categories. However, we only have observed this fact in 16% of the explored
works, just four of the twenty-five works (row 1). Notice that the first column shows
that 80% of the research works have at least one of the indexes belonging to the
prediction category. Moreover, 44% of the studies only measure prediction metrics to
evaluate the system performance. The second column states that 60% of the papers
do not measure resource usage metrics. Finally, the third column shows that 60% of
the research works do not quantify the end perceived latencies.

3.3.3 Relation between indexes

This subsection has three main goals. The first one is to illustrate the usefulness of the
indexes introduced in this chapter (i.e., byte precision, byte recall, and extra control
data per byte) as well as the way in which they differ from the analogous classical
ones. The second one is to study and show how indexes are related among them.
Finally, the third goal is to identify the most meaningful indexes when evaluating
the overall system performance. We use both empirical and analytical approaches to
show how indexes are interrelated. When analytical relations were found, results for
the empirical approach are not shown.

3.3.3.1 Empirical tests

The relations among indexes are checked by comparing them by pairs that could be
potentially related through different prefetching scenarios. Pairs were selected from
the most widely used indexes as discussed in Section 3.3.2: precision, byte precision,
recall, byte recall, latency per page and latency per object.

In order to detect the possible relations, a four-graphic figure is plotted for each
pair of indexes as a result of combining the two prediction algorithms using two
traces. Then, in those graphics where some sign of linear relation appears, we quantify
it through the linear correlation coefficient. In order to observe how the indexes
behave in a wide range of situations, the experiments were run ranging the threshold
value of the prefetching algorithms from 0.1 to 0.9 (with a 0.1 increment). Points
in the graphics refer to the performance indexes measured for every client in each
experiment. Remark that the measured values of the prediction indexes refer to the
prefetched objects instead of the predicted objects since they are closer to the system
performance.

Prefetching Algorithms The experiments were run using two different predic-
tion algorithms: the Dependency Graph (DG) and the Prediction by Partial Match
(PPM), both described in detail in Section 2.3.

39

CHAPTER 3. PERFORMANCE EVALUATION

Table 3.4: Relation between the selected index name in this work and those appearing
in the literature

Category Selected
name

Literature
Name References

1. Prediction

Precision

Precision [Cunha 97, Albrecht 99,
Rabinovich 02,
Bonino 03b, Bonino 03a,
Davison 04]

Accuracy [Loon 97, Duchamp 99,
Cohen 99, Zukerman 99,
Palpanas 99,
Nanopoulos 01,
Dongshan 02]

Pr(hit|match) [Pitkow 99]
Hit ratio [Bouras 04]
Waste ratio [Ibrahim 00]

Recall

Recall [Albrecht 99, Cohen 99,
Rabinovich 02]

Usefulness [Palpanas 99,
Nanopoulos 01,
Bouras 04]

Hit ratio [Markatos 98,
Ibrahim 00]

Predictability [Schechter 98]

Applicability Applicability
[Bonino 03b,
Bonino 03a]

2. Resource
usage

Traffic
increase

Traffic increase [Padmanabhan 96,
Markatos 98,
Duchamp 99]

Wasted bandwidth [Fan 99]
Bandwidth ratio [Bestavros 95]
Extra bytes [Rabinovich 02]
Data transfer [Khan 03]
Network traffic [Palpanas 99, Bouras 04]

Object traffic
increase

Network traffic [Nanopoulos 01]
Extra requests [Rabinovich 02]

Prediction
time

Prediction time [Dongshan 02]

3. Latency

Latency per
page

Latency [Loon 97, Duchamp 99,
Fan 99]

Responsiveness [Tao 02, Khan 03]

Latency per
object

Latency [Kroeger 97, Kokku 03,
Bouras 04]

Access time [Padmanabhan 96]
Service time ratio [Bestavros 95]40

3.3. PERFORMANCE KEY METRICS

Table 3.5: Relation between the research studies and the indexes used, grouped by
category

References Category %
1. Prediction 2. Resource 3. Latency

[Bestavros 95, Fan 99,
Duchamp 99, Bouras 04]

X X X 16

[Padmanabhan 96,
Khan 03]

X X 8

[Loon 97] X X 4
[Kroeger 97, Tao 02,
Kokku 03]

X 12

[Markatos 98,
Palpanas 99,
Nanopoulos 01,
Dongshan 02]

X X 16

[Cunha 97, Schechter 98,
Zukerman 99, Cohen 99,
Albrecht 99, Pitkow 99,
Ibrahim 00, Davison 02,
Bonino 03b, Bonino 03a,
Davison 04]

X 44

TOTAL 80% 40% 40%

Workload The behavior pattern of the users was taken from logs collected during
eight days, between May 5th and May 12th 2003, by a Squid proxy of the Polytechnic
University of Valencia. From this log, accesses to two of the most popular servers in
this environment were taken and reproduced in the simulation, using the first week
to train the prefetching algorithm and the following day to obtain the performance
indexes. The first trace (A) contains accesses to a news web server, whereas the
second one (B) includes the accesses to a student information web server. The main
characteristics of trace can be found in Table 3.6.

Figure 3.8 plots the latency per object ratio to the latency per page ratio, both
referring to different alternatives about how latency can be measured (as discussed in
Section 3.3.2.3). The points refer to the performance index measured for every client
in each experiment.

Notice that depending on the way the latency is measured, it is possible to reach
not only different but also opposite conclusions. Suppose that we take a point in
the upper left side quarter and we consider the latency per object ; in such case, the
prefetching system outperforms the non-prefetching system. However, if we consid-
ered the latency per page, we would conclude the opposite. The correlation coefficient

41

CHAPTER 3. PERFORMANCE EVALUATION

 0.9

 0.95

 1

 1.05

 1.1

 0.9 0.95 1 1.05 1.1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Latency per object ratio

Trace: A, Algorithm: dg

(a) Trace: A, algorithm: DG

 0.9

 0.95

 1

 1.05

 1.1

 0.9 0.95 1 1.05 1.1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Latency per object ratio

Trace: A, Algorithm: ppm

(b) Trace: A, algorithm: PPM

 0.9

 0.95

 1

 1.05

 1.1

 0.9 0.95 1 1.05 1.1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Latency per object ratio

Trace: B, Algorithm: dg

(c) Trace: B, algorithm: DG

 0.9

 0.95

 1

 1.05

 1.1

 0.9 0.95 1 1.05 1.1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Latency per object ratio

Trace: B, Algorithm: ppm

(d) Trace: B, algorithm: PPM

Figure 3.8: Latency per object ratio as a function of latency per page ratio

42

3.3. PERFORMANCE KEY METRICS

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Precision

Trace: A, Algorithm: dg

Linear model

(a) Trace: A, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Precision

Trace: A, Algorithm: ppm

Linear model

(b) Trace: A, algorithm: PPM

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Byte-Precision

Trace: B, Algorithm: dg

Linear model

(c) Trace: B, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Byte-Precision

Trace: B, Algorithm: ppm

Linear model

(d) Trace: B, algorithm: PPM

Figure 3.9: Relation between precision and latency related indexes

43

CHAPTER 3. PERFORMANCE EVALUATION

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Recall

Trace: A, Algorithm: dg

Linear model

(a) Trace: A, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Recall

Trace: A, Algorithm: ppm

Linear model

(b) Trace: A, algorithm: PPM

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Recall

Trace: B, Algorithm: dg

Linear model

(c) Trace: B, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Recall

Trace: B, Algorithm: ppm

Linear model

(d) Trace: B, algorithm: PPM

Figure 3.10: Recall as a function of latency per object ratio

44

3.3. PERFORMANCE KEY METRICS

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Recall

Trace: A, Algorithm: dg

Linear model

(a) Trace: A, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Recall

Trace: A, Algorithm: ppm

Linear model

(b) Trace: A, algorithm: PPM

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Recall

Trace: B, Algorithm: dg

Linear model

(c) Trace: B, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Recall

Trace: B, Algorithm: ppm

Linear model

(d) Trace: B, algorithm: PPM

Figure 3.11: Recall as a function of latency per page ratio

45

CHAPTER 3. PERFORMANCE EVALUATION

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Byte-Recall

Trace: A, Algorithm: dg

Linear model

(a) Trace: A, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Byte-Recall

Trace: A, Algorithm: ppm

Linear model

(b) Trace: A, algorithm: PPM

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Byte-Recall

Trace: B, Algorithm: dg

Linear model

(c) Trace: B, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

ob
je

ct
 r

at
io

Byte-Recall

Trace: B, Algorithm: ppm

Linear model

(d) Trace: B, algorithm: PPM

Figure 3.12: Byte Recall as a function of latency per object ratio

46

3.3. PERFORMANCE KEY METRICS

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Byte-Recall

Trace: A, Algorithm: dg

Linear model

(a) Trace: A, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Byte-Recall

Trace: A, Algorithm: ppm

Linear model

(b) Trace: A, algorithm: PPM

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Byte-Recall

Trace: B, Algorithm: dg

Linear model

(c) Trace: B, algorithm: DG

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

pe
r

pa
ge

 r
at

io

Byte-Recall

Trace: B, Algorithm: ppm

Linear model

(d) Trace: B, algorithm: PPM

Figure 3.13: Byte Recall as a function of latency per page ratio

47

CHAPTER 3. PERFORMANCE EVALUATION

Table 3.6: Trace characteristics

Trace A B

Training accesses 251,271 148,213
Experiment accesses 65,866 37,655
HTMLs accesses 2,269 1,717
Users 300 132
Bytes transferred (KB) 188,600 68,428

Table 3.7: Linear correlation coefficient between precision and latency indexes

Pc PcB

Lat. Trace/Alg DG PPM DG PPM
Lp A –0.3333 –0.5453 –0.3684 –0.6107

B –0.3495 –0.3436 –0.1533 –0.4929
Lob A –0.2068 –0.2667 –0.2663 –0.2114

B –0.1292 –0.1564 –0.3855 –0.1944

between both latency ratios corresponding to the points plotted in Figure 3.8 ranges
from 0.55 to 0.77, i.e., the indexes present a certain linear correlation but it is far
from being strong; so latency per object and latency per page ratios cannot be directly
comparable.

As a consequence, we suggest that studies should differentiate the use of both
latency ratios because they are aimed at exploring the performance from different
points of view. The latency per page ratio evaluates the system performance from
the user’s point of view (since it measures the latency as perceived by the user) while
the latency per object ratio measures the performance from the point of view of each
individual object that composes the pages. Therefore, it should be used when the

Table 3.8: Linear correlation coefficient between recall and latency indexes

Rc RcB

Lat. Trace/Alg DG PPM DG PPM
Lp A –0.4088 –0.5089 –0.5780 –0.7227

B –0.5037 –0.4149 –0.5309 –0.4579
Lob A –0.2311 –0.6023 –0.2318 –0.3049

B –0.6685 –0.1083 –0.3780 –0.1024

48

3.3. PERFORMANCE KEY METRICS

meaning of a page is not so clear; for instance when we are measuring the latency in
a proxy server.

Figure 3.9(a) and 3.9(b) present an almost horizontal curve showing no apparent
relation between precision and latency related indexes. The correlation coefficients
showed in Table 3.7 quantify this negligible linear correlation, which confirms the
visual appreciation. Graphics 3.9(c) and 3.9(d) show that there is a weak relation
between the byte precision index and the latency related indexes. The remainder
combinations of traces and algorithms are not shown because they are very similar.

Figure 3.10 shows the relation between recall and latency per object ratio. As one
can observe, depending on the workload and the prediction algorithm considered, a
linear relation between the recall index and the latency per object ratio might exist.
Some extra elements not gathered by the recall, like the queuing time and the object
size heterogeneity, justify why the relation is not stronger. Figure 3.11 shows that
a certain correlation exists between the recall and the latency per page ratio, but
it is far from being strong, as the linear correlation coefficient shows in Table 3.8.
The latency per page ratio is not completely explained by the recall index since it
involves more elements that affect it, like the simultaneous transference of objects (as
explained in Section 3.3.2.3). These results corroborate the differences between both
latency indexes observed in Figure 3.8.

Figures 3.12 and 3.13 show the relation between the byte recall and both latency
indexes. The former presents a very weak correlation of the byte recall to the latency
per object ratio; hence the fact that the byte recall does not explain the latency per
object ratio. However, Figure 3.13 and its associated correlation coefficient show that
the byte recall is stronger correlated to the latency per page ratio than to the recall, so
this index explains the user-perceived latency better. More details about this relation
can be found in Chapter 6.

3.3.3.2 Analytical Relations

In order to identify analytical relations among indexes we use the index definitions
presented in Section 3.3.2. We found that the network level indexes can be obtained
from the prediction related indexes. Equation 3.11 shows that the object traffic
increase depends on the recall (Rc) and the precision (Pc) achieved by the prefetching
system. The equation is consistent with the meaning of both indexes: a decrease in
the precision means a higher object traffic increase, whereas the higher the recall is,
the lower the object traffic increase is.

∆Trob =
ObjectsNotUsed + UserRequests

UserRequests

=
P − Pc · P + Pc·P

Rc
Pc·P
Rc

= 1−Rc +
Rc

Pc

(3.11)

49

CHAPTER 3. PERFORMANCE EVALUATION

Equation 3.12 shows the relation of the traffic increase index with those metrics
related to the prediction; i.e., the byte recall (RcB), the byte precision (PcB) and the
extra control data per byte. As this index is related to the number of bytes transferred,
the main difference with the previous one lies in the fact that it depends on the byte
recall and byte precision instead of on the recall and the precision. Notice that, when
comparing this equation to the Eq. 3.11, a new term appears. This term refers to the
extra control data per byte, so it can be understood as the increase in network traffic
due to the transference of data used to control the prefetching engine (e.g., prefetch
hints) per each byte requested by the user.

∆TrB =
ObjectsNotUsedB + NetworkOverheadB + UserRequestsB

UserRequestsB

=
PB − PcB · PB + NOB + PcB ·PB

RcB

PcB ·PB

RcB

= 1−RcB +
RcB

PcB

+ ExtraControlDataB

(3.12)

3.3.4 Key Metrics Summary

A wide variety of key metrics have appeared in the open literature in order to evaluate
the performance of web prefetching systems. This section has analyzed this wide
heterogeneity trying to i) clarify the index definitions and how they are interrelated,
and ii) contribute to deciding which metric or index should be selected to evaluate
the system performance.

We have proposed a taxonomy classifying the indexes related to prefetch in three
main categories, according to the part of the system they pursue to evaluate: predic-
tion, resource usage and latency. The goal of this taxonomy is not only to contribute
to the understanding of the definition of the indexes, but it is also aimed at analyzing
analogies and differences between them, in order to identify which are the most useful
metrics when carrying out performance studies.

We have provided each metric or index with a definition (the one we considered
more precise) from the wide variety appeared in the literature. Then, looking at these
definitions we observed certain analogies. We used both empirical and analytical ap-
proaches to show how indexes are interrelated. We found analytical relations between
network level indexes and prediction related indexes. To check other possible relations
among indexes, we ran experiments and calculated the statistical correlation among
a representative set of them. From these results, the main conclusions are:

• Performance studies should include at least latency related metrics. Depending
on the goal of the performed study latency per page or per object is preferred.
For instance, if the goal is to analyze the user’s point of view, the latency per
page must be included. However, when evaluating from the point of view of

50

3.4. COMPARISON METHODOLOGY

a proxy server, the latency per page makes no sense due to the lack of page
concept. Consequently, the latency per object could be the most useful metric.

• Latencies cannot be used as the only metrics to check performance. Studies
must analyze how the latency reduction has been achieved for a given proposal.
In this sense, resource usage indexes should be taken into account. Traffic
increase is the one that provides more information; therefore, we suggest that
performance studies should include at least this index.

• Our discussion has shown that it is not advisable to perform studies about the
behavior of prefetching techniques just focusing on the algorithm point of view.
Nevertheless, if some studies focus on this part, they should include recall and
byte recall as performance metrics because they are the most correlated to the
latency per object and latency per page respectively.

In [Domènech 04b, Domènech 04c, Domènech 06a, Domènech 06c], a summary of
the results shown in this section was presented.

3.4 Comparison Methodology

Despite the large amount of research works focusing on web prefetching, comparative
and evaluation studies from the user’s point of view are rare. Some papers com-
paring the performance of prefetching algorithms have been published [Dongshan 02,
Chen 03, Nanopoulos 03, Bouras 03, Bouras 04] but they mainly concentrate on pre-
dictive performance [Dongshan 02, Chen 03, Nanopoulos 03, Bouras 03].

In addition, performance comparisons are rarely made using a useful cost-benefit
analysis, i.e., latency reduction as a function of the traffic increase. As examples of
some timid attempts, Dongshan and Junyi [Dongshan 02] compare the accuracy, the
model-building time, and the prediction time in three versions of a predictor based
on Markov chains. Another current work by Chen and Zhang [Chen 03] implements
three variants of the PPM predictor by measuring the hit ratio and traffic under
different assumptions.

Nanopoulos et al. [Nanopoulos 03] show a cost-benefit analysis of the performance
of four prediction algorithms by comparing the precision and the recall to the traffic
increase. Nevertheless, they ignore how the prediction performance affects the final
user. Bouras et al. in [Bouras 03] show the performance achieved by two config-
urations of the PPM algorithm and three of the n-most popular algorithm. They
quantify the usefulness (recall), the hit ratio (precision) and the traffic increase but
they present a low number of experiments, which make it difficult to obtain conclu-
sions. In a more recent work [Bouras 04] they also show an estimated upper bound
of the latency reduction for the same experiments.

In this section we propose a cost-benefit methodology to perform fair comparisons
of web prefetching algorithms from the user’s point of view.

51

CHAPTER 3. PERFORMANCE EVALUATION

3.4.1 Performance indexes

One of the most important steps in a performance evaluation study is the correct
choice of the performance indexes. In this dissertation, the performance of the algo-
rithms has been evaluated by using the main metrics related to the user-perceived
performance and the prefetching costs as described in Section 3.3: Latency per page
ratio, Traffic increase and Object traffic increase.

3.4.2 Methodology

Despite the fact that prefetching has been also used to reduce the peaks of bandwidth
demand [Maltzahn 99], usually its primary goal; i.e., the benefit, is the reduction of
the user’s perceived latency. Therefore, the comparison of prefetching algorithms
should be made from the user’s point of view and using a cost-benefit analysis.

When predictions fail, the prefetched objects waste user and server resources,
which can lead to a performance degradation either to the user himself or to the rest of
users. Since in most proposals the client downloads the predicted objects in advance,
the main cost of the latency reduction in prefetching systems is the increment of the
network load due to the transference of objects that will not be used. This increment
has two sides: the first is the increase in the amount of bytes transferred (measured
through the Traffic Increase metric), and the second is the increase of the server
requests (measured through the Object Traffic Increase metric). As a consequence,
the performance analysis should consider the benefit of reducing the user-perceived
latency at the expense of increasing the network traffic and the amount of requests
to the server.

Each simulation experiment on a prefetching system takes as input the user be-
havior, its available bandwidth and the prefetching parameters. The main results
obtained are traffic increase, object traffic increase and latency per page ratio values.

Comparisons of two different algorithms only can be fairly done if either the benefit
or the cost have the same or close value. For instance, when two algorithms present
the same or very close values of traffic increase, the best proposal is the one that
presents less user perceived latency, and vice versa. For this reason, in this thesis
performance comparisons are made through curves that include different pairs of
traffic increase and latency per page ratio for each algorithm. To obtain each point in
the curve, the aggressiveness of the algorithm is varied, i.e., how much an algorithm
will predict. This aggressiveness is usually controlled by a threshold parameter in
those algorithms that support it (e.g., DG, PPM-OB-TH and PPM-PG-TH) or by the
number of returned predictions in those based on the top-n (e.g., PPM-OB-TOP and
PPM-PG-TOP).

A plot can gather the curves obtained for each algorithm in order to be compared.
By drawing a line over the desired latency reduction in this plot, one can obtain the
traffic increase of each algorithm. The best algorithm for achieving that latency per
page is the one having less traffic increase. In a similar way, we can proceed with the
object traffic increase metric.

52

3.5. WORKLOAD

In [Domènech 06f, Domènech 06e, Domènech 06d], a summary of the methodology
developed in this section was presented.

3.5 Workload

The benefits of a web prefetching system depend mostly on the workload chosen to
evaluate its performance. For this reason, the choice of this workload is of paramount
importance in order to estimate its benefits appropriately. By analyzing the open liter-
ature, we found that the workload used to evaluate prefetching is quite heterogeneous.
A high amount of research works takes real traces (usually from a web server or from a
proxy) to conduct the experiments [Jiang 97, Jiang 98, Venkataramani 02, Yang 03,
Davison 04, Chen 05], whereas some others use synthetically generated workloads
[Khan 01, Jiang 02, Nanopoulos 02, Teng 05]. Synthetic workloads do not usually
take into account the structure of the web, i.e., container and embedded objects
[Nanopoulos 02], while real traces are often stale when they are evaluated. For in-
stance, [Davison 04] runs a nine-year old trace and [Chen 05] a six-year old trace.

In this section we run experiments to compare the performance of web prefetching
in old and current web from two perspectives: user-perceived latency and prediction
engine. Results show that there is no reason to think that prefetching studies should
be conducted using old traces, since the performance of prefetching algorithms is quite
different from both the prediction and the user’s point of view. Hence, conclusions
obtained for old workload cannot be directly moved to current web.

3.5.1 Old and Current Workload Differences

The following experiments are aimed at showing how web prefetching techniques have
become less effective with the evolution of the World Wide Web.

In this subsection we evaluate the performance from the user’s point of view,
by using the DG and the PPM-OB-TH algorithms described in Section 2.3. To
show the different performance, two representative traces of current and old work-
load have been selected. Trace A is the same trace used in the experiments of Sec-
tion 3.3.3. It contains accesses to a news web server. Trace B is the EPA-HTTP
data set used in [Sarukkai 00], which is publicly available in the Web [tra]. It is a
quite old trace (it dates from 1995) but it has been included in several recent works
[Yang 03, Davison 04]. The main characteristics of the traces are shown in Table 3.9.

Figures 3.14 and 3.15 illustrate the results for two different user-available band-
widths, which represent dial-up and DSL users respectively. To draw the curves, the
cutoff threshold of both algorithms has been ranged from 0.2 to 0.7, increasing in
steps of 0.1.

Figure 3.14 shows that for users of 1 Mbps of available bandwidth, web prefetching
performance is significantly worse under the current workload (trace A). For instance,
looking at Figure 3.14(a), taking into account the DG algorithm and permitting a
traffic increase of 35%, web prefetching in trace C reduces the user-perceived latency

53

CHAPTER 3. PERFORMANCE EVALUATION

Table 3.9: Trace characteristics

Trace
Characteristics A B

Year 2003 1995
Users 300 2,330
Page Accesses 2,263 20,683
Object Accesses 65,569 47,748
Training accesses 35,000 22,000
Avg. Objects per Page 28.97 2.30
Bytes Transferred (MB) 218.09 285.29
Avg. Object Size (KB) 3.41 6.12
Avg. Page Size (KB) 98.68 14.12
Avg. HTML Size (KB) 32.77 8.00
Avg. Image Size (KB) 2.36 4.71

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Trace: A, Alg: DG
Trace: A, Alg: PPM OB TH

Trace B, Alg: DG
Trace: B, Alg: PPM OB TH

(a) Latency per page ratio as a function of
Traffic Increase

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Trace: A, Alg: DG
Trace: A, Alg: PPM OB TH

Trace B, Alg: DG
Trace: B, Alg: PPM OB TH

(b) Latency per page ratio as a function of
Object Traffic Increase

Figure 3.14: Performance comparison between old and current workloads. Users of
1 Mbps of available bandwidth are simulated. Each point in the curves represents a
given threshold, from 0.2 to 0.7

54

3.5. WORKLOAD

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Trace: A, Alg: DG
Trace: A, Alg: PPM OB TH

Trace B, Alg: DG
Trace: B, Alg: PPM OB TH

(a) Latency per page ratio versus Traffic In-
crease

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Trace: A, Alg: DG
Trace: A, Alg: PPM OB TH

Trace B, Alg: DG
Trace: B, Alg: PPM OB TH

(b) Latency per page ratio versus Object
Traffic Increase

Figure 3.15: Performance comparison between old and current workloads. Users of
48 kbps of available bandwidth are simulated. Each point in the curves represents a
given threshold, from 0.2 to 0.7

by about 15%. However, in trace A, this latency reduction is only about 8%. The
same result is obtained if we consider as cost metric the object traffic increase, as
shown in Figure 3.14(b).

Looking at Figure 3.15 one can observe that the simulation of 48 kbps of available
bandwidth per user exhibits a similar trend. In this scenario, the worst case is even
worse than the 1 Mbps one, since the latency per page ratio is greater than 1; i.e.,
the use of prefetching techniques adversely impacts on the user’s perceived latency.

The prefetching techniques proposed until now in the literature achieve better
results when applied to old traces, which are more or less contemporary with the
prefetching proposals. One of the possible reasons of these discouraging results can
be found in the dynamic nature of the current web applications that makes less
predictable the user’s accesses.

This remark must not be understood as meaning that prefetching techniques are
not interesting to reduce the user-perceived latency in current scenarios . Quite
the opposite is the case. The following chapters of this dissertation will show that
prefetching techniques present better results for high bandwidth, which is the current
trend.

3.5.2 Evolution of Prediction Performance

A large amount of research studies have focused on the prediction algorithm
[Palpanas 99, Sarukkai 00, Nanopoulos 03, Chen 03, Lau 04, Bouras 04, Davison 04],
which is designed to learn previous visiting patterns so as to guess user’s future

55

CHAPTER 3. PERFORMANCE EVALUATION

accesses. In this sense, the period in which performance is measured is usually pre-
ceded by a training period for the algorithm to acquire the knowledge. During this
period, the algorithm discovers, stores and classifies the universe of objects to which
the user can access. The training stage finishes when the algorithm has a significant
knowledge of the objects and their access patterns. In this sense, the resources used
by the algorithm, e.g., CPU and memory, will increase with the size of this universe
of objects.

Studying how prediction performance evolves in Web prefetching techniques is
important to prevent a reduction of its potential benefits (which could turn even
into performance losses) in a real working environment when considering long term
scenarios. That is because this length affects the performance results when they vary
through time, therefore it is important for researchers in order to determine which
length of the training and testing periods makes their algorithms achieve the best
performance.

In this subsection we analyze how prediction indexes vary through time in order to
explore the performance evolution. To do so, we use both old (from 1995) and recent
web accesses traces. Results show that prediction performance in old traces reaches
the steady state in short time. However, in recent traces it may evolve negatively. This
fact is the natural effect of the increasing dynamism in current web that has produced
important changes in user’s web accesses [Peña-Ortiz 05]. As a consequence, much of
the stored information becomes stale, leading to a performance degradation as well
as incurring in higher use of resources.

3.5.2.1 Background

A representative subset of research works appeared in the literature has been analyzed
[Palpanas 99, Sarukkai 00, Nanopoulos 03, Chen 03, Lau 04, Bouras 04, Davison 04].
Table 3.10 summarizes the different decisions that have been made in the literature
regarding the length of the training and test periods of the prediction algorithm.

Although performance results could vary significantly depending on this decision,
it has been barely discussed, and most papers evaluating web prediction algorithms
take an arbitrary value for the length of the training period. In fact, from those ana-
lyzed, only [Davison 04] and [Lau 04] slightly argue their training length. Prediction
algorithms are evaluated in [Davison 04] without previous training. This procedure
is argued to be more realistic than freezing the learning after a training period, and
then evaluating the prediction algorithm. In [Lau 04], they train the algorithm during
two weeks before evaluating its performance for one day. The authors state that this
period is enough to show the web access patterns of each individual user based on
their observations during the experimental period.

3.5.2.2 Experimental Environment

Framework As the main aim of this subsection is to analyze only the evolution of
the prediction performance during a long period, there is no need to simulate the net-

56

3.5. WORKLOAD

Table 3.10: Test and training periods used in the literature

Reference Trace year Training Test Length

[Nanopoulos 03] 1995 1,200,000 acc. 400,000 acc. 7 days
[Lau 04] N/A 14 days 1 day 15 days
[Sarukkai 00] 1995 40,000 acc. 7,000 acc. 1 day
[Chen 03] 1998 1 day 1 day 2 days
[Bouras 04] N/A 400,000 acc. 100,000 acc. 7 days
[Davison 04] 1997/8 No training Several Several
[Palpanas 99] N/A 30,000 acc. 56,000 acc. 5 days

work and other users’ restrictions. In this way, the prediction engine module (located
at the surrogate) and the prediction evaluation module (located at the client) are
extracted from the framework described in Section 3.2 and adapted to work together.
As a result, the simulation time is reduced dramatically.

Workload The behavior pattern of users was taken from four different logs. Traces
A and B correspond to 50 days of the log used in the experiments of Section 3.3.3.
Trace C is the EPA-HTTP data set used in Section 3.5.1 to evaluate the performance
of web prefetching in current and old traces. Trace D is the first part of the ClarkNet
Web server log that can be found in [cla]. Although it is a quite old trace, it has
a significant number of users’ accesses and has been used in recent research studies
[Nanopoulos 03], [Gündüz 03]. The main characteristics of the traces can be found in
Table 3.11. As one can observe, the differences between new and old traces are more
evident in the amount of objects per page and, consequently, in the page size.

Table 3.11: Trace characteristics

Trace A B C D

Year 2003 2003 1995 1995
Duration 50 days 50 days 1 day 7 days
Users 1,627 1,115 2,330 90,499
Page Accesses 29,599 31,979 20,683 352,788
Object Accesses 658,323 506,148 47,748 1,654,849
Objects per Page 22.24 15.83 2.30 4.69
Bytes Transferred (MB) 1,907 1,996 275 13,104
Avg. Object Size (KB) 2.97 4.04 5.90 8.11
Avg. Page Size (KB) 65.97 63.91 13.61 38.03

57

CHAPTER 3. PERFORMANCE EVALUATION

Prefetching algorithms In order to check the evolution of the indexes in time, the
experiments were run using five of the most implemented prediction algorithms in the
literature: four main variants of the Prediction by Partial Match (PPM) algorithm and
the Dependency Graph (DG) based algorithm, both described in Section 2.3. PPM
algorithm has been proposed to be applied either to each object access [Sarukkai 00,
Davison 04] or to each page (i.e. to each container object) [Palpanas 99, Dongshan 02,
Chen 03] accessed by the user. In addition, two ways of selecting which object or page
will be predicted have been used: predicting the top-n likely objects [Sarukkai 00,
Dongshan 02, Davison 04] or using a cutoff threshold [Palpanas 99, Nanopoulos 03,
Chen 03]. The four variants resulting from combining the unit of prediction (object
or page) and the way of selecting the candidates (top-n or with a threshold) are
implemented and analyzed.

Performance indexes The evolution of the prediction performance of an algorithm
is analyzed through the main four prediction-related metrics described in Section 3.3:
recall, byte recall, precision and byte precision.

3.5.2.3 Experimental results

To explore how prediction performance evolve, each index is analyzed as a function
of the amount of the considered user’s requests.

All plots in Figures 3.16 to 3.19 include five curves, and each one represents a dif-
ferent prediction algorithm. The curve labeled as DG corresponds to the Dependency
Graph algorithm. The four PPM variants are labeled as PPM x y, where x can be
OB or PG depending on the element of prediction (object or page respectively); and
y can be TOP or TH depending on the way of selecting the candidates (the top-n
most likely or with a threshold respectively).

The DG algorithm was set up to use a 2 lookahead window and a 0.40 cutoff
threshold. Similarly, PPM is based on a first-order Markov model with the same
threshold for those variants, and n=5 for the top-n ones.

Current Workload Figures 3.16 and 3.17 show how the prediction indexes evolve
in current workloads as time goes by. These behaviors are also summarized in Ta-
ble 3.12 to facilitate the understanding of the following analysis. The discussed metrics
are divided into two main categories: precision-related and recall-related indexes. For
each category and algorithm, the stationary trend is summarized as negative, steady
or positive. Then, a general global trend (last column) is obtained from the trends of
both categories.

Looking at Figure 3.16(a) one can observe that precision across trace A exhibits
a marginally increase in the PPM OB TH algorithm in the initial state, i.e. until
100K requests. The DG presents a slight decrease and a noticeable decrease in the
remaining three algorithms. After this period, all curves decline on a small scale with

58

3.5. WORKLOAD

Table 3.12: Summary of the evolution of the prediction performance in the analyzed
workload. Legend. I: Initial period, S: Stationary period, T: Trend, GT: Global Trend,
– –: Strong negative trend, –: Slightly negative trend, =: Steady trend, +: Slightly
positive trend

Trace Algorithm Pc Pcb T Rc Rcb T GT

I S I S I S I S

DG – – + – – = – + – – –

PPM OB TH + = + – – – – – – – – – –

A PPM OB TOP – – – – – – + – + – – –

PPM PG TH – – – – – – – + = = = = –

PPM PG TOP – – – – – – – + – + – – –

DG – – + – – + = + – – –

PPM OB TH + = + = = – – – – – – –

B PPM OB TOP – – – – – = – + = + = = –

PPM PG TH – – – – – = – + – + – – –

PPM PG TOP – – – – – – – + = + = = –

DG + + + = + + + – + + +

PPM OB TH + + + – Dif = = = = = Dif

C PPM OB TOP + = + = = + + + + + +

PPM PG TH + – + = – + = – + + Dif

PPM PG TOP + – = = – + + + + + Dif

DG + = + = = + = + = = =

PPM OB TH + + + + + = = = = = +

D PPM OB TOP + – + – – + + + + + Dif

PPM PG TH – – – – – – = = = = = –

PPM PG TOP + – + – – + + + + + Dif

59

CHAPTER 3. PERFORMANCE EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
re

c
is

io
n

Request order (x1000)

Trace A (26/Mar/2003 − 14/May/2003)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(a) Trace A. Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

P
re

c
is

io
n

Request order (x1000)

Trace B (26/Mar/2003 − 14/May/2003)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(b) Trace B. Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

B
y
te

 P
re

c
is

io
n

Request order (x1000)

Trace A (26/Mar/2003 − 14/May/2003)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(c) Trace A. Byte Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

B
y
te

 P
re

c
is

io
n

Request order (x1000)

Trace B (26/Mar/2003 − 14/May/2003)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(d) Trace B. Byte Precision

Figure 3.16: Evolution of precision metrics in current workloads

60

3.5. WORKLOAD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

R
e

c
a

ll

Request order (x1000)

Trace A (26/Mar/2003 − 14/May/2003)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(a) Trace A. Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

R
e

c
a

ll

Request order (x1000)

Trace B (26/Mar/2003 − 14/May/2003)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(b) Trace B. Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

B
y
te

 R
e

c
a

ll

Request order (x1000)

Trace A (26/Mar/2003 − 14/May/2003)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(c) Trace A. Byte Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

B
y
te

 R
e

c
a

ll

Request order (x1000)

Trace B (26/Mar/2003 − 14/May/2003)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(d) Trace B. Byte Recall

Figure 3.17: Evolution of recall metrics in current workloads

61

CHAPTER 3. PERFORMANCE EVALUATION

the only exception of PPM OB TH, which remains constant. Figure 3.16(b) shows
the same behavior across trace B.

Byte precision differs from precision in the measured values, but similar trends are
exhibited in trace A, as Figure 3.16(c) shows. In the initial period, the index shows
distinct trends depending on the algorithm. After that, all trends become slightly
descendant. In trace B (Figure 3.16(d)), the byte precision remains steady in the
stationary state in three algorithms, while the other two present a weak descending
trend.

Recall evolves across trace A as Figure 3.17(a) shows. In the initial period, its
evolution is steady in the DG algorithm, negative in PPM OB TH and positive in the
remaining three algorithms. In the stationary period, the recall has a weak descendant
trend in all the algorithms with the only exception of PPM PG TOP, which is steady.
Figure 3.17(b) shows that the recall, after an initial period of improvement, has a
negative or steady trend.

Figures 3.17(c) and 3.17(d) show that the behavior of the byte recall index remains
close to that shown in the other prediction indexes. Trends are showed in Table 3.12.

The global trend column in Table 3.12 shows that the prediction performance
degrades as time goes by in all algorithms for both current traces.

Old Workload The evolution of the prediction indexes for the old workload is
shown in Figures 3.18 and 3.19 and summarized in Table 3.12. Figure 3.18(a) shows
that the precision in trace C exhibits a positive trend in the initial state, but then
the evolution differs depending on the algorithm: It is ascendant for the DG and
PPM OB TH algorithms, steady for the PPM OB TOP and descendant for the
two remaining algorithms. Similarly, the stationary trend of the precision in trace
D (Figure 3.18(b)) is positive in PPM OB TH, steady in DG, and negative in the
remaining three algorithms. The recall index, in the traces C and D, shows a steady or
positive stationary trend in all algorithms, as observed in Figures 3.19(a) and 3.19(b).

Unlike the results in current traces, when evaluating old workload a global trend for
the prediction performance cannot be obtained, because it depends on the algorithm,
as Table 3.12 shows. In those situations in which, for a given algorithm, the evaluated
indexes exhibit opposite trends, no global trend can be provided, so we have labeled
it as Different in the table. It represents a trade-off between two indexes, where one
index can be improved at the expense of degrading the other.

3.5.3 Influence of the User-available Bandwidth on the Per-
ceived Latency

The user-available bandwidth has increased dramatically during the last few years.
However, the latency perceived by users when browsing the web has not been pro-
portionally reduced. To show how varies the user-perceived latency (by means of the
latency per page metric) as a function of the increase of available bandwidth, we have
simulated users with different bandwidths under the workload A used in Section 3.3.3.

62

3.5. WORKLOAD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

P
re

c
is

io
n

Request order (x100)

Trace C (30/Aug/1995)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(a) Trace C. Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

P
re

c
is

io
n

Request order (x1000)

Trace D (28/Aug/1995 − 03/Sep/1995)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(b) Trace D. Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

B
yt

e
P

re
ci

si
on

Request order (x100)

Trace C (30/Aug/1995)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(c) Trace C. Byte Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

B
yt

e
P

re
ci

si
on

Request order (x1000)

Trace D (28/Aug/1995 - 03/Sep/1995)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(d) Trace D. Byte Precision

Figure 3.18: Evolution of precision metrics in old workloads

63

CHAPTER 3. PERFORMANCE EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

R
e

c
a

ll

Request order (x100)

Trace C (30/Aug/1995)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(a) Trace C. Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

R
e

c
a

ll

Request order (x1000)

Trace D (28/Aug/1995 − 03/Sep/1995)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(b) Trace D. Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

B
yt

e
R

ec
al

l

Request order (x100)

Trace C (30/Aug/1995)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(c) Trace C. Byte Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

B
yt

e
R

ec
al

l

Request order (x1000)

Trace D (28/Aug/1995 - 03/Sep/1995)

DG
PPM PG TH

PPM PG TOP
PPM OB TH

PPM OB TOP

(d) Trace D. Byte Recall

Figure 3.19: Evolution of recall metrics in old workloads

64

3.5. WORKLOAD

Figure 3.20 shows the evolution of the latency per page as the user-available band-
width increases from 64 kbps to 8 Mbps. As one can observe, the perceived latency
reaches its minimum value when users of 1 Mbps are simulated, and additional in-
creases of available bandwidth do not involve reduction in the average latency per
page. For this reason, the reduction of user-perceived latency by employing tech-
niques such as prefetching acquires more importance.

 0

 5

 10

 15

 20

 100 1000 10000

A
vg

. L
at

en
cy

 p
er

 p
ag

e
(s

)

Available Bandwidth (kbps)

Figure 3.20: Average latency per page as a function of the user available bandwidth

3.5.4 Workload summary

In this section, we showed how prefetching techniques have become less effective with
the evolution of the World Wide Web. Results showed that the techniques proposed
in the literature achieved better results when applied to old traces than when they
were applied under current workloads.

Section 3.5.2 explored how prediction algorithms indexes of web prefetching tech-
niques, i.e. precision and recall, evolve according to different user’s visiting patterns.
For this purpose we have simulated a set of prefetching algorithms using current and
old web traces, paying special attention to how these workloads affect the performance
of the algorithms during the training period.

An interesting observation of our study is that when using old workloads, after the
stationary state in the training is reached, the prediction performance either improves
or is not affected, i.e., it remains steady or changes the trade-off between indexes. On
the other hand, when current workloads are used to train any prediction algorithm,
the performance degrades as time goes by. This is because the user’s behavior in the
current web is less foreseeable, and current contents change faster than in the past
web. Therefore, prediction performance evaluation should be performed in current
traces in a different way to the old ones.

65

CHAPTER 3. PERFORMANCE EVALUATION

The fact that performance degrades as time goes by means that some of the knowl-
edge acquired during the training has become useless due to the changing behavior
of users that is present in current web users. As a consequence, the lack of efficiency
makes the algorithm increase the resource wasting, including CPU time, memory
and network availability. This fact takes relevance especially when taking into ac-
count long term scenarios in which prefetching systems can run during long periods
of time. In this sense, a corrector measure could help to avoid the resource wasting,
like forgetting the training or freezing it after a period of time.

Finally, we have shown that, once the user-available bandwidth reaches 1 Mbps,
additional increases of bandwidth hardly reduce the perceived latency when browsing
the Web, so the use of techniques such as prefetching acquires more importance.

In [Domènech 05, Domènech 06g], a summary of the results shown in this section
was presented.

3.6 Conclusions

In this chapter we have described and solved the main limitations when evaluating
the performance of a web prefetching system. In order to perform a fair comparison
study, an experimental framework has been developed. By simulating the whole web
architecture, all performance issues, like the interference of prefetch requests with
user requests, can be measured.

We have shown that a wide variety of performance metrics have appeared in the
literature. We have analyzed this wide heterogeneity to clarify index definitions, to
show how they are interrelated, and to decide which metrics should be selected to
evaluate the system performance.

A comparison methodology has been provided to evaluate and compare prefetch-
ing algorithms from the user’s point of view. This methodology uses a cost-benefit
analysis to deal with the benefit of reducing the user-perceived latency at the expense
of increasing the network traffic and the server load.

Finally, we have shown that the performance achieved by the prefetching tech-
niques differs depending on the workload age. In addition, the evolution of the pre-
dictive performance also differs. Results also show that there is no reason to think
that prefetching studies should be conducted using old traces.

66

Chapter 4

Theoretical Limits on
Performance

4.1 Introduction

Web prefetching-related studies are performed through different prefetching architec-
tures. For instance, [Fan 99] proposes the proxy servers to push web objects to low
bandwidth clients. In a more recent work, [Bouras 04] describes a proxy where user’s
requests are predicted and requested to the server in advance. [Markatos 98] pro-
poses different levels of proxies and servers collaborating to predict users’ requests.
Other works [Padmanabhan 96, Kokku 03, Domènech 06b] implement a system where
servers predict users’ future accesses and then, clients download those objects in ad-
vance.

These works provide results in different conditions and architectures, but do not
show insights about how far these results are from the maximum benefits achievable
by prefetching techniques. These benefits depend on several factors as well as on the
considered web architecture. [Kroeger 97] presents an initial tentative to quantify the
limits for latency reduction of web caching and prefetching but, unfortunately, they
combine their benefits and they only focus on the proxy. In addition, some of their
assumptions are not valid in current web.

This chapter analyzes the impact of the web prefetching architecture on the theo-
retical limits of reducing the user-perceived latency. To do so, we examine the factors
that limit the predictive power of each prefeching architecture and quantify these the-
oretical limits both in amount of requests that can be predicted and in user-perceived
latency that can be reduced. This study addresses two main issues: i) to identify the
best architecture to reduce user-perceived latency when performing prefetch, and ii)
to provide insights about the goodness of a given proposal by comparing it to the
performance limits.

67

CHAPTER 4. THEORETICAL LIMITS ON PERFORMANCE

4.2 Metrics

There exist two situations in which a user access cannot be predicted. To quantify and
analyze these situations, which may strongly limit the performance, new performance
indexes are defined.

The first scenario in which a user access cannot be predicted is when accessing for
the first time to the element of the web architecture in which the prediction engine is
located. For instance, a predictor located at the web server cannot predict the first
access of a user in a session. We quantify this limitation by means of the session
first-access ratio (SFAR), described below.

The second situation in which the prediction is limited is when the prediction
engine has never seen the object before. This is particularly important when the
prediction engine is located at the client. We use the first seen ratio (FSR) to evaluate
the impact of this limiting factor on the predictive performance. This index has two
variants, FSRobject and FSRlatency , depending on whether the limits on performance
are measured in number of objects that can be potentially predicted or in potential
latency savings. The FSRobject is defined as the ratio of the amount of different
objects to the total amount of requests (see Equation 4.1). When aggregating data
from different clients, the FSRobject is calculated as the ratio of different pairs {URI,
client IP} to the total amount of requests. FSRlatency is defined as the ratio of the
sum of the latency of the first appearance of each object to the latency of the total
amount of accesses.

FSRobject =
#DifferentObjects

#ObjectRequests
(4.1)

Like the FSR, the SFAR has different variants depending on how the limiting
factor is quantified: object, latency and page. The index uses the session concept,
defined as a sequence of accesses made by a single user with idle times between them
no longer than t seconds. Since each session has always a first page, which cannot
be predicted, we define the SFARpage as the ratio of the number of sessions to the
total amount of page accesses (see Equation 4.2). SFARobject is used to quantify the
amount of objects that this factor makes it impossible to predict. It is defined as the
ratio of session first-accesses to the total amount of object requests, where a session
first-access is a client request that is included in the first page of a session. Finally, to
measure the impact of the SFAR factor on the perceived latency, the SFARlatency is
calculated as the ratio of the latency of the session first-accesses to the latency of the
total amount of accesses.

SFARpage =
#Sessions

#PageAccesses
(4.2)

Since the location of the prediction engine makes the pattern of accesses seen by
the predictor vary, the described indexes are evaluated in each prefetching architecture
to quantify the two situations in which the predictive performance is limited.

68

4.3. WORKLOAD

4.3 Workload

The workload used to quantify the limits of the reduction of web latencies when
using prefetching was obtained from the log of the Squid proxy of the Polytechnic
University of Valencia. The log includes 43,418,555 web accesses of 9,359 different
users to 160,296 different servers. It is 7 days long, from May 31st to Jun 6th 2006.
In the analysis, the first 6 days were taken as a training set while the trace of the last
day was used to calculate performance metrics.

The log consists of one line per each client request with the standard information
of the Squid logs. The main fields are the URL, the timestamp of the moment when
the request was finished, the HTTP method, the proxy service time, the MIME type,
the client IP and the amount of bytes transferred. In order to reproduce the original
sequence of accesses made by the users, the trace was reordered by the starting time
of the requests [Domènech 04a]. It was calculated by subtracting in each line the
proxy service time from the timestamp. For those measurements that require that
the log is grouped by page accesses, an alternative version of the log was created. To
do so, all the embeddable objects (those with mime type like GIF, CSS or JS) were
marked as embedded objects of the last HTML accessed by that user. Accesses not
related to user’s accesses, like automatic antivirus and O. S. updates were removed
to avoid interferences with the user’s accesses.

4.4 Predicting at the server

The main advantage of locating the prediction engine at the server is that it is the
element that has the most knowledge about the objects that it contains. In addition,
it is possible to avoid interferences with the user’s requests that prefetching might
produce by varying the prediction aggressiveness as a function of the server load.
However, from the server point of view, it is not possible to gather dependencies
between accesses to other servers, increasing the SFAR measured at the servers and,
therefore, decreasing the potential reduction of the user-perceived latency.

Figure 4.1 shows the three variants of SFAR metric as a function of the maximum
idle time allowed in a session (t parameter). As observed, for a t value of 1,800
seconds (as used in [Cooley 99]), the first pages of a session seen from the server
point of view (SFARpage) represent about 35% of the total pages visited by users.
However, these pages contain about 45% of the accessed objects, as shown in the
SFARobject curve, but represent 63.4% of the latency perceived by the user, shown in
the SFARlatency curve. Therefore, the percentage of latency that cannot be reduced
due to this factor is 36.6%.

A deep analysis of this result shows that this poor potential reduction of latency is
due to the fact that users access most of the servers only once. Figure 4.2 shows how
the SFARlatency is distributed through the servers. Each point of the curve represents
the ratio of servers that have a SFARlatency lower than its corresponding value in the
X axis. As one can observe, more than 60% of servers have all their latency in the

69

CHAPTER 4. THEORETICAL LIMITS ON PERFORMANCE

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

S
F

A
R

Maximum idle time in a session (s)

latency
page

object

Figure 4.1: SFAR at the server as a function of the maximum idle time in a session

Table 4.1: First seen ratio at different servers

Server
Metric A B C D E

FSRobject 0.5% 0.8% 0.6% 0.4% 0.6%
FSRlatency 3.9% 9.3% 1.7% 1.8% 1.7%

first pages. For this reason, the potential latency reduction highly depends on the
server workload since, as shown in Figure 4.2, there is a noticeable amount of servers
that could benefit from prefetching in a higher extent. For instance, 20% of servers
have a SFARlatency lower than 37.4% (i.e., a potential latency reduction higher than
62.6%).

It is not possible to infer a precise FSR value at the servers from a proxy trace
because it gathers only a part, in most cases not significant, of the requests received by
a server. To obtain an approximate value, we calculated the FSR in the top-5 servers
with more load gathered in the proxy. Table 4.1 shows that, among these servers, the
FSRobject is lower than 0.8%, although the latency of these objects represents 9.3%
of the user-perceived latency.

In summary, the main limitation to reduce the latency when the prediction engine
is located at the server is the inability of predicting the first access to the server. This
fact makes it impossible to reduce the user-perceived latency beyond 36.6% with this
prefetching architecture.

70

4.5. PREDICTING AT THE CLIENT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

ra
tio

 o
f s

er
ve

rs

SFARlatency

Figure 4.2: Cumulative relative frequency histogram of SFARlatency at the server with
t=1,800 seconds to web servers

4.5 Predicting at the client

Locating the predictor engine at the client has two main advantages: i) the client is
the element where the SFAR is the lowest since the predictor engine can gather all the
user’s accesses, and ii) it is possible to gather, and therefore, to predict, cross-server
transitions. In contrast, this location has, as main shortcoming, the low amount of
accesses that it receives, making FSR high.

Regarding the prediction limit that affects the prediction of objects never seen
before, we found a FSRobjectvalue of 41.6%, which is the percentage of objects de-
manded by a user that has never been accessed by that user before. The latency of
these objects represent 45.6% of the total latency perceived by users, which is the
latency that cannot be reduced when the predictor is located at the client.

Figure 4.3 shows the prediction limit related to the session first-access factor. As
one can observe, the values are noticeably lower than those measured at the server.
For a t value of 1,800 seconds, only 1.3% of pages are the first ones in a session, which
represent 2.8% of the user-perceived latency.

In summary, unlike the predictor located at the server, the main limitation of
the web prefetching techniques for reducing the user-perceived latency is the access
to objects never seen before. This fact means that the maximum latency that this
web prefetching architecture could reduce is about 54.4% of the latency perceived by
users.

71

CHAPTER 4. THEORETICAL LIMITS ON PERFORMANCE

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

S
F

A
R

Maximum idle time in a session (s)

latency
page

object

Figure 4.3: SFAR at the client as a function of the maximum idle time in a session

4.6 Predicting at the proxy

Locating the predictor at the proxy has similar advantages to locating it at the client,
since both gather all the requests performed by the client. For this reason, their SFAR
matches. However, the FSR has a better value in the proxy than in the client, due to
the high amount of clients that are usually connected to the proxy. To analyze how
the FSR changes depending on the amount of connected clients, experiments were
run varying the number of users connected from 40 to 9,359, randomly selected from
the original trace. As the results are highly dependent on the selected set of users
that are connected to the scaled proxy, results for between 20 and 100 sets of users
are averaged to achieve a 95% confidence interval less than 0.04.

Figure 4.4 shows that in a small sized proxy with 40 clients connected, 34% of
user’s accesses were made to an object never requested before. This FSR decreases
logarithmically to 16% when considering all the users connected. It occurs in a similar
way when looking at the latency curve, which decreases from 47% with a 40-client
proxy to 33% with the 10,000-user proxy.

The values obtained for SFAR and FSR let us state that the first seen objects
are the main limiting factor of prediction engines in the proxy in order to reduce the
user-perceived latency.

4.7 Collaborative prediction

Previous subsections have shown that, depending on the location of the prediction
engine, not only the potential latency reduction varies but also the source of this
limitation. Therefore, if prediction engines were implemented in several elements of

72

4.7. COLLABORATIVE PREDICTION

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

F
S

R

Clients connected to the proxy

objects
latency

Figure 4.4: FSR at the proxy with 95% confidence intervals depending on the amount
of clients connected to the proxy

the architecture, they could collaborate to improve the predictions and overcome the
limitations.

In this subsection we quantify the latency reduction limits for the different com-
binations of collaborative prediction engines. Notice that when dealing with collab-
orative predictors, a client or a proxy can collaborate only with a server if it has
been accessed before. To quantify this limitation, we define the server first seen ratio
(SFSR) as the ratio of accesses to pages of servers that have been accessed for the
first time to the total amount of accesses to pages.

4.7.1 Collaborative prediction between clients and servers

A collaborative prediction engine that uses predictors at the clients and at the servers
takes benefit from the low SFAR of the client-located predictors and the good knowl-
edge of the objects of server-located predictors. By analyzing the SFSR, we found
that 5.0% of the pages accessed by the user are requested to a server that is accesed for
the first time by that user. These requests represent 4.6% of the total user-perceived
latency.

As discussed in Section 4.5, the latency that cannot be reduced due to the session
first-accesses at clients is 2.8% of the perceived latency, whereas the FSR factor at
the server limits the potential latency reduction between 90.7% and 98.3%. Since we
are quantifying the theoretical maximum of the latency reduction, we consider the
best situation (i.e., 98.3%).

All three limits provide a latency of 4.6% as a maximum value that cannot be
reduced. Therefore, we conclude that a predictor engine based on collaborative pre-
dictors located at the clients and at the servers cannot reduce the user-perceived

73

CHAPTER 4. THEORETICAL LIMITS ON PERFORMANCE

latency more than 95.4%. Remark that this is only a theoretical limit of the capabil-
ity of the prediction engine to potentially predict objects.

4.7.2 Collaborative prediction between proxy and servers

Like the previous scheme of collaboration, this one also takes benefit of the low SFAR
of proxy prediction engines and the low FSR of predictors located at servers. The
limits related to the session first-access factor and to the first seen objects are the
same as the limits analyzed in the collaborative prediction between clients and servers,
because the SFAR at the proxy matches the SFAR at the client (see Section 4.6).

The analysis of the trace provided a SFSRobject value of 0.8%, that is, only 0.8% of
the pages requested by the proxy were made to a server that was not accessed before.
These pages represented 0.7% of the latency recorded at the proxy. This result makes
the session first-access factor the most restrictive limit to potentially reduce the user-
perceived latency. Thus, a collaborative predictor engine located at the servers and
at the proxy cannot reduce the user-perceived latency more than 97.2%.

4.7.3 Collaborative prediction between clients and proxy

A prediction engine located at the client could take benefit from collaborating with
a predictor located at the proxy because the latter has a lower FSR. However, the
opposite situation does not occur because the proxy predictor cannot benefit from
the collaboration since SFAR matches at both elements. Therefore this collaborative
scheme cannot outperform a single predictor located at the proxy.

For the same reason, a collaborative system between predictors in all the ele-
ments of the web architecture, i.e., clients, proxies and servers, cannot outperform
the collaborative scheme between proxies and servers.

4.8 Conclusions

There are two previous works dealing with the limits of prefetching. The latency
reduction limits of caching and prefetching are analyzed in [Kroeger 97] under several
scenarios with a prefetching engine located at the proxy by using a proxy trace which
dates from 1996. Most of their results are not comparable to the ones presented in this
chapter because of the different assumptions. The only result that can be compared
to those presented in this work is that, for a prediction engine located at the proxy,
prefetching could reach a latency reduction of 45% with assumptions similar to those
we considered. The comparison of this value to the one we found; i.e., 67%, illustrates
that the changes of the Web during the last ten years have impacted noticeably on
the potential benefits of web prefetching.

In [Fan 99], they also use a proxy-equivalent trace which dates from 1996 to eval-
uate their proposal of web prefetching between proxies and low-bandwidth clients.
In their proposal, the proxy implements the predictor engine and then pushes the

74

4.8. CONCLUSIONS

Table 4.2: Summary of predicting limits depending on where the prediction engine is
located

Single Predictor Collaborative Predictors
Factor Client Proxy Server Client-Server Proxy-Server

SFARobject 1.3% 1.3% 45% 1.3% 1.3%
FSRobject 41.6% 16.3% 0.4% 0.4% 0.4%
SFSRobject – – – 5.0% 0.8%
Max. object pred. 58.4% 83.7% 55% 95% 98.7%

SFARlatency 2.8% 2.8% 63.4% 2.8% 2.8%
FSRlatency 45.6% 32.6% 1.7% 1.7% 1.7%
SFSRlatency – – – 4.6% 0.7%
Max. lat. reduct. 54.4% 67.4% 36.6% 95.4% 97.2%

predicted objects to the clients when they are idle. In addition, the potential perfor-
mance for their architecture is evaluated by means of a perfect prefetching algorithm.
Their results show that, by combining several techniques (including prefetching), 50%
of the requests can be predicted to avoid about 30% of the user-perceived latency.

Our study summarizes the potential prediction capabilities and the sources of
the limits of each prefetching architecture (see Table 4.2). The results show that
collaborative prediction engines could reduce almost all the user-perceived latency.
These schemes largely improve the single predictor at the proxy, since a proxy-server
collaborative prediction engine reaches a theoretical limit of reducing 97% of the
user-perceived latency.

The best element to implement a single predictor is the proxy, which could reduce
up to 67% of the perceived latency. The prediction engines located at servers can
only reduce 36.6% the overall latency. This is due to the high amount of servers that
are accessed only once per session. However, there is a noticeable amount of servers
that can benefit from implementing the prediction engine in a higher extent.

In the remainder of this thesis, we will focus on this architecture because it is the
one most studied in the open literature and the results obtained for a server-based
predictor can be easily moved to the predictor located at the proxy. In addition, a
predictor at the server is a compulsory step to implement any collaborative predictor.

Regarding the sources of the latency reduction limits, the session first-accesses
are the main limiting factor in server predictors. The first seen objects represent the
main limiting factor in client and proxy single predictors, as well as in the collabo-
rative prediction engine of proxies with servers. Finally, accessing to servers never
seen before is the most limiting factor to reduce the user-perceived latency in the
collaborative predictors of clients with servers. In [Domènech 06h], a summary of the
results of this chapter was presented.

75

Chapter 5

Evaluation of Current
Prefetching Algorithms

5.1 Introduction

Despite the large amount of research works focusing on web prefetching, comparative
and evaluation studies from the user’s point of view are rare. This fact leads to the
inability to quantify in a real working environment which proposal is better for the
user.

Some papers comparing the performance of prefetching algorithms have been pub-
lished [Dongshan 02, Chen 03, Nanopoulos 03, Bouras 03, Bouras 04, Wu 06]. These
studies mainly concentrate on the performance of the predictor engine but, unfortu-
nately, only [Bouras 04] attempts to evaluate the user-perceived latency. In spite of
being an essential part of the prefetching techniques, performance measured at the
prediction level does not completely explain the performance perceived by the user,
as shown in Section 3.3, since the perceived latency is affected by a high amount of
factors and not only by the hit ratio. In addition, performance comparisons are rarely
made by means of a useful cost-benefit analysis, e.g., latency reduction as a function
of the traffic increase.

In this chapter we use the methodology described in Chapter 3 to compare differ-
ent prediction algorithms and to evaluate their performance by using current traces.
That is, each algorithm is represented through a curve that relates the user-perceived
latency reduction (by means of the latency per page ratio index) achieved by the
algorithm to the cost of achieving such benefit, i.e., traffic increase or object traffic
increase. A deep analysis through the predicted objects has also been carried out
in order to identify the main reasons why performance among prediction algorithms
differs.

77

CHAPTER 5. EVALUATION OF CURRENT PREFETCHING ALGORITHMS

5.2 Background

In this section we discuss recent works that deal with comparisons of web prefetching
algorithms, focusing on the implemented algorithms and the metrics that they use to
evaluate their performance.

Three versions of a predictor based on Markov are compared in [Dongshan 02].
They compare the accuracy, the model-building time, and the prediction time varying
the order of the Markov model. In a similar way, [Chen 03] implements three variants
of the PPM predictor. They show how the hit ratio and traffic increase vary as a
function of the cutoff threshold of the algorithm.

In [Nanopoulos 03], it is shown a cost-benefit analysis of the performance of four
prediction algorithms by comparing the precision and the recall to the traffic increase
by means of a simple table. However, this analysis is only applied to a subset of the
workload considered in the paper and ignores how the prediction performance affects
the final user, i.e., the user-perceived latency.

The performance achieved by two configurations of the PPM algorithm and three
of the n-most popular algorithm is compared in [Bouras 03]. For each one of the
five configurations, they quantify the usefulness (recall), the hit ratio (precision) and
the traffic increase. Both the number of experiments carried out and the metrics
calculated make it difficult to identify which algorithm performs better. They only
conclude that prefetching can be potentially beneficial to the considered architecture.
In a more recent work [Bouras 04], they also show the latency reduction for the
same experiments. Nevertheless, it is only an estimated latency calculated as the
difference between the prediction time and the user request time. This value could
be considered as an approximation of the latency reduction by the algorithm, since it
does not include interactions between user and prefetching requests.

5.3 Experimental Environment

Workload Description The behavior pattern of users was taken from two different
servers. Traces A and B correspond to the log used in the experiments of Section 3.3.3.
The first one contains accesses to a news web server, whereas trace B has the accesses
to a student information web server. The main characteristics of the traces are shown
in Table 5.1. The training length of each trace has been adjusted to optimize the
perceived latency reduction of the prefetching.

Prefetching Algorithms The experiments were run using the five algorithms eval-
uated in Section 3.5.2: four main variants of the Prediction by Partial Match (PPM)
algorithm and the Dependency Graph (DG) based algorithm, both described in Sec-
tion 2.3.1.1. The PPM variants are labeled as PPM-x-y, where x can be OB or PG
depending on the element of prediction chosen (object or page respectively), and y
can be TOP or TH depending on the way of selecting the candidates (the top-n most
likely or using a threshold respectively).

78

5.4. SELECTING ALGORITHM PARAMETERS

Table 5.1: Trace characteristics

Trace
Characteristics A B

Year 2003 2003
Users 300 132
Page Accesses 2,263 1,646
Object Accesses 65,569 36,837
Training Accesses 35,000 5,000
Avg. Objects per Page 28.97 22.38
Bytes Transferred (MB) 218.09 142.49
Avg. Object Size (KB) 3.41 3.96
Avg. Page Size (KB) 98.68 88.64
Avg. HTML Size (KB) 32.77 28.21
Avg. Image Size (KB) 2.36 2.83
Avg. Page Download Time at 1 Mbps (s) 3.01 12.00
Avg. Page Download Time at 8 Mbps (s) 2.95 11.24

5.4 Selecting Algorithm Parameters

Each algorithm evaluated has a parameter that refers to the scope of the prediction.
This parameter is the lookahead window size in the DG algorithm and the order in
the PPM. To identify which parameter value achieves the best performance, a subset
of possible values is explored by means of several experiments.

In this sense, we have simulated trace A with the DG and the PPM-OB-TH al-
gorithms. As one can observe in Figure 5.1, the lookahead window in DG has been
ranged from 2 to 5, whereas the maximum Markov chain order of the PPM has been
ranged from 1 to 4, as shown in Figure 5.2. Each simulated user has a connection
of 1 Mbps of available bandwidth. To build each curve, the cutoff threshold of both
algorithms has been ranged from 0.2 to 0.7, increasing in steps of 0.1.

Results show that the lookahead window size in the DG algorithm hardly impacts
on the performance, since all curves fall very close considering both cost factors, as
shown in Figure 5.1. A deeper analysis of the results concludes that an increase in
the lookahead window size has a similar effect to that of reducing the confidence
threshold. This effect is shown by the fact that the 0.2 threshold point in the curves
approaches the right side as the lookahead window size increases. Therefore, in the
following experiments we have selected a window size of 2 since it is computationally
more efficient.

In a similar way, an increase of the maximum order of the Markov model of the
PPM predictor does not improve the performance. Figure 5.2(a) shows that curves

79

CHAPTER 5. EVALUATION OF CURRENT PREFETCHING ALGORITHMS

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

lookahead window = 2
lookahead window = 3
lookahead window = 4
lookahead window = 5

(a) Bytes

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

lookahead window = 2
lookahead window = 3
lookahead window = 4
lookahead window = 5

(b) Objects

Figure 5.1: Lookahead window size parameter selection in DG algorithm. Users of 1
Mbps of available bandwidth with trace A are simulated. Each point in the curves
represents a given threshold, from 0.2 (right) to 0.7 (left)

of higher order are further from the origin, which means that achieving the same re-
duction of latency requires extra traffic increase. When considering the object traffic
increase (Figure 5.2(b)) the curves are closer among them, showing that similar per-
formance is achieved through all the simulated orders. As a consequence, a Markov
model of first-order will be used in the remaining experiments using the PPM algo-
rithm. Similar results were obtained when trace B was used.

5.5 Comparison of Algorithms

The comparisons have been broken down into two groups, since we found that the
results of the page-based algorithms (i.e., PPM-PG-TH and PPM-PG-TOP) show
some odd behavior. Hence their separated analysis.

Figures 5.3 and 5.6 show the results of the performance comparison for the object-
based algorithms, while results for the page-based algorithms are shown in Figure 5.8.
Each algorithm is evaluated in four situations, as a result of combining two workloads
(i.e., A and B) with two configurations of the user-available bandwidth (i.e., 1 Mbps
and 8 Mbps). The curves of each plot in DG and PPM-x -TH algorithms are obtained
by varying the confidence threshold of the algorithms, from 0.2 to 0.7 in steps of
0.1. To draw the curves of the PPM-x -TOP algorithms, the number of returned
predictions are ranged from 1 to 9 in steps of 1, except for 6 and 8. Results for traffic
increase and object traffic increase greater than 2 are not represented in order to keep
the plot focused on the area where the algorithms can be compared.

80

5.5. COMPARISON OF ALGORITHMS

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Order = 1
Order = 2
Order = 3
Order = 4

(a) Bytes

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Order = 1
Order = 2
Order = 3
Order = 4

(b) Objects

Figure 5.2: Selection of the maximum order of the Markov model in PPM-OB-TH al-
gorithm. Users of 1 Mbps of available bandwidth with trace A are simulated. Each
point in the curves represents a given threshold, from 0.2 (right) to 0.7 (left)

Figures 5.3(a) and 5.3(b) illustrate the performance evaluation of the algorithms
simulating users who have 1 Mbps of available bandwidth and behave in accordance
with the workload A. The first plot shows that, when considering traffic increase
as the key cost, DG algorithm achieves better performance than the others in the
range in which it is evaluated, since its curve falls always below the ones of the PPM
algorithms. However, when the extra traffic is measured through the object traffic
increase metric (Figure 5.3(b)), no significant performance differences can be found
between the different algorithms.

Curves of PPM-OB-TH and PPM-OB-TOP algorithms exhibit peculiar behavior
in Figure 5.3(a). As one can observe, the PPM-OB-TOP curve seems to continue the
curve of the PPM-OB-TH. This fact, which is also reflected in the other plots, means
that selecting candidates by a cutoff threshold makes less predictions than selecting
them by the top-n, although the overall performance is not considerably affected.

When considering 8 Mbps users, the DG algorithm also outperforms the others
when the traffic increase is analyzed, as Figure 5.3(c) shows. However, Figure 5.3(d)
reveals minor performance differences between algorithms in terms of object traffic
increase.

From the prediction perspective, the reason why the DG algorithm achieves better
performance when considering the traffic increase lies in the fact that it predicts more
user requests per each extra byte wasted by the prefetching; i.e., given a fixed recall
value, DG generates less traffic increase than the other three algorithms. Plots 5.4(a)
and 5.4(c) show this fact for both user’s bandwidths.

81

CHAPTER 5. EVALUATION OF CURRENT PREFETCHING ALGORITHMS

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

DG
PPM OB TH

PPM OB TOP

(a) 1 Mbps users, Bytes

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

DG
PPM OB TH

PPM OB TOP

(b) 1 Mbps users, Objects

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

DG
PPM OB TH

PPM OB TOP

(c) 8 Mbps users, Bytes

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

DG
PPM OB TH

PPM OB TOP

(d) 8 Mbps users, Objects

Figure 5.3: Performance comparison from the user’s point of view between object-
based algorithms running trace A. Each point in the curves represents a given thresh-
old in PPM-OB-TH and DG, and a given number of returned hints in PPM-OB-TOP

82

5.5. COMPARISON OF ALGORITHMS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.2 1.4 1.6 1.8 2

R
ec

al
l

Traffic Increase

DG
PPM OB TH

PPM OB TOP

(a) Prefetching Recall versus Traffic In-
crease simulating 1 Mbps users

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.2 1.4 1.6 1.8 2

R
ec

al
l

Object Traffic Increase

DG
PPM OB TH

PPM OB TOP

(b) Prefetching Recall versus Object Traf-
fic Increase simulating 1 Mbps users

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.2 1.4 1.6 1.8 2

R
ec

al
l

Traffic Increase

DG
PPM OB TH

PPM OB TOP

(c) Prefetching Recall versus Traffic In-
crease simulating 8 Mbps users

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.2 1.4 1.6 1.8 2

R
ec

al
l

Object Traffic Increase

DG
PPM OB TH

PPM OB TOP

(d) Prefetching Recall versus Object Traf-
fic Increase simulating 8 Mbps users

Figure 5.4: Performance comparison from the prediction point of view between object-
based algorithms running trace A

83

CHAPTER 5. EVALUATION OF CURRENT PREFETCHING ALGORITHMS

 0

 0.05

 0.1

 0.15

 0.2

 1 1.2 1.4 1.6 1.8 2

B
yt

e
R

ec
al

l

Object Traffic Increase

DG
PPM OB TH

PPM OB TOP

Figure 5.5: Byte Recall as a function of Object Traffic Increase. Users of 1 Mbps of
available bandwidth under workload A are simulated

On the other hand, the reasons of the similar performance exhibited in the com-
parisons that consider the object traffic increase can be extracted from Figures 5.4(b)
and 5.4(d). They show that given a fixed object traffic increase, the recall is almost
the same in all three algorithms. This means that the algorithms predict a similar
amount of user requests per each extra request to the server wasted by the prefetching
system. Taking into account Equation 3.11, one can observe that all the algorithms
have the same precision. This, together with the fact that DG requires less traffic
increase than the other algorithms to reach the same recall value let us conclude that
the objects prefetched by DG are, on average, smaller than those prefetched by the
other algorithms. This result is also appreciated in Figure 5.5, where DG is the al-
gorithm with less Byte Recall, i.e., given an object traffic increase, DG predicts the
same amount of objects as the others algorithms (see Fig. 5.4(b)) but less bytes (see
Fig. 5.5). The reasons why the size of the predicted objects differ among the different
algorithms are explained in Section 5.6.

Figure 5.6 shows that the algorithms have less performance differences when using
trace B for both user-available bandwidth. DG algorithm slightly outperforms the
others when considering the wasted bytes as a cost in all its range, with the only
exception of the most aggressive threshold (i.e., th=0.2), in which the PPM-OB-
TOP algorithm achieves a slightly lower latency with the same traffic increase. When
the cost analysis is focused on the amount of objects, plots show the same conclusion
as when evaluating workload A: performance differences are negligible.

To complete this study, we also analyze results from the prediction perspective.
Figures 5.7(a) and 5.7(c) reveal that the recall value of the DG algorithm is the highest
when compared to the traffic increase, whereas there are no significant differences
when compared to the object traffic increase (see Figures 5.7(b) and 5.7(d)). This

84

5.5. COMPARISON OF ALGORITHMS

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

DG
PPM OB TH

PPM OB TOP

(a) 1 Mbps users, Bytes

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

DG
PPM OB TH

PPM OB TOP

(b) 1 Mbps users, Objects

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

DG
PPM OB TH

PPM OB TOP

(c) 8 Mbps users, Bytes

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

DG
PPM OB TH

PPM OB TOP

(d) 8 Mbps users, Objects

Figure 5.6: Performance comparison from the user’s point of view between object-
based algorithms running trace B

85

CHAPTER 5. EVALUATION OF CURRENT PREFETCHING ALGORITHMS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.2 1.4 1.6 1.8 2

R
ec

al
l

Traffic Increase

DG
PPM OB TH

PPM OB TOP

(a) Prefetching Recall versus Traffic In-
crease simulating 1 Mbps users

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.2 1.4 1.6 1.8 2

R
ec

al
l

Object Traffic Increase

DG
PPM OB TH

PPM OB TOP

(b) Prefetching Recall versus Object Traf-
fic Increase simulating 1 Mbps users

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.2 1.4 1.6 1.8 2

R
ec

al
l

Traffic Increase

DG
PPM OB TH

PPM OB TOP

(c) Prefetching Recall versus Traffic In-
crease simulating 8 Mbps users

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.2 1.4 1.6 1.8 2

R
ec

al
l

Object Traffic Increase

DG
PPM OB TH

PPM OB TOP

(d) Prefetching Recall versus Object Traf-
fic Increase simulating 8 Mbps users

Figure 5.7: Performance comparison from the prediction point of view between object-
based algorithms running trace B

86

5.5. COMPARISON OF ALGORITHMS

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

PPM PG TH
PPM PG TOP

(a) Workload A, Bytes

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.2 1.4 1.6 1.8 2

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

PPM PG TH
PPM PG TOP

(b) Workload B, Bytes

Figure 5.8: Performance comparison between page-based algorithms with 8 Mbps
users. Each point in the curves represents a given threshold in PPM-PG-TH and a
given number of returned hints in PPM-PG-TOP

fact shows that the DG algorithm under workload B predicts smaller objects than
the PPM algorithms, just like it occurs when workload A is used.

Figure 5.8 illustrates the performance of the page-based algorithms using both
current traces and simulating users of 8 Mbps available bandwidth. Both plots in
the figure refer to the latency versus traffic increase comparison and show almost
horizontal curves. Figure 5.8(a) shows that a more aggressive policy will not reduce
the perceived latency. Figure 5.8(b) manifests that increasing the traffic not only does
not involve latency reduction but it also adversely impacts on the perceived latency.
These results indicate that the page-based algorithms are not scalable, since they
are only cost-effective when working in a non-aggressive manner, i.e., high confidence
threshold (0.7 or 0.6) and few predictions returned (top-1 maximum). From the
prediction point of view, the results are explained by the fact that recall hardly rises
when increasing the aggressiveness, so dropping the precision.

As page-based algorithms predict only HTML files, the object traffic increase is
negligible compared to the traffic increase in bytes of the same experiment. That is
because HTML objects are, on average, much larger than others in the considered
workload (see Table 5.1). In this sense, plots for comparing page-based algorithms
using object traffic increase show almost all points near the left edge of the plot. These
have not been included because all points concentrate in a small area. For instance,
the run of the PPM-PG-TOP algorithm using a top-1 under workload A results in
a traffic increase of 25% while the object traffic increase is just 1.3%. Despite the
small value of the object traffic increase, the latency is not reduced with the extra

87

CHAPTER 5. EVALUATION OF CURRENT PREFETCHING ALGORITHMS

aggressiveness, so neither are the algorithms scalable when the cost analysis focuses
on the object traffic increase.

5.6 Analysis of the Algorithms

To provide insights on the understanding of why DG predicts smaller objects than
PPM, we analyzed carefully the requests contained in the traces. We found that the
main reason why algorithms predict different sized objects lies in the fact that DG
predicts image objects more likely than HTML files, which are larger (see Table 5.1).

For illustrative purposes, in this section we use an hypothetical example. Let’s
suppose that the algorithms are trained by two user sessions. The first one contains
the following accesses: HTML1, IMG1, HTML2, IMG2. The second session includes
the accesses: HTML1,IMG1, HTML3, IMG2. Note that IMG2 is embedded both
in HTML2 and in HTML3. We found this fact to be common along the analyzed
workloads, especially in workload A, where different pieces of news (i.e., HTML files)
contain the same embedded images, since they are included in the site structure.
Figure 5.9 shows the state of the graph of the current configuration of the DG algo-
rithm after the aforementioned training. Each node in the graph represents an object,
whereas the weight of each arc is the confidence level of the transition. The state of
the PPM algorithm after the same training is illustrated in Figure 5.10. Each node
represents a context, where the root node is in the first row, the order-0 context is in
the second, and the order-1 context is in the third. The label of each node includes
the counter of times that a context has appeared, so one can obtain the confidence
of a transition by dividing the counter of a node by the counter of its parent. The
arcs indicate the possible transitions. For instance, the label of the IMG2 in order-0
context is 2 because IMG2 appeared twice in the training. As it appeared once after
HTML2 and another after HTML3, IMG2 has two nodes in the order-1 context, one
per each HTML on which it depends.

As one can observe in Figure 5.9, the DG algorithm can predict the access to
IMG2 after accessing the first page, i.e., HTML1 and IMG1. However, Figure 5.10
shows that PPM can only predict IMG2 when the user has requested HTML2 or
HTML3, but at this time the prediction is useless since there is no time to prefetch
the object. For this reason, it is more likely that DG algorithm predicts embedded
objects of the next page than the PPM, which would predict only HTML files after
the IMG1 object.

5.7 Conclusions

In this chapter we have applied the cost-benefit methodology presented in Section 3.4
to evaluate and compare prefetching algorithms from the user’s perspective. This
methodology has been also used to select the most effective algorithm parameters,

88

5.7. CONCLUSIONS

Figure 5.9: State of the graph of the DG algorithm with a lookahead window size of 2
after the accesses HTML1, IMG1, HTML2, IMG2 by one user; and HTML1, IMG1,
HTML3, IMG2 by other user

concluding that a higher complexity of the algorithm involves more aggressiveness
but not better performance.

Five prediction algorithms have been implemented and compared. Experimental
results show that DG algorithm slightly outperforms the PPM-OB-TH and the PPM-
OB-TOP algorithms in most of the studied cases when considering the traffic increase
as the main cost. However, the aggressiveness (and, consequently, the latency reduc-
tion) of the DG is more limited than the PPM-OB-TOP one. For this reason, when
prefetching is not desired to be very aggressive due to bandwidth or computational
restrictions, DG achieves the best cost-effectiveness. However, for more aggressive
policies, a larger DG lookahead window or the PPM-OB-TOP algorithm should be
used.

We have analyzed why the DG algorithms achieve better performance, finding that
it is because DG predicts, on average, smaller objects than the PPM-based algorithms.
This result has been intuitively explained by understanding how the algorithms work.

The comparison of the algorithms when the cost analysis focuses on the object
traffic increase shows that the differences between the object-based algorithms are
negligible. Results also show that the PPM-OB-TOP algorithm is a more aggressive
version of the PPM-OB-TH, but it offers similar cost-benefit ratio. Nevertheless, it
is more difficult to adapt PPM-OB-TOP to the traffic increase restrictions since the
number of returned hints is a discrete number whereas the threshold is continuous.

Page-based algorithms have shown some odd behavior, since extra aggressiveness
involves extra traffic but the same or less latency reduction. This fact means that
the most likely predicted pages reduce the perceived latency, but the others not only

89

CHAPTER 5. EVALUATION OF CURRENT PREFETCHING ALGORITHMS

Figure 5.10: State of the graph of a first-order PPM algorithm after the accesses
HTML1, IMG1, HTML2, IMG2 by one user; and HTML1, IMG1, HTML3, IMG2 by
other user

do not reduce the latency but also they can degrade the performance. In this sense,
these algorithms cannot modify their aggressiveness since they must work with a high
confidence to be cost-effective.

In [Domènech 06f, Domènech 06e, Domènech 06g], a summary of the results shown
in this section was presented.

90

Chapter 6

The Influence of the
Environment Conditions on
the Design of Prefetching
Algorithms

6.1 Introduction

The difficulty to evaluate the performance of prefetching considering different environ-
ment conditions is an important obstacle for the design and improvement of prediction
algorithms. As the main goal of prefetching is to reduce the user-perceived latency, the
prediction algorithm should try to minimize it. However, latency-related indexes are
not easy to calculate due to the complexity of the environment. As a consequence, pre-
diction indexes are used instead. Prediction algorithms are usually designed to maxi-
mize the recall, therefore this is the most widely used metric to compare the algorithms
performance [Schechter 98, Markatos 98, Albrecht 99, Palpanas 99, Nanopoulos 03].
In Section 3.3 we introduced the byte recall metric and showed that there are situ-
ations in which it quantifies the performance better than the classical recall since it
is higher correlated to the main latency-related index: the latency per page ratio. In
this context, algorithms designers have now the useful option to select, depending on
the environment conditions, the appropriate index to optimize their proposal: recall
or byte recall.

In this chapter we perform a rigorous statistical analysis to identify those situa-
tions in which it is better to optimize the byte recall instead of the classical recall
and vice versa. If those situations are identified, the performance of prefetching algo-
rithms could be improved by adapting them dynamically to optimize the best of both

91

CHAPTER 6. THE INFLUENCE OF THE ENVIRONMENT CONDITIONS ON
THE DESIGN OF PREFETCHING ALGORITHMS

indexes according to the situation. To this end, we select the analysis of variance
method (ANOVA) to study the effect of those parameters (e.g., bandwidth and con-
nection establishment time) that may have greater impact on the correlation between
the latency per page ratio and the recall or the byte recall. In order to extend the
conclusions to a wider range of situations, three different parameters values are se-
lected according to current technologies, two prefetching algorithms are implemented,
and two different workloads are taken into account. In addition, different configura-
tion parameters values having impact on the prediction power for each algorithm are
considered.

Our experimental results show that the recall index gains relative importance
against the byte recall as higher the user available bandwidth is, while the byte recall
gains relative importance against the recall as smaller the server processing time is.

6.2 Background

There is an important set of research works concentrating on prefetching techniques to
reduce the user-perceived latency. Some of the studies presented in the open literature
check their proposals only in a given and restricted scenario or conditions. Some more
ambitious works test the performance of their proposal in different scenarios; e.g.,
users connecting through a modem or through broadband, loaded or unloaded server,
and so on. Below we describe some prefetching research works in order to illustrate
a representative subset of typical scenarios.

Fan et al. [Fan 99] study how the perceived latency can be reduced for low-
bandwidth users by using compression and prefetching between clients and proxies.
Fleming et al. [Fleming 97] also combine several techniques (e.g., prefetching, docu-
ment adapting) to reduce the perceived latencies for wirelessly connected users. They
check their technique using several bandwidths and both wire and wireless connec-
tions. Bouras et al. [Bouras 04] compare the performance of prefetching using two
prediction algorithms over a server-proxy scheme (i.e., the proxy downloads objects
from the server in advance). The studied network architecture includes high band-
width users accessing to the Internet through a proxy. Kokku et al. [Kokku 03]
propose a JavaScript prefetch implementation using the PPM algorithm as a pre-
dictor. Their proposal is verified against an unloaded system, a loaded server and
a loaded network. The user bandwidth restrictions are applied considering all users
connected to a LAN. Padmanabhan and Mogul [Padmanabhan 96] apply a file system
prefetching algorithm to the web prefetching in order to reduce the perceived latency.
They take into account two different scenarios: a 28.8 Kbps bandwidth and 1.5 sec-
onds of connection establishment plus processing time, and a 149 Kbps bandwidth
and 1.13 seconds of connection establishment plus processing time.

Although some proposals are explored in several scenarios, it is neither analyzed
nor identified the cause why a given scenario can benefit a given algorithm. Note
that this is the first step in order to suggest guidelines which permit to adapt the
algorithm to the different situations.

92

6.3. PERFORMANCE INDEXES AND RELATED FACTORS

6.3 Performance Indexes and Related Factors

The performance indexes analyzed in this chapter are the latency per page ratio, the
recall and the byte recall, defined in Section 3.3. As experimental results will show,
the correlation between the latency perceived by the client and the recall (or the
byte recall) is not perfect. That is because the perceived latency depends not only
on the amount of downloaded objects (or bytes) but also on those external factors
that can impact on the download time. Those factors are mainly related to the user
connection or the characteristics of the navigation itself. In Section 6.6 we study how
those factors impact on the aforementioned correlation. The four factors selected for
our study are: the user available bandwidth, the connection establishment time, the
server processing time and the byte position of the first reference to an embedded
object.

We select the bandwidth available for the user since the wider the bandwidth is,
the less the object transfer time is. The connection establishment time is strongly
related to the startup time of a user navigation session. The server processing time
can speed up or slow down the startup time of each requested object.

While the impact of the three aforementioned indexes on the perceived latency
is quite straightforward, the byte position is the less clear. The HTTP standard
permits up to two simultaneous connections for a client to each server. Let’s assume
that the user has one active navigation session, and let’s suppose that a container
object (HTML) is requested so that it uses only one of the two available connections.
The other connection is only used when the first reference to an embedded object
is read from the HTML. Therefore, the position of this byte impacts on the startup
time of downloading a web page.

6.4 Statistical Methodology

In this section we summarize the main characteristics of the analysis of variance
method or ANOVA and the reduced experiment design that will be used to quantify
the impact of the four factors described above in the correlation between indexes.
Details on these methods can be found in [Taguchi 87].

6.4.1 Analysis of Variance (ANOVA)

The ANOVA method permits to identify which factors significantly affect the average
value of a given variable when varying the values of a set of them. In our study,
we select as factors the ones described above and as variable a new metric (SCD)
that identifies which is the best index to optimize, as it will be described below.
The idea behind this method is to split the total variance observed in the performed
experiments among the studied effects. These effects can be associated to a factor
nature (e.g., linear or quadratic) or to any factor interaction.

93

CHAPTER 6. THE INFLUENCE OF THE ENVIRONMENT CONDITIONS ON
THE DESIGN OF PREFETCHING ALGORITHMS

To perform the ANOVA, the data are usually represented in a table, where each
row shows those values related to an effect – or a set of effects. The variability due
to each factor is quantified by a sum of squares, and the corresponding values are
specified in a particular column. The variability that is not due to any of the studied
factors is gathered by a table row labeled as residual. The significance of an effect,
with the desired level of confidence, is checked against the statistical F test.

Once the most relevant factors are identified and isolated, it is possible to quantify
the direction and the degree that each effect has on the studied variable. From these
data one can predict how the variable will behave for every factor value (e.g., 512 Kbps
of user available bandwidth and 50 ms of connection establishment time), which is
the purpose of this chapter.

6.4.2 Design of Experiments

The design of experiments is of paramount importance in order to guarantee the
results validness of the analysis of variance. The ANOVA requires that the studied
effects are orthogonal to each other, in order not to confuse effects.

The full factorial design is the simplest one that keeps all the possible effects
orthogonal (related to factors or to interactions), but the amount of performed exper-
iments rises at exponential rate since every combination of factor levels (the values
tested for each factor) is explored once.

In general, high order interactions between factors are rarely significant. There-
fore, to reduce the amount of experiments to be performed, their effects are not
usually studied. In this context, [Taguchi 87] proposes several orthogonal arrays that
minimize the number of experiments in a such way that the effects of the main factors
remain orthogonal. In this paper we use the L18 orthogonal array, which explores up
to 8 factors in 18 experiments.

6.5 Experimental Environment

Prefetching Algorithms To check the behavior of the indexes, the experiments
were run using two different prediction algorithms: one variant of the Prediction by
Partial Match (PPM) algorithm and the Dependency Graph (DG) based algorithm.
To run the experiments presented in this chapter, from those variants of the PPM
algorithm presented in Section 2.3.1.1, the algorithm has been applied to objects in-
stead of pages, and candidates has been selected by means of a confidence threshold.
This is the configuration that performs better in the studied conditions (see Chap-
ter 5). Both algorithms have a parameter related to the number of future accesses that
each one is able to predict. This parameter is the lookahead window size in the DG
algorithm, and the order in the PPM. In addition, the threshold parameter of both
algorithms refers to the minimum probability that a candidate object must exhibit to
be hinted as a successor. As one can observe, the aggressiveness and the precision of
the prefetch are sensitive to the described parameters; i.e., lookahead window size and

94

6.6. EXPERIMENTAL RESULTS

Table 6.1: Trace characteristics

Trace A B

Training accesses 251,271 148,213
Experiment accesses 65,866 37,655
HTMLs accesses 2,269 1,717
Users 300 132
Bytes Transferred (MB) 188,600 68,428

threshold for DG, and order and threshold for PPM. Therefore, in order to analyze
the correlation in a wide range of scenarios, the corresponding parameters are ranged
for each algorithm.

Workload Description The behavior pattern of users was taken from two different
servers. Traces A and B correspond to the log used in the experiments of Section 3.3.3.
The first one contains accesses to a news web server, whereas trace B has the accesses
to a student information web server. The main characteristics of the traces can be
found in Table 6.1.

6.6 Experimental Results

6.6.1 Experiments Design

In this section we analyze the impact of the four factors – discussed in Section 6.3
– on the indexes correlation. Three different values were selected for each factor
according to some current technology. Table 6.2 shows these values broken down
in columns called levels (in the statistical nomenclature). This table also includes
some parameters related to the implemented prefetching algorithms (i.e., the order or
window size, depending on the algorithm, and the threshold), and their corresponding
values.

In addition to the values shown in Table 6.2, the two traces described above must
be also taken into account for the experiment design. This gives us an amount of 2,916
(22·36) possible combinations. In other words, 2,916 experiments will be needed to
explore all the cases, which suppose a huge amount of simulation time. By using the
Taguchi’s Robust Design, a more efficient design was selected.

Among the orthogonal arrays proposed by Taguchi, we selected the L18 array to
fit the desired factors (this method can support up to one two-level factor and seven
three-level factors; i.e., 2·37), hence the fact that only 18 experiments need to be run.
For each experiment, the correlation coefficient between the latency per page ratio

95

CHAPTER 6. THE INFLUENCE OF THE ENVIRONMENT CONDITIONS ON
THE DESIGN OF PREFETCHING ALGORITHMS

Table 6.2: Studied factors broken down into those really analyzed and those used to
extend the conclusions to a wider range of prefetching situations

Category Factors Level 1 Level 2 Level 3

Analyzed User Bandwidth (Kbits/s) 50 300 550
Factors Connection estab. time (ms) 25 100 175

Server Processing Time (ms) 100 300 500
Byte of the first reference1 200 1,200 2,200

Prefetch Prefetching Algorithm DG PPM —
Factors Order /lookahead window 2 5 8

Confidence threshold 0.2 0.4 0.6

and both the recall and byte recall is calculated, taking into account data for each
client in the experiment.

6.6.2 Correlation Analysis

Table 6.3 shows the entire experiments design and the results for each one, where
each row represents one experiment. The eight columns corresponding to the factors
level show the level (as labeled in Table 6.2) taken for each factor in each experiment,
following the rules proposed by the Taguchi’s L18 orthogonal array [Taguchi 87]. The
correlation coefficient columns show the Pearson’s coefficient correlation between the
Latency per page ratio (Lp) and the Recall (Rc) and Byte Recall (RcB) indexes in
each experiment.

The last column (SCD) refers to the difference between the square of the two
previously calculated correlation coefficients. Each coefficient is powered to 2 to over-
weigh the differences of strongest correlations against weaker correlation differences.
Note that a positive value means that the latency per page ratio is more correlated
to the recall than to the byte recall, while a negative value means the opposite. The
resulting SCD value is taken as input for the analysis of the variance method to find
the most significant factors.

From the previous table we perform the first analysis of the variance (ANOVA),
shown in Table 6.4. This analysis includes the linear and quadratic effects (for those
factors having 3 levels) of the parameters. The null hypothesis (H0), for each factor,
means that the change of its level does not significantly affect the average of the
observed variable, i.e., SCD. In such a case, the sample average of all the studied
levels will be the same. The Sum of Sq. measures the variability of the SCD, while
the Mean Sq. is the Sum of Sq. averaged by the degrees of freedom of each source
of variation. The residual mean squares is demonstrated to be an estimation of the
variance of studied populations. If the H0 of a factor is true, the Mean Sq. of this
factor is also an estimator of the variance independent from the previous one. In such

96

6.6. EXPERIMENTAL RESULTS

Table 6.3: Correlation coefficients and SCD value for each performed experiment.
Legend. Tr: Trace, PA: Prefetch algorithm, FR: Byte position of the first reference.
WS: Algorithm order (PPM) / Lookahead window size (DG). TH: Threshold. PT:
Server processing time. ET: Connection Establishment time. BW: User-available
bandwidth

Factors Level Correlation coef.

Tr PA FR WS TH PT ET BW Lp, Rc Lp, RcB SCD

A 1 1 1 1 1 1 1 -0.5636 -0.6054 -0.0489
A 1 2 2 2 2 2 2 -0.5893 -0.6957 -0.1368
A 1 3 3 3 3 3 3 -0.7064 -0.6943 0.0170
A 1 1 1 2 2 3 3 -0.7645 -0.8127 -0.0760
A 1 2 2 3 3 1 1 -0.4998 -0.6906 -0.2272
A 1 3 3 1 1 2 2 -0.7087 -0.8295 -0.1858
A 2 1 2 1 3 2 3 -0.9063 -0.8444 0.1083
A 2 2 3 2 1 3 1 -0.6095 -0.8480 -0.3476
A 2 3 1 3 2 1 2 -0.7724 -0.8593 -0.1418
B 1 1 3 3 2 2 1 -0.7370 -0.8177 -0.1255
B 1 2 1 1 3 3 2 -0.5762 -0.5999 -0.0278
B 1 3 2 2 1 1 3 -0.6565 -0.7398 -0.1164
B 1 1 2 3 1 3 2 -0.2428 -0.3811 -0.0862
B 1 2 3 1 2 1 3 -0.6728 -0.5363 0.1650
B 1 3 1 2 3 2 1 -0.3065 -0.2777 0.0168
B 2 1 3 2 3 1 2 -0.5801 -0.2854 0.2551
B 2 2 1 3 1 2 3 -0.3050 -0.0768 0.0871
B 2 3 2 1 2 3 1 -0.4268 -0.5478 -0.1180

97

CHAPTER 6. THE INFLUENCE OF THE ENVIRONMENT CONDITIONS ON
THE DESIGN OF PREFETCHING ALGORITHMS

Table 6.4: First ANOVA table for the final design. Legend. PA stands for prefetch
algorithm, FR: refers to the byte position of the first reference. WS: refers to algorithm
order (PPM) / lookahead window size (DG). TH: Threshold. PT: Server processing
time. ET: Connection establishment time. BW: user available bandwidth

Src of Variation Sum of Sq. DF Mean Sq. F-Ratio F

Main effects 0.3092 14 0.191 10.620 8.715
Trace 0.0658 1 0.066 3.657 10.128
PA 0.0075 1 0.007 0.414 10.128
FR 0.0319 2 0.016 0.885 9.552

Linear 0.0257 1 0.026 1.426 10.128
Quadratic 0.0062 1 0.006 0.345 10.128

WS 0.0153 2 0.008 0.425 9.552
Linear 0.0001 1 0.000 0.005 10.128
Quadratic 0.0152 1 0.015 0.845 10.128

TH 0.0128 2 0.006 0.355 9.552
Linear 0.0114 1 0.011 0.632 10.128
Quadratic 0.0014 1 0.001 0.079 10.128

PT 0.0615 2 0.031 1.707 9.552
Linear 0.0588 1 0.059 3.265 10.128
Quadratic 0.0027 1 0.003 0.149 10.128

ET 0.0251 2 0.013 0.697 9.552
Linear 0.0229 1 0.023 1.273 10.128
Quadratic 0.0022 1 0.002 0.122 10.128

BW 0.0893 2 0.045 2.480 9.552
Linear 0.0893 1 0.089 4.960 10.128
Quadratic 0.0000 1 0.000 0.001 10.128

Residual 0.0540 3 0.018
Total 0.3632 17

98

6.6. EXPERIMENTAL RESULTS

Table 6.5: Second ANOVA table for the final design. Legend. PA: Prefetch algorithm,
FR: Byte position of the first reference. WS: Algorithm order (PPM) / Lookahead
window size (DG). TH: Threshold. PT: Server processing time. ET: Connection
establishment time. BW: User-available bandwidth

Src of Variation Sum of Sq. DF Mean Sq. F-Ratio F

Main effects 0.2892 8 0.294 35.773 3.230
Trace 0.0658 1 0.066 8.009 5.117
FR Linear 0.0257 1 0.026 3.123 5.117
WS 0.0153 2 0.008 0.930 4.256

Linear 0.0001 1 0.000 0.010 5.117
Quadratic 0.0152 1 0.015 1.850 5.117

TH Linear 0.0114 1 0.011 1.383 5.117
PT Linear 0.0588 1 0.059 7.153 5.117
ET Linear 0.0229 1 0.023 2.787 5.117
BW Linear 0.0893 1 0.089 10.865 5.117
Residual 0.0740 9 0.008
Total 0.3632 17

a case, F-ratio, defined as the ratio of both estimators, is distributed as F-distribution
with the degrees of freedom of each estimator. For example, the F-ratio of PT factor
in Table 6.4 is distributed as F with 2 and 3 degrees of freedom. Otherwise, if H0

of a factor is not true (i.e., the change of the factor level significantly affects the
average SCD), then the F-ratio value of this factor will be higher than F value, given
a confidence level. We considered a confidence level of 95%, which is the value shown
in the column labeled as F in the table.

As the design of experiments leave few residual degrees of freedom, this first
ANOVA cannot be used to find what factors are significant. In this analysis, we
identified the less significant factors and remove them from the ANOVA in order to
increase the residual degrees of freedom. In this sense, prefetching algorithm (PA),
and the quadratic effects of byte of the first reference, threshold (TH), server pro-
cessing time (PT), connection establishment time (ET) and user available bandwidth
(BW) have been removed since all of them have a small sum of squares.

The second analysis of the variance permits to identify the most significant factors.
Table 6.5 presents the results of the second ANOVA. As one can observe, the three
significant factors (i.e., those with F-ratio higher than F with 95% of confidence level)
are the linear effect of the user available bandwidth, the trace used and the linear
effect of the server processing time for each request.

Table 6.6 quantifies the effect and the direction that each of the three significant
factors has on the average SCD. The Level Average column shows the average value

99

CHAPTER 6. THE INFLUENCE OF THE ENVIRONMENT CONDITIONS ON
THE DESIGN OF PREFETCHING ALGORITHMS

Table 6.6: Summary of the effect that each significant factor has on the average SCD

Factor Level Level Average Effect Estimate

User Bandwidth 50 -0.1417 -0.0868
300 -0.0539 0.0010
550 0.0308 0.0858

Trace A -0.1154 -0.0605
B 0.0056 0.0605

Server processing time 100 -0.1163 -0.0614
300 -0.0722 -0.0172
500 0.0237 0.0786

of the SCD for a given factor value. The Effect Estimate column is the difference
between the level average and the global average (-0.0549).

On the one hand, considering the user-available bandwidth factor, it can be ob-
served that when the bandwidth is higher, the latency per page ratio is strongly
correlated to the recall rather than to the byte recall. On average, the SCD raises
0.0345 per each extra 100 Kbps of user available bandwidth.

On the other hand, for the server processing time factor, one can observe that
when the server processing time for each request is smaller, the latency per page ratio
is more strongly correlated to the byte recall than to the recall. On average, the SCD
decreases 0.0350 per each 100 ms of server processing time reduction.

Finally, the trace factor values must be observed independently since the trace is a
qualitative factor. As one can observe, the average SCD differs significantly between
both traces. These large differences are mainly caused by the characteristics of each
web design. For instance, as previously showed in Table 5.1, the average amount of
embedded objects per page in trace A is higher than those in trace B (29 vs. 21.9
objects). Besides, each object in trace A is on average 57% times larger (2.86 vs. 1.82
KB) than an object in the B, resulting in a 108% times larger full page weight (82.9
vs. 39.8 KB).

6.7 Conclusions

In this chapter we analyzed in detail under which environment conditions the byte
recall is more correlated to the perceived latency than the recall permitting to optimize
the prefetch algorithm.

To identify these situations we have analyzed the main environment parameters
(i.e., the user available bandwidth, the connection establishment time, the server

1In a HTML file, it is the byte position of the first reference to an embedded object.

100

6.7. CONCLUSIONS

processing time and the byte position of the first reference to an embedded object)
in combination with other factors affecting the prefetching performance, and two
different workloads.

Our experimental results show that the most significant parameters affecting the
selection of the appropriate index are the user-available bandwidth and the server
processing time. Although values of the bandwidth and processing time for selecting
the best index depend on the workload, the significance and the direction of each
one do not. The user-available bandwidth affects this selection in the sense that
when the available bandwidth increases, the recall is relatively more correlated to
the perceived latency, whereas when the processing time decreases, the byte recall
is more relatively correlated to the perceived latency. Results suggest that, in these
environment conditions, the index to optimize should be the byte recall instead of the
classical recall. In this way, prediction probabilities could be calculated taking into
account the amount of bytes instead of the traditional amount of objects.

These results take special relevance for current Internet infrastructure because we
can find a large variety of ways of accessing the Internet, each one with different band-
widths and latencies, e.g., DSL, modem, cable, satellite, GPRS; as well as different
web server loads and processing times.

In [Domènech 06i, Domènech 06d], a summary of the results shown in this section
was presented.

101

Chapter 7

DDG: A Prefetching
Algorithm for Current Web

7.1 Introduction

The prediction of users’ accesses has been usually made by adapting prediction algo-
rithms from other fields of computing to deal with web accesses. For instance, the
DG algorithm, which was firstly used in web prefetching by [Padmanabhan 96], lies
in a predictor of accesses to a local file system [Griffioen 94]. PPM algorithm, mainly
used for lossless data compression [Bell 90, Curewitz 93], has been also used to pre-
dict web accesses by several authors [Fan 99, Palpanas 99, Bouras 04, Chen 03]. With
these algorithms, web prefetching achieved an acceptable performance when they were
proposed. However, the Web has changed noticeably during the last decade. There
are two main differences between old and current Web generations: the increasing
dynamism and customization of the content [Peña-Ortiz 05], and the increase in the
complexity of the web site design. Despite this fact, prefetching algorithms taking
into account the new Web sites characteristics have not been proposed.

We found in Section 3.5 that there is a noticeable increase in the amount of em-
bedded objects per page. In this context, most of the predictions made by the existing
algorithms are useless to reduce the user-perceived latency because these algorithms
do not take into account how web pages are structured, i.e., an HTML object with
several embedded objects. Thus, they predict the accesses to the embedded objects
of an HTML after reading the HTML itself. In this chapter we present a fair per-
formance evaluation study that shows that these predictions are useless since the
client already knows that the following objects to be demanded are the embedded
objects. However, these objects are not still demanded because the amount of simul-
taneous connections to a web server from the same client is limited, as suggested in
the standard HTTP/1.1 [Fielding 99] and implemented in the most commonly used

103

CHAPTER 7. DDG: A PREFETCHING ALGORITHM FOR CURRENT WEB

web browsers (i.e., Internet Explorer and Mozilla Firefox). Therefore, there is neither
time to prefetch nor perceived latency to reduce.

In this context, this chapter presents the DDG prediction algorithm that considers
the characteristics of the current web sites to improve the performance achieved by
web prefetching. It is based on the Dependency Graph (DG) algorithm, but it differ-
entiates two classes of dependences: between objects of the same page and between
objects of different pages. Performance evaluation results show that the latency re-
duction can be dramatically increased and the need of resources dropped, i.e., extra
bandwidth and extra server load.

7.2 Experimental Environment

Workload Description The behavior pattern of users was taken from two different
servers. Trace A corresponds to the log used in the experiments of Section 3.3.3,
and it contains accesses to a news web server. Trace B includes users accessing the
institutional web site of the Computer Science School of the Polytechnic University of
Valencia. This trace was collected during February 2006 from its Apache web server
log.

The main characteristics of the traces are shown in Table 7.1. The training length
of each trace has been adjusted to optimize the perceived latency reduction of the
prefetching. The simulation of the workload A considering that each user has 1 Mbps
of available bandwidth results in an average latency per page of 3.01 seconds. By
increasing the user available bandwidth to 8 Mbps it is only possible to reduce the
perceived latency by about 2%. However, by employing prefetching techniques the
user-perceived latency can be reduced in a higher extent with a reasonable cost, as
experimental results show below. The simulation of 1 Mbps users under workload
B results in an average latency per page of 0.87 seconds. The increase of the user
available bandwidth to 8 Mbps only achieves the reduction of user-perceived latency
by about 1%.

Prefetching Algorithms The DDG algorithm is compared in the experiments to
two of the most widely used prediction algorithms in the literature: one variant of the
Prediction by Partial Match (PPM) algorithm and the Dependency Graph (DG) based
algorithm. To run the experiments presented in this chapter, from those variants of
the PPM algorithm presented in Section 2.3.1.1, the algorithm has been applied to
objects instead of to pages, and candidates are selected by means of a confidence
threshold. This is the configuration that performs better in the studied conditions
(see Chapter 5).

104

7.3. USELESSNESS ANALYSIS OF THE EXISTING ALGORITHMS

Table 7.1: Trace characteristics
Trace

Characteristics A B

Users 300 1,379
Page Accesses 2,263 10,282
Object Accesses 65,569 43,104
Training length (accesses) 35,000 23,104
Objects per Page 28.97 4.19
Bytes Transferred (MB) 218.09 386.05
Avg. Object Size (KB) 3.41 9.17
Avg. Page Size (KB) 98.68 38.44
Avg. HTML Size (KB) 32.77 12.94
Avg. Image Size (KB) 2.36 7.99

7.3 Uselessness Analysis of the Existing Algorithms

Figures 7.1 and 7.2 show the values of predictions metrics measured both at the pre-
diction engine and at the prefetching engine under the workloads A and B respectively.
By analyzing the plots, we found that the prediction performance from the predictor
point of view is quite good. However, this good performance is not transferred to the
prefetching engine, and therefore to the user’s benefit, i.e. perceived latency reduc-
tion. As one can observe, precision and recall are substantially lower when evaluated
at the prefetching engine side. This fact is more noticeably in workload A than in
the workload B, mainly due to its higher amount of embedded objects per page. The
algorithm simulated to plot the figures is the DG with a lookahead window size of 2.
The same behavior was observed in the plots for the PPM algorithm (see Figures 7.3
and 7.4).

We found that the prediction indexes measured at the prediction engine differ
noticeably from their values at the prefetching engine because most of the predictions
made are useless. This is mainly due to the fact that the algorithm predicts objects
that the user has already requested, but they are waiting for an available connection
in the client to be requested. Remember that, as the standard HTTP/1.1 recom-
mends, the amount of simultaneous connections to a server is limited to 2 per client.
An unexpected situation that can be observed in both workloads and algorithms is
that the prefetch precision decreases when increasing the confidence threshold (see
Figures 7.1(b), 7.2(b), 7.3(b), and 7.4(b)). This situation is caused by the useless
predictions, which are hits from the point of view of the prediction engine, and misses
from the prefeching engine perspective. In other words, the algorithms are mainly
predicting that a user will request the embedded objects of an HTML file after request-
ing the HTML itself. Figure 7.5 illustrates this fact showing the amount of useless
predictions over the total amount of predictions. We consider that a prediction is

105

CHAPTER 7. DDG: A PREFETCHING ALGORITHM FOR CURRENT WEB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
ec

al
l

Threshold

Algorithm: DG, Workload: A

Prefetch Recall
Prediction Recall

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

on

Threshold

Algorithm: DG, Workload: A

Prefetch Precision
Prediction Precision

(b) Precision

Figure 7.1: Predictive metrics of DG algorithm when evaluated from the predictor
point of view and from the prefetching point of view under workload A.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
ec

al
l

Threshold

Algorithm: DG, Workload: B

Prefetch Recall
Prediction Recall

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

on

Threshold

Algorithm: DG, Workload: B

Prefetch Precision
Prediction Precision

(b) Precision

Figure 7.2: Predictive metrics of DG algorithm when evaluated from the predictor
point of view and from the prefetching point of view under workload B.

106

7.3. USELESSNESS ANALYSIS OF THE EXISTING ALGORITHMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
ec

al
l

Threshold

Algorithm: PPM, Workload: A

Prefetch Recall
Prediction Recall

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

on
Threshold

Algorithm: PPM, Workload: A

Prefetch Precision
Prediction Precision

(b) Precision

Figure 7.3: Predictive metrics of PPM algorithm when evaluated from the predictor
point of view and from the prefetching point of view under workload A.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
ec

al
l

Threshold

Algorithm: PPM, Workload: B

Prefetch Recall
Prediction Recall

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

on

Threshold

Algorithm: PPM, Workload: B

Prefetch Precision
Prediction Precision

(b) Precision

Figure 7.4: Predictive metrics of PPM algorithm when evaluated from the predictor
point of view and from the prefetching point of view under workload B.

107

CHAPTER 7. DDG: A PREFETCHING ALGORITHM FOR CURRENT WEB

useless when the object predicted is already requested by the user but it is still in the
browser queue waiting for an available connection. Figure 7.5 shows that, depending
on the cutoff threshold of the algorithm, between 50% and 85% of the predictions
made under the workload A refer to an embedded object. Under the workload B, the
proportion is not so high due to the lower amount of embedded objects, but it is still
high since it ranges from 35% to 75%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

U
se

le
ss

 p
re

di
ct

io
ns

 (
%

)

Threshold

Workload: A

DG
PPM

(a) Workload A

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

U
se

le
ss

 p
re

di
ct

io
ns

 (
%

)

Threshold

Workload: B

DG
PPM

(b) Workload B

Figure 7.5: Ratio of predictions that are made too late under current algorithms

The aforementioned findings encouraged us to propose a novel algorithm aimed
at dealing with the high amount of embedded objects that exist in the current web
to improve performance.

7.4 Double Dependency Graph Algorithm (DDG)

7.4.1 Description

The DDG algorithm is based on a graph that keeps track of the dependences among
the objects accessed by the user. But unlike DG, it distinguishes two classes of
dependences: dependences to an object of the same page and dependences to an
object of another page. Like DG, the graph has a node for every object that has ever
been accessed. There is an arc from node A to B, if and only if, at some point in time
a client accessed to B within w accesses to A after B, where w is the lookahead window
size. The arc is a primary arc if A and B are objects of different pages, that is, either
B is an HTML object or the user accessed one HTML object between A and B. If
there is no HTML accesses between A and B, the arc is secondary. The confidence of
each primary or secondary transition, i.e., the confidence of each arc, is calculated by
dividing the counter of the arc by the amount of appearances of the node, both for

108

7.4. DOUBLE DEPENDENCY GRAPH ALGORITHM (DDG)

primary and for secondary arcs. The pseudo-code for building the DDG prediction
model is shown in Figure 7.6. As one can observe, the algorithm has the same order
of complexity as the DG, since it makes the same graph but distinguishing two classes
of arcs.

Figure 7.7 shows the state of the DDG algorithm after a training example with the
following accesses: HTML1, IMG1, HTML2, IMG2 by one user; and HTML1, IMG1,
HTML3, IMG2 by other user. Arrows with continuous lines represent primary arcs
while dashed lines represent secondary arcs. Primary and secondary arcs represent
the relation between object accesses of different pages and between object accesses of
the same page, respectively.

The predictions are obtained firstly by applying a cutoff threshold to the weight of
the primary arcs that leaves from the node of the last user access. In order to predict
the embedded objects of the following page, a secondary threshold is applied to the
secondary arcs that leave from the nodes of the objects predicted in the first step.

The DDG algorithm includes another useful parameter: the option of disabling
the prediction of HTML objects. The algorithm determines if a requested object is
an HTML file by looking at its MIME type in the response header given by the web
server. This parameter is specially interesting when working in a dynamic web site.
In this case, dynamic HTMLs will not be predicted by the algorithm. Other web sites
that can benefit from disabling the prediction of HTMLs are those in which the cost
of downloading an HTML object, i.e., its size, is very high when compared to the
contained objects, e.g. images. One can observe that this fact occurs in the workload
A (see Table 7.1), where HTMLs are 13 times larger than the embedded objects. The
impact of this parameter on the performance is quantified below. The pseudo-code
of the algorithm for obtaining the predictions is illustrated in Figure 7.8.

7.4.2 Selecting Parameter Values

In order to find the optimal values of the parameters of the prefetching algorithms,
we checked different lookahead window sizes and secondary thresholds likewise DG
and PPM algorithms were set up in Section 5.4.

To find the best lookahead window size, experiments were run ranging it from 2 to
16. For the sake of clarity, only some of those values are represented in Figure 7.9 for
workload A and in Figure 7.10 for workload B. Figure 7.9 shows minor performance
differences under the workload A between the different window sizes considering both
cost perspectives, i.e., traffic increase and object traffic increase. A window size of 12
has been selected to compare in Section 7.5 the DDG algorithm under the workload
A in order to have a similar aggressiveness to the DG and PPM algorithms. Under
the workload B (see Figure 7.10), performance gets worse as long as the lookahead
window size increases. For this reason, a window size of 2 has been selected to compare
the algorithm under this workload. In addition, this window size is the one with less
computing complexity.

109

CHAPTER 7. DDG: A PREFETCHING ALGORITHM FOR CURRENT WEB

1: Objective: Build a DDG prediction model
2: Input:
3: S: set of users’ sessions
4: Output:
5: DDG: DDG prediction model
6: for each session s ∈ S do
7: create empty lookahead window l
8: for each object i ∈ s do
9: HTMLinWindow← 0

10: if i MIMEtype is ”text/html” then
11: increment HTMLinWindow
12: end if
13: for each object o ∈ l from the newest to the oldest do
14: if HTMLinWindow = 1 then
15: increment weight of primary arc from o to i in DDG
16: else
17: if HTMLinWindow = 0 then
18: increment weight of secondary arc from o to i in DDG
19: end if
20: end if
21: if o MIMEtype is ”text/html” then
22: increment HTMLinWindow
23: end if
24: end for
25: increment i access counter in DDG
26: if l is full then
27: remove the oldest object from l
28: end if
29: insert i in l
30: end for
31: end for
32: for each object t ∈ DDG do
33: for each output primary arc a ∈ t do
34: a confidence ← weight of primary arc from t to a / t access counter
35: end for
36: for each output secondary arc a ∈ t do
37: a secondary confidence ← weight of secondary arc from a / t access counter
38: end for
39: end for
40: return DDG

Figure 7.6: Algorithm for making the prediction model in DDG

110

7.4. DOUBLE DEPENDENCY GRAPH ALGORITHM (DDG)

Figure 7.7: State of the graph of the DDG algorithm with a lookahead window size of
2 after the accesses HTML1, IMG1, HTML2, IMG2 by one user; and HTML1, IMG1,
HTML3, IMG2 by other user

In a similar way, experiments to find out the optimal value for the secondary
threshold were carried out. This parameter was ranged from 0.1 to 0.7 in steps of
0.1. As Figures 7.11 and 7.12 show, the best performance is achieved for a secondary
threshold of 0.3 under the two selected workloads. This better behavior is evidenced
both when comparing perceived latency to the traffic increase in bytes and to the
traffic increase in amount of objects. Likewise when exploring the lookahead window
size, results for only part of the experiments are shown in order to keep the plot
readable.

Finally, experiments to determine the effect of not allowing the prediction of
HTML files were carried out. Figure 7.13 shows the performance achieved by the
algorithms varying this parameter under the workload A. Looking at plot 7.13(a), it
is better to disable the prediction of HTML objects since its curve is always below the
other one. However, when taking into account the object traffic increase as the main
cost metric (see plot 7.13(b)), it is slightly better to predict the HTML files. There-
fore, since performance differences are smaller when taking into account the object
traffic increase, we selected the algorithm version that does not predict the HTML
files in order to compare the algorithms (see Section 7.5). However, if the bandwidth
consumption is not a critical issue, the version that predicts HTML objects should
be selected. As one can observe in Figure 7.14, the selection of the better value of
the parameter is easier under the workload B, since both plots give the same order,
that is, the algorithm that predicts HTML files outperforms the version that does not
predict them.

111

CHAPTER 7. DDG: A PREFETCHING ALGORITHM FOR CURRENT WEB

1: Objective: Obtain predictions of the next requests of the user
2: Input:
3: DDG: DDG prediction model
4: u: last user’s access
5: th: primary threshold
6: thsec: secondary threshold
7: enableHTMLpred: enable/disable the prediction of HTML objects
8: Output:
9: P : Set of predictions

10: for each output primary arc a ∈ u in DDG do
11: if a confidence > th then
12: if not enableHTMLpred or a MIMEtype is not ”text/html” then
13: P ← P

⋃
{a}

14: end if
15: for each output secondary arc e ∈ a in DDG do
16: if e secondary confidence > thsec then
17: P ← P

⋃
{e}

18: end if
19: end for
20: end if
21: end for
22: return P

Figure 7.8: Algorithm for making predictions in DDG

In short, the parameters that maximize the performance of the DDG algorithm are
a 12 sized lookahead window with a secondary threshold of 0.3 with the prediction of
HTML disabled for the workload A, and a lookahead window size of 2 and a secondary
threshold of 0.3 allowing the prediction of HTML objects for the workload B.

7.5 Algorithm Comparison

Once the algorithms are tuned to have the best performance, they are compared
in order to check the performance differences. Figure 7.15(a) shows that given any
traffic increase in bytes, the algorithm that provides the lowest user-perceived latency
under workload A is always the DDG. Similar results can be extracted when taking
into account as a cost factor the traffic increase measured in amount of objects (see
Figure 7.15(b)): DDG curve always falls below the other algorithms curves. To
highlight the benefits of the new algorithm, it has been compared in Figure 7.16
against the DG algorithm since it performs better than the PPM. Figure 7.16(a) shows
that given a value of latency per page ratio, the DDG algorithm requires between
25% and 60% less of bytes transference and between 15% and 65% less requests to

112

7.5. ALGORITHM COMPARISON

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Workload: A

w=4
w=8

w=12
w=16

(a) Latency per page ratio as a function of
Traffic increase

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Workload: A

w=4
w=8

w=12
w=16

(b) Latency per page ratio as a function of
Object Traffic increase

Figure 7.9: Selection of the lookahead window size of the DDG algorithm under the
workload A

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Workload: B

w=2
w=4
w=8

w=16

(a) Latency per page ratio as a function of
Traffic increase

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Workload: B

w=2
w=4
w=8

w=16

(b) Latency per page ratio as a function of
Object Traffic increase

Figure 7.10: Selection of the lookahead window size of the DDG algorithm under the
workload B

113

CHAPTER 7. DDG: A PREFETCHING ALGORITHM FOR CURRENT WEB

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Workload: A

thsec=0.1
thsec=0.3
thsec=0.5
thsec=0.7

(a) Latency per page ratio as a function of
Traffic increase

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Workload: A

thsec=0.1
thsec=0.3
thsec=0.5
thsec=0.7

(b) Latency per page ratio as a function of
Object Traffic increase

Figure 7.11: Selection of the secondary threshold of the DDG algorithm under the
workload A

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Workload: B

thsec=0.1
thsec=0.3
thsec=0.5
thsec=0.7

(a) Latency per page ratio as a function of
Traffic increase

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Workload: B

thsec=0.1
thsec=0.3
thsec=0.5
thsec=0.7

(b) Latency per page ratio as a function of
Object Traffic increase

Figure 7.12: Selection of the secondary threshold of the DDG algorithm under the
workload B

114

7.5. ALGORITHM COMPARISON

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Workload: A

HTML prediction enabled
HTML prediction disabled

(a) Latency per page ratio as a function of
Traffic increase

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Workload: A

HTML prediction enabled
HTML prediction disabled

(b) Latency per page ratio as a function of
Object Traffic increase

Figure 7.13: Deciding whether to predict HTML files in the DDG algorithm under
the workload A

the server than the DG. On the other hand, given a value of traffic increase in bytes,
DDG achieves a latency reduction between 15% and 45% higher than DG (see the
continuous curve in Figure 7.16(b)). The benefits could rise up to 60% of extra
perceived latency reduction when taking into account the object traffic increase, as
the dashed curve in Figure 7.16(b) shows.

Performance comparison under the workload B is presented in Figure 7.17.
Plot 7.17(a) shows that the selection of the best algorithm depends on which range
the analysis is focused on. In this context, for a traffic increase lower than around
1.15, the best algorithm is the DDG, on the contrary, the best performance is achieved
by the PPM, since its curve falls below the others. However, when looking at the
object traffic increase (see plot 7.17(b)), the DDG always outperforms clearly the
DG and the PPM algorithms. Figure 7.18 presents the relative comparison of the
DDG algorithm against the PPM. By looking at plot 7.18(a), one can observe that,
in the best situation, given a value of latency per page ratio, DDG requires about
60% less of traffic increase to achieve that latency reduction than the PPM, but in
the worst situation it requires a 30% more of traffic increase. The dashed line in the
same plot reveals that the DDG algorithm requires between about 35% and 90% less
of requests to the server than the PPM to reduce a given amount the user-perceived
latency. Plot 7.18(b) shows that in the best situation, with the same traffic increase
(in bytes), DDG algorithms reduces around 65% more the user-perceived latency
than the PPM. In the worst situation, DDG reduces about 15% less the perceived
latency than PPM. When the object traffic increase is analyzed, the dashed line in

115

CHAPTER 7. DDG: A PREFETCHING ALGORITHM FOR CURRENT WEB

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Workload: B

HTML prediction enabled
HTML prediction disabled

(a) Latency per page ratio as a function of
Traffic increase

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Workload: B

HTML prediction enabled
HTML prediction disabled

(b) Latency per page ratio as a function of
Object Traffic increase

Figure 7.14: Deciding whether to predict HTML files in the DDG algorithm under
the workload B

the plot shows that the DDG algorithm reduces the user-perceived latency between
about 50% and 150% more than the PPM.

7.6 Conclusions

In this chapter we have presented an analysis of the performance achieved by two
widely studied prefetching algorithms. We found that, due to the high amount of
embedded objects in current web, most of the predictions provided by the existing
algorithms are useless since they mainly predict the embedded objects of an HTML
after accessing the HTML itself. These predictions, which are good from the predictor
engine perspective, become useless for the client since it has no time to prefetch the
hinted objects and, therefore, the user-perceived latency cannot be reduced. Taking
into account this unwanted effect, a novel algorithm has been proposed and tested
dealing with the characteristics of the current web. The DDG algorithm distinguishes
between container objects (HTMLs) and embedded objects (e.g., images) to create the
prediction model and to make the predictions. Results show that, given an amount of
requests to the server, DDG always outperforms the existing algorithms by reducing
the perceived latency between 15% and 150% more with the same extra requests. In
addition, these results were achieved without incrementing the order of complexity of
the existing algorithms.

In [Domènech 06b], a summary of the results shown in this section was presented.

116

7.6. CONCLUSIONS

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Workload: A

DG
PPM
DDG

(a) Latency per page ratio as a function of
Traffic increase

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io
Object Traffic Increase

Workload: A

DG
PPM
DDG

(b) Latency per page ratio as a function of
Object Traffic increase

Figure 7.15: Algorithms comparison under the workload A

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.88 0.9 0.92 0.94 0.96 0.98 1

R
el

at
iv

e
tr

af
fic

 s
av

in
gs

 (
%

)

Latency per page ratio

DDG vs. DG (workload A)

Bytes
Objects

(a) Relative improvement in traffic increase
as a function of latency per page ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 1.1 1.2 1.3 1.4 1.5

R
el

at
iv

e
la

te
nc

y
sa

vi
ng

s
(%

)

Traffic Increase

DDG vs. DG (workload A)

Bytes
Objects

(b) Relative improvement in latency reduc-
tion as a function of traffic increase

Figure 7.16: Relative performance comparison of DDG vs DG algorithms under the
workload A. Positive values mean that DDG outperforms DG, while negative ones
would mean that DG outperforms DDG in the selected metrics.

117

CHAPTER 7. DDG: A PREFETCHING ALGORITHM FOR CURRENT WEB

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Traffic Increase

Workload: B

DG
PPM
DDG

(a) Latency per page ratio as a function of
Traffic increase

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

La
te

nc
y

pe
r

pa
ge

 r
at

io

Object Traffic Increase

Workload: B

DG
PPM
DDG

(b) Latency per page ratio as a function of
Object Traffic increase

Figure 7.17: Algorithms comparison under the workload B

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.88 0.9 0.92 0.94 0.96 0.98 1

R
el

at
iv

e
tr

af
fic

 s
av

in
gs

 (
%

)

Latency per page ratio

DDG vs. PPM (workload B)

Bytes
Objects

(a) Relative improvement in traffic increase
as a function of latency per page ratio

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 1.05 1.1 1.15 1.2 1.25

R
el

at
iv

e
la

te
nc

y
sa

vi
ng

s
(%

)

Traffic Increase

DDG vs. PPM (workload B)

Bytes
Objects

(b) Relative improvement in latency reduc-
tion as a function of traffic increase

Figure 7.18: Relative performance comparison of DDG vs PPM algorithms under the
workload B. Positive values mean that DDG outperforms PPM, while negative ones
mean that PPM outperforms DDG in the selected metrics.

118

Chapter 8

Conclusions and Future Work

8.1 Conclusions

Web prefetching has been researched for years with the aim of reducing the user-
perceived latency; however, studies mainly focus on prediction performance rather
than on the user’s point of view. This dissertation has shown that a fast and accurate
prediction is crucial for prefetching performance, but there are more factors involving
the user’s benefit. We have described and solved the main limitations when evaluat-
ing the performance from the user’s perspective. To fairly evaluate web prefetching
techniques, an experimental framework has been developed. By simulating the whole
web architecture, all performance issues were measured.

One of the most important steps in a performance evaluation study is the correct
choice of the performance indexes, but we found a wide heterogeneity of metrics in
the literature. After its analysis, we clarified indexes definitions and detected the
most meaningful metrics for the users. In spite of the focus on metrics used in web
prefetching, some of the conclusions obtained for these metrics are common in any
web performance evaluation study.

We also proposed an evaluation methodology to consider the cost and the benefit
of web prefetching at the same time, although this approach could be used to any
technique that implies a tradeoff.

Regarding the workload, we showed that prefetching performance differs depend-
ing on its age; and therefore, there is no reason to think that studies should be
conducted using old traces.

We analyzed the limits on performance depending on the web prefetching archi-
tecture and found that a proxy-located predictor is the one less limited to reduce
user-perceived latency since the potential limit of latency reduction is 67%. The
prediction engines located at servers can only reduce up to 37% the overall latency.
However, there is a noticeable amount of servers that can benefit from implementing

119

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

this prediction engine in a higher extent. The analysis also showed that a collaborative
prediction engine could reduce almost all the user-perceived latency.

Once the methodological basics were established, the main prediction algorithms
were tuned and compared. We found that a higher complexity of the algorithms
does not involve better system performance. The algorithms comparison resulted in
minor differences between DG and PPM, caused by the different average size of the
predicted objects.

The environment conditions that can be found in the web are heterogeneous, so
the optimal way of conducting web prefetching may be different depending on these
conditions. We studied under which environments it is better to maximize either the
amount of prefetched objects or the size of these objects. The results showed that,
when the user’s available bandwidth increases, prefetching techniques should prefetch
a high amount of objects; whereas when the server processing time decreases, the
amount of prefetched bytes should be maximized.

A deeper analysis of the results of the main existing algorithms showed that, due
to the high amount of embedded objects in current web, most of the predictions
provided by the existing algorithms are useless. This is because they mainly predict
the objects embedded in an HTML after accessing the HTML itself, so there is no
time to prefetch the hinted objects and therefore the user’s cannot be reduced. Taking
into account this unwanted effect, a novel algorithm dealing with the characteristics
of the current web has been proposed and tested. The DDG algorithm distinguishes
between container objects (HTMLs) and embedded objects (e.g., images) to create
the prediction model and to make the predictions. Results showed that, given an
amount of extra requests, DDG always reduces the latency more than the other
existing algorithms. In addition, these results were achieved without increasing the
order of complexity of the existing algorithms.

8.2 Summary of contributions

The main contributions of this dissertation are:

• An experimental framework for testing web prefetching techniques was devel-
oped.

• Performance key metrics were surveyed and their definition clarified.

• The most meaningful metrics from the user’s point of view were identified.

• How the workload age affects the prefetching performance was shown both from
the point of view of the user and of the prediction engine.

• The impact of the web prefetching architecture on the limits of reducing user-
perceived latency was analyzed.

120

8.3. FUTURE WORK

• A methodology for comparing algorithms from the user’s point of view and for
dealing with the costs and benefits of prefetching was developed.

• Design keys to adapt web prefetching algorithms to the environment conditions
were provided.

• A comparative study of web prefetching techniques focusing on the user’s per-
spective was performed and its results analyzed from the prediction point of
view.

• A novel prefetching algorithm (DDG) that outperforms those existing without
increasing the complexity was proposed and evaluated.

8.3 Future Work

8.3.1 Future Directions in Our Work

Despite the large amount of topics about web prefetching with which this dissertation
deals, there still exist several scenarios to be explored. In this subsection, we describe
some of them, showing new challenges and expected interesting results.

Through this thesis, we explored the prefetching algorithms for relative small
traffic and object traffic increases. For those servers in which the increase of requests
is not problem, a more aggressive policy should be adopted. In such a case, the
prediction algorithms should be probably redesigned to consider a wider range of
relation between object requests. In this context, it would be interesting to quantify
the increase in network traffic and object requests that a given algorithm requires to
achieve the maximum latency reduction for that algorithm.

How a prefetching system evolves in a long-term scenario is also an interesting
issue to be explored. Probably, a mechanism for aging the learning of a prediction
algorithm would be needed in order to adapt its predictions to the changes in the
users’ behavior. In this scenario there is another situation that requires attention.
Since prediction engines cannot account the prefetch hits, the prediction performance
will be negatively affected. An efficient system of notifying these prefetch hits could
help the algorithms to improve the performance.

An issue not analyzed that could contribute to existing techniques is to classify
users according to their navigation profile, and apply a prefetching strategy appropri-
ate for their profile. For instance, if the prefetching system detects that a given user
will have a large session in the server, an aggressive policy should be used. However,
if the system detects that a given user is going to browse only a few pages in the
server, the prefetching system should be more conservative.

8.3.2 Future Directions in Web Prefetching

Web prefetching performance is still far from their potential benefit, so there is a
lot of research to be done. Once the increase in user’s available bandwidths does

121

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

not involve better web performance and the requests processing time are difficult
to reduce, the improvement of the perceived latency can only be done by means of
predictive approaches.

As we described in Chapter 4, the implementation of prefetching at the proxy
dramatically increases the potential benefits of this technique, so this direction should
be explored in a near future. Any algorithm shown in this thesis can be implemented
without changes in a proxy-based prefetching system. However, in this system, other
benefits that current algorithms do not consider could be achieved. The main one is,
probably, the fact that the prefetching between clients and the proxy will not require
external traffic increase if only cached objects are predicted.

122

Bibliography

[Aggarwal 99] Charu C. Aggarwal, Joel L. Wolf and Philip S. Yu. Caching
on the World Wide Web. IEEE Transactions on Knowledge and
Data Engineering, vol. 11, no. 1, pages 95–107, 1999.

[Albrecht 99] David W. Albrecht, Ingrid Zukerman and Ann E. Nicholson. Pre-
sending Documents on the WWW: A Comparative Study. In
Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, 1999.

[Angermann 02] Michael Angermann. Analysis of Speculative Prefetching. ACM
Mobile Computing and Communications Review, vol. 6, no. 2,
2002.

[Bell 90] Timothy C. Bell, John G. Cleary and Ian H. Witten. Text com-
pression. Prentice Hall, 1990.

[Bestavros 95] Azer Bestavros. Using Speculation to Reduce Server Load and
Service Time on the WWW. In Proceedings of the 4th ACM
International Conference on Information and Knowledge Man-
agement, Baltimore, USA, 1995.

[Bestavros 96] Azer Bestavros. Speculative Data Dissemination and Service to
Reduce Server Load, Network Traffic and Service Time in Dis-
tributed Information Systems. In Proceedings of the Twelfth In-
ternational Conference on Data Engineering, pages 180–187, New
Orleans, USA, 1996.

[Bestavros 97] Azer Bestavros. WWW Traffic Reduction and Load Balancing
through Server-Based Caching. IEEE Concurrency, vol. 5, no. 1,
pages 56–67, 1997.

[Bonino 03a] Dario Bonino, Fulvio Corno and Giovanni Squillero. Dynamic
Prediction of Web Requests. In Proceedings of the IEEE Congress
on Evolutionary Computation, Canberra, Australia, 2003.

123

BIBLIOGRAPHY

[Bonino 03b] Dario Bonino, Fulvio Corno and Giovanni Squillero. A Real-Time
Evolutionary Algorithm for Web Prediction. In Proceedings of
the IEEE/WIC International Conference on Web Intelligence,
Halifax, Canada, 2003.

[Bouras 03] Christos Bouras, Agisilaos Konidaris and Dionysios Kostoulas.
Efficient Reduction of Web Latency through Predictive Prefetch-
ing on a WAN. In Proceedings of the 4th International Confer-
ence on Advances in Web-Age Information Management, pages
25–36, Chengdu, China, 2003.

[Bouras 04] Christos Bouras, Agisilaos Konidaris and Dionysios Kostoulas.
Predictive Prefetching on the Web and Its Potential Impact in
the Wide Area. World Wide Web, vol. 7, no. 2, pages 143–179,
2004.

[Cao] Pei Cao. Wisconsin web cache simulator.
http://www.cs.wisc.edu/ cao.

[Chen 02] Xin Chen and Xiaodong Zhang. Popularity-Based PPM: An Ef-
fective Web Prefetching Technique for High Accuracy and Low
Storage. In Proceedings of the International Conference on Par-
allel Processing, Vancouver, Canada, 2002.

[Chen 03] Xin Chen and Xiaodong Zhang. A Popularity-Based Prediction
Model for Web Prefetching. IEEE Computer, vol. 36, no. 3, pages
63–70, 2003.

[Chen 05] Xin Chen and Xiaodong Zhang. Coordinated data prefetching for
web contents. Computer Communications, vol. 28, pages 1947–
1958, 2005.

[Cherkasova 00] Ludmila Cherkasova and Gianfranco Ciardo. Characterizing
Temporal Locality and its Impact on Web Server Performance.
In Proceedings of the 9th International Conference on Computer
Communication and Networks, Las Vegas, USA, 2000.

[cla] ClarkNet WWW Server Log. http://ita.ee.lbl.gov/html/contrib/
ClarkNet-HTTP.html.

[Cohen 99] Edith Cohen, Balachander Krishnamurthy and Jennifer Rexford.
Efficient Algorithms for Predicting Requests to Web Servers. In
Proceedings of the IEEE INFOCOM ’99 Conference, New York,
USA, 1999.

[Cohen 02] Edith Cohen and Haim Kaplan. Prefetching the means for docu-
ment transfer: a new approach for reducing Web latency. Com-
puter Networks, vol. 39, no. 4, pages 437–455, 2002.

124

BIBLIOGRAPHY

[Cooley 99] Robert Cooley, Bamshad Mobasher and Jaideep Srivastava.
Data preparation for mining World Wide Web browsing patterns.
Knowledge and information systems, vol. 1, no. 1, pages 5–32,
1999.

[Crovella 98] Mark Crovella and Paul Barford. The network effects of prefe-
tching. In Proceedings of the IEEE INFOCOM’98 Conference,
San Francisco, USA, 1998.

[Cunha 97] Carlos Cunha and Carlos F.B. Jaccoud. Determining WWW
User’s Next Access and its Application to Pre-fetching. In Pro-
ceedings of the Second IEEE Symposium on Computers and
Communications, Alexandria, Egypt, 1997.

[Curewitz 93] Kenneth M. Curewitz, P. Krishnan and Jeffrey Scott Vitter.
Practical Prefetching via Data Compression. In ACM SIGMOD
International Conference on Management of Data, pages 257–
266, Washington D.C., USA, 1993.

[Cárdenas 04] Luis Guillermo Cárdenas, Julio Sahuquillo, Ana Pont and José A.
Gil. The Multikey web cache simulator: A platform for design-
ing proxy cache management techniques. In Proceedings of the
12th Euromicro Conference on Parallel, Distributed and Network
based Processing, La Coruña, Spain, 2004.

[Davison 01a] Brian D. Davison. Assertion: Prefetching with GET is not
Good. In Proceedings of the 6th International Workshop on Web
Caching and Content Distribution, Boston, USA, 2001.

[Davison 01b] Brian D. Davison. NCS: Network and cache simulator – An in-
troduction. Technical report, Department of Computer Science,
Rutgers University, 2001.

[Davison 02] Brian D. Davison. Predicting Web Actions from HTML Content.
In Proceedings of the 13th ACM Conference on Hypertext and
Hypermedia, College Park, USA, 2002.

[Davison 04] Brian D. Davison. Learning Web Request Patterns. In Web
Dynamics - Adapting to Change in Content, Size, Topology and
Use, pages 435–460. Springer, 2004.

[Domènech 04a] Josep Domènech, Ana Pont, Julio Sahuquillo and José A. Gil.
An Experimental Framework for Testing Web Prefetching Tech-
niques. In Proceedings of the 30th EUROMICRO Conference
2004, pages 214–221, Rennes, France, 2004.

125

BIBLIOGRAPHY

[Domènech 04b] Josep Domènech, Ana Pont, Julio Sahuquillo and José A. Gil.
Giving Facilities for the Design and Test of Web Prefetching
Techniques. In Proceedings of the 2nd International Working
Conference on Performance Modelling and Evaluation of Hetero-
geneous Networks (HET-NETs), Ilkley, United Kingdom, 2004.

[Domènech 04c] Josep Domènech, Julio Sahuquillo, José A. Gil and Ana Pont.
About the heterogeneity of web prefetching performance key met-
rics. In Proceedings of the IFIP International Conference
on Intelligence in Communication Systems (INTELLCOMM),
Bangkok, Thailand, 2004.

[Domènech 05] Josep Domènech, Julio Sahuquillo, Ana Pont and José A. Gil.
How current web generation affects prediction algorithms per-
formance. In Proceedings of the 13th International Conference
on Software, Telecommunications and Computer Networks (Soft-
COM), Split, Croatia, 2005.

[Domènech 06a] Josep Domènech, José A. Gil, Julio Sahuquillo, Johann Márquez
and Ana Pont. La Heterogeneidad de los Índices de Prestaciones
de la Prebúsqueda Web. In Proceedings of the XXXII Conferencia
Latinoamericana de Informática (CLEI 2006), Santiago, Chile,
2006.

[Domènech 06b] Josep Domènech, José A. Gil, Julio Sahuquillo and Ana Pont.
DDG: An Efficient Prefetching Algorithm for Current Web Gen-
eration. In Proceedings of the 1st IEEE Workshop on Hot Topics
in Web Systems and Technologies (HotWeb), Boston, USA, 2006.

[Domènech 06c] Josep Domènech, José A. Gil, Julio Sahuquillo and Ana Pont.
Web prefetching performance metrics: A survey. Performance
Evaluation, vol. 63, no. 9–10, pages 988–1004, 2006.

[Domènech 06d] Josep Domènech, Ana Pont, José A. Gil and Julio Sahuquillo.
Guidelines for Evaluating and Adapting Web Prefetching Tech-
niques. In Proceedings of the XVII Jornadas de Paralelismo,
Albacete, Spain, 2006.

[Domènech 06e] Josep Domènech, Ana Pont, Julio Sahuquillo and José A. Gil.
A Comparative Study of Web Prefetching Techniques Focusing
on User’s Perspective. In Proceedings of the IFIP International
Conference on Network and Parallel Computing (NPC 2006),
Tokyo, Japan, 2006.

[Domènech 06f] Josep Domènech, Ana Pont, Julio Sahuquillo and José A. Gil.
Cost-Benefit Analysis of Web Prefetching Algorithms from the

126

BIBLIOGRAPHY

User’s Point of View. In Proceedings of the 5th International
IFIP Networking Conference, Coimbra, Portugal, 2006.

[Domènech 06g] Josep Domènech, Ana Pont, Julio Sahuquillo and José A. Gil. A
User-Focused Evaluation of Web Prefetching Algorithms. Sub-
mitted, 2006.

[Domènech 06h] Josep Domènech, Julio Sahuquillo, José A. Gil and Ana Pont.
The Impact of the Web Prefetching Architecture on the Limits of
Reducing User’s Perceived Latency. In Proceedings of the 2006
IEEE / WIC / ACM International Conference on Web Intelli-
gence, Hong Kong, China, 2006.

[Domènech 06i] Josep Domènech, Julio Sahuquillo, Ana Pont and José A. Gil.
Design Keys to Adapt Web Prefetching Algorithms to Environ-
ment Conditions. In Proceedings of the 1st International Con-
ference on Communication Software and Middleware (COM-
SWARE), Delhi, India, 2006.

[Dongshan 02] Xing Dongshan and Shen Junyi. A New Markov Model For Web
Access Prediction. Computing in Science and Engineering, vol. 4,
no. 6, pages 34–39, 2002.

[Duchamp 99] Dan Duchamp. Prefetching Hyperlinks. In Proceedings of the
2nd USENIX Symposium on Internet Technologies and Systems,
Boulder, USA, 1999.

[Fan 99] Li Fan, Pei Cao, Wei Lin and Quinn Jacobson. Web Prefetch-
ing Between Low-Bandwidth Clients and Proxies: Potential and
Performance. In Proceedings of the ACM SIGMETRICS Con-
ference on Measurement and Modeling Of Computer Systems,
pages 178–187, Atlanta, USA, 1999.

[Fielding 99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1, 1999.

[Fisher 03] Darin Fisher and Gagin Saksena. Link prefetching in Mozilla: A
Server driven approach. In Proceedings of the 8th International
Workshop on Web Content Caching and Distribution (WCW
2003), New York, USA, 2003.

[Fleming 97] Todd B. Fleming, Scott F. Midkiff and Nathaniel J. Davis. Im-
proving the Performance of the World Wide Web over Wire-
less Networks. In Proceedings of the Global Telecommunications
Conference, Phoenix, USA, 1997.

127

BIBLIOGRAPHY

[goo a] Google Search. http://google.com/intl/en/help/features.html.

[goo b] Google Web Accelerator. http://webaccelerator.google.com/.

[Griffioen 94] James Griffioen and Randy Appleton. Reducing File System La-
tency using a Predictive Approach. Technical report, University
of Kentucky, 1994.

[Group 01] Network Working Group. Internet Web Replication and Caching
Taxonomy. RFC 3040, 2001.

[Gündüz 03] Sule Gündüz and M. Tamer Özsu. A Web page prediction model
based on click-stream tree representation of user behavior. In
KDD ’03: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 535–
540, New York, USA, 2003. ACM Press.

[Huang 05] Yin-Fu Huang and Jhao-Min Hsu. Mining Web Logs to Improve
Hit Ratios of Prefetching and Caching. In Proceedings of the
2005 IEEE / WIC / ACM International Conference on Web In-
telligence, Compiegne, France, 2005.

[Ibrahim 00] Tamer I. Ibrahim and Cheng Zhong Xu. Neural Nets based Pre-
dictive Prefetching to Tolerate WWW Latency. In Proceedings
of the 20th IEEE International Conference on Distributed Com-
puting Systems, Taipei, Taiwan, 2000.

[Iyengar 02] Arun Iyengar, Erich Nahum, Anees Shaikh and Renu Tewari.
Enhancing Web Performance. In Proceedings of the IFIP World
Computer Congress, Montreal, Canada, 2002.

[Jiang 97] Zhimei Jiang and Leonard Kleinrock. Prefetching Links on the
WWW. In Proceedings of the IEEE International Conference on
Communications, Montreal, Canada, 1997.

[Jiang 98] Zhimei Jiang and Leonard Kleinrock. An Adaptive Network
Prefetch Scheme. IEEE Journal on Selected Areas in Communi-
cations, vol. 16, no. 3, pages 358–368, 1998.

[Jiang 02] Yingyin Jiang, Min-You Wu and Wei Shu. Web Prefetching:
Costs, Benefits and Performance. In Proceedings of the 7th In-
ternational Workshop on Web Content Caching and Content Dis-
tribution, Boulder, USA, 2002.

[Jin 00] Shudong Jin and Azer Bestavros. Popularity-Aware GreedyDual-
Size Web Proxy Caching Algorithms. In Proceedings of the
20th International Conference on Distributed Computing Sys-
tems, Taipei, Taiwan, 2000.

128

BIBLIOGRAPHY

[Johnson 01] Kirk L. Johnson, John F. Carr, Mark S. Day and M. Frans
Kaashoek. The measured performance of content distribution net-
works. Computer Communications, vol. 24, no. 2, pages 202–206,
2001.

[Kargupta 04] Hillol Kargupta, Anupam Joshi, Krishnamoorthy Sivakumar and
Yelena Yesha, editors. Data mining: Next generation challenges
and future directions, chapter 3. AAAI Press, 2004.

[Khan 01] Javed I. Khan and Qingping Tao. Partial Prefetch for Faster
Surfing in Composite Hypermedia. In Proceedings of the 3rd
USENIX Symposium on Internet Technologies and Systems, San
Francisco, USA, 2001.

[Khan 03] Javed I. Khan and Qingping Tao. Exploiting Webspace Organi-
zation for Accelerating Web Prefetching. In Proceedings of the
IEEE/WIC International Conference on Web Intelligence, Hali-
fax, Canada, 2003.

[Kim 03] Yuna Kim and Jong Kim. Web Prefetching Using Display-Based
Prediction. In Proceedings of the IEEE/WIC International Con-
ference on Web Intelligence, Halifax, Canada, 2003.

[Kokku 03] Ravi Kokku, Praveen Yalagandula, Arun Venkataramani and
Michael Dahlin. NPS: A Non-Interfering Deployable Web Pref-
etching System. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, Palo Alto, USA, 2003.

[Kroeger 97] Thomas M. Kroeger, Darrell D.E. Long and Jeffrey C. Mogul.
Exploring the Bounds of Web Latency Reduction from Caching
and Prefetching. In Proceedings of the 1st USENIX Symposium
on Internet Technologies and Systems, Monterey, USA, 1997.

[Lan 00] Bin Lan, Stephane Bressan, Beng Chin Ooi and Kian-Lee Tan.
Rule-assisted prefetching in Web-server caching. In CIKM ’00:
Proceedings of the ninth international conference on Information
and knowledge management, pages 504–511, New York, USA,
2000. ACM Press.

[Lau 04] Kelvin Lau and Yiu-Kai Ng. A Client-Based Web Prefetching
Management System Based on Detection Theory. In Proceedings
of the Web Content Caching and Distribution: 9th International
Workshop (WCW 2004), pages 129–143, Beijing, China, 2004.

[Lee 06] Heung Ki Lee, Gopinath Vageesan, Ki Hwan Yum and Eun Jung
Kim. A PROactive Request Distribution (PRORD) Using Web

129

BIBLIOGRAPHY

Log Mining in a Cluster-Based Web Server. In Proceedings of
the International Conference on Parallel Processing (ICPP’06),
Columbus, USA, 2006.

[Li 01] Ian TianYi Li, Qiang Yang and Ke Wang. Classification Pruning
for Web-request Prediction. In Poster Proceedings of the 10th
World Wide Web Conference, Hong Kong, China, 2001.

[Loon 97] Tong Sau Loon and Vaduvur Bharghavan. Alleviating the La-
tency Reduction and Bandwidth Problems in WWW Browsing.
In Proceedings of the 1st USENIX Symposium on Internet Tech-
nologies and Systems, Monterey, USA, 1997.

[Maltzahn 99] Carlos Maltzahn, Kathy J. Richardson, Dirk Grunwald and
James H. Martin. On bandwidth smoothing. In Proceedings of
the 4th International Web Caching Workshop, San Diego, USA,
1999.

[Markatos 98] Evangelos Markatos and Catherine Chronaki. A Top-10 Ap-
proach to Prefetching on the Web. In Proceedings of the INET’
98, Geneva, Switzerland, 1998.

[Mitchell 93] Carl D. Mitchell, Randall A. Helzerman, Leah H. Jamieson and
Mary P. Harper. A parallel implementation of a hidden Markov
model with durationmodeling for speech recognition. In Proceed-
ings of the Fifth IEEE Symposium on Parallel and Distributed
Processing, Dallas, USA, 1993.

[Mobasher 02] Bamshad Mobasher, Honghua Dai, Tao Luo and Miki Nakagawa.
Using Sequential and Non-Sequential Patterns in Predictive Web
Usage Mining Tasks. In Proceedings of the IEEE International
Conference on Data Mining, Maebashi City, Japan, 2002.

[Mozilla] Mozilla. Link Prefetching FAQ.
http://www.mozilla.org/projects/netlib/Link Prefetching
FAQ.html.

[Nanopoulos 01] Alexandros Nanopoulos, Dimitrios Katsaros and Yannis
Manolopoulos. Effective Prediction of Web-user Accesses: A
Data Mining Approach. In Proceedings of the Third Interna-
tional Workshop WEBKDD – Mining Web Log Data Across All
Customers Touch Points, San Francisco, USA, 2001.

[Nanopoulos 02] Alexandros Nanopoulos, Dimitrios Katsaros and Yannis
Manolopoulos. Exploiting web log mining for web cache en-
hancement, volume 2356, chapter in Lecture Notes in Artificial
Intelligence (LNAI), pages 68–87. Springer-Verlag, 2002.

130

BIBLIOGRAPHY

[Nanopoulos 03] Alexandros Nanopoulos, Dimitrios Katsaros and Yannis
Manolopoulos. A Data Mining Algorithm for Generalized Web
Prefetching. IEEE Trans. Knowl. Data Eng., vol. 15, no. 5, pages
1155–1169, 2003.

[Nicholson 98] Ann E. Nicholson, Ingrid Zukerman and David W. Albrecht. A
Decision-Theoretic Approach for Pre-Sending Information on the
WWW. In Proceedings of the 5th Pacific Rim International Con-
ference on Artificial Intelligence, Singapore, Singapore, 1998.

[Padmanabhan 96] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using Predictive
Prefetching to Improve World Wide Web Latency. Computer
Communication Review, vol. 26, no. 3, pages 22–36, 1996.

[Palpanas 99] Themistoklis Palpanas and Alberto Mendelzon. Web Prefetch-
ing Using Partial Match Prediction. In Proceedings of the 4th
International Web Caching Workshop, San Diego, USA, 1999.

[Pandey 01] Ajay Pandey, Jaideep Srivastava and Shashi Shekhar. A web in-
telligent prefetcher for dynamic pages using association rules –
A summary of results. In Proceedings of the First SIAM Inter-
national Conference on Data Mining, Workshop on Web Mining,
Chicago, USA, 2001.

[Pandey 02] Ajay Pandey, Ranga R. Vatsavai, Xiaobin Ma, Jaideep Srivastava
and Shashi Shekhar. Data Mining for Intelligent Web Prefetch-
ing. In Proceedings of the Workshop on Mining Across Multiple
Customer Touchpoints for CRM, Taipei, Taiwan, 2002.

[Pearson] Oskar Pearson. Squid User’s Guide. http://squid-
docs.sourceforge.net/latest/book-full.html.

[Peña-Ortiz 05] Raúl Peña-Ortiz, Julio Sahuquillo, Ana Pont and José Antonio
Gil. Modeling continous changes of the users’ web dynamic be-
havior in the WWW. In Proceedings of the Fith International
Workshop on Software and Performance (WOSP 2005), Palma
de Mallorca, Spain, 2005.

[Pitkow 99] James Pitkow and Peter Pirolli. Mining Longest Repeating Sub-
sequences to Predict World Wide Web Surfing. In Proceedings
of the 2nd USENIX Symposium on Internet Technologies and
Systems, Boulder, USA, 1999.

[Rabinovich 02] Michael Rabinovich and Oliver Spatscheck. Web caching and
replication. Addison-Wesley, 2002.

131

BIBLIOGRAPHY

[Sarukkai 00] Ramesh Sarukkai. Link prediction and path analysis using
Markov chains. Computer Networks, vol. 33, no. 1-6, pages 377–
386, 2000.

[Schechter 98] Stuart Schechter, Murali Krishnan and Michael D. Smith. Using
Path Profiles to Predict HTTP Requests. In Proceedings of the
7th International World Wide Web Conference, Brisbane, Aus-
tralia, 1998.

[Su 00] Zhong Su, Qiang Yang, Ye Lu and Hong-Jiang Zhang. WhatNext:
A prediction system for web requests using N-gram sequence mod-
els. In Proceedings of the 1st International Conference on Web
Information Systems and Engineering Conference, Hong Kong,
China, 2000.

[Taguchi 87] Genichi Taguchi. System of experimental design. Unipub/Kraus
International Publications, White Plain, 1987.

[Tao 02] Qingping Tao. Impact of Webspace Organization and User Inter-
action Behavior on a Prefetching Proxy. PhD thesis, Kent State
University, 2002.

[Teng 05] Wei-Guang Teng, Cheng-Yue Chang and Ming-Syan Chen. Inte-
grating Web Caching and Web Prefetching in Client-Side Prox-
ies. IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 5, pages 444–455, 2005.

[tra] The Internet Traffic Archive. http://ita.ee.lbl.gov/index.html.

[UCB] UCB, LBNL and VINT. Network Simulator ns (version 2).
http://www.isi.edu/nsnam/ns.

[Vahdat 98] Amin Vahdat, Thomas Anderson, Michael Dahlin, Eshwar Be-
lani, David Culler, Paul Eastham and Chad Yoshikawa. WebOS:
Operating System Services for Wide Area Applications. In Pro-
ceedings of the 7th Symposium on High Performance Distributed
Computing Systems, Chicago, USA, 1998.

[Venkataramani 02] Arun Venkataramani, Praveen Yalagandula, Ravindranath
Kokku, Sadia Sharif and Mike Dahlin. The potential costs and
benefits of long-term prefetching for content distribution. Com-
puter Communications, vol. 25, pages 367–375, 2002.

[Vöckler] Jens Vöckler. HTTP Blast. http://www.cache.dfn.de/DFN-
Cache/Development/blast.htm.

132

BIBLIOGRAPHY

[Wu 06] Bin Wu and Ajay D. Kshemkalyani. Objective-Optimal Algo-
rithms for Long-term Web Prefetching. IEEE Transactions on
Computers, vol. 55, no. 1, pages 2–17, 2006.

[Yang 03] Qiang Yang, Joshua Zhexue Huang and Michael Ng. A data cube
model for prediction-based web prefetching. Journal of Intelligent
Information Systems, vol. 20, no. 1, pages 11–30, 2003.

[Zhu 02a] Jianhan Zhu, Jun Hong and John G. Hughes. Using Markov
Chains for Link Prediction in Adaptive Web Sites. In Proceed-
ings of the First International Conference on Computing in an
Imperfect World, Belfast, United Kingdom, 2002.

[Zhu 02b] Jianhan Zhu, Jun Hong and John G. Hughes. Using Markov
Models for Web Site Link Prediction. In Proceedings of the 13th
ACM Conference on Hypertext and Hypermedia, College Park,
USA, 2002.

[Zukerman 99] Ingrid Zukerman, David W. Albrecht and Ann E. Nicholson. Pre-
dicting Users’ Requests on the WWW. In Proceedings of the 7th
International Conference on User Modeling, Banff, Canada, 1999.

133

