

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/184219

Reaño, C.; Silla, F. (2021). Redesigning the rCUDA communication layer for a better
adaptation to the underlying hardware. Concurrency and Computation: Practice and
Experience. 33(14):1-17. https://doi.org/10.1002/cpe.5481

https://doi.org/10.1002/cpe.5481

John Wiley & Sons

Received 26 April 2016; Revised 6 June 2016; Accepted 6 June 2016
DOI: xxx/xxxx

SPECIAL ISSUE PAPER

Redesigning the rCUDACommunication Layer for a Better

Adaptation to the Underlying Hardware

Carlos Reaño* | Federico Silla

1Universitat Politècnica de València, Spain
Correspondence
*Carlos Reaño, Universitat Politècnica de
València, Departamento de Informática de
Sistemas y Computadores (DISCA), Edificio 1G,
46022 Valencia, Spain. Email:
carregon@gap.upv.es

Summary
The use of Graphics Processing Units (GPUs) has become a very popular way to accelerate the
execution of many applications. However, GPUs are not exempt from side effects. For instance,
GPUs are expensive devices which additionally consume a non-negligible amount of energy even
when they are not performing any computation. Furthermore, most applications present low
GPU utilization. To address these concerns, the use of GPU virtualization has been proposed.
In particular, remote GPU virtualization is a promising technology that allows applications to
transparently leverage GPUs installed in any node of the cluster.
In this paper the remote GPU virtualization mechanism is comparatively analyzed across three
different generations of GPUs. The first contribution of this study is an analysis about how the
performanceof the remoteGPUvirtualization technique is impactedby theunderlying hardware.
To that end, the Tesla K20, Tesla K40 and Tesla P100 GPUs along with FDR and EDR InfiniBand
fabrics are used in the study. The analysis is performed in the context of the rCUDAmiddleware.
It is clearly shown that the GPU virtualizationmiddleware requires a comprehensive design of its
communication layer,which should beperfectly adapted to everyhardware generation in order to
avoid a reduction in performance. This is precisely the second contribution of thiswork: redesign-
ing the rCUDA communication layer in order to improve the management of the underlying
hardware. Results show that it is possible to improve bandwidth up to 29.43%, which translates
into up to 4.81% average less execution time in the performance of the analyzed applications.

KEYWORDS:
GPGPU, CUDA, Virtualization, HPC, InfiniBand

1 INTRODUCTION

Accelerators are increasingly being used in current High Performance Computing (HPC) deployments and also in data centers in order to reduce
the execution time of applications. In this regard, several kinds of accelerators have been considered by industry. First, Graphics Processing Units
(GPUs) have beenwidely adopted inmany supercomputers and data centers as away to increase computing power. Among themany differentGPU

2 CARLOS REAÑO ET AL

Interconnection Network

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

node nnode 2 node 3node 1

(a) Example of a GPU-accelerated cluster.
Interconnection Network

Network

P
C

Ie

CPU

CPU RAM

RAM

Network

P
C

Ie

CPU

CPU RAM

RAM

Network

P
C

Ie

CPU

CPU RAM

RAM

Network

P
C

Ie

CPU

CPU RAM

RAM

node nnode 2 node 3node 1

GPU GPU GPU GPU

(b) Logical configuration of a cluster when the remote GPU virtualization
technique is used.

FIGURE 1 Comparison, from a logical point of view, of two cluster configurations: with andwithout remote GPU virtualization.

flavors and vendors, the enterprise solutions provided by NVIDIA, such as the recent Tesla P100 GPU 1, or the previous Tesla K40 2 or Tesla K20 3

devices, have acquired an important market share. The second type of accelerators that have been introduced in many computing facilities are
those based on the Xeon Phi architecture 4 by Intel. Those accelerators are composed of a few dozens of simple x64 cores augmented with vector
units able to speed up mathematical computations. This kind of accelerators are also referred to as Many Integrated Cores (MICs). Finally, Field-
Programmable Gate Arrays (FPGAs) are the third type of accelerators that are recently being considered by researchers worldwide 5 6. Among the
three mentioned kinds of accelerators, in this paper we will focus on GPUs. Many different applications have already been adapted to use GPUs.
For instance, applications from domains as different as data analysis (Big Data) 7, computational fluid dynamics 8, chemical physics 9, computational
algebra 10, image analysis 11,finance 12, biology 13, and artificial intelligence 14, amongothers, are usingGPUs in order to reduce their execution time.
GPUs, however, are expensive devices that require a non-negligible amount of energy even when not performing computations1. Furthermore,

for most applications their utilization is relatively low, therefore avoiding a fast amortization of the initial economic investment carried out when
building the computing facility. In order to address these concerns, GPU virtualization has been proposed by different authors 15 16 17. GPU vir-
tualization allows GPUs to be virtualized and concurrently shared among several applications in a transparent way. That is, no modification is
required to the source code of applications. In this way, GPU utilization is noticeably increased at the same time that cluster throughput (measured
as the amount of completed jobs per time unit) is boosted, thus allowing a larger revenue to data center owners. Overall energy consumption is
also reduced because, for a given workload composed of a certain amount of jobs to be executed, GPU virtualization allows that workload to be
completed in a smaller amount of time thanwhen noGPU virtualization is leveraged.
An evolution of GPU virtualization consists of locating the virtual GPUs anywhere in the cluster, so that a given application and the GPUs used

by that application do not necessarily have to be located at the same cluster node. This evolution adds a lot of flexibility to GPU usage because it
detaches GPUs from nodes, thus creating a pool of GPUs that can be concurrently used from any node of the cluster. Figure 1 depicts this idea.
In Figure 1 (a) a cluster composed of n nodes is shown, each node containing two Xeon processors and one NVIDIA Tesla GPU. This is a common
configuration in computer deployments although, depending on the exact cluster configuration, GPUs may be present only at some of the nodes.

1Notice that current GPUs spend very little energy in the idle state. However, when a GPU is assigned to an application, the GPU immediately starts
spending a non-negligible amount of energy even if the GPU is not performing any computation. In this regard we differentiate among the idle state (almost
no energy consumption) and the active but non-computing state, where the GPU actually may require up to 50Wdepending on the exact GPUmodel.

CARLOS REAÑO ET AL 3

Figure 1 (b) shows the new cluster envision after applying the remote GPU virtualization mechanism. In the new cluster configuration, GPUs are
logically detached from nodes and a pool of GPUs is created. GPUs in this pool can be accessed from any node in the cluster. Furthermore, a given
GPU may concurrently serve more than one application. This sharing of GPUs not only increases overall GPU utilization but also allows to create
cluster configurations where not all the nodes in the cluster own a GPU but all the nodes in the cluster can execute GPU-accelerated applications.
This cluster configuration would reduce the costs associated with the acquisition and later use of GPUs. In this regard, the total energy required to
operate a computing facility may be decreased, thus loosening the big energy concerns of future exascale computing installations, for instance.
The idea shown in Figure 1 (b) is referred to as remoteGPU virtualization because theGPU is not local to the node that executes the application

but the GPU is now located in a remote node (typically within the same cluster for the sake of performance). Obviously, in this newGPU virtualiza-
tionflavor, the performance of the underlying network connecting the application and the remoteGPU is key in order to reduce the overhead of the
GPU virtualization framework. Additionally, the exact characteristics of the remote GPU are also very important in order to reduce the mentioned
overhead because different GPUsmust be utilized in a different way by the remote GPU virtualization framework.
In this paperwe analyze the performance of remoteGPU virtualization over three different generations of NVIDIAGPUs, namely the Tesla K20,

the Tesla K40, and the Tesla P100 GPUs. Given that these GPUs feature different PCIe versions, we augment our analysis by using the appropriate
InfiniBand technology for each of these GPUs. In this regard, we make use of the FDR and EDR InfiniBand fabrics. The purpose of this study is
to analyze how the internal configuration and also overall performance of the remote GPU virtualization technique is impacted by the underlying
hardware. Notice that a preliminary version of this analysis has already been published 18. After that thorough analysis, we then present how we
have redesigned the rCUDA communication layer in order to improve the management of the underlying hardware. Furthermore, in this paper we
also analyze how those improvements in attained data copy bandwidth translate int a reduction in the execution time of applications.
The rest of the paper is structured as follows. Section 2 presents a revision of different GPU virtualization solutions. That section also presents

a summary of the rCUDA remote GPU virtualization middleware, which is the one used in this work to carry out the comparative performance
analysis. Next, Section 3 briefly introduces the main characteristics of the three GPU generations used in this analysis as well as the accompanying
InfiniBand networks. Then, Section 4 presents the first contribution of this paper by analyzing the performance of rCUDA in the context of the
three GPU generations presented in Section 3. Later, Section 5 presents the second contribution of this paper: a redesigned communication layer
for rCUDA, comparing the performance to the previous version. Finally, Section 6 introduces the most important conclusions of this work and also
outlines future work that will be carried out in regard to the conclusions obtained in this paper.

2 BACKGROUNDONREMOTEGPUVIRTUALIZATION SOLUTIONS

GPU virtualization can be addressed both from a hardware approach and from a software perspective. With respect to the hardware approach,
there have been several recent achievements in order to virtualize GPUs, like the new GRID GPUs by NVIDIA 19, which can be shared among up
to 64 virtual machines running in the same cluster node where the GPU is installed (remote GPU access is not allowed). It is important to remark

4 CARLOS REAÑO ET AL

GPU

Application

client engine
CUDA libraries

server
engine

Hardware

Software

Client side Server side

CUDA API

Network

(a) General organization of remote GPU virtualization frameworks.

GPU

Application

client engine

CUDA libraries

server
engine

Hardware

Software

Client side Server side

CUDA API

Network

common communication API

TCP/IP
module

InfiniBand
module

P2P
module

common communication API

TCP/IP
module

InfiniBand
module

P2P
module

RoCE
module

RoCE
module

(b) Organization of the rCUDAmiddleware.
FIGURE 2 Default architecture of remote GPU virtualization solutions. A detail of the internal of rCUDA is shown.

that sharing an NVIDIA GRID GPU is only intended for desktop virtualization. In this regard, when a CUDA program is executed, the GPU must
be assigned to a single virtual machine in an exclusive way, thus hindering the possibility of concurrently sharing the GPU among several virtual
machines.
On the other hand, several software-based GPU sharing mechanisms have appeared, such as, for example, DS-CUDA 16, rCUDA 17, vCUDA 20,

GridCuda 21, GVirtuS 15, GViM 22, Shadowfax 23, or Shadowfax II 24. Basically, these middleware proposals share a GPU by virtualizing it, so that
these frameworks provide applications (or virtual machines) with virtual instances of the real device, which can therefore be concurrently shared.
Usually, these GPU sharing solutions place the virtualization boundary at the API level2 (CUDA 25 in the case of NVIDIA GPUs). In general, CUDA-
based virtualization frameworks aim to offer the same API as the NVIDIA CUDARuntime API 26 does.
Figure 2 (a) depicts the architecture usually deployed by these GPU virtualization solutions, which follow a distributed client-server approach.

The client part of the middleware is installed in the cluster node executing the application requesting GPU services, whereas the server side runs
in the node owning the actual GPU. Communication between client and server may be based on shared-memory mechanisms or on the use of a
network fabric, depending on the exact features of the GPU virtualization middleware and the underlying system configuration. The architecture
depicted in Figure 2 (a) is used in the following way: the client middleware receives a CUDA request from the accelerated application and appro-
priately processes and forwards it to the server middleware. In the server side, themiddleware receives the request and interprets and forwards it
to theGPU,which completes the execution of the request and returns the execution results to the servermiddleware. Finally, the server sends back
the results to the clientmiddleware, which forwards them to the accelerated application. Notice thatGPUvirtualization solutions provideGPU ser-
vices in a transparent way and, therefore, applications are not aware that their requests are actually serviced by a virtual GPU instead of by a local
one.

2In order to interact with the virtualized GPU, some kind of interface is required so that the application can access the virtual device. This interface could
be placed at different levels. For instance, it could be placed at the driver level. However, GPU drivers usually employ low-level protocols which, additionally,
are proprietary and strictly closedbyGPUvendors. Therefore, a higher-level boundarymust beused. This iswhy theGPUAPI is commonly selected for placing
the virtualization boundary, given that these APIs are public.

CARLOS REAÑO ET AL 5

Different GPU virtualization solutions feature different characteristics. For instance, the vCUDA technology, intended for Xen virtual machines,
only supports an old CUDA version 3.2 and implements an unspecified subset of the CUDA Runtime API. Moreover, its communication protocol
presents a considerable overhead, because of the cost of the encoding and decoding stages, which causes a noticeable drop in overall performance.
GViM, also targeting Xen virtual machines, is based on the obsolete CUDA version 1.1 and, in principle, does not implement the entire CUDA Run-
time API. gVirtuS is based on the old CUDA version 6.5 and implements only a small portion of its API. Despite being designed for virtual machines,
it also provides TCP/IP communications for remote GPU virtualization, thus allowing applications in a non-virtualized environment to access GPUs
located in other nodes. Regarding Shadowfax, this solution allows Xen virtual machines to access the GPUs located at the same node, although it
may also be used to access GPUs at other nodes of the cluster. It supports the obsolete CUDA version 1.1 and, additionally, neither the source code
nor the binaries are available in order to evaluate its performance. In a similar way, GridCuda also offers access to remote GPUs in a cluster, but
supports the old CUDA version 2.3. Moreover, there is currently no publicly available version of GridCuda that can be used for testing. Regard-
ing DS-CUDA, it integrates version 4.1 of CUDA and includes specific communication support for InfiniBand. However, DS-CUDA presents several
strong limitations, such as not allowing data transfers with pinnedmemory. Finally, Shadowfax II is still under development, not presenting a stable
version yet and its public information is not updated to reflect the current code status.
Regarding rCUDA, thismiddleware supports version 8.0 of CUDA, the latest available one at the time ofwriting this paper, being binary compati-

blewith it, whichmeans thatCUDAprogramsdonot need to bemodified for using rCUDA. Furthermore, it implements the entireCUDAAPI (except
for graphics functions) and also provides support for the libraries included within CUDA, such as cuFFT, cuBLAS, or cuSPARSE. rCUDA provides
specific support for different interconnects. This is achieved by making use of a set of runtime-loadable, network-specific communication mod-
ules, which have been specifically implemented and tuned in order to obtain as much performance as possible from the underlying interconnect, as
shown in Figure 2 (b). Currently, four modules are available: one intended for TCP/IP compatible networks, another one specifically designed for
InfiniBand, whichmakes use of the RDMA feature of InfiniBand, a third one intended for RoCE networks, which also leverages RDMA features, and
a fourth one for peer-to-peer (P2P) memory copies between remote GPUs over InfiniBand fabrics, using RDMA too.
Among the several publicly available remote GPU virtualization frameworks, we used for the performance analysis presented in this paper the

rCUDAmiddleware given that it was the only one able to run the considered benchmarks, as well as being the most up-to-date solution, providing
also the best performance when compared to other solutions 27.

3 BACKGROUNDONGPUAND INFINIBANDHARDWAREUSED

This section presents the basic information about the GPUs and network fabrics considered in our analysis. Regarding the GPUs, we have used in
our study the NVIDIA Tesla K20, K40, and P100 GPUs. The Tesla K20 GPU 3 comprises 2,496 CUDA cores working at 706 MHz as well as 5 GB
of GDDR5 on-board memory providing a bandwidth of 208 GB/s. Additionally, it supports PCI Express Gen 2 x16. On the other hand, the NVIDIA
Tesla K40 GPU 2 includes 2,880 CUDA cores working at 745MHz in addition to 12 GB of GDDR5memory with a bandwidth of 288 GB/s. The K40

6 CARLOS REAÑO ET AL

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

B
/s

)

Copy Size (MB)

K20 H2D K20 D2H
K40 H2D K40 D2H
P100 H2D P100 D2H

(a) Copies using pageable host memory.

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

B
/s

)

Copy Size (MB)

K20 H2D K20 D2H
K40 H2D K40 D2H
P100 H2D P100 D2H

(b) Copies using pinned host memory.
FIGURE 3 Performance (bandwidth) of the Tesla K20, K40 and P100 GPUs. The bandwidthTest benchmark from the NVIDIA CUDA Samples was
used. “H2D” refers to copies from host to device, while “D2H” refers to copies from device to host.

GPU has a PCI Express Gen 3 x16 system interface. Finally, the Tesla P100 model 1 is the most recent one among the GPUs used in this study. It
comprises 3,584 CUDA cores featuring the NVIDIA Pascal architecture. The P100GPU includes 16GB of on-packagememory providing 732GB/s
and presents a PCI Express Gen 3 x16 interface3.
Figure 3 presents a bandwidth comparison among the three GPUmodels. To analyze the bandwidth, we have used the bandwidthTest bench-

mark from the NVIDIA CUDA Samples 28. This benchmark measures the attained bandwidth when data is moved to/from the GPU (typically
referred to as device in the CUDA argot). Additionally, we have executed the benchmark with the shmoo option, which allows bandwidth to bemea-
sured for a large rangeofmemory copy sizes. Both pinned andpageable hostmemory has been considered aswell asmoving data in the twopossible
directions: from host to device (referred to as “H2D” in the figure) and also from device to host (“D2H” in the figure).
It can be seen in the figure that the maximum bandwidth achieved when pageable host memory is involved in the data movement is noticeably

lower than the one obtainedwhen using pinned hostmemory.Moreover, both the K20 andK40GPUs perform similar when pageable hostmemory
is used. Regarding the use of pinned host memory, the figure shows that the K20 GPU presents the lowest performance because the use of PCIe
Gen2 is considerably limitingmaximumbandwidth.On the other hand, althoughboth theK40andP100models present aPCIeGen3 x16 interface,
it can be seen in Figure 3 (b) that NVIDIA has significantly improved performance for the P100 model, although in both cases attained bandwidth
is still far away from themaximum theoretical bandwidth of PCIe Gen3 x16, which is 15.75 GB/s.
In addition to compare the three GPU generations from a purely bandwidth perspective, they can also be compared from a computational per-

formance point of view. To that end, we have used the MAGMA suite 29 30. MAGMA is a dense linear algebra library similar to LAPACK but for
heterogeneous architectures.Wehave utilized release 2.2.0 alongwith the dpotrf_gpu benchmark,which computes theCholesky factorization for
different matrix sizes (from 1K to 10K elements per dimension, in 1K increments).

3The Tesla P100GPU is also available in another form factorwhichmakes use of theNVIDIANVLink interface, although in this studywe have considered
the PCI Express version.

CARLOS REAÑO ET AL 7

1
K

2
K

3
K

4
K

5
K

6
K

7
K

8
K

9
K

1
0

K

0

500

1000

1500

2000

2500
CUDA P100

CUDA K40

CUDA K20

Matrix Dimension (N)

G
flo

p/
s

FIGURE 4 Performance (computational power) of the Tesla K20, K40 and P100 GPUs. The dpotrf_gpu benchmark from the MAGMA suite was
used.

Figure 4 shows the performance (in terms of computational power) of the three GPU models. Computational power is expressed in terms of
Gflop/s. The noticeable computing performance increment of the P100GPUwith respect to the K20 and K40models is clearly shown in the figure.
This increment was actually expected, given the higher amount of CUDA cores of the P100GPU along with themuch faster on-packagememory.
With regard to the network fabric, Figure 5 depicts the bandwidth attained by both the FDR and EDR InfiniBand interconnects, which the-

oretically provide 56 Gbps and 100 Gbps, respectively. The figure shows the achieved performance when RDMA write, RDMA read, and send
operations are used. The ib_write_bw, ib_read_bw, and ib_send_bw benchmarks from the Mellanox OFED software distribution were used to
gather bandwidthmeasurements.
Notice that InfiniBand adapters provide the InfiniBand Verbs API. This API offers two communication mechanisms: the channel semantics

and the memory semantics. The former refers to the standard send/receive operations typically available in any networking library, while the
latter offers RDMA operations where the initiator of the operation specifies both the source and destination of a data transfer, resulting in zero-
copy data transfers with minimum involvement of the CPUs. rCUDA employs both semantics, selecting one or the other depending on the exact
communication to be carried out.
Figure 5 shows that the maximum bandwidth provided by FDR InfiniBand (which makes use of a PCIe Gen 3 x8 interface) is 6 GB/s, whereas

themaximum bandwidth provided by EDR InfiniBand (featuring a PCIe Gen 3 x16 system interface) is over 10GB/s. As can be seen in Figures 3 (b)

2 8 32 12
8

51
2

2K 8K 32
K

12
8K

51
2K 2M 8M

0

2000

4000

6000

8000

10000

12000
FDR write

FDR read

FDR send

EDR write

EDR read

EDR send

Transfer Size (Bytes)

B
an

dw
id

th
 (

M
B

/s
)

FIGURE 5 Performance (bandwidth) of the FDR and EDR InfiniBand interconnects. The ib_write_bw, ib_read_bw, and ib_send_bw benchmarks
from theMellanoxOFED software distribution were used.

8 CARLOS REAÑO ET AL

and 5 , the Tesla K20GPUprovides a transfer bandwidth similar to that of FDR InfiniBand adapters, while the bandwidth featured by the Tesla K40
andP100GPUs is close to that of the EDR InfiniBand interconnect. For this reason, in the experimentswith rCUDA in the next section, theK20GPU
will be used alongwith the FDR InfiniBand network fabric, whereas theK40 and the P100GPUswill be used in conjunctionwith the EDR InfiniBand
adapters.

4 COMPARATIVE PERFORMANCEANALYSIS

This section section presents the first contribution of this paper: a comparative performance analysis of the rCUDA remote GPU virtualization
middleware using the Tesla K20, K40, and P100 GPUs over the FDR and EDR InfiniBand fabrics. The comparative analysis will be carried out in
terms of attained bandwidth between the client and server sides of the rCUDAmiddleware as well as in terms of application performance.
The experiments shown in this section have been done using three pairs of nodes. The first pair of nodes are equipped with the FDR InfiniBand

fabric. One of these two nodes owns a Tesla K20 GPU. In a similar way, the second pair of nodes include EDR InfiniBand adapters and one Tesla
K40 GPU. The third pair of nodes is similar to the second one, although it comprises a Tesla P100 GPU instead of the K40 one. All the nodes are
1027GR-TRF Supermicro servers featuring two Intel Xeon E5-2620v2 processors (Ivy Bridge) operating at 2.1 GHz and 32GB of DDR3memory at
1600MHz. Linux CentOS 7.3 was used along with CUDA 8.0.

4.1 Impact on attained bandwidth

Figure 6 andFigure 7 present the bandwidth attainedbetween the client and server sides of the rCUDAmiddleware. Thebandwidth test from the
NVIDIA CUDA Samples was executed in the node without GPU whereas the node with the GPU was used as the remote GPU server. Figure 6 (a)
shows attained bandwidth when data stored in pageable RAM memory in the client node is moved to GPU memory in the remote node, while
Figure 6 (b) presents the reverse direction. Results using pinned host memory are shown in Figures 7 (a) and 7 (b), respectively.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

B
/s

)

Copy Size (MB)

K20 CUDA K20 FDR rCUDA
K40 CUDA K40 EDR rCUDA
P100 CUDA P100 EDR rCUDA

(a) Host-to-device transfers using pageable host memory.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

B
/s

)

Copy Size (MB)

K20 CUDA K20 FDR rCUDA
K40 CUDA K40 EDR rCUDA
P100 CUDA P100 EDR rCUDA

(b) Device-to-host transfers using pageable host memory.
FIGURE 6 Performance (bandwidth) of the rCUDA framework when used with the Tesla K20, K40, and P100 GPUs. Data is transferred between
the client node pageable host memory and the remote node devicememory.

CARLOS REAÑO ET AL 9

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

B
/s

)

Copy Size (MB)

K20 CUDA K20 FDR rCUDA
K40 CUDA K40 EDR rCUDA
P100 CUDA P100 EDR rCUDA

(a) Host-to-device transfers using pinned host memory.

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

B
/s

)

Copy Size (MB)

K20 CUDA K20 FDR rCUDA
K40 CUDA K40 EDR rCUDA
P100 CUDA P100 EDR rCUDA

(b) Device-to-host transfers using pinned host memory.
FIGURE 7 Performance (bandwidth) of the rCUDA framework when used with the Tesla K20, K40, and P100 GPUs. Data is transferred between
the client node pinned host memory and the remote node devicememory.

It can be seen in Figure 6 (a) that the bandwidth achieved when using rCUDA over the FDR InfiniBand fabric with a remote Tesla K20 GPU is
twice the bandwidth obtained in the traditional CUDAcasewhen the benchmark is executed in the samenodewhere theGPU is located. The reason
for this extraordinary performance improvement of rCUDA over CUDA is due to the internal use within rCUDA of an efficient communications
pipeline based on the use of pinned memory 31. This kind of memory presents higher bandwidth, as previously shown in Figure 3 (b). Actually, it
can be seen that bandwidth shown in Figure 6 (a) for rCUDA, which is based in the internal usage of pinned memory, is the same as for CUDA
when pinnedmemory is leveraged, as shown in Figure 3 (b). Additionally, Figure 5 shows that the bandwidth obtained alsomatches themaximum
bandwidth provided by the FDR InfiniBand interconnect.
Regarding the Tesla K40GPU, it can be seen in Figure 6 (a) that rCUDAattainsmuchmore bandwidth thanCUDA, as in the previous case for the

Tesla K20 GPU. However, in this case the maximum bandwidth achieved is far away from the maximum bandwidth obtained when pinned memory
is used for the K40GPU, as shown in Figure 3 (b).More precisely, in the case of the K40GPU, rCUDAattains a bandwidth of 7GB/swhereas CUDA
achieves a bandwidth of 10 GB/s for pinned memory in Figure 3 (b). Additionally, the interconnect between the client and the server sides, EDR
InfiniBand, is not a limiting factor for the bandwidth obtained because, as shown in Figure 5 , EDR InfiniBand provides a bandwidth higher than
10GB/s. In conclusion, the reason for the relatively lower bandwidthwhen using a remote K40GPUwith respect to the case of using a remote K20
GPUmust be in the internal design of the rCUDA framework.
Figure 6 (a) also shows the attained bandwidth when moving data stored in pageable RAM in the client to the memory of a remote P100 GPU.

In this case, maximum bandwidth is even lower than the one obtained with the previous GPUmodels (Tesla K20 and K40 GPUs) despite still using
EDR InfiniBand and despite having more bandwidth in the P100 GPU when pinned memory is moved to/from the device (see Figure 3 (b)). This
noticeably lower bandwidth clearly points out that the internal architecture of the rCUDAmiddleware does not properly scalewith the increasingly
higher bandwidths provided by the underlying hardware.

10 CARLOS REAÑO ET AL

0 10 20 30 40 50 60
-50

0

50

100

150

200 CUDA K40 improvement over K20 (pinned H2D)
rCUDA K40 improvement over K20 (pageable H2D)
CUDA P100 improvement over K20 (pinned H2D)
rCUDA P100 improvement over K20 (pageable H2D)

Copy Size (MB)

B
a

n
d

w
id

th
 Im

p
ro

ve
m

e
n

t (
%

)

(a) Host-to-device transfers using pageable host memory with rCUDA, and
pinned host memory with CUDA.

0 10 20 30 40 50 60
-50

0

50

100

150

200 CUDA K40 improvement over K20 (pinned D2H)
rCUDA K40 improvement over K20 (pageable D2H)
CUDA P100 improvement over K20 (pinned D2H)
rCUDA P100 improvement over K20 (pageable D2H)

Copy Size (MB)

B
a

n
d

w
id

th
 Im

p
ro

ve
m

e
n

t (
%

)

(b) Device-to-host transfers using pageable host memory with rCUDA, and
pinned host memory with CUDA.

FIGURE 8 Performance (bandwidth) improvement of CUDA and rCUDA when using the Tesla K40 and P100 GPUs with respect to the Tesla K20
GPU.

In transfers from pinned host memory to device memory, however, the bandwidth obtained seems not to be limited by the middleware, and
results are close to the maximum bandwidth of the underlying hardware, as shown in Figure 7 (a). The same happens in the reverse direction,
device-to-host copies using pinned host memory, as can be observed in Figure 7 (b).
When data is copied from the remote GPU to the client node using pageable host memory, Figure 6 (b), it can be seen that the internal design of

the rCUDAmiddleware again becomes a clear limiting factor of the performance given that attained bandwidth is much lower than the bandwidth
of the interconnect (FDR or EDR InfiniBand, shown in Figure 5).
To better reflect the loss in scalability detected in rCUDA when using pageable host memory, Figure 8 shows the bandwidth improvement

of using the Tesla K40 and P100 GPUs with respect to the Tesla K20 GPU. As explained before, rCUDA internally uses pinned host memory to
perform this kind of copies. For that reason, in the case of CUDA the figure shows the bandwidth attained when using pinned host memory. As we
can observe, when using CUDA the bandwidth improves with each new generation of GPU. On the contrary, rCUDA performance is reduced in
spite of having more bandwidth available. Therefore, the internal communications architecture of the rCUDAmiddleware seems to be limiting the
improvement.
As commented in Section 2, rCUDAhas four different communicationmodules: one for TCP/IP compatible networks, another one for InfiniBand

networks, a third one for RoCE networks, and a fourth one for peer-to-peer (P2P) memory copies between remote GPUs also over InfiniBand
fabrics. In the performance tests previously presented, we were using the module for InfiniBand networks. Despite there is no performance loss
with respect to CUDA, as shown in Figure 6 , we have seen that it is possible to achievemore bandwidth (see Figure 8). In order to determine if the
limiting factor is actually in the rCUDA communications module, Figure 9 presents performance results when using the rCUDA communications
module for P2P copies.
Figure 9 shows the bandwidth of CUDA and rCUDA for the Tesla K20, K40, and P100. In the experiments with CUDA, the two GPUs involved

in the data transfer are located in the same server while in the tests with rCUDA, eachGPU is located in a different remote server. In the case of the
Tesla K20 andK40, it can be seen that the bandwidth attained by rCUDA is close to themaximumone provided by the underlying hardware, 6 GB/s

CARLOS REAÑO ET AL 11

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

K20 CUDA K20 FDR rCUDA

K40 CUDA K40 EDR rCUDA

P100 CUDA P100 EDR rCUDA

Copy Size (MB)

B
a

n
d

w
id

th
 (

M
B

/s
)

FIGURE9 Bandwidth obtained for different transfer sizeswhen data is transferred between remoteGPUs located at different cluster nodes as the
consequence of executing a P2Pmemory copy CUDA function.

and 10GB/s, respectively (see Figure 3 (b)). In the case of the Tesla P100 (offering 12GB/s), the hardware limiting the bandwidth is not theGPU, as
it was in the case of the Tesla K20 and K40. The limiting factor here is the network card, 11 GB/s, (see Figure 5). In this way, the loss in scalability
shown in Figure 8 when using rCUDA is not present for P2P memory copies. As commented, the reason is that this kind of copies between GPUs
employs a different internal communication architecture within rCUDA, described in further detail in 32.

4.2 Impact on application performance

In order to analyze the impact on application performance of the three generations of GPUs, we have used again the same Cholesky factorization
benchmark from the MAGMA suite previously employed in Section 3. Figure 10 presents the execution performance (in Gflop/s) for different
matrix sizes. Figure 10 (a) shows the Gflop/s achieved by this benchmark for the Tesla K20 GPU. Both CUDA and rCUDA (over an FDR InfiniBand
interconnect) have been considered. Thefigure also shows the overhead of rCUDAwith respect toCUDA. It can be seen that overhead decreases as
matrix size increases. This is mainly due to the fact that kernel execution time in the GPU increases its significance with respect to data movement
to/from the GPU asmatrix size increases.
Figure 10 (b) shows the execution results and overheadwhen a Tesla K40GPU is used. The overhead in this case follows the same trend as in the

case of the Tesla K20GPU. On the contrary, this tendency is not followedwhen the Tesla P100GPU is used, as depicted in Figure 10 (c). This figure
shows that overall overheadof rCUDAwith respect toCUDA is noticeably increased. The reason is two fold: on theonehand, kernel execution times
are reduced because of the larger amount of CUDA cores of the P100 GPU. This reduction in the execution time causes that the communications
time has more weight than in the previous cases for the Tesla K20 and K40 GPUs. On the other hand, given that effective bandwidth achieved by
rCUDA for the P100 GPU is lower than in the previous cases, the larger contribution to overhead of communications because of the reduction
of kernel execution time is additionally exacerbated by a longer communication time due to the smaller effective bandwidth. As a consequence,
performance of theMAGMACholesky factorization benchmark drops when executedwith rCUDA on a remote Tesla P100GPU.

12 CARLOS REAÑO ET AL

1
K

2
K

3
K

4
K

5
K

6
K

7
K

8
K

9
K

1
0

K

0

500

1000

1500

2000

2500

0

20

40

60

80

100
rCUDA overhead
CUDA K20
rCUDA K20+FDR

Matrix Dimension (N)

G
flo

p/
s

O
ve

rh
ea

d
(%

)

(a) Using aTeslaK20GPUwithbothCUDAand rCUDAoverFDR InfiniBand.

1
K

2
K

3
K

4
K

5
K

6
K

7
K

8
K

9
K

1
0

K

0

500

1000

1500

2000

2500

0

20

40

60

80

100
rCUDA overhead
CUDA K40
rCUDA K40+EDR

Matrix Dimension (N)

G
flo

p/
s

O
ve

rh
ea

d
(%

)

(b) Using a Tesla K40 GPU with both CUDA and rCUDA over EDR Infini-
Band.

1
K

2
K

3
K

4
K

5
K

6
K

7
K

8
K

9
K

1
0

K

0

500

1000

1500

2000

2500

0

20

40

60

80

100
rCUDA overhead
CUDA P100
rCUDA P100+EDR

Matrix Dimension (N)

G
flo

p/
s

O
ve

rh
ea

d
(%

)

(c) Using a P100GPUwith both CUDA and rCUDA over EDR InfiniBand.
FIGURE 10 Performance comparisonwhen runningMAGMA dpotrf_gpu test with CUDA and rCUDA for the three GPUs under study. Primary Y-
axis showsGflop/s and secondary Y-axis rCUDAoverheadwith respect to CUDA. Lines refer to values in the primary Y-axis (i.e., Gflop/s), while bars
refer to values in the secondary Y-axis (i.e., overhead).

5 COMMUNICATION LAYERREDESIGN

In the previous section we have seen that the communication layer of the rCUDA middleware must be properly redesigned in order to obtain
the maximum performance of each hardware generation. In this manner, we have found out that there is still room for improvement in the
communication layer. This section presents the second contribution of this paper: a redesigned communication layer for rCUDA.
After redesigning the communications layer within rCUDA, a comparative analysis will be carried out in terms of attained bandwidth between

the client and server sides of the rCUDA middleware as well as in terms of application performance. For the experiments in this section, we have
used the same hardware as in the previous section. The performance results will be compared to the ones of the previous communication layer.

5.1 The new communication layer

In the previous section we have seen that the current communication layer obtained very good performance when using pinned host memory, as
shown in Figure 7 . In this regard, in this kind of copies the attained bandwidth was near to the available bandwidth of the underlying hardware.
On the contrary, when using pageable host memory (see Figure 6), the bandwidth obtained seemed to be limited by the rCUDA middleware and
results were far from themaximum bandwidth of the underlying hardware.
Furthermore, this behavior seemed to be exacerbated by the use of new hardware generation, as reflected in Figure 8 . In this way, we have

observed that when using CUDA the bandwidth improves with each new GPU generation. However, rCUDA performance is reduced in spite of

CARLOS REAÑO ET AL 13

Stage 1 Stage 2 Stage 3

1

2

3

4

5

Client side

5'

4'

1

2

3

3'

4'

Network

Server side
M

ai
n

m
em

or
y G

P
U

 m
em

ory

Internal
buffers

Internal
buffers

memcpyi
chunk i
of user

memory
i ' copy of

chunk i

Legend

FIGURE 11 Pipeline of the previous communication layer.

having more bandwidth available. Therefore, we have concluded that the internal communications architecture of the rCUDA middleware seems
to be limiting the improvement.
As already explained, rCUDA internally uses pinned host memory to perform pageable host memory copies. The current communication layer,

thoroughly described in previous works on rCUDA 31, implements a pipelined communication based on the use of internal pre-allocated pinned
memory buffers. This pipeline worked efficiently in previous hardware generations. However, as we have seen, newer generations have newer
requirements.
In order to better understand how the pipeline works, Figure 11 shows the three stages of the pipeline involved in the process of transferring

data frommainmemory in the source computer to the GPUmemory in the target node:

• Stage 1: copy frommainmemory to one of the internal pre-allocated pinnedmemory buffers in the client side

• Stage 2: copy from one of the internal pre-allocated pinnedmemory buffers in the client side to one in the server side

• Stage 3: copy from one of the internal pre-allocated pinnedmemory buffers in the server side to the GPUmemory

After carefully analyzing the pipeline of the previous communication layer shown in Figure 11 ,we found that it was limited in the followingway:
the number of internal pre-allocated pinnedmemory buffers used in the pipeline for copying pageable hostmemorywas fixed and hard-coded. This
was not the case for the size of the internal buffers, which was configurable by the user.

14 CARLOS REAÑO ET AL

In addition, we detected that both the optimal number and the size of the internal memory buffers presented different values depending on the
total size of the data to be transferred. In thismanner, it was required for these values to be configurable and also adaptive to the copy size. To over-
come these limitations it was necessary to completely redesign and re-implement the communication layer, as the initial code did not considered
the aforementioned limitations in its design.
After that process, the newcommunication layer includes the following improvements: (i) variable number of internal buffers and (ii) dynamically

adaptive number and size of the internal memory buffers. The first one allows the number of internal pre-allocated pinnedmemory buffers used in
the pipelined for copying pageable host memory to be variable and configurable by the user through environment variables.
The second improvement permits the number and size of the internal pre-allocated pinned memory buffers used in the pipelined for copying

pageable host memory, a part from being variable and configurable by the user, to be also defined taking into account the copy size. In this manner,
it is possible for the user to define the number of buffers to be used in terms of copy size ranges. For instance, it is possible to use one number
of memory buffers for copy sizes between 1 byte and 1 Kilobyte, a different number of memory buffers for copy sizes between 1 Kilobyte and 1
Megabyte, and so on. Notice that the copy size ranges can also be configured by the user. The same improvement applies to the size of the internal
buffers, which can also be configured depending on the transfer size.
Notice that for implementing this second improvement it is also necessary that the new communication layer dynamically adapts the number

and the size of the internal memory buffers depending on the size of the data to be copied. By default, it uses pre-defined values, but as previously
mentioned it is possible for the user to easily modify those values through environment variables. This allows for a finer tuning of the pipeline
depending on the underlying hardware.

5.2 Impact on attained bandwidth

Figure 12 presents the bandwidth attained by rCUDAwhen using the new communication layer (labeled as “rCUDA optimized”) compared to the
previous results shown in Figure 6 , which are labeled simply as “rCUDA”. CUDA bandwidth is also shown as a reference. The same hardware as in
previous sections is used.Only results for transfers using pageable hostmemory are shown, as the aim of the new communication layer is improving
this kind of copies. As already explained, transfers using pinnedhostmemory already attained almostmaximumperformance, as shown in Figure 7 .
As we can observe, when using rCUDA over the FDR InfiniBand fabric with a remote Tesla K20 GPU for host-to-device transfers, Figure 12 (a),

the bandwidth is specially improved for small and medium copy sizes (up to 20 MB), with an average improvement of 4.97%. For larger copy sizes
(over 20 MB), the bandwidth achieved by the optimized version is similar to the previous one. This improvement is possible thanks to the new
feature included in the new communication layer which allows to dynamically adapt the number and the size of the internal memory buffers. In the
previous version of rCUDA, however, those values where fix for all copy sizes, so they were usually chosen to obtain the maximum bandwidth for
large copy sizes.With the new version, we can select different number and size of the internal buffers and use the optimal value for each copy size.
Similar conclusions can be obtained when using rCUDA over the EDR InfiniBand fabric with a remote Tesla K40 GPU for host-to-device transfers,
Figure 12 (c), presenting an average improvement of 3.86%.

CARLOS REAÑO ET AL 15

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

CUDA K20
rCUDA K20
rCUDA K20 optimized

Copy Size (MB)

B
an

dw
id

th
 (

M
B

/s
)

(a) Host-to-device transfers using pageable host memory (K20).

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

CUDA K20
rCUDA K20
rCUDA K20 optimized

Copy Size (MB)

B
an

dw
id

th
 (

M
B

/s
)

(b) Device-to-host transfers using pageable host memory (K20).

0 10 20 30 40 50 60 70
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

CUDA K40
rCUDA K40
rCUDA K40 optimized

Copy Size (MB)

B
an

dw
id

th
 (

M
B

/s
)

(c) Host-to-device transfers using pageable host memory (K40).

0 10 20 30 40 50 60 70
0

1000
2000
3000
4000
5000
6000
7000
8000
9000 CUDA K40

rCUDA K40
rCUDA K40 optimized

Copy Size (MB)

B
an

dw
id

th
 (

M
B

/s
)

(d) Device-to-host transfers using pageable host memory (K40).

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

CUDA P100
rCUDA P100
rCUDA P100 optimized

Copy Size (MB)

B
an

dw
id

th
 (

M
B

/s
)

(e) Host-to-device transfers using pageable host memory (P100).

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

CUDA P100
rCUDA P100
rCUDA P100 optimized

Copy Size (MB)

B
an

dw
id

th
 (

M
B

/s
)

(f) Device-to-host transfers using pageable host memory (P100).

FIGURE12 Optimizedperformance (bandwidth) of the rCUDAmiddlewarewhenusedwith theTeslaK20,K40, andP100GPUs.Data is transferred
between the client node host memory and the remote node devicememory.

In the case of host-to-device transfers over the EDR InfiniBand fabric with a remote Tesla P100 GPU, Figure 12 (e), the bandwidth is increased
not only for small andmedium copy sizes, but also for large ones, obtaining an average improvement of 21.47%. As commented in previous sections,
the bandwidth loss wasmore notorious when using newer hardware generations, such as the P100GPU.
Regarding the opposite copy direction, device-to-host transfers, bandwidth improvement is evenhigher, as this kind of copies ismore sensitive to

the number and size of the internal buffers. In fact, for configuring this kind of copies, we have definedmore copy size ranges than before, with dif-
ferent number and different size of internal buffers for these ranges in order to achieve themaximum performance for each copy size. The average

16 CARLOS REAÑO ET AL

TABLE 1 Average bandwidth improvement obtained in the results shown in Figure 12 .

Scenario H2DCopies D2HCopies
FDR +K20 4.97% 9.44%
EDR +K40 3.86% 29.43%
EDR + P100 21.47% 20.67%
Average 10.10% 19.85%
Average bandwidth improvement: 14.97%

improvement attained was again higher when using newer hardware. Thus, when using FDR and the K20, Figure 12 (b), the average improve-
ment was 9.44%. When using EDR and the K40, Figure 12 (d), the average improvement was 29.43%. Lastly, when using EDR and the P100 GPU,
Figure 12 (f), the average improvement was 20.67%.
As a summary, Table 1 shows the average bandwidth improvement obtained in the results shown in Figure 12 . As we have mentioned, the

improvement is higher for device-to-host transfers than for host-to-device ones, presenting the former an average bandwidth improvement for
all the scenarios considered in the analysis of 19.85%, while the average improvement in the latter is 10.10%. Finally, the average bandwidth
improvement obtained considering both copy directions is 14.97%.

5.3 Impact on application performance

This section compares the previous and the new communication layer in terms of application performance. For that purpose, we have selected two
applications which mainly transfer data using pageable host memory (the kind of transfers improved by the new communication layer). The reason
behind this selection is to show the actual impact on application performance of the high increase in bandwidth shown in the previous version
when using the new communication layer. Notice that the MAGMA application used in previous sections mainly transfers data using pinned host
memory. As mentioned before, this kind of copies already achieved near to maximum performance with the previous communication layer (see
Figure 7). Therefore, results for the MAGMA application are similar as the ones shown in Figure 10 regardless of using the previous or the new
communication layer. For this reason, results forMAGMAhave been omitted in this section.

5.3.1 cuBLAS

The NVIDIA CUDA Basic Linear Algebra Subroutines library (cuBLAS) 33 is a fast GPU-accelerated implementation of the standard Basic Linear
Algebra Subprograms (BLAS) 34 routines, which provide standard building blocks for performing basic vector and matrix operations. In this section
we have used an application using the cuBLAS library for comparing the performance of the new and the previous communication layers.
Figure 13 shows the normalized execution time of these experiments for the optimized communication layer, labeled as “rCUDA optimized”,

compare to the one for the previous communication layer, labeled as “rCUDA”. Results for both of themare normalizedwith respect to the execution
time using CUDA and a local GPU. As we can observe, the increase in performance provided by the new communication layer when using the FDR
InfiniBand fabric with a remote Tesla K20 GPU (see Figure 13 (a)) is higher for short/medium problem sizes than for large ones. The same happens

CARLOS REAÑO ET AL 17

1
K

2
K

4
K

6
K

8
K

1
0

K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CUDA K20
rCUDA K20
rCUDA K20 optimized

Size

N
or

m
al

iz
ed

 T
im

e

6
K

8K 10
K

0.95

1.00

1.05

(a) Using aTeslaK20GPUwithbothCUDAand rCUDAoverFDR InfiniBand.

1
K

2
K

4
K

6
K

8
K

1
0

K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CUDA K40
rCUDA K40
rCUDA K40 optimized

Size

N
or

m
al

iz
ed

 T
im

e

6
K

8K 10
K

0.95

1.00

1.05

(b) Using a Tesla K40 GPU with both CUDA and rCUDA over EDR Infini-
Band.

1
K

2
K

4
K

6
K

8
K

1
0

K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

CUDA P100
rCUDA P100
rCUDA P100 optimized

Size

N
or

m
al

iz
ed

 T
im

e

6K 8K 1
0K

1.25

1.30

1.35

1.40

(c) Using a Tesla P100 GPU with both CUDA and rCUDA over EDR Infini-
Band.

FIGURE 13 Performance comparison when running cuBLAS test with CUDA and rCUDA for the three GPUs under study.

1
K

2
K

4
K

6
K

8
K

1
0

K

-4
-2
0
2
4
6
8

10
12

6.
7

0.
3 0.
9

1.
0

0.
8

0.
5

11
.9

9.
7

3.
4

0.
1

-1
.3

-2
.5

rCUDA vs. rCUDA optimized

rCUDA optimized vs. CUDA

Size

D
iff

er
en

ce
 (

%
)

(a) Using aTeslaK20GPUwithbothCUDAand rCUDAoverFDR InfiniBand.

1
K

2
K

4
K

6
K

8
K

1
0

K

-5

0

5

10

15

20

3.
9

2.
1

0.
8

0.
3

0.
1 1.

2

17
.8

10
.2

2.
6

-0
.2

-2
.0

-3
.0

rCUDA vs. rCUDA optimized

rCUDA optimized vs. CUDA

Size

D
iff

er
en

ce
 (

%
)

(b) Using a Tesla K40 GPU with both CUDA and rCUDA over EDR Infini-
Band.

1
K

2
K

4
K

6
K

8
K

1
0

K

0

5

10

15

20

25

30

3.
2

0.
8 2.

4

2.
2

0.
8

1.
3

1.
6

6.
9

13
.7

20
.3

25
.2 26

.8

rCUDA vs. rCUDA optimized

rCUDA optimized vs. CUDA

Size

D
iff

er
en

ce
 (

%
)

(c) Using a Tesla P100 GPU with both CUDA and rCUDA over EDR Infini-
Band.

FIGURE 14 Performance comparison when running cuBLAS test with CUDA and rCUDA for the three GPUs under study.

18 CARLOS REAÑO ET AL

when using the EDR InfiniBand fabric with a remote Tesla K40GPU, as shown in Figure 13 (b).When using the EDR InfiniBand fabric with a remote
Tesla P100GPU (see Figure 13 (c)), the improvement of using the new communication layer is more regular.
To better analyze these results, Figure 14 presents the percentage execution time difference of using the previous communication layer com-

pared to the new one, bars labeled as “rCUDA vs. rCUDA optimized”. As it can be seen, the previous communication layer of rCUDA requires on
average 1.71%, 1.39% and 1.77%more execution time for the three scenarios under analysis FDR + K20, EDR + K40 and EDR + P100, respectively.
As it was the case for the bandwidth, the scenario involving the newest hardware, EDR InfiniBand and Tesla P100, presents the highest improve-
ment. As expected, the impact of improving the bandwidth on a real application is reduced by the fact that the main task of real applications is not
transferring data to the GPU. Therefore, the weight of data transfers in a real application is usually very low in comparison to oder tasks such as
doing computations in the GPU.
Figure 14 also shows the percentage difference of using rCUDAwith the new communication layer compared to using CUDA and a local GPU,

bars labeled as “rCUDA optimized vs. CUDA”. In this case, the average overhead of rCUDA with respect to CUDA for the same three scenarios
under analysis is 3.56%, 4.22% and 15.74%, respectively. Notice that in the latter scenario, EDR InfiniBand fabric with a remote Tesla P100 GPU,
the overhead is higher than in the other two scenarios. The reason is that in this scenariowe have improved theGPU in comparison to the other two
scenarios, however, the underlying InfiniBand network has not been improved from EDR to HDR.We expect that results with HDR InfiniBand will
result into a lower overhead, comparable to the ones obtained in the other two scenarios.

5.3.2 cuFFT

The NVIDIA CUDA Fast Fourier Transform library (cuFFT) 35 provides GPU-accelerated implementations of the Fastest Fourier Transform in the
West (FFTW) library 36, which is a software library for computing discrete Fourier transforms (DFT). In this section we have used an application
using the cuFFT library for comparing the performance of the new and the previous communication layers.
Figure 15 shows the normalized execution time of these experiments for the optimized communication layer, labeled as “rCUDA optimized”,

compare to the one for the previous communication layer, labeled as “rCUDA”. Results for both of themare normalizedwith respect to the execution
time using CUDA and a local GPU. As we can observe, in these experiments, the increase in performance provided by the new communication layer
is similar in each scenario regardless of the copy size. It can also be seen that using the new communication layer provides more benefits as newer
hardware is used. Thus, the improvement obtained when using the FDR InfiniBand fabric with a remote Tesla K20 GPU (see Figure 15 (a)) is lower
than the one obtained when using the EDR InfiniBand fabric with a remote Tesla K40 GPU (see Figure 15 (b)). The latter, in turn, presents lower
improvement thanwhen using the EDR InfiniBand fabric with a remote Tesla P100GPU (see Figure 15 (c)).
In Figure 16 we can see the percentage execution time difference of using the previous communication layer compared to the new one, bars

labeled as “rCUDAvs. rCUDAoptimized”. The figure shows that the previous communication layer of rCUDA requires on average 0.91%, 1.77% and
4.81% more execution time for the three scenarios under analysis FDR + K20, EDR + K40 and EDR + P100, respectively. As commented, similarly
to what happened with the bandwidth, the improvements are more noticeable in the scenarios using newer hardware. Again, as in the case of the

CARLOS REAÑO ET AL 19

1
0

K

2
0

K

3
0

K

4
0

K

5
0

K

6
0

K

7
0

K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CUDA K20
rCUDA K20
rCUDA K20 optimized

Size

N
or

m
al

iz
ed

 T
im

e

4
0K

50
K

6
0K

70
K

1.05

1.10

1.15

1.20

(a) Using aTeslaK20GPUwithbothCUDAand rCUDAoverFDR InfiniBand.

1
0

K

2
0

K

3
0

K

4
0

K

5
0

K

6
0

K

7
0

K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CUDA K40
rCUDA K40
rCUDA K40 optimized

Size

N
or

m
al

iz
ed

 T
im

e

4
0K

50
K

6
0K

70
K

1.05

1.10

1.15

1.20

(b) Using a Tesla K40 GPU with both CUDA and rCUDA over EDR Infini-
Band.

1
0

K

2
0

K

3
0

K

4
0

K

5
0

K

6
0

K

7
0

K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

CUDA P100
rCUDA P100
rCUDA P100 optimized

Size

N
or

m
al

iz
ed

 T
im

e

40
K

50
K

60
K

7
0K

1.10

1.20

1.30

1.40

(c) Using a Tesla P100 GPU with both CUDA and rCUDA over EDR Infini-
Band.

FIGURE 15 Performance comparison when running cuFFT test with CUDA and rCUDA for the three GPUs under study.

1
0

K

2
0

K

3
0

K

4
0

K

5
0

K

6
0

K

7
0

K

0

2

4

6

8

10

12

14

0.
2

3.
8

0.
4

0.
0 0.

9

0.
8

0.
4

13
.2 14

.7

14
.4

12
.6

10
.3

9.
1

8.
0

rCUDA vs. rCUDA optimized

rCUDA optimized vs. CUDA

Size

D
iff

er
en

ce
 (

%
)

(a) Using aTeslaK20GPUwithbothCUDAand rCUDAoverFDR InfiniBand.

1
0

K

2
0

K

3
0

K

4
0

K

5
0

K

6
0

K

7
0

K

0

5

10

15

1.
1 2.

8

1.
6

1.
1 2.

1

1.
4 2.

4

13
.9

17
.5

14
.8

12
.4

10
.3

9.
3

8.
3rCUDA vs. rCUDA optimized

rCUDA optimized vs. CUDA

Size

D
iff

er
en

ce
 (

%
)

(b) Using a Tesla K40 GPU with both CUDA and rCUDA over EDR Infini-
Band.

1
0

K

2
0

K

3
0

K

4
0

K

5
0

K

6
0

K

7
0

K

0

5

10

15

20

4.
1

6.
6

5.
2 5.
9

4.
4

4.
2

3.
3

16
.3 18

.8

23
.0

9.
2

19
.4 20

.8

20
.3

rCUDA vs. rCUDA optimized

rCUDA optimized vs. CUDA

Size

D
iff

er
en

ce
 (

%
)

(c) Using a Tesla P100 GPU with both CUDA and rCUDA over EDR Infini-
Band.

FIGURE 16 Performance comparison when running cuFFT test with CUDA and rCUDA for the three GPUs under study.

20 CARLOS REAÑO ET AL

experiments with cuBLAS presented in the previous section, the improvement achieved is lower than the one shown for the bandwidth. Aswe have
already mentioned, the improvement achieved is not as high as in the case of the bandwidth. The reason is the same as in the cuBLAS experiments
presented in the previous section: a real application does more tasks than moving data to and from the GPUmemory, such as doing computations
in the GPU.
Figure 16 also shows the percentage difference of using rCUDAwith the new communication layer compared to using CUDA and a local GPU,

bars labeled as “rCUDAoptimized vs. CUDA”. In this case, the average overhead of rCUDAwith respect toCUDA for the same three scenarios under
analysis is 11.75%, 12.36% and 18.25%, respectively. In comparison to the experiments with cuBLAS, these values are higher. The reason is that in
these experiments, data transfers have more weight than in the cuBLAS ones. This also explains that the new communication layer has obtained
better improvement values when compared to the previous communication layer.

5.3.3 Summary

As a summary, Table 2 shows the average execution time difference obtained in the results shown in Figures 13 and 15 . The table shows that the
previous communication layer requires on average 1.62%more execution time for the experiments using cuBLAS. Regarding the experiments using
cuFFT the overhead of the previous communication layer is higher, and it needs 2.50% more execution time, on average. The experiments using
cuFFT clearly show how the impact of the new communication layer is higher as newer hardware is used.
Table 2 also shows that when using rCUDA with the new communication layer, the average overhead in execution time with respect to CUDA

using a local GPU is 7.84% and 14,12%, respectively, for the experiments with cuBLAS and cuFFT. As has already been pointed out, the scenario
using the EDR InfiniBand fabric with a remote Tesla P100 GPU presents a higher overhead than in the other two scenarios. As explained before,
this is due to the fact that in this scenario we use a newer GPU, the P100, in comparison to the other two scenarios, where we used a K20 and a
K40. However, the InfiniBand network is the same as in the scenario with the K40: EDR InfiniBand.We expect that results using a newer InfiniBand
fabric, such as HDR, will result into a lower overhead, comparable to the ones obtained in the other two scenarios.
It should also be noted that the overhead of rCUDA in these experiments is relatively high if we compare it to other studies which show that

rCUDA overhead is below 5% 17. As we have mentioned, the applications selected for the experiments in this section mainly transfer data using
pageable host memory, being the time devoted to perform computations in the GPU lower than usual. While this behavior is the best one to show
the impact of using the new communication layer, it is also theworst case for rCUDA. In general, themore computations in theGPU, the less rCUDA
overhead. The reason is that the time spent in computations is the same forCUDAand rCUDA, and it helps to hide the potential overhead of rCUDA
because of accessing the GPU through the network.

CARLOS REAÑO ET AL 21

TABLE 2 Average execution time difference obtained in the results shown in Figures 13 and 15 .

Scenario cuBLAS cuFFT
FDR +K20 EDR +K40 EDR + P100 FDR +K20 EDR +K40 EDR + P100

rCUDA vs. rCUDA optimized 1.71% 1.39% 1.77% 0.91% 1.77% 4.81%
rCUDA optimized vs. CUDA 3.56% 4.22% 15.74% 11.75% 12.36% 18.25%

6 CONCLUSIONS

In this paper we have studied the influence of the underlying hardware in the performance of remote GPU virtualization. To that end, we have
used three different generations of GPUs: the Tesla K20, the Tesla K40 and the Tesla P100. In addition, we have also used two different InfiniBand
network fabrics: FDR and EDR. The remote GPU virtualizationmiddleware employed in the analysis was rCUDA.
The results have revealed that the communication layer of the GPU virtualization middleware must be properly designed in order to obtain the

maximum performance of each hardware generation. In this manner, we have found out that there was still room for improvement in the rCUDA
middleware communication layer.
After carefully analyzing the previous communication layer, we have concluded that the pipeline used for the data transfers was limited in the

following ways. Firstly, the number of buffers used in the pipelined was fixed and hard-coded. In addition, it was required that both the number and
the size of the pipeline buffers were configurable and adaptive depending on the total size of the data to be transferred.
As a way to address these limitations, we have completely redesigned the rCUDA communication layer in order to improve the management

of the underlying hardware. Results show that it is possible to improve bandwidth up to 29.43%, which translates into up to 4.81% average less
execution time in the performance of the applications analyzed.

ACKNOWLEDGMENTS

This work was funded by the Generalitat Valenciana under Grant PROMETEO/2017/077. Authors are also grateful for the generous support
provided byMellanox Technologies Inc.

References

1. NVIDIA . NVIDIA Tesla P100; Infinite Compute Power for the Modern Data Center http://images.nvidia.com/content/tesla/pdf/
nvidia-tesla-p100-PCIe-datasheet.pdfAccessed 2 April 2017; 2017.

2. NVIDIA . Tesla K40 GPU Accelerator Board Specification http://www.nvidia.com/content/PDF/kepler/
Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdfAccessed 25March 2017; 2013.

http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf

22 CARLOS REAÑO ET AL

3. NVIDIA . Tesla K20 GPU Accelerator Board Specification http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-v07.
pdfAccessed 25March 2017; 2013.

4. Intel Corporation . Intel Xeon Phi Processors http://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.
htmlAccessed 25March 2017; 2017.

5. Guo Kaiyuan, Sui Lingzhi, Qiu Jiantao, et al. FromModel to FPGA: Software-Hardware Co-Design for Efficient Neural Network Acceleration.
In: Hot Chips: A Symposium onHigh Performance Chips; 2016.

6. Suda Naveen, Chandra Vikas, Dasika Ganesh, et al. Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional
Neural Networks. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays; 2016.

7. Wu Haicheng, Diamos Gregory, Sheard Tim, et al. Red Fox: An Execution Environment for Relational Query Processing on GPUs. In: Proceed-
ings of Annual IEEE/ACM International Symposium on Code Generation andOptimization:44:44–44:54ACM; 2014.

8. Phillips Everett H., Zhang Yao, Davis Roger L., Owens JohnD.. Rapid Aerodynamic Performance Prediction on aCluster of Graphics Processing
Units. In: no. AIAA 2009-565 in Proceedings of the 47th AIAAAerospace SciencesMeeting; 2009.

9. Playne Daniel P, Hawick Kenneth A. Data Parallel Three-Dimensional Cahn-Hilliard Field Equation Simulation on GPUs with CUDA. In:
PDPTA:104–110; 2009.

10. Yamazaki Ichitaro, Dong Tingxing, Solca Raffaele, Tomov Stanimire, Dongarra Jack, Schulthess Thomas. Tridiagonalization of a dense sym-
metric matrix on multiple GPUs and its application to symmetric eigenvalue problems. Concurrency and Computation: Practice and Experience.
2014;26(16):2652–2666.

11. YuanchengLuoDuraiswami. CannyedgedetectiononNVIDIACUDA. In: ComputerVision andPatternRecognitionWorkshops, 2008.CVPRW
’08. IEEE Computer Society Conference on:1–8IEEE; 2008.

12. Surkov Vladimir. Parallel option pricing with Fourier space time-stepping method on graphics processing units. Parallel Computing.
2010;36(7):372 - 380. Parallel and Distributed Computing in Finance.

13. Agarwal Pratul K., Hampton Scott, Poznanovic Jeffrey, Ramanthan Arvind, Alam Sadaf R., Crozier Paul S.. Performance modeling of microsec-
ond scale biological molecular dynamics simulations on heterogeneous architectures. Concurrency and Computation: Practice and Experience.
2013;25(10):1356–1375.

14. Luo Guo-Heng, Huang Sheng-Kai, Chang Yue-Shan, Yuan Shyan-Ming. A parallel Bees Algorithm implementation on GPU. Journal of Systems
Architecture. 2014;60(3):271 - 279.

http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-v07.pdf
http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-v07.pdf
http://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
http://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html

CARLOS REAÑO ET AL 23

15. Giunta Giulio,Montella Raffaele, Agrillo Giuseppe, Coviello Giuseppe. AGPGPUTransparent Virtualization Component for High Performance
Computing Clouds. In: Proc. of the Euro-Par Parallel Processing, Euro-Par:379–391; 2010.

16. Oikawa Minoru, Kawai Atsushi, Nomura Kentaro, Yasuoka Kenji, Yoshikawa Kazuyuki, Narumi Tetsu. DS-CUDA: A Middleware to Use Many
GPUs in the Cloud Environment. In: Proc. of the SC Companion: High Performance Computing, Networking Storage and Analysis, SCC:1207–
1214; 2012.

17. Reaño Carlos, Silla Federico, Shainer Gilad, Schultz Scot. Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. In: Proceedings
of the Industrial Track of the 16th InternationalMiddleware Conference; 2015.

18. Reaño Carlos, Silla Federico. A Comparative Performance Analysis of Remote GPU Virtualization over Three Generations of GPUs. In: 46th
International Conference on Parallel ProcessingWorkshops, ICPPWorkshops:121–128; 2017.

19. NVIDIA . NVIDIA Grid Accelerated Virtual Desktops and Apps http://images.nvidia.com/content/grid/pdf/
188270-NVIDIA-GRID-Datasheet-NV-US-FNL-Web.pdfAccessed 26March 2017; 2016.

20. Shi Lin, Chen Hao, Sun Jianhua. vCUDA: GPU accelerated high performance computing in virtual machines. In: Proc. of the IEEE Parallel and
Distributed Processing Symposium, IPDPS:1–11; 2009.

21. Liang Tyng Yeu, Chang YuWei. GridCuda: AGrid-Enabled CUDAProgramming Toolkit. In: Proc. of the IEEEAdvanced InformationNetworking
and ApplicationsWorkshops,WAINA:141–146; 2011.

22. Gupta Vishakha, Gavrilovska Ada, SchwanKarsten, et al. GViM: GPU-accelerated virtual machines. In: Proc. of the ACMWorkshop on System-
level Virtualization for High Performance Computing, HPCVirt:17–24; 2009.

23. Merritt AlexanderM., Gupta Vishakha, VermaAbhishek, Gavrilovska Ada, SchwanKarsten. Shadowfax: Scaling in Heterogeneous Cluster Sys-
tems via GPGPU Assemblies. In: Proc. of the International Workshop on Virtualization Technologies in Distributed Computing, VTDC:3–10;
2011.

24. Shadowfax II - scalable implementation of GPGPU assemblies http://keeneland.gatech.edu/software/keeneland/kidron.htmlAccessed 9
September 2015; 2015.

25. NVIDIA . CUDA C Programming Guide. Design Guide http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdfAccessed 26March
2017; 2017.

26. NVIDIA . CUDA Runtime API. API Reference Manual http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdfAccessed 26 March 2017;
2016.

http://images.nvidia.com/content/grid/pdf/188270-NVIDIA-GRID-Datasheet-NV-US-FNL-Web.pdf
http://images.nvidia.com/content/grid/pdf/188270-NVIDIA-GRID-Datasheet-NV-US-FNL-Web.pdf
http://keeneland.gatech.edu/software/keeneland/kidron.html
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf

24 CARLOS REAÑO ET AL

27. Reaño Carlos, Silla F.. A Performance Comparison of CUDA Remote GPU Virtualization Frameworks. In: 2015 IEEE International Conference
on Cluster Computing; 2015.

28. NVIDIA . CUDA Samples ReferenceManual 8.0 http://docs.nvidia.com/cuda/cuda-samples/Accessed 2 April 2017; 2017.

29. BosmaWieb, Cannon John, Playoust Catherine. TheMAGMAAlgebra System I: The User Language. J. Symb. Comput.. 1997;24(3-4):235–265.

30. University of Tennessee . MAGMA: Matrix Algebra on GPU and Multicore Architectures http://icl.cs.utk.edu/magmaAccessed 2 April 2017;
2017.

31. Peña Antonio J., Reaño Carlos, Silla Federico, Mayo Rafael, Quintana-Ortí Enrique S., Duato José. A complete and efficient CUDA-sharing
solution for HPC clusters. Parallel Computing. 2014;40(10):574–588.

32. Reaño Carlos, Silla Federico. Extending rCUDA with Support for P2P Memory Copies between Remote GPUs. In: 18th IEEE International
Conference onHigh Performance Computing and Communications, HPCC:789–796; 2016.

33. NVIDIA . CUDABasic Linear Algebra Subroutines (cuBLAS) https://developer.nvidia.com/cublasAccessed 23March 2018; 2018.

34. University of Tennessee . Basic Linear Algebra Subprograms (BLAS) http://www.netlib.org/blas/Accessed 23March 2018; 2018.

35. NVIDIA . CUDA Fast Fourier Transform library (cuFFT) https://developer.nvidia.com/cufftAccessed 23March December 2018; 2018.

36. Frigo Matteo, Johnson Steven G.. The Design and Implementation of FFTW3. Proceedings of the IEEE. 2005;93(2):216–231. Special issue on
“ProgramGeneration, Optimization, and PlatformAdaptation”.

AUTHORBIOGRAPHY

Carlos Reaño received a BS degree in Computer Engineering from University of Valencia, Spain, in 2008. He also holds
a MS degree in Software Engineering, Formal Methods and Information Systems from Technical University of Valencia,
Spain, since2012, and aPhD inComputerEngineering from the sameuniversity since2017.He is currently a postdoctoral
researcher at theDepartment of Computer Engineering (DISCA) of Technical University of Valencia, where he is working
in the rCUDA project (www.rcuda.net) since 2011. His research is mainly focused on the virtualization of remote GPUs.

Hehas published several papers in peer-reviewed conferences and journals, and has also participated as reviewer in some conferences and journals.
More information is available from http://mural.uv.es/caregon.

http://docs.nvidia.com/cuda/cuda-samples/
http://icl.cs.utk.edu/magma
https://developer.nvidia.com/cublas
http://www.netlib.org/blas/
https://developer.nvidia.com/cufft
http://mural.uv.es/caregon

CARLOS REAÑO ET AL 25

Federico Silla received theMSandPh.D. degrees inComputer Engineering fromUniversitat Politenica deValencia, Spain,
in 1995 and 1999, respectively. He is currently an associate professor at the Department of Computer Engineering at
that university, although he is credited by the Spanish Government as Full Professor since January 2016. Furthermore,
he worked for two years at Intel Corporation, developing on-chip networks. His research addresses high performance
on-chip and off-chip interconnection networks as well as distributed memory systems and remote GPU virtualization

mechanisms. In this regard, he is the coordinator of the rCUDA remote GPU virtualization project since it began in 2008. He has published more
than 100 papers in peer-reviewed conferences and journals, as well as 10 book chapters, what currently translates into an H-index impact factor
equal to 26 according to Google Scholar. He has been member of Program Committees in many of the most prestigious conferences in his area,
including CCGRID, SC, PACT, ISCA, ICS, MICRO, etc. He is also an Associate Editor of Journal of Parallel and Distributed Computing (JPDC) since
2015. In addition to organize several workshops, he has also beenWorkshopChair in the International Conference on Parallel Processing 2017 and
2018. For more information about Federico Silla, please visit http://www.disca.upv.es/fsilla.

How to cite this article: C. Reaño and F. Silla, (2018), Redesigning the rCUDA Communication Layer for a Better Adaptation to the Underlying
Hardware, Concurrency Computat: Pract Exper., 2018;00:1–15.

http://www.disca.upv.es/fsilla

