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A B S T R A C T

This work presents a wireless acoustic sensor network (WASN) that monitors urban environments by
recognizing a given set of sound events or classes. The nodes of the WASN are Raspberry Pi devices that not
only record the ambient sound, but also detect and recognize different sound events. All the signal processing
tasks, from the recording to the classification carried out by a convolutional neural network (CNN), are run
on Raspberry Pi devices. Due to the low cost of the proposed acoustic nodes, the system exhibits a very high
potential scalability. Regarding the underlying WASN, it has been designed according to the open standard
FIWARE, thus the whole system can be deployed without the need of proprietary software. Regarding the
performance of the sound classifier, the proposed WASN achieves similar accuracy compared to other WASNs
that make use of cloud computing. However, the proposed WASN significantly minimizes the network traffic
since it does not exchange audio signals, but only contextual information in form of labels. On the other hand,
most of the time the class reported by the WASN nodes is the ‘‘background’’ soundscape, which usually contains
no event of interest. This is the case when monitoring the soundscape of big avenues, where four events
have been identified: ‘‘traffic’’, ‘‘siren’’, ‘‘horn’’ and ‘‘noisy vehicles’’, being the ‘‘traffic’’ class associated to the
background soundscape. In this paper, the use of a simple pre-detection stage prior to the CNN classification
is proposed, with the aim of saving computation and power consumption at the nodes. The pre-detection stage
is able to differentiate the other three relevant sounds from the ‘‘traffic’’ and activates the classifier only when
some of these three events is likely occurring. The proposed pre-detection stage has been validated through
data recorded in the city of Valencia (Spain), achieving a reduction of the Raspberry Pi CPU’s usage by a
factor of six.
1. Introduction

According to the United Nations, 55% of the world’s population
lives in urban areas, but this proportion is expected to rise to 68% by
2050 [1]. Cities are going to face major changes in the near future,
thus the developing of smart city solutions will be a key factor in order
to carry out successful strategies. In this sense, understanding their
environment at any time of day and night, and interpreting the data
obtained from sensors deployed over the city will be essential.

A significant source of information to monitor what is happening
in a city are the sounds, whose recognition is the goal of the so
called environmental sound classification (ESC) techniques. ESC is a very
active area of research and its applications are numerous, most of
them focused on urban, nature and domestic environments [2–4]. The
systematic approach to ESC can be considered to have started with
the challenge on Detection and Classification of Acoustic Scenes and
Events (DCASE) organized in 2012-2013 by Stowell et al. [4]. The first
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survey on environmental sound recognition techniques was presented
by Chachada and Kuo in 2014 [2], while the ESC dataset released by
Piczak in 2015 [3] certainly contributed to accelerate the research in
the field.

Acoustic sensor networks, mostly wireless (WASN), are usually de-
ployed to capture the urban sounds and classify them [5–7]. Generally
speaking, part of the processing carried out by the ASNs is done in situ
at the node, but the decision and intelligence tasks are usually carried
out by the network by means of cloud or edge computing [6,8,9]. In this
paper, a WASN formed by smart sensors is presented, which is able to
pour contextualized data into the network [10–12], giving a different
perspective from the Internet-of-Things (IoT) vision where the nodes
only sense the environment and the intelligence is, in general, provided
by the network. The fact that the network nodes perform certain
calculations themselves, thus offloading the cloud servers, brings this
approach closer to an edge computing solution.
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The acoustic nodes of the proposed WASN are based on Raspberry Pi
devices, whose cost is very low, but whose processing unit is powerful
enough to recognize urban sounds by means of a deep convolutional
neural network (CNN) classifier [13,14]. Once the classification output
is obtained, the node transmits this result together with the required
context information through a network based on the FIWARE open
standard [15].

FIWARE is an European set of specifications designed to enable
the development of smart applications in multiple vertical sectors,
especially in smart cities, where infrastructures were initially deployed
with proprietary solutions. In order to tackle this, FIWARE was devel-
oped within the Seventh Framework Programme (FP7) of the European
Commission as part of the Future Internet Public–Private Partnership
Programme (FI-PPP) with the aim of creating a smart and open solu-
tion for sensor networks whose main characteristics were being open,
public and royalty-free. Due to the chosen characteristics of the nodes
and the network, the proposed WASN can be easily replicated and
deployed, and it exhibits very high scalability. Furthermore, the nodes
can be continuously updated with the latest advances on classification
and computing since they have not been developed on any specific
hardware.

The outline of the paper is as follows: Section 2 describes the differ-
ent components of the proposed low-cost WASN, including the audio
signal processing, the CNN that carries out the sound classification,
and the network and server architectures. A brief study on the power
consumption of the Raspberry Pi due to the constant execution of the
sound classification task is also given. In order to alleviate the high
computational burden required by the CNN, an efficient pre-detection
stage is proposed in Section 3. This stage activates the classifier only
when some event of interest is likely to occur. Experimental results
are also shown for the detection of events related to the soundscape
of three big avenues of Valencia, within the framework of Valencia as
a smart city [16,17], obtaining a reduction by a factor of six compared
to the original computational load. Finally, Section 4 outlines the main
conclusions of the paper.

2. WASN for urban sounds

Fig. 1 illustrates the different tasks carried out by the proposed
WASN, from sound recording till data visualization through a web ap-
plication. They will be described in detail throughout this section. The
‘‘Acoustic sensor node’’ box of Fig. 1 represents all the tasks performed
by the Raspberry Pi in the WASN. In Section 2.1 the feature extraction
and the sound event classification tasks are described, whereas details
on the Raspberry Pi’s hardware and its performance will be provided
in Section 2.4. The WASN components related to the network and the
server are explained in Section 2.2 and Section 2.3 respectively.

2.1. Acoustic sensor node

After recording a sound segment of 3 s, the first task performed
y the node is the feature extraction, as it is shown in Fig. 1. In the
ontext of urban sounds, the Mel-spectrogram has been widely used to
haracterize acoustic events and create a meaningful image to represent
hem [18,3]. The proposed WASN node follows this approach and
haracterizes the recorded sound by the Mel frequency cepstral coeffi-
ients (MFCCs) [19] computed for each time frame, together with their
ifference between consecutive frames, known as delta coefficients. The
omputation is carried out using time frames of 512 samples (23.22 ms

given a sampling frequency of 22050 Hz), weighted by a Hanning
window of the same duration. Therefore, 128 frames from each 3 s
audio recording are obtained. The MFCCs are computed from log-scale
Mel-spectrograms covering the frequency range of 0–11.025 Hz divided
into 128 bands. Therefore, the input of the CNN is a 128 × 128 × 2
2

matrix.
The CNN structure is shown in Fig. 2. This CNN structure has been
previously proposed in [20,21] as the neural network architecture of
the SONYC project. However in this paper, 3 convolutional layers and
2 dense layers are used instead. All convolutional layers have a small
kernel of size 5 × 5 and are followed by a max-pooling layer of size
4 × 2. A dropout layer is used for the first two convolutional layers to
prevent overfitting [21,22]. The activation function of the convolution
layers and first dense layer is ReLU, while Softmax is applied for the
last dense layer [22].

Regarding the training of the neural network, a stochastic gradient
descent method has been used, which is based on adaptive estimation
of first and second order moments, also known as Adam optimiza-
tion [23]. In addition, a crossentropy loss function has been used
between labels and predictions. The CNN has been trained with the
UrbanSound8K database, freely available at [24], which contains the
ten following classes of urban sounds [18]: air conditioner, car horn,
children playing, dog bark, drilling, gun shot, jackhammer, siren, street
music and traffic (equivalent to the engine idling class in [18]). The
whole dataset has been divided into a training dataset (9 folders of
the UrbanSound8K dataset) and a validation dataset (1 folder of the
UrbanSound8K dataset), following the methodology described in [18].

In an initial stage, the CNN was trained in a personal computer using
TensorFlow [25], and afterwards, the CNN was copied in the Raspberry
Pi through the TensorFlow Lite Converter. As it can be seen in Fig. 2,
the output of the CNN is a vector formed by 10 float numbers that
indicate the probability of each class. The detected class is chosen as
the one whose probability is higher. The average classification accuracy
was 71%, which is close to the results reported in [18]. Other works
have reported better accuracy figures by adding features to the CNN in-
put [14], or by using smaller datasets different from the UrbanSound8K
in their experiments [13].

2.2. Network architecture

The information provided at the output of the CNN is modeled and
sent to a cloud server for storage and further processing. The acoustic
sensors developed on a Raspberry Pi can be connected to the server
through different communication technologies. These communication
technologies are usually wireless in order to facilitate the installation
of nodes in the most suitable places for the sound acquisition, regardless
of the availability of wired connection. In addition, these nodes are
generally powered using batteries, which makes them much more
portable and versatile. The main disadvantage is that the batteries need
to be recharged on a regular basis, or, alternatively, the installation
of solar energy is required to power the nodes. This is why the opti-
mization of urban sound detection and classification mechanisms is so
important, and it is something to which is paid special effort within this
work (Section 3). A small consumption saving can mean extending the
autonomy of the node during hours or days.

In order to guarantee the connectivity with the server, three type of
wireless scenarios can be considered. First of all, the Raspberry Pi can
connect via built-in WiFi if it is near to an access point with Internet
connectivity. This scenario is recommended in situations where the
environment is controlled and WiFi is available. A second scenario can
occur when there is no WiFi nearby and long distance communication
is necessary. In this case, a 3G/4G dongle can be installed in the
Raspberry Pi, allowing the node to communicate directly with the
server in the cloud. Finally, in situations where only a set of the
WASN nodes are under WiFi or 3G/4G coverage, an ad hoc network of
sensors can be used, where at least one of the nodes must have Internet
connectivity. In this scenario, the nodes use an ad hoc routing protocol
to know the route to the rest of the nodes and, particularly, to the
node that acts as a gateway to the Internet. In the proposed WASN,
WiFi connectivity has been used, but all three alternatives have been
successfully developed and tested. In particular, our ad-hoc network
uses the OLSR protocol [26], but different alternatives exist for ad
hoc networks and mesh networks [27]. This network architecture can
guarantee scalability, although other advanced techniques could be

used [28].
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Fig. 1. Block diagram of the tasks performed by the WASN.
Fig. 2. Structure of the CNN used for urban sound classification.
2.3. Server architecture

On the server side, several components have been deployed to
manage the data sent by the acoustic sensor nodes, which essentially
means receiving, storing and processing these data, and subsequently
representing them through a dashboard. To deploy this infrastructure,
the server software is based on FIWARE’s IoT middleware [15].

FIWARE is an open platform that provides a set of tools, components
and libraries called Generic Enablers (GEs) that offer reusable function-
alities for the creation of new application and Internet services. One of
the key aspects of FIWARE is the context management. FIWARE pro-
vides mechanisms to generate, collect, publish or query massive context
information and use it for applications to react to their context through
restful (REST) APIs (Application Programming Interface), which are
based mainly on the Next-Generation Service Interface (NGSI) 9/10
data model over HTTP. Although complex scenarios may require off-
the-shelf models, FIWARE provides some standard data models for
common smart city elements and applications, such as streetlights,
noise detection and air quality observations, among others. In this
case, the generic Device model has been used for the data structure of
each Raspberry Pi, following the data model standard recommendation
proposed by the Schema community [29].

The Context Broker GE is the FIWARE component that is in charge
of creating, deleting, retrieving, and updating entities in the platform.
This module acts as a broker, by allowing external systems (consumers)
to make data subscriptions with specific rules to the entities and
3

attributes, which improves the architectural distribution and scalabil-
ity. The Context Broker sends notifications to these consumers when
subscription rules are observed. The last values of information sent by
the entities are stored in the attached MongoDB database as context
information.

However, the Context Broker is not envisaged to be used for storing
historical data. For this purpose, another FIWARE GE has been used
additionally, with the ability to store historical data in a time series
database (TSDB), the QuantumLeap GE, which uses CrateDB as the
underlying database. The QuantumLeap component is subscribed to
updates on entities in the Context Broker, so any new incoming data
is stored for later access, analysis and representation.

The whole server architecture is depicted in Fig. 3. Once the CNN
provides the classification of a sound event in the acoustic node, this
information is sent to the Context Broker using any of the wireless
communication mechanisms explained in Section 2.2 and stored in the
TSDB, especially designed for historical data and time range queries
and operations.

Therefore, the data flow in the proposed architecture involves three
essential components: context producer, context broker and context
consumer. As aforementioned, the WASN acts as context producer,
recording audio samples and performing classification operations. FI-
WARE provides the context broker and all the components required
to store historical data. Finally, both context and historical data are
consumed by a visualization component, a dashboard.

In order to represent this historical data in an intuitive and visual
way, Grafana dashboards have been deployed. Fig. 4 illustrates the
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Fig. 3. Block diagram of the proposed server architecture.
Fig. 4. Dashboard showing event labels and location visualization.
dashboard layout. On the upper side, the probability of the last class
detected is depicted among all the available classes, in addition to the
total amount of events detected in a given time period. The desired
time period can be selected using the dropdown component in the
upper-right corner. At the bottom, real time information about the last
detected events is presented on the left, and the number of historically
detected events per class is shown on the right. Finally, at the center
of the dashboard, a map shows the location of the nodes present in the
network, using a color-coded scale to depict the sound power currently
detected.

Finally, it is worth mentioning that data traffic over the network
is minimized since only the vector containing the probability of each
class is transmitted by the nodes, instead of the whole audio recording.
On the other hand, most of the computation load is carried out at
the acoustic node, which is in line with the emerging concept of edge
computing.

2.4. Raspberry Pi as the acoustic sensor node

This subsection focuses on the tasks regarding the acoustic node de-
picted in Fig. 1 when implemented on a Raspberry Pi. Specifically, the
Raspberry Pi Model B has been used, whose hardware specifications are
shown in Table 1. Fig. 5 shows a Raspberry Pi (inside a protective case)
4

Table 1
Hardware specifications and total processing time.

Device Processor RAM Time

Dell XPS 15 (2015) I7-6700HQ 2.60 GHz 16 GB 0.195 s
Raspberry Pi 3 Model B Quad Core 1.2 GHz 1 GB 2.147 s

connected to a battery (below) and to a miniDSP UMIK-1 microphone
covered by a windproof case. The picture on the right was taken during
one of the recording sessions described in Section 3.

The processes shown in Fig. 1 (recording, feature extraction and
classification) have been programmed using Python libraries for the
sound recording and feature extraction, and Tensorflow and Keras
for the implementation of the neural network. The same environment
has been implemented on a personal computer (PC) whose hardware
specifications are shown in Table 1. The neural network has been
trained in the PC and tested on the PC and on the Raspberry Pi.

The time required to perform the whole recording and classification
processing is also shown in Table 1 for both devices. Notice that this
processing time is the time to record a 3 s audio file and classify it. The
processing time shown in Table 1 does not include the 3.089 s needed
to record and save the sound in a wav file, since it takes the same time
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Fig. 5. On the left side: Acoustic node formed by a Raspberry Pi encapsulated in a protective case and connected to a battery (below) and a microphone. On the right side: The
acoustic node placed at one of the sites described in Section 3.
Table 2
Processing time per specific task.

Device wav file
loading

Feature
extraction

CNN
classification

Dell XPS 15 (2015) 0.124 s 0.012 s 0.059 s
Raspberry Pi 3 Model B 2 s 0.052 s 0.095 s

for both devices. On the other hand, Table 2 shows the processing time
devoted to each specific task of the classification stage, including the
loading of the audio segment from the wav file. It can be observed that
the feature extraction task is four times longer on the Raspberry Pi than
on the PC, whereas the classification task is almost twice.

As explained in Section 2.3, once the audio recording is classified,
the data will be sent to the FIWARE context broker and any subscribed
client, including the time series database, will receive the notification
of a new sound event. Given the processing times of Table 2, the WASN
node is able to provide a sound event classification approximately every
5 s for an observation time of 3 s, which can be considered real-time
processing for smart city applications. However, the main drawback of
the proposed low-cost acoustic network is its high power consumption
due to its constant activity in this operation mode, which means that
the WASN could only be deployed at sites with access to the power
grid. In order to cope with this problem, Section 3 proposes a sound
detection scheme that reduces the power consumption of the Raspberry
Pi by reducing the time that the classification stage must be active.

3. Pre-detection stage for traffic noise

As described above, the WASN is constantly recording sound events,
classifying them and sending its output to the network, making the
Raspberry Pi consume a significant amount of power [30]. On the
other hand, an urban environment is usually defined by a certain
background sound (‘‘children playing’’ for an urban park, ‘‘traffic’’ noise
for a downtown avenue, etc.), but an event of interest is something
that occurs sparsely and is clearly different from the background sound.
For instance, a gunshot in a park or an ambulance driving along an
avenue. Thus, a detection stage prior to the classifier is proposed in
this section in order to detect whether an event of interest is occurring.
The goal is to minimize the computation demanded by the Raspberry
Pi’s CPU, but without losing key information from the environment. For
this purpose, a preliminary study has been carried out on the traffic
noise recorded at three big avenues of the city of Valencia. From the
5

data observed, an efficient solution have been proposed, which reduces
computation while preserving the goal of the WASN, that is, monitoring
the environmental sound and reporting an acoustic event.

3.1. Experiment setup and dataset

Acoustic nodes were placed at three big avenues of Valencia as it can
be seen in Fig. 6 (also available as a Google map at https://tinyurl.com/
yecxvuk9). Location #1 was very close to one of the biggest hospitals
of the city in order to obtain enough samples of siren sounds, whereas
Location #2 usually suffers from traffic jams in the afternoon. Location
#3 is a big avenue where the lights are synchronized and most of the
vehicles can circulate at the maximum permitted speed of 50 km/h. At
that speed, some cars and motorbikes generate annoying loud noises
for the pedestrians. Around two hours of urban sounds were recording
at each location in three different days. The same acoustic node and
equipment described in Section 2.4 and shown in Fig. 5 were used along
the three sessions.

Once all the recorded sounds were analyzed, three main sound
events apart from the traffic event were identified: vehicles that gen-
erate a loud noise when passing, which were labeled as noisy vehicles,
ambulances and police vehicles with the siren switched on, which were
labeled as siren, and the sound of car horns, labeled as horn. Note that
traffic noise is used to refer to any type of noise or sound produced
by a vehicle, but the traffic class is assigned to the background noise
recorded when no horn, siren or noisy vehicle is present. Noisy vehicles
are usually motorbikes and cars with damaged mufflers, and vehicles
circulating at high speed. Other sounds like birds, people talking or
children yelling were also recorded by the nodes, but the study in this
paper is focused on these four sound events related to the vehicles
passing along an avenue.

After segmenting, selecting and labeling the whole recorded ma-
terial, a dataset was built, whose number of wav files and total time
duration for every class are shown in Table 3. A wav file is a continuous
recording of one or more continuous events of the same class, no matter
their duration.

As it can be appreciated from Table 3, most of the time the system
of Fig. 1 would detect the traffic event, which characterizes the back-
ground noise at the locations of Fig. 6. In this sense, 56% of the time the
Raspberry Pi would be busy computing the classification of signals that
have no interest for the observer. Therefore, a pre-detection stage prior
to the classifier is proposed in order to activate the classification process
only if one of the noise events other than traffic is likely occurring.

https://tinyurl.com/yecxvuk9
https://tinyurl.com/yecxvuk9
https://tinyurl.com/yecxvuk9
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Fig. 6. Valencia map with the three locations used for the recording of the new dataset.
Table 3
Sound Event Dataset.

Class wav Files Observation time

Traffic 56 903.34 s
Noisy vehicles 40 595.04 s
Siren 10 80.16 s
Horn 32 37.91 s

3.2. Design of the pre-detection stage

For the design of the pre-detection stage, firstly the equivalent
continuous sound pressure level (SPL) [31], 𝐿, in linear units has been
calculated for the four classes of Table 3 as

𝐿(𝑚) =

√

∑

𝑛∈𝑇𝑚 𝑥2(𝑛)

𝑝0
, (1)

where 𝑚 denotes the time frame index, 𝑇𝑚 is the time interval of the
𝑚th frame, and 𝑥(𝑛) is the recorded sound 𝑥(𝑡) at time 𝑡 = 𝑛𝑇𝑠, being 𝑇𝑠
the sampling time. The parameter 𝑝0 is the reference pressure level and
is equal to 20 μPa. The duration of 𝑇𝑚 has been chosen as 250 ms, and
contiguous time intervals overlap 50% of the samples. Fig. 7 shows the
values of 𝐿 (1) for each event along all the recording time. It can be
noted that the other three classes present a lower energy compared to
the noisy class. However, some recorded horn signals also present high
levels of energy.

Considering the SPL 𝐿(𝑚) as a random variable, their cumulative
density function (CDF) has been estimated and a best fit approximation
has been stated for each class. The best fit is obtained for a Generalized
Extreme Value (GEV) distribution for all the classes. The GEV is often
seen as an approximation to model the maximum values of long (finite)
sequences of random variables [32]. Moreover, the GEV combines three
simpler distributions into a single form, allowing a continuous range of
possible shapes. The estimated CDFs of the four events together with
their real cumulative sums obtained from the data are shown in Fig. 8.
It can be observed that the GEV distribution provides a good fit for
every class, although it suffers a slight deviation of 0.2% when fitting
the highest values of the horn class. For the rest of estimated CDFs, their
deviation with respect to the real curve is under 0.07% (mean squared
value).

Since the purpose of the pre-detection stage is to activate the
classifier when an event different from traffic is likely occurring, firstly
a threshold on 𝐿 is proposed in order to detect noisy or loud horn
events. The threshold level has been chosen such that only 10 % of the
traffic energy is above that level, that is, 𝐿𝛾 = 33.3 dB. The probability
of presenting a higher SPL than 𝐿𝛾 , according to the CDFs of Fig. 8, are
0.6, 0.2 and 0.05 for the noisy, horn and siren events, respectively.
6

Moreover, in order to avoid annoying fluctuations around the cho-
sen threshold 𝐿𝛾 , an additional condition to activate the classifier has
been added: it is required that 𝐿(𝑚) ≥ 𝐿𝛾 during 1 s (equivalent to 7
consecutive time frames). This condition is coherent with the common
scene of a noisy event, where a vehicle driving at 50 km/h travels a
distance of 13.88 m in 1 s. Therefore, it is plausible that the recorded
sound level remains high during that period of time when a noisy
vehicle is passing by. Fig. 9 shows the SPL of the noisy and traffic events
where the blue line represents the corresponding 𝐿 values, and the red
line overlaps the blue line when both conditions are fulfilled, but takes
a constant value of 𝐿𝛾 for those frames that do not. Therefore, the
periods of time depicted only in blue would not activate the classifier.
The percentage of activation time with respect the whole sequence of
the traffic event is 4% (36.1 s).

Regarding the pre-detection of the siren and horn events from the
background traffic noise, other parameters have been investigated.
Since the sounds produced by sirens and horns usually presents a signif-
icant amount of energy in high frequencies, the recorded sound 𝑥(𝑛) has
been filtered through different high-pass (HP) filters obtaining a new
signal denoted by 𝑥HP(𝑛). The resulting 𝑥HP(𝑛) have been analyzed for
the three classes, siren, horn and traffic, looking for some discriminating
parameter. Finally, the following ratio has been found:

𝑅𝐿(𝑚) =
𝐿HP(𝑚)
𝐿(𝑚)

, (2)

where 𝐿(𝑚) was previously computed (1) to discriminate the noisy
events and 𝐿HP(𝑚) is the equivalent continuous SPL of 𝑥HP(𝑛) expressed
as:

𝐿HP(𝑚) =

√

∑

𝑛∈𝑇𝑚 𝑥2HP(𝑛)

𝑝0
, (3)

where a high-pass infinite-impulse-response (IIR) filter of order two and
cutoff frequency 1 kHz has been used to filter 𝑥HP(𝑛). Therefore, the
computation of 𝑅𝐿(𝑚) only requires a filtering of order two (involving
3 products and sums per sample), and the computation of 𝐿HP(𝑚) and
their division by 𝐿(𝑚).

The estimated CDFs of 𝑅𝐿 for the traffic, siren and horn classes are
shown in Fig. 10. All of them fit a Generalized Extreme Value (GEV)
distribution as was the case for 𝐿(𝑚). It can be appreciated that the
siren CDF falls far apart from the CDF of the traffic class, while the horn
CDF is quite close for low values of the ratio 𝑅𝐿(𝑚). At this point we
have used the same methodology as for the discrimination of the noisy
event. A threshold has been set on the SPL ratio (2) such that the value
for the traffic event is below the threshold with a probability of 0.8.
According to Fig. 10 this value is 𝑅𝐿,𝛾 = 0.41.

For this threshold value, it has been tested that the 51.4% of
horn and the 87.3% of siren time frames will activate the classifier,
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Fig. 7. Equivalent continuous sound pressure level 𝐿(𝑚) in dB for the whole recording time of each class.
Fig. 8. Estimated CDF (solid line) and real cumulative sum (dashed line) for every class.
in contrast to a 21.2% of traffic frames that would trigger it. In this
ase, no requirement has been set on the number of frames above
he threshold due to the impulsive nature of the horn sounds. Fig. 11
hows the SPL of the siren, horn and traffic events where the blue line

represents the corresponding 𝐿 values. The red line overlaps the blue
line when the condition 𝑅𝐿(𝑚) ≥ 𝑅𝐿,𝛾 is fulfilled. Therefore, the periods
7

of time depicted only in blue would not activate the classifier.
In order to summarize the computation required by the
pre-detection stage, its flow chart is shown in Fig. 12, where the rhom-
boid blocks are implemented as threshold comparisons. This process
depends only on two parameters, thresholds 𝐿𝛾 and 𝑅𝐿,𝛾 , which can be
set depending on the interest of the observer. For instance, if it is crucial
to detect any ambulance or police car, a value of 𝑅𝐿,𝛾 = 0.35 would
trigger the classifier for the 94.6% of the siren time frames, although it

would also trigger the classifier for the 38.9% of the traffic time frames.
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Fig. 9. SPL of the noisy and traffic events depicted by blue lines. The red lines represent those frames such that 𝐿(𝑚) ≥ 𝐿𝛾 during 7 consecutive time frames. The threshold level
of 𝐿𝛾 = 33.3 dB is represented with a red dashed line as well. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 10. Estimated CDFs of the ratio 𝑅𝐿(𝑚) for the traffic, siren and horn classes.
T
R

.3. Time processing and power consumption

Once the pre-detection stage has been designed according to Fig. 12,
he power consumption has been monitored and compared with the
ower consumption of the Raspberry Pi’s CPU for the whole ESC
ask (feature extraction plus CNN classification). For this purpose, the
ython library Glances [33] has been used to obtain the CPU and
emory usage information of the Raspberry Pi for the two processes.
he refresh rate used in Glances is 1 s. Table 4 shows the percentage of
se of the CPU and the RAM for the pre-detection and the ESC tasks.
t can be seen that the pre-detection process reduces 6 times the use of
he CPU compared to the effort required by the ESC.

From the CPU usage data given in Table 4, an approximate power
onsumption can be calculated by means of previous studies [30].
he CPU usage of 97% corresponds to a 400% CPU load for the
8

n

able 4
esource Consumption.

Pre-detection task ESC task

CPU 15.42% 97.4%
RAM 29.67% 29.84%

Raspberry Pi Quad Core. This means that the ESC task consumes above
3.7 W (730 mA), resulting in an autonomy of approximately 13 h for
a battery supplying 10.000 mAh.1 Given a CPU load of 15% for the
pre-detection task, and taking into account that 1.4 W (260 mA) is the

1 The power consumption needed for transmitting the information to the
etwork has not been considered here.
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Fig. 11. SPL of the siren, horn and traffic events depicted by blue lines. The red lines represent those frames such that 𝑅𝐿(𝑚) ≥ 𝑅𝐿,𝛾 . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Flow chart of the computation required at the pre-detection stage.
power consumption at idle state [30], a simple interpolation results
in an power consumption close to 1.75 W (330 mA), which means an
autonomy of 30 h. This power saving is even higher considering that
the node transmits information to the network only when a sound event
classification has been carried out.

4. Conclusions

In this paper, a WASN formed by Raspberry Pi devices to monitor
and classify urban sounds have been described. The WASN carries out
the whole process required to classify urban sound events over the
Raspberry Pi, from the feature extraction to the sound classification
by means of a convolutional neural network. The WASN transmits the
output of the CNN classifier to the cloud server through the FIWARE
open standard. Therefore, the whole monitoring system is developed as
an open system, from the sound classifier to the network, and it can be
9

replicated in low-cost devices without the need of proprietary software.
Although the performance of the ESC is comparable to previous works
in terms of accuracy, its main drawback is the high computation
load required by the CNN. A constant running of the classifier at the
Raspberry Pi makes its CPU to reach an average of 97% load, which
results in a huge power consumption of the battery. Therefore, a pre-
detection stage has been proposed that activates the classifier only
when an event different from the ‘‘background sound’’ event is likely
to occur. For this purpose, multiple recordings have been carried out
in three big avenues of the city of Valencia, and a pre-detection stage
has been designed to detect other sounds different than the traffic noise
event, as horns, sirens or very loud sounds. In this way, the recorded
sound only would enter the classifier if the pre-detection stage decides
that it is likely to contain an event. With the use of the pre-detection
stage, the CPU usage of the Raspberry Pi is reduced by a factor of six
and the battery duration is increased more than twice.
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